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within this restricted set the switching times are arbitrary. The paper uses the theory of formal
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Abstract. The paper deals with the realization theory of linear and bilinear switched systems. Nec-
essary and sufficient conditions are formulated for a family of input-output maps to be realizable by
a (bi)linear switched system. Characterization of minimal realizations is presented. The paper treats
two types of (bi)linear switched systems. The first one is when all switching sequences are allowed.
The second one is when only a subset of switching sequences is admissible, but within this restricted
set the switching times are arbitrary. The paper uses the theory of formal power series to derive the
results on realization theory.
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.

1. Introduction

Realization theory is one of central topics of systems theory. Apart from its theoretical relevance, realization
theory has the potential of being applied for developing control and identification methods, as development of
linear systems theory has demonstrated.

Switched systems are one of the best studied subclasses of hybrid systems. A vast literature is available on
various issues concerning switched systems, for a comprehensive survey see [12]. The current paper develops
realization theory for the following two subclasses of switched systems: linear switched systems and bilinear
switched systems.

More specifically, the paper tries to solve the following problems.
(1) Reduction to a minimal realization

Consider a linear (bilinear) switched system Σ, and a subset of its input-output maps Φ. Find a minimal
linear (bilinear) switched system which realizes Φ.

(2) Existence of a realization with arbitrary switching
Find necessary and sufficient condition for the existence of a linear (bilinear) switched system realizing
a given set of input-output maps.

(3) Existence of a realization with constrained switching
Assume that a set of admissible switching sequences is defined. Assume that the switching times of the

Keywords and phrases: Hybrid systems switched linear systems, switched bilinear systems, realization theory, formal power
series, minimal realization
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admissible switching sequences are arbitrary. Consider a set of input-output maps Φ defined only for
the admissible sequences. Find sufficient and necessary conditions for the existence of a linear (bilinear)
switched system realizing Φ. Give a characterization of the minimal realizations of Φ.

The motivation of the Problem 3 is the following. Assume that the switching is controlled by a finite automaton
and the discrete modes are the states of this automaton. Assume that the automaton is driven by external
events, which can trigger a discrete-state transition at any time. We impose no restriction as to when an
external event takes place. Then the traces of this automaton combined with the switching times ( which are
arbitrary ) give us the admissible switching sequences.

If we can solve Problem 3 for such admissible switching sequences that the set of admissible sequences of
discrete modes is a regular language, then we can solve the following problem. Construct a realization of a set
of input-output maps by a linear (bilinear) switched system, such that switchings of that system are controlled
by an automaton which is given in advance. Notice that the set of traces of an automaton is always a regular
language.

The following results are proved in the paper.

• A linear (bilinear) switched system is a minimal realization of a set of input-output maps if and only
if it is observable and semi-reachable from the set of states which induce the input-output maps of the
given set.

• Minimal linear (bilinear) switched systems which realize a given set of input-output maps are unique
up to similarity.

• Each linear (bilinear) switched system Σ can be transformed to a minimal realization of any set of
input-output maps which are realized by Σ.

• A set of input/output maps is realizable by a linear (bilinear) switched system if and only if it has
a generalized kernel representation ( generalized Fliess-series expansion ) and the rank of its Hankel-
matrix is finite. There is a procedure to construct the realization from the columns of the Hankel-matrix,
and this procedure yields a minimal realization.

• Consider a set of input-output maps Φ defined on some subset of switching sequences. Assume that the
switching sequences of this subset have arbitrary switching times and that their discrete mode parts form
a regular language L. Then Φ has a realization by a linear (bilinear) switched system if and only if the
Φ has a generalized kernel representation with constraint L ( has a generalized Fliess-series expansion)
and its Hankel-matrix is of finite rank. Again, there exists a procedure to construct a realization from
the columns of the Hankel-matrix. The procedure yields an observable and semi-reachable realization
of Φ. But this realization is not a realization with the smallest state-space dimension possible.

There are some earlier work on the realization theory of switched systems, see [14, 15, 17]. For realization
theory for other classes of hybrid systems see [16,18].

The paper [14] developed realization theory for linear switched systems using elementary techniques. The
problem addressed in this paper, even for linear switched systems, is more general than the one dealt with
in [14]. There, realization of a single input-output map by a linear switched system was considered. Moreover
the input-output map was supposed to be realized from the zero initial state and the input-output map was
assumed to be defined on all the switching sequences. If only one input-output map is considered, which is
defined for all switching sequences and zero for constant zero input, the results of the paper imply those of [14].
If the set of discrete modes contains only one element, then the results of paper [14] imply the classical ones for
linear systems, see [2]

The paper [15] is very similar to the current paper. It approaches realization theory using formal power
series, in the same way as it is done in the current paper. However, it develops realization theory only for linear
switched systems and does not provide any of the proofs.

The paper [17] sketches realization theory for bilinear switched systems without providing the proofs. The
approach taken in [17] and the presented results are very similar to those of the current paper.

The papers [15,17] can be viewed as a short versions of parts of the current paper. The current paper contains
all the results of [15,17] and also provides all the proofs.
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The brief overview of the results suggests that there is a remarkable analogy between the realization theories
of linear and bilinear switched systems. In fact, this analogy is by no means a coincidence. Both the realization
problem for linear and the realization problem for bilinear switched systems are equivalent to finding a (possibly
minimal) representation for a set of formal power series. That is, realization theory of both linear and bilinear
switched systems can be reformulated in terms of the theory of rational formal power series. This enables us
to give a very concise and simple treatment of the realization problem for linear and bilinear switched systems.
In fact, if one views switched systems as nonlinear systems and one is familiar with the realization theory of
nonlinear systems, then the results of the paper should not be too surprising. Exactly this similarity between
realization theory of linear and bilinear switched systems in terms of results and mathematical tools is the
motivation to present the realization theory of linear and bilinear switched systems in one paper.

The approach to the realization theory taken in this paper was inspired by works of M.Fliess, B. Jakubczyk
and H. Sussman [4, 5, 10, 25]. The main tool used in the paper is the theory of rational formal power series.
Rational formal power series were used in systems theory earlier. Realization theory for bilinear systems is
one of the major applications of rational formal power series, see [8]. There are a number of definitions for
representation of rational formal power series, see [1, 20, 21]. All the cited works deal with representations of
a single formal power series. In this paper, we will look at representations of families of formal power series
instead. This requires a slight and straightforward extension of the existing theory.

We will not discuss the algorithmic aspects of realization theory or partial realization theory in this paper.
There are some results in this direction, see [17].

The outline of the paper is the following. The first section, Section 2, sets up some notation which will be
used throughout the paper. Section 3 describes some properties and concepts related to switched systems which
are used in the rest of the paper. Section 4 contains the necessary results on formal power series. The material
of Section 4 is an extension of the classical theory of rational formal power series ( [1, 11]). The proofs of the
statements of Section 4 are given in Appendix A. In Section 5 realization theory of linear switched systems is
presented. Section 6 presents realization theory of bilinear systems.

2. Preliminaries

For suitable sets S,B, S ⊆ R denote by PC(S,B) the class of piecewise-continuous maps from S to B. That
is, f ∈ PC(S,B) if f has finitely many points of discontinuity on each finite interval and at each point of
discontinuity the right- and left-hand side limits exist and they are finite. For a set Σ denote by Σ∗ the set of
finite strings of elements of Σ. For w = a1a2 · · · ak ∈ Σ∗ the length of w is denoted by |w|, i.e. |w| = k. The
empty sequence is denoted by ε. The length of ε is zero: |ε| = 0. Let Σ+ = Σ∗ \ {ε}. The concatenation of two
strings v = v1 · · · vk, w = w1 · · ·wm ∈ Σ∗ is the string vw = v1 · · · vkw1 · · ·wm. If w ∈ Q+ then wk denotes the
word ww · · ·w︸ ︷︷ ︸

k−times
. The word w0 is just the empty word ε. Denote by T the set [0,+∞) ⊆ R. Denote by N the set

of natural number including 0. Denote by F (A,B) the set of all functions from the set A to the set B. By abuse
of notation we will denote any constant function f : T → A by its value. That is, if f(t) = a ∈ A for all t ∈ T ,
then f will be denoted by a. For any function f the range of f will be denoted by Imf . If A,B are two sets,
then the set (A× B)∗ will be identified with the set {(u,w) ∈ A∗ × B∗ | |u| = |w|}. For any two sets J,X the
surjective function A : J → X is called an indexed subset of X or simply and indexed set. It will be denoted by
A = {aj ∈ X | j ∈ J}. The set J will be called the index set of A. The indexed subset A = {aj ∈ X | j ∈ J}
is said to be a subset of the indexed subset B = {bi ∈ X | i ∈ I} if there exists g : J → I such that aj = bg(j).
The fact that A is a subset of B will be denoted by A ⊆ B.

Let f : A × (B × C)+ → D. Then for each a ∈ A, w ∈ B+ we define the function f(a,w, .) : C |w| → D by
f(a,w, .)(v) = f(a, (w, v)), v ∈ C |w|. By abuse of notation we denote f(a,w, .)(v) by f(a,w, v).

Let φ : Rk → Rp, and α = (α1, α2, . . . , αk) ∈ Nk. We define Dαφ as the partial derivative

Dαφ =
dα1

dtα1
1

dα2

dtα2
2

· · · d
αk

dtαk

k

φ(t1, t2, . . . , tk)|t1=t2=···=tk=0.
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Let f, g ∈ PC(T,A) for some suitable set A. Define for any τ ∈ T the concatenation f#τg ∈ PC(T,A) of f
and g by

f#τg(t) =
{
f(t) if t ≤ τ
g(t) if t > τ

If f : T → A, then for each τ ∈ T define Shiftτ (f) : T → A by Shiftτ (f)(t) = f(t + τ). If X ,Y,Z are vector
spaces over R, and F1 : X → Y, F2 : Y → Z are linear maps, then F1F2 denotes the composition F1 ◦ F2 of F1

and F2. If x ∈ X , then F1x denote the value F1(x) of F1 at x.

3. Switched Systems

This section contains the definition and elementary properties of switched systems.

Definition 1. A switched ( control ) system is a tuple

Σ = (X,U ,Y, Q, {fq | q ∈ Q, u ∈ U}, {hq | q ∈ Q})

where
• X = Rn is the state-space
• Y = Rp is the output-space
• U = Rm is the input-space
• Q is the finite set of discrete modes
• fq : X × U → X , is a function smooth in both variables x and u, and globally Lipschitz in x
• hq : X → Y is smooth map for each q ∈ Q

Elements of the set (Q × T )+ are called switching sequences. The inputs of the switched system Σ are
functions from PC(T,U) and sequences from (Q× T )+. That is, the switching sequences are part of the input,
they are specified externally and we allow any switching sequence to occur. In fact, the switching sequences
can be considered as discrete inputs.

In the hybrid systems literature the discrete modes are usually viewed as part of the state. One can think
of switched systems as hybrid systems without guards, such that the discrete state transitions are triggered by
discrete inputs and the discrete state transition rules are trivial. More precisely, there is one-to-one correspon-
dence between discrete states and discrete inputs, and a discrete input changes the discrete state to the discrete
state which corresponds to this particular discrete input. That is, the new discrete state of the system depends
only on the discrete input, but not on the previous discrete state.

Let u ∈ PC(T,U) and w = (q1, t2)(q2, t2) · · · (qk, tl) ∈ (Q × T )+. The inputs u and w steer the system Σ
from state x0 to the state xΣ(x0, u, w) given by

xΣ(x0, u, w) = F (qk, ShiftPk−1
1 ti

(u), tk) ◦ F (qk−1, ShiftPk−2
1 ti

(u), tk−1) ◦ · · · · · · ◦ F (q1, u, t1)(x0)

where F (q, u, t) : X → X and for each x ∈ X the function F (q, u, t, x) : t 7→ F (q, u, t)(x) is the solution of the
differential equation

d

dt
F (q, u, t, x) = fq(F (q, u, t, x), u(t)), F (q, u, 0, x) = x

The empty sequence ε ∈ (Q× T )∗ leaves the state intact: xΣ(x0, u, ε) = x0.
The reachable set of the system Σ from a set of initial states X0 is defined by

Reach(Σ,X0) = {xΣ(x0, u, w) ∈ X | u ∈ PC(T,U), w ∈ (Q× T )∗, x0 ∈ X0}

Σ is said to be reachable from X0 if Reach(Σ,X0) = X holds. Σ is semi-reachable from X0 if X is the smallest
vector space containing Reach(Σ,X0). In other words, Σ is semi-reachablefrom X0 if

X = Span{x ∈ X | x ∈ Reach(Σ,X0)}
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Define the function yΣ : X × PC(T,U)× (Q× T )+ → Y by

∀x ∈ X , u ∈ PC(T,U), w = (q1, t1)(q2, t2) · · · (qk, tk) ∈ (Q× T )+ :
yΣ(x, u, w) = hqk

(xΣ(x, u, w))

By abuse of notation, for each x ∈ X define the input-output map yΣ(x, ., .) : PC(T,U)× (Q× T )+ → Y by

yΣ(x, ., .)(u,w) = yΣ(x, u, w)

The map yΣ(x, ., .) is called the input-output map of the system Σ induced by the state x. By abuse of notation
we will use yΣ(x, u, w) for yΣ(x, ., .)(u,w).

Two states x1 6= x2 ∈ X of the switched system Σ are indistinguishable if

∀w ∈ (Q× T )+, u ∈ PC(T,U) : yΣ(x1, u, w) = yΣ(x2, u, w)

Σ is called observable if it has no pair of indistinguishable states.
A set Φ ⊆ F (PC(T,U) × (Q × T )+,Y) of input-output maps is said to be realized by a switched system

Σ = (X,U ,Y, Q, {fq | q ∈ Q,u ∈ U}, {hq | q ∈ Q}) if there exists µ : Φ → X such that

∀f ∈ Φ: yΣ(µ(f), ., .) = f

or, in other words,
∀f ∈ Φ, u ∈ PC(T,U), w ∈ (Q× T )+: yΣ(µ(f), u, w) = f(u,w)

By abuse of terminology, both Σ and (Σ, µ) will be called a realization of Φ. One can think of the map µ as a
way to determine the corresponding initial condition for each element of Φ. That is, Σ realizes Φ if and only if
for each f ∈ Φ there exists a state x ∈ X such that yΣ(x, ., .) = f . Denote by dim Σ := dimX the dimension of
the state space of the switched system Σ.

A switched system Σ is a minimal realization of Φ if Σ is a realization of Φ and for each switched system Σ1

such that Σ1 is a realization of Φ it holds that

dimΣ ≤ dim Σ1

For any L ⊆ Q+ define the subset of admissible switching sequences TL ⊆ (Q× T )+ by

TL := {(w, τ) ∈ (Q× T )+ | w ∈ L}

That is, TL is the set of all those switching sequences, for which the sequence of discrete modes belongs to L
and the sequence of times is arbitrary. Notice that if L = Q+ then TL = (Q × T )+. Let Φ ⊆ F (PC(T,U) ×
TL,Y) be a set of input-output maps defined only on switching sequences belonging to TL. The system
Σ = (X,U ,Y, Q, {fq | q ∈ Q, u ∈ U}, {hq | q ∈ Q}) realizes Φ with constraint L if there exists µ : Φ → X such
that

∀f ∈ Φ: yΣ(µ(f), ., .)|PC(T,U)×TL = f

or, in other words,
∀w ∈ Φ, u ∈ PC(T,U), w ∈ TL: yΣ(µ(f), u, w) = f(u,w)

We will call both (Σ, µ) and Σ a realization of Φ. Notice that if L = Q+ then Σ realizes Φ with constraint L if
and only if Σ realizes Φ. If Σ is a switched system, then we say that the realization (Σ, µ) is semi-reachable , if
Σ is semi-reachable from Imµ.
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4. Formal Power Series

The section presents results on formal power series. The material of this section is based on the classical
theory of formal power series, see [1, 11]. However, a number of concepts and results are extensions of the
standard ones. In particular, the definition of the rationality is more general than that one occurring in the
literature. Consequently, the theorems characterizing minimality are extensions of the well-known results. These
generalizations and extensions are rather straightforward and can be easily derived in a manner similar to the
classical case. In order to keep the exposition self-contained and complete, the proofs of those theorems which
are not part of the classical theory, will be given in Appendix A.

Let X be a finite alphabet. A formal power series S with coefficients in Rp is a map

S : X∗ → Rp

We denote by Rp ¿ X∗ À the set of all formal power series with coefficients in Rp. Let S ∈ Rp ¿ X∗ À. For
each i = 1, . . . , p define the formal power series Si ∈ R¿ X∗ À by the following equation

Si(w) = (S(w))i = eTi S(w)

where ei is the ith unit vector of Rp. Let J be an arbitrary (possibly infinite) set. An indexed set of formal
power series Ψ = {Sj ∈ Rp ¿ X∗ À| j ∈ J} with the index set J is called rational if there exists a vector space
X over R, dimX < +∞ and linear maps

C : X → Rp, Aσ ∈ X → X , σ ∈ X

and an indexed set with the index set J

B = {Bj ∈ X | j ∈ J}

such that for all j ∈ J , σ1, . . . , σk ∈ X, k ≥ 0

Sj(σ1σ2 · · ·σk) = CAσk
Aσk−1 · · ·Aσ1Bj .

The 4-tuple R = (X , {Ax}x∈X , B, C) is called a representation of S. The number dimX is called the dimension
of the representation R and it is denoted by dimR. We will refer to X as the state-space of the representation
R. A formal power series S ∈ Rp ¿ X∗ À is called rational if the indexed set {Sj | j ∈ {∅}}, S∅ = S, with
the singleton index {∅}, is rational. That is, S is rational is the above sense if and only if it is rational in the
classical sense.

In fact, a representation can be viewed as a Moore-automaton with the state-space X , with input space X∗,
with output space Rp. The state transition function δ : X ×X → X is given by the linear map δ(x, σ) = Aσx.
The output map µ : X → Rp is given by µ(x) := Cx. The set of initial conditions is given by {Bj | j ∈ J}. The
problem of finding a representation for a set of formal power series Ψ is equivalent to finding a realization of Ψ
by a Moore-automaton of the form described above. That is, finding a representation is equivalent to finding a
realization by a special class of Moore-automaton. We will not pursue the analogy with automaton theory in
this paper. Instead, to keep the presentation self-contained, we will built the theory directly.

A representation Rmin of Ψ is called minimal if for each representation R of Ψ

dimRmin ≤ dimR

In the sequel the following short-hand notation will be used. Let Aσ : X → X , σ ∈ X be linear maps. Then

Aw := Awk
Awk−1 · · ·Aw1 , w = w1w2 · · ·wk ∈ X∗, w1, . . . , wk ∈ X
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Let R = (X , {Az}z∈X , B, C), R̃ = (X̃ , {Ãz}z∈X , B̃, C̃) be two representations. A linear map T : X → X̃ is
called a representation morphism from R to R̃ and is denoted by T : R→ R̃ if the following equalities hold

TAz = ÃzT, ∀z ∈ X, TBj = B̃j ,∀j ∈ J, C = C̃T

Using the automaton-theoretic interpretation discussed one can think of representation morphisms as Moore-
automaton morphisms which are linear morphisms between the state-spaces. The representation morphism T
is called surjective, injective, isomorphism if T is a surjective, injective or isomorphism respectively if viewed as
a linear vector space morphism.

Let L ⊆ X∗. If L is a regular language then, by the classical result [1], the power series L̄ ∈ R ¿ X∗ À,

L̄(w) =
{

1 if w ∈ L
0 otherwise is a rational power series. Consider two power series S, T ∈ Rp ¿ X∗ À. Define

the Hadamard product S ¯ T ∈ Rp ¿ X∗ À by

(S ¯ T )i(w) = Si(w)Ti(w), , i = 1, . . . , p

Let w ∈ X∗ and S ∈ Rp ¿ X∗ À. Define w ◦ S ∈ Rp ¿ X∗ À – the left shift of S by w by

∀v ∈ X∗ : w ◦ S(v) = S(wv)

The following statements are generalizations of the results on rational power series from [1,21]. The proofs are
given in the appendix. Let Ψ = {Sj ∈ Rp ¿ X∗ À| j ∈ J}. be an indexed set of formal power series with the
index set J . Define the set WΨ by

WΨ = Span{w ◦ Sj ∈ Rp ¿ X∗ À| j ∈ J,w ∈ X∗}

Define the Hankel-matrix HΨ of Ψ as the infinite matrix HΨ ∈ R(X∗×I)×(X∗×J), I = {1, 2, . . . , p} and
(HΨ)(u,i)(v,j) = (Sj)i(vu).

Theorem 1. Let Ψ = {Sj ∈ Rp ¿ X∗ À| j ∈ J}.
(i) Assume that dimWΨ < +∞ holds. Then a representation RΨ of Ψ is given by

RΨ = (WΨ, {Aσ}σ∈X , B, C)

– Aσ : WΨ →WΨ , ∀T ∈WΨ: Aσ(T ) = σ ◦ T , σ ∈ X.
– B = {Bj ∈WΨ | j ∈ J}, Bj = Sj for each j ∈ J .
– C : WΨ → Rp, C(T ) = T (ε).

(ii) The following equivalences hold

Ψ is rational ⇐⇒ dimWΨ < +∞⇐⇒ rank HΨ < +∞

Moreover, dimWΨ = rank HΨ holds.

The proof of the theorem is presented in the appendix. The representation RΨ is called free. Using the
theorem above we can easily show that

Lemma 1. The indexed set formal power series Ψ = {Sj ∈ Rp ¿ X∗ À| j ∈ J} is rational if and only if the
indexed set of formal power series Ξ = {S(i,j) ∈ Rp | (i, j) ∈ {1, . . . , p} × J} is rational, where S(i,j) = (Sj)i,
j ∈ J, i = 1, . . . , p.

Proof. Indeed, define pri : Rp → R by pri(x1, . . . , xi−1, xi, xi+1, . . . , xp) = xi for i = 1, . . . , p. It is easy to see
that pri is linear and Si,j = pri ◦ Sj . Define the linear maps Pi : WΨ 3 T 7→ pri ◦ T , i = 1, . . . , p. Notice that⋂p
i=1 kerPi = {0}. It is easy to see that WΞ =

∑p
i=1 Pi(WΨ). That is, dimWΨ < +∞ =⇒ dimWΞ < +∞.
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Conversely, assume that dimWΞ < +∞. Define P : WΨ → ⊕p
i=1 Zi, Zi = WΞ, P (T ) =

∑p
i=1 zi, ∀i = 1, . . . , p :

zi = Pi(T ) ∈ Zi. Then kerP =
⋂p
i=1 kerPi = {0}, thus dimWΨ < p · dimWΞ < +∞. ¤

Theorem 1 implies the following lemma.

Lemma 2. Let Ψ = {Sj ∈ Rp ¿ X∗ À| j ∈ J} and Θ = {Tj ∈ Rp ¿ X∗ À| j ∈ J} be rational indexed sets.
Then Ψ¯Θ := {Sj ¯ Tj ∈ Rp ¿ X∗ À| j ∈ J} is a rational set. Moreover, rank HΨ¯Θ ≤ rank HΨ · rank HΘ.

The proof of the lemma can be found in Appendix A. The classical version of the lemma above can be found
in [1].

Let R = (X , {Aσ}σ∈X , B, C) be a representation of Ψ = {Sj ∈ Rp ¿ X∗ À| j ∈ J}. Define the subspaces
WR and OR of X by

WR = Span{AwBj | w ∈ X∗, j ∈ J}
OR =

⋂

w∈X∗
kerCAw

The sets above have the following automaton-theoretic interpretation. The subspace WR is the span of states
reachable by a w ∈ X∗ from an initial state Bj . Two states x1, x2 are indistinguishable, i.e.

CAwx1 = CAwx2 for all w ∈ X∗

if and only if x1 − x2 ∈ OR. That is, the automaton corresponding to R is reduced if and only if OR = {0}.
We will say that the representation R is reachable if dimWR = dimR, and we will say that R is observable if
OR = {0}.
Lemma 3. Let R = (X , {Aσ}σ∈X , B,C) be a representation of Ψ. Then there exists a representation

Rcan = (Xcan, {Acanσ }σ∈X , Bcan, Ccan)

of Ψ such that Rcan is reachable and observable, and Xcan is isomorphic to the quotient WR/(OR ∩WR).

The proof of the lemma is presented in Appendix A.

Theorem 2 (Minimal representation). Let Ψ = {Sj ∈ Rp ¿ X∗ À| j ∈ J}. The following are equivalent.
(i) Rmin = (X , {Aminσ }σ∈X , Bmin, Cmin) is a minimal representation of Ψ.
(ii) Rmin is reachable and observable.
(iii) If R is a reachable representation of Ψ then there exists a surjective representation morphism T : R→

Rmin.
(iv) rank HΨ = dimWΨ = dimRmin

Corollary 1. (a) All minimal representations of Ψ are isomorphic.
(b) The free representation from Theorem 1 is a minimal representation.

The proof of the theorem and its corollary can be found in Appendix A.

Lemma 4. Let Ψ = {Sj ∈ Rp ¿ X∗ À| j ∈ J} and Ψ
′
= {Tj′ ∈ Rp ¿ X∗ À| j′ ∈ J

′} be two indexed sets
of formal power series with index sets J and J

′
respectively. Assume that there exists a map f : J

′ → J , such
that ∀j′ ∈ J ′ : Sf(j′ ) = Tj′ . Then, if Ψ is rational, then Ψ

′
is also rational and rank HΨ′ ≤ rank HΨ. If f is

surjective, then rank HΨ′ = rank HΨ.

Proof. Indeed, let R = (X , {Ax}x∈X , B, C) be a minimal representation of Ψ. Then it is easy to see that
R
′
= (X , {Ax}x∈X , B′

, C) is a representation of Ψ
′
, where B

′

j′ = Bf(j′ ), j
′ ∈ J ′ . That is, if Ψ is rational, then

Ψ
′
is rational too. By Lemma 3 there exists a reachable and observable representation R

′
can such that dimR

′
can ≤
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dimR
′
= dimR. But R

′
can is a minimal representation of Ψ

′
. Thus, rank HΨ′ = dimRcan ≤ dimR = rank HΨ.

The representation R is reachable and observable. It is also easy to see that OR = OR′ = {0}, thus R
′

is
observable too. It is also easy to see that if f is surjective, then WR′ = WR = X , that is, R

′
is reachable. Thus,

if f is surjective, then R
′
is a minimal representation of Ψ

′
and rank HΨ = dimR = dimR

′
= rank HΨ′ . ¤

Lemma 5. Let J1, . . . , Jn be disjoint sets. Let Ψi = {Sj ∈ Rp ¿ Q∗ À| j ∈ Ji}, i = 1, . . . , n be indexed sets of
formal power series. Let J = J1 ∪ J2 ∪ · · · ∪ Jn and let Ψ = {Sj ∈ Rp ¿ Q∗ À| j ∈ J}. Then Ψ is rational if
and only if each Ψi, i = 1, . . . n is rational.

Proof. It is easy to see that WΨ = Span{Sj | j ∈ J1 ∪ · · · ∪ Jn} =
∑n
i=1 Span{Sj | j ∈ Ji} = WΨ1 + · · ·+WΨn .

For each i = 1, . . . , n, WΨi
is a subspace of WΨ. If Ψ is rational, then by Theorem 1 dimWΨ < +∞ and

thus dimWΨi
< +∞ for all i = 1, . . . , n. That is, each Ψi, i = 1, . . . n is rational. Conversely, if each Ψi,

i = 1, . . . , n is rational, then by Theorem 1, for each i = 1, . . . , n, dimWΨi < +∞ holds. Thus, dimWΨ =
dim(WΨ1 + · · ·+WΨn

) < +∞, that is, Ψ is rational ¤

Corollary 2. Let Ψ = {Sj ∈ Rp ¿ X∗ À| j ∈ J} be an indexed set of formal power series with the index set
J . Assume that J is finite. Then Ψ is rational if and only if Sj ∈ Rp ¿ X∗ À is rational for each j ∈ J
Proof. Let J = {j1, . . . , jn}. Let Ψi = {Sj | j ∈ {ji}}, i = 1, . . . , n. Then Ψ = {Sj | j ∈ {j1} ∪ · · · ∪ {jn}}.
Thus, by Lemma 5 Ψ is rational if and only if each Ψi, i = 1, . . . , n is rational. Let fi : {ji} 3 ji 7→ ∅ ∈ {∅},
i = 1, . . . , n. Each fi is a bijection. For each i = 1, . . . , n let Qi = {Tj | j ∈ {∅}}, T∅ = Sji . Applying Lemma 4
to Ψi, Qi, fi and f−1

i we get that Qi is rational if and only if Ψi is rational. Thus, Ψi is rational ⇐⇒ Sji is
rational, for each i = 1, . . . , n. Therefore, Ψ is rational ⇐⇒ for each j ∈ J , Sj is rational. ¤

In the classical literature one often finds a procedure for constructing a representation of a rational formal
power series from the columns of its Hankel-matrix. A similar construction can be carried out in the set-
ting of this paper too. Indeed, let ImHΨ = Span{(HΨ).,(v,j) ∈ RX∗×I | (v, j) ∈ X∗ × J}. Then the map
T : WΨ → ImHΨ defined by T (w ◦ Sj) = (HΨ).,(w,j) is a well defined vector space isomorphism. Moreover,
if Rf = (WΨ, {Aσ}σ∈X , B, C) is the free representation of Ψ, then TBj = (HΨ).,(ε,j), CT−1(HΨ).,(v,j) =[
(HΨ)(ε,1),(v,j) · · · (HΨ)(ε,p),(v,j)

]T and TAσT−1(HΨ).,(v,j) = (HΨ)(.,(vσ,j) for each σ ∈ X. Define the repre-
sentation

RH,Ψ = (ImHΨ, {TAσT−1}σ∈X , TB,CT−1)

Then it is easy to see that T : Rf → RH,Ψ is a representation isomorphism and RH,Ψ is a representation of Ψ.
It is also straightforward to see that the definition of RH,Ψ corresponds to the definition of the representation
on the columns of the Hankel-matrix as it is described in the classical literature.

If R = (X , {Aσ}σ∈Σ, B, C) is a representation of Ψ, then for any vector space isomorphism T : X → Rn,
n = dimR, the tuple

TR = (Rn, {TAσT−1}σ∈Σ, TB,CT
−1)

is also a representation of Ψ. It is easy to see that R is minimal if and only if TR is minimal. Moreover,
T : R → TR is a representation isomorphism. That is, when dealing with representations, we can assume
without loss of generality that X = Rn. From now on, we will silently assume that X = Rn holds for any
representation considered.

So far we have not treated the algorithmic aspects of theory of rational formal power series. One may wonder
whether reachability and observability of representations is algorithmically decidable, or whether it is possible
to construct a minimal representation algorithmically. One may also wonder whether it is possible to develop
some sort of partial realization theory for rational formal power series. These issues fall outside the scope of
the article. Nevertheless, we would like to note the following. One can easily design a numerical algorithm for
computing the spaces OR and WR for a representation R. Subsequently, one can use these spaces for checking
observability and reachability or computing a minimal representation. One can also develop partial realization
theory. For reference see for instance [7, 16–18]. Moreover, since the classical theory of rational formal power
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series can be applied to the study of bilinear systems, a number of algorithmic results for bilinear systems theory
might be used in the theory of rational formal power series.

5. Realization theory of linear switched systems

This section deals wit the realization theory of linear switched systems. First, definition and elementary
properties of linear switched systems are presented. For more on linear switched systems see [6,12–14,23,24,26].
Subsection 5.1 deals with the structure of input/output maps realizable by linear switched systems. Subsection
5.2 presents realization theory of linear switched systems for the case when arbitrary switching is allowed.
Subsection 5.3 deals with the case when there is a set of admissible switching sequences, but there is no
restriction on the switching times.

Definition 2 (Linear switched systems). A switched system Σ is called linear, if for each q ∈ Q there exist
linear mappings Aq : X → X , Bq : U → X and Cq : X → Y such that

• ∀u ∈ U , ∀x ∈ X : fq(x, u) = Aqx+Bqu
• ∀x ∈ X : hq(x) = Cqx

To make the notation simpler, linear switched systems will be denoted by Σ = (X ,U ,Y, Q, {(Aq, Bq, Cq) | q ∈ Q})
The term linear switched system will be abbreviated by LSS.

Consider the linear switched systems

Σ1 = (X,U ,Y, Q, {(Aq, Bq, Cq) | q ∈ Q}) and Σ2 = (Xa,U ,Y, Q, {(Aaq , Baq , Caq ) | q ∈ Q})

A linear map S : X → Xa is said to be a linear switched system morphism from Σ1 to Σ2 and it is denoted by
S : Σ1 → Σ2 if the the following holds

AaqS = SAq, Baq = SBq, Caq S = Cq ∀q ∈ Q

The map S is called surjective ( injective ) if it is surjective ( injective ) as a linear map. The map S is said to
be a linear switched system isomorphisms, if it is an isomorphisms as a linear map. By abuse of terminology,
if (Σi, µi), i = 1, 2 are two linear switched system realizations and S : Σ1 → Σ2 is a linear switched system
morphism such that S ◦ µ1 = µ2 then we will say that S is linear switched system morphism from realization
(Σ1, µ1) to (Σ2, µ2) and we will denote it by S : (Σ1, µ1) → (Σ2, µ2). The linear switched systems realizations
(Σ1, µ1) and (Σ2, µ2) are said to be algebraically similar or isomorphic if there exists an linear switched system
isomorphism S : (Σ1, µ1) → (Σ2, µ2).

The results presented below can be found in the literature, for references see [13,23].

Proposition 1. For any LSS Σ = (X,U ,Y, Q, {(Aq, Bq, Cq) | q ∈ Q}) the following holds
(1) ∀u ∈ PC(T,U), x0 ∈ X , w = (q1, t1)(q2, t2) · · · (qk, tk) ∈ (Q× T )∗

xΣ(x0, u, w) = exp(Aqk
tk) exp(Aqk−1tk−1) · · · exp(Aq1t1)x0+

∫ tk

0

exp(Aqk
(tk − s))Bqk

u(
k−1∑
1

ti + s)ds+

exp(Aqk
tk)

∫ tk−1

0

exp(Aqk−1(tk−1 − s))Bqk−1u(
k−2∑
1

ti + s)ds+

· · ·
exp(Aqk

tk) exp(Aqk−1tk−1) · · · exp(Aq2t2)
∫ t1

0

exp(Aq1(t1 − s))Bq1u(s)ds

and yΣ(x, u, w) = Cqk
xΣ(x, u, w).
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(2) Reach(Σ, {0}) = {Aq1Aq2 · · ·Aqk
Bqk+1u | u ∈ U , q1q2 · · · qk+1 ∈ Q+, k ≥ 0}

(3) Two states x1, x2 ∈ X are indistinguishable if and only if

x1 − x2 ∈
⋂

q1,q2,...,qk+1∈Q,k≥0

kerCqk+1Aqk
· · ·Aq1

Σ is observable if and only if

⋂

q1,q2,...,qk+1∈Q,k≥0

kerCqk+1Aqk
· · ·Aq1 = {0}

5.1. Input-output maps of linear switched systems

This section deals with properties of input-output maps of linear switched systems. We define the notion
of generalized kernel representation of a set of input-output maps, which turns out to be a notion of vital
importance for the realization theory of linear switched systems. In fact, the realization problem is equivalent
to finding a generalized kernel representation of a particular form for the specified set of input-output maps.
The section also contains a number of quite technical statements, which are used in other parts of the paper.

Recall that for any L ⊆ Q+ the set of admissible switching sequences is defined by TL = {(w, τ) ∈ (Q×T )+ |
w ∈ L}. Let Φ ⊆ F (PC(T,U)×TL,Y) be a set of maps of the form PC(T,U)×TL→ Y. Define the languages
suffixL = {u ∈ Q∗ | ∃w ∈ Q∗ : wu ∈ L} and

L̃ = {ui11 · · ·uikk ∈ Q∗ | u1 · · ·uk ∈ suffixL, uj ∈ Q, ij ≥ 0, j = 1, . . . , k, i1, ik > 0}

Definition 3 (Generalized kernel-representation with constraint L). The set Φ is said to have generalized
kernel representation with constraint L if for all f ∈ Φ and for all w = w1w2 · · ·wk ∈ L̃, w1, . . . , wk ∈ Q, k ≥ 0,
there exist functions

Kf,Φ
w : Rk → Rp and GΦ

w : Rk → Rp×m

such that the following holds.

(1) ∀w ∈ L̃, ∀f ∈ Φ: Kf,Φ
w is analytic and GΦ

w is analytic
(2) For each f ∈ Φ and w, v ∈ Q∗ such that wqqv, wqv ∈ L̃, it holds that

Kf,Φ
wqqv(t1, t2, . . . , t|w|, t, t

′
, t|w|+2, . . . t|w|+|v|+1) = Kf,Φ

wqv(t1, t2, . . . t|w|, t+ t
′
, t|w|+2 . . . t|w|+|v|+1)

GΦ
wqqv(t1, t2, . . . , t|w|, t, t

′
, t|w|+2, . . . t|w|+|v|+1) = GΦ

wqv(t1, t2, . . . t|w|, t+ t
′
, t|w|+2 . . . t|w|+|v|+1)

(3) ∀vw ∈ L̃, w 6= ε, ∀f ∈ Φ :

Kf,Φ
vqw(t1, . . . , t|v|, 0, t|v|+1, . . . , t|wv|) = Kf,Φ

vw (t1, t2, . . . , t|vw|)

∀vw ∈ L̃, v 6= ε, w 6= ε :

GΦ
vqw(t1, . . . , t|v|, 0, t|v|+1, . . . , t|wv|) = GΦ

vw(t1, . . . , t|vw|)

(4) For each f ∈ Φ, (w1, t1)(w2, t2) · · · (wk, tk) ∈ TL , u ∈ PC(T,U)

f(u,w1w2 · · ·wk, t1t2 · · · tk) = Kf,Φ
w1w2···wk

(t1, t2, . . . , tk) +
k∑

i=1

∫ ti

0

GΦ
wi···wk

(ti − s, ti+1, . . . , tk)u(s+
i−1∑

j=1

tj)ds
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We say that Φ has a generalized kernel representation if it has a generalized kernel representation with the
constraint L = Q+. The reader may view the functions Kf,Φ

w as the part of the output which depends on the
initial condition and the functions GΦ

w as functions determining the dependence of the output on the continuous
inputs.

Define the function yΦ
0 : PC(T,U)× TL→ Y by

yΦ
0 (u,w1 · · ·wk, t1 · · · tk) :=

k∑

i=1

∫ ti

0

GΦ
wi···wk

(ti − s, ti+1, . . . , tk)u(s+
i−1∑

j=1

tj)ds

It follows from the fact that Φ has a generalized kernel representation that yΦ
0 can be expressed by ∀f ∈ Φ :

yΦ
0 (u,w, τ) = f(u,w, τ)− f(0, w, τ)

Another straightforward consequence of the definition is that the functions {Kf,Φ
w , GΦ

w | f ∈ Φ, w ∈ suffixL}
completely determine the functions {Kf,Φ

w , GΦ
w | f ∈ Φ, w ∈ L̃}. Indeed, assume that L̃ 3 w = zα1

1 · · · zαk

k such
that z1, . . . , zk ∈ Q,α ∈ Nk, αk > 0 and z1 · · · zk ∈ L̃. Then by using Part 2 and Part 3 of Definition 3 one gets

Kf,Φ
w (t1, . . . , t|w|) = Kf,Φ

zl···zk(Tl, . . . , Tk) = Kf,Φ
z1···zk(T1, . . . , Tk)

GΦ
w(t1, . . . , t|w|) = GΦ

zl···zk
(Tl, . . . , Tk)

(1)

where Ti =
∑αl+···+αi

j=1+αl+···+αi−1
tj , i = l, . . . , k, and Ti = 0, i = 1, . . . , l − 1, f ∈ Φ, l = min{z | αz > 0} and∑b

j=a tj is taken to be 0 if a > b. Now, for any w ∈ L̃ there exist d1, . . . , dl ∈ Q and ξ ∈ Nl such that
d1 · · · dl ∈ suffixL, w = dξ11 · · · dξl

l and ξ1, ξl > 0. Applying (1) to w, d1 · · · dl ∈ suffixL ⊆ L̃ we get that KΦ,f
w

and GΦ
w are uniquely determined by KΦ,f

d1···dl
and GΦ

d1···dl
.

Using formula (1), the chain rule and induction it is straightforward to show that for each w ∈ L̃, w =
zα1
1 · · · zαk

k , z1 · · · zk ∈ L̃, αk > 0, l = min{z | αz > 0} the following holds.

dβ1

dtβ1
1

· · · d
β|w|

dt
β|w|
|w|

Kf,Φ
w (t1, . . . , tn) =

dγ1

dτγ1l
· · · d

γk−l+1

dτ
γk−l+1
k

Kf,Φ
zl···zk

(τl, . . . , τk)|a

=
dγ1

dτγ1l
· · · d

γk−l+1

dτ
γk−l+1
k

Kf,Φ
z1···zk

(τ1, . . . , τk)|b (2)

dβ1

dtβ1
1

· · · d
β|w|

dt
β|w|
|w|

GΦ
w(t1, . . . , tn) =

dγ1

dτγ1l
· · · d

γk−l+1

dτ
γk−l+1
k

GΦ
zl···zk

(τl, . . . , τk)|a

where β ∈ N|w|, γ ∈ Nk−l+1, a ∈ T k−l+1, b ∈ T k and ai =
∑αl+···αi+l−1
j=1+αl+···+αl+i−2

tj , γi =
∑αl+···+αl+i−1
j=1+αl+···+αl+i−2

βj for
each i = 1, . . . , k− l+1, bi = ai−l+1, for i = l, . . . , k and bi = 0 for i = 1, . . . , l−1. Substituting 0 for t1, . . . , t|w|
we get

DβKf,Φ
w = DγKf,Φ

zl···zk
= D(Ol−1,γ)Kf,Φ

z1···zk
and DβGΦ

w = DγGΦ
zl···zk

(3)
where Ol−1 = (0, 0, . . . , 0) ∈ Nl−1. The discussion above yields the following.

Proposition 2. Let z1, z2, . . . , zk, d1, d2, . . . , dl ∈ Q∗. Let α = (α1, . . . , αk) ∈ Nk and β = (β1, . . . , βl) ∈ Nl
Assume that zα1

1 zα2
2 · · · zαk

k = dβ1
1 dβ2

2 · · · dβl

l . If q2z1z2 · · · zkq1 ∈ L̃ and q2d1d2 · · · dlq1 ∈ L̃, then

D(0,α,0)GΦ
q2z1z2···zkq1

= D(0,β,0)GΦ
q2d1d2···dlq1

If z1z2 · · · zkq1 and d1d2 · · · dlq1 ∈ L̃ then

D(α,0)Kf,Φ
z1z2···zkq1

= D(β,0)Kf,Φ
d1d2···dlq1
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Proof. Using (3) one gets that

D(0,α,0)GΦ
q2zq1 = D(0,I,0)GΦ

q2z
α1
1 ···zαk

k q1
= D(0,I,0)GΦ

q2d
β1
1 ···dβl

l q1
= D(0,β,0)GΦ

q2dq1

where I = (1, 1, . . . , 1) ∈ N
Pk

1 αi , z = z1 · · · zk, d = d1 · · · dl. Similarly D(α,0)Kf,Φ
z1···zkq1 = D(α+,0)Kf,Φ

zl···zkq1 =
D(I,0)Kf,Φ

z
α1
1 ···zαk

k q1
= D(I,0)Kf,Φ

d
β1
1 ···dβl

l q1
= D(β,0)Kf,Φ

d1···dlq1
, where l = min{z | αz > 0} and α+ = (αl, . . . , αk). ¤

If Φ has a realization by a linear switched system, then Φ has a generalized kernel representation

Proposition 3. For any LSS Σ = (X,U ,Y, Q, {(Aq, Bq, Cq) | q ∈ Q}), (Σ, µ) is a realization of Φ with
constraint L if and only if Φ has a generalized kernel representation defined by

GΦ
w1w2···wk

(t1, t2, . . . , tk) = Cwk
exp(Awk

tk) exp(Awk−1tk−1) · · · exp(Aw1t1)Bw1

and
Kf,Φ
w1w2···wk

(t1, t2, . . . , tk) = Cwk
exp(Awk

tk) exp(Awk−1tk−1) · · · exp(Aw1t1)µ(f).

where w1w2 · · ·wk ∈ L̃. Moreover, if (Σ, µ) is a realization of Φ, then

yΦ
0 = yΣ(0, ., .)|PC(T,U)×TL

Proof. (Σ, µ) is a realization of Φ if and only if for each f ∈ Φ, u ∈ PC(T,U), w ∈ TL it holds that

f(u,w) = yΣ(µ(f), u, w) = Cqk
xΣ(µ(f), u, w)

where w = w
′
(qk, tk). The statement of proposition follows now directly from from part (1) of Proposition

1. ¤

If the set Φ has a generalized kernel representation with constraint L, then the collection of analytic functions
{Kf,Φ

w , GΦ
w | w ∈ suffixL, f ∈ Φ} determines Φ. Since Kf,Φ

w is analytic, we get that it is determined locally by
{DαKf,Φ

w | α ∈ N|w|}. Similarly, GΦ
w is determined locally by {DαGΦ

w | α ∈ N|w|}.
By applying the formula d

dt

∫ t
0
f(t, τ)dτ = f(t, t) +

∫ t
0
d
dtf(t, τ)dτ and Part 4 of Definition 3 one gets

DαKf,Φ
q1q2···qk

= Dαf(0, q1q2 · · · qk, .) (4)

DαGΦ
qlql+1···qk

ez = DβyΦ
0 (ez, q1q2 · · · qk, .) (5)

where Nk 3 β = ( 0, 0, . . . , 0︸ ︷︷ ︸
l−1−−times

, α1 + 1, α2, . . . , αk−l+1). Here ez is the zth unit vector of Rm, i.e eTz ej = δzj .

Formulas (4) and (5) imply that all the high-order derivatives of the functions Kf,Φ
w , GΦ

w (f ∈ Φ, w ∈ suffixL)
at zero can be computed from high-order derivatives with respect to the switching times of the functions from
Φ.

Define the set S = {(α,w) ∈ N∗ ×Q∗ | α ∈ N|w|, w ∈ Q∗}. For each w ∈ Q∗, q1, q2 ∈ Q define the sets

Fq1,q2(w) = {(v, (α, z)) ∈ Q∗ × S | vz ∈ L, q2wq1 = z1z
α1
1 · · · zαk

k zk, zj ∈ Q, j = 1, . . . , k, z = z1 · · · zk}
Fq1(w) = {(v, (α, z)) ∈ Q∗ × S | vz ∈ L,wq1 = zα1

1 · · · zαk

k zk, zj ∈ Q, j = 1, . . . , k, z = z1 · · · zk}

Define L̃q1,q2 = {w ∈ Q∗ | Fq1,q2(w) 6= ∅} and L̃q = {w ∈ Q∗ | Fq(w) 6= ∅}. Denote by Ol the tuple
(0, 0, . . . , 0) ∈ Nl, l ≥ 0. For any α ∈ Nk let α+ = (α1 + 1, α2, . . . , αk) ∈ Nk, k ≥ 0.

The intuition behind the definition of the sets Fq1,q2(w) and Fq1(w) is the following. Let (Σ, µ) be a realization
of Φ. Then (v, (α, z)) ∈ Fq1,q2(w) if Dα+

yΦ
0 (vz, ej , .) = D(1,1,...,1,0)yΣ(0, q2wq1, ej , .) for each j = 1, . . . ,m.
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Similarly, (v, (α, z)) ∈ Fq1(w) if Dαf(vz, 0, .) = D(1,1,...,1,0)yΣ(µ(f), wq1, 0) for each f ∈ Φ. That is, Fq1,q2(w)
is non-empty if we can deduce from Φ some information on the output of Σ when the initial condition is 0 and
the switching sequence is q2wq1. Similarly, Fq1(w) is non-empty, if we can derive from Φ some information on
the output of Σ, if the initial condition is µ(f), the switching sequence is wq1 and the continuous input is zero.

With the notation above, using the principle of analytic continuation and formulas (4) and (5), one gets the
following

Proposition 4. Let Φ ⊆ F (PC(T,U)× TL,Y). For any LSS

Σ = (X,U ,Y, Q, {(Aq, Bq, Cq) | q ∈ Q})

the pair (Σ, µ) is a realization of Φ with constraint L if and only if Φ has a generalized kernel representation
with constraint L and the following holds

∀w ∈ L, j = 1, 2, . . . ,m, f ∈ Φ, α ∈ N|w| :
DαyΦ

0 (ej , w, .) = DβGΦ
wl···wk

ej = Cwk
Aαk
wk
Aαk−1
wk−1

· · ·Aαl−1
wl

Bwl
ej

Dαf(0, w, .) = DαKf,Φ
w = Cwk

Aαk
wk
Aαk−1
wk−1

· · ·Aαl
wl
µ(f) (6)

where l = min{h | αh > 0}, ez is the zth unit vector of U , β = (αl − 1, αl+1, . . . , αk) and w = w1 · · ·wk,
w1, . . . , wk ∈ Q. Formula (6) is equivalent to

∀w ∈ L̃, j = 1, 2, . . . ,m, q1, q2 ∈ Q, (v, (α, z)) ∈ Fq1,q2(w) :

D(O|v|,α+)yΦ
0 (ej , vz, .) = D(0,α,0)GΦ

q2zq1ej = Cq1A
αk
zk
· · ·Aα1

z1 Bq2ej

∀w ∈ L̃, q ∈ Q, (v, (α, z)) ∈ Fq(w) : (7)

D(O|v|,α)f(0, vz, .) = D(α,0)Kf,Φ
zq = CqA

αk
zk
· · ·Aα1

z1 µ(f)

Proof. First we show that Φ is realized by (Σ, µ) if and only if Φ has a generalized kernel representation and
(6) holds. By Proposition 3 (Σ, µ) is a realization of Φ if and only if Φ has a generalized kernel representation
of the form

GΦ
w(t1, . . . , tk) = Cwk

exp(Awk
tk) · · · exp(Aw1t1)Bw1

Kf,Φ
w (t1, . . . , tk) = Cwk

exp(Awk
tk) · · · exp(Aw1t1)µ(f) (8)

for each w = w1 · · ·wk ∈ L̃, w1, . . . , wk ∈ Q. From (1) it follows that it is enough to consider {Kf,Φ
w , GΦ

w |
w ∈ suffixL, f ∈ Φ}. Since Kf,Φ

w , GΦ
w are analytic functions, their high-order derivatives at zero determine them

uniquely. Using (4), (5) we get that (8) is equivalent to (6).
Next we show that (6) is equivalent to (7). Notice that from (3) it follows that for any z = z1 · · · zk, z1 =

q2, zk = q1: DαGΦ
z1···zk

= D(0,α,0)GΦ
z1z1···zkzk

= D(0,α,0)GΦ
q2zq1 and DαKf,Φ

z = D(α,0)Kf,Φ
zq1 . First, we will show

that (7) implies (6). For any w ∈ L, α ∈ N|w|, w = w1 · · · , wk, w1, . . . , wk ∈ Q define l = min{z | αz > 0},
v = w1 · · ·wl−1, z = wl · · ·w|w| and x = wαl−1

l w
αl+1
l+1 · · ·wα|w||w| . Then (v, (β, z)) ∈ Fwl,w|w|(x) where β = (αl −

1, . . . , α|w|). Notice that (O|v|, β+) = α. From (7) and the remark above we get that D(O|v|,β+)yΦ
0 (ej , vz, .) =

D(0,β,0)GΦ
wlzw|w|ej = DβGΦ

z ej = DαyΦ
0 (ej , w, .) = Cw|w|A

α|w|
w|w| · · ·Aαl−1

wl Bwl
ej . Similarly, let y = wα1

1 · · ·wα|w||w| .
Then (ε, (α,w)) ∈ Fw|w|(y). Again, from the remark above and (7) we get that Dαf(0, w, .) = D(α,0)Kf,Φ

ww|w| =
DαKf,Φ

w = Dαf(0, w, .) = Cw|w|A
α|w|
w|w| · · ·Aα1

w1
µ(f). That is, (6) holds.

Conversely, (6) =⇒ (7). Indeed, for any w ∈ L̃, q1, q2 ∈ Q, (v, (α, z)) ∈ Fq1,q2(w) it holds that vz ∈ L,
z = z1 · · · zk, z1 = q2, zk = q1. Then (6) implies D(O|v|,α+)yΦ

0 (ej , vz, .) = D(0,α,0)GΦ
q2zq1ej = Czk

Aαk
zk
· · ·Aα1

z1 Bz1
For any (v, (α, z)) ∈ Fq(w) it holds that z = z1 · · · zk, zk = q and vz ∈ L. Then (6) implies D(O|v|,α)f(0, vz, .) =
D(α,0)Kf,Φ

zq1 = CqA
αk
zk
· · ·Aα1

z1 µ(f). That is, (6) implies (7). ¤
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One may wonder whether a generalized kernel representation is unique, if it exists, and what is the relationship
between a generalized kernel representation and such properties of input/output maps as linearity in continuous
inputs, causality and etc. Below we will try to answer these questions.

Let f ∈ F (PC(T,U) × TL,Y). We will say that f is causal, if for any w = (q1, t1) · · · (qk, tk) ∈ TL the
following holds

∀u, v ∈ PC(T,U) : (∀t ∈ [0,
k∑
1

ti] : u(t) = v(t)) =⇒ f(w, u) = f(w, v)

That is, the value of f(w, u) depends only on u|[0,Pk
1 ti]

.
Since Y = Rp, for each f ∈ F (PC(T,U) × TL,Y) there exist functions fj : PC(T,U) × TL → R such that

f(u,w) = (f1(u,w), . . . , fp(u,w))T . For each t ∈ T define the map Pt : PC(T,U) → PC(T,U) by

Pt(u)(s) =
{
u(s) if s ≤ t

0 otherwise

For each w ∈ TL define the map fj(w, .) : PC(T,U) → R by fj(w, .)(u) = fj(u,w). For each 1 ≤ p ≤ +∞ denote
by Lp([0, ti],Rn×m) the vector space of n by m matrices of functions from Lp([0, ti]). I.e. f : [0, ti] → Rn×m
is an element of Lp([0, ti],Rn×m), if f = (fi,j)i=1,...,n,j=1,...,m and fi,j ∈ Lp([0, ti]), i = 1, . . . , n, j = 1, . . . ,m.
With the notation above we can formulate the following characterization of input/output maps admitting a
generalized kernel representation.

Theorem 3. Let Φ ⊆ F (PC(T,U)×TL,Y). Then Φ admits a generalized kernel representation with constraint
L if and only if the following conditions hold.

(1) Each f ∈ Φ is causal and there exists a function yΦ ∈ F (PC(T,U)× TL,Y) such that for each f ∈ Φ

∀w ∈ TL, u ∈ PC(T,U) : f(u,w) = f(0, w) + yΦ(u,w) (9)

(2) For each f ∈ Φ, w = (q1, t1) · · · (qk, tk) ∈ TL, j = 1, 2, . . . , p the map yΦ
j (w, .) : PC([0, Tk],U) 3 u 7→

yΦ
j (w, u#Tk

0) ∈ R is a continuous linear functional, where Tk =
∑k
j=1 tj. Here PC([0, Tk],U) is viewed

as a subspace of L1([0, Tk],U) and the topology considered on PC([0, Tk],U) is the corresponding subspace
topology.

(3) For each f ∈ Φ, s ∈ (Q× T )+, w = (w1, 0) · · · (wk, 0), v = (v1, 0) · · · (vl, 0) ∈ (Q× T )∗

ws, vs ∈ TL =⇒ (∀u ∈ PC(T,U) : f(u,ws) = f(u, vs))

(4) For each w = (q1, t1) · · · (qk, tk) ∈ TL, 1 ≤ l ≤ k , u ∈ PC(T,U)

yΦ(u,w) = yΦ(ShiftTl
(u), v(ql, tl) · · · (qk, tk)) + yΦ(PTl

(u), w)

where Tl =
∑l−1

1 ti and v = (q1, 0) . . . (ql−1, 0).
(5) For each f ∈ Φ, w, v ∈ (Q× T )∗, q ∈ Q, if w(q, t1)(q, t2)v, w(q, t1 + t2)v ∈ TL, then

∀u ∈ PC(T,U) : f(u,w(q, t1)(q, t2)v) = f(u,w(q, t1 + t2)v)

For each f ∈ Φ, w, v ∈ (Q× T )∗, |v| > 0, q ∈ Q, if w(q, 0)v, wv ∈ TL, then

∀u ∈ PC(T,U) : f(u,w(q, 0)v) = f(u,wv)

(6) For each q1 · · · qk ∈ L, u1, . . . uk,∈ U , f ∈ Φ, the maps fq1···qk,u1,...,uk
: T k → Y defined below, are

analytic.
fq1···qk,u1,...,uk

(t1, . . . , tk) = f(u, (q1, t1) · · · (qk, tk)),
where u(t) = ui if t ∈ (

∑i−1
j=1 tj ,

∑i
j=1 tj ].
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If Φ admits a generalized kernel representation, then the Φ admits an unique generalized kernel representation.

The proof of the theorem can be found in Appendix B.
The theorem above gives an important characterization of generalized kernel representation. It states that

existence of a generalized kernel representation amounts to i) causality of the input-output maps, ii) switching
sequences behaving as discrete inputs, iii) input-output maps being affine and continuous in the continuous
inputs iv) input-output maps being analytic for constant inputs. In author’s opinion, the theorem above
demonstrates that existence of a generalized kernel representation is by no means an unnatural or a very
restrictive condition. In particular, if the number of discrete modes is one, then existence of generalized kernel
representation is equivalent to the conditions which are usually imposed on the input-output maps of linear (
possibly infinite-infinite dimensional ) systems. One may also compare the conditions of the above theorem with
the so called realizability conditions from [14]. Notice that knowledge of analytic forms of Kf,Φ

w and GΦ
w are not

necessary for constructing a realization of Φ. All that is required is the knowledge that the functions Kf,Φ
w , GΦ

w

exist. Therefore, it hardly makes sense to try to compute the functions Kf,Φ
w and GΦ

w. Note that existence of
an algorithm which computes these functions on the basis of Φ would imply the existence of a representation
of Φ with finite data. Since elements of Φ are linear maps defined on the infinite-dimensional space PC(T,U),
existence of such a finite representation is quite unlikely.

5.2. Realization of input-output maps by linear switched systems with arbitrary switch-
ing

In this section the solution to the realization problem will be presented. That is, given a set of input-output
maps we will formulate necessary and sufficient conditions for the existence of a linear switched system realizing
that set. In addition, characterization of minimal systems realizing the given set of input-output maps will be
given. In this section we assume that there are no restrictions on the switching sequences. That is, in this
section we study realization with the trivial constraint L = Q+.

The main tool of this section is the theory of rational formal power series. The main idea of the solution
is the following. We associate a set of formal power series ΨΦ with the set of input-output maps Φ . Any
representation of ΨΦ yields a realization of Φ and any realization of Φ yields a representation of ΨΦ. Moreover,
minimal representations give rise to minimal realizations and vice versa. Then we can apply the theory of
rational formal power series to characterize minimal realizations.

Let Φ ⊆ F (PC(T,U)× (Q× T )+,Y). Proposition 4 and formula (3) yield the following

Proposition 5. The LSS Σ = (X,U ,Y, Q, {(Aq, Bq, Cq) | q ∈ Q}) is a realization of Φ if and only if Φ has a
generalized kernel representation and there exists µ : Φ → X such that

∀w = w1 · · ·wk ∈ Q+, q1, q2 ∈ Q,w1, . . . , wk ∈ Q, z ∈ {1, 2, . . . ,m}, f ∈ Φ :
D(1,Ik,0)yΦ

0 (ez, q2wq1, .) = D(0,Ik,0)GΦ
q2wq1ez = Cq1Awk

· · ·Aw1Bq2ez
D(Ik,0)f(0, wq1, .) = D(Ik,0)Kf,Φ

wq1 = Cq1Awk
· · ·Aw1µ(f)

where Ik = (1, 1, . . . , 1) ∈ Nk.
Proof. Applying (3) one gets the following equalities.

DαKf,Φ
w = D(α,0)Kf,Φ

wwk
= D(Im,0)Kf,Φ

w
α1
1 w

α2
2 ···wαk

k wk
(10)

DαGΦ
w = D(0,α,0)GΦ

w1wwk
= D(0,Im,0)GΦ

w1w
α1
1 w

α2
2 ···wαk

k wk
(11)

where m =
∑k

1 αk. The statement of the proposition follows now from Proposition 4. ¤
The proposition above allows us to reformulate the realization problem in terms of rationality of certain

power series. Define formal power series Sq1,q2,z, Sf,q1 ∈ Rp ¿ Q∗ À, ( q1, q2 ∈ Q, f ∈ Φ, z ∈ {1, 2, . . . ,m} ) by

Sq1,q2,z(w) = D(1,I|w|,0)yΦ
0 (ez, q2wq1, .) , Sf,q1(w) = D(I|w|,0)f(0, wq1, .)
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for each w ∈ Q∗. Notice that the functions GΦ
w,K

f,Φ
w are not involved in the definition of the series of Sq1,q2,z

and Sf,q1 . On the other hand, if Φ has a generalized kernel representation, then

Sq1,q2,z(w) = D(0,I|w|,0)GΦ
q2wq1ez and Sf,q1(w) = D(I|w|,0)Kf,Φ

wq1

For each q ∈ Q, z = 1, 2, . . . ,m, f ∈ Φ define the formal power series Sq,z, Sf ∈ Rp|Q| ¿ Q∗ À by

Sq,z =




Sq1,q,z
Sq2,q,z

...
SqN ,q,z


 , Sf =




Sf,q1
Sf,q2

...
Sf,qN




where Q = {q1, q2, . . . , qN}.
Define the set JΦ = Φ ∪ {(q, z) | q ∈ Q, z = 1, 2, . . . ,m}. Define the indexed set of formal power series

associated with Φ by
ΨΦ = {Sj ∈ Rp|Q| ¿ Q∗ À| j ∈ JΦ} (12)

Define the Hankel-matrix of Φ HΦ as the Hankel-matrix of the associated set of formal power series, i.e.
HΦ := HΨΦ .

Notice that the only information needed to construct the set of formal power series ΨΦ are the high-order
derivatives at zero of the functions belonging to Φ. The fact that Φ has a generalized kernel representation is
needed only to ensure the correctness of the construction. No knowledge of the analytic forms of the functions
Kf,Φ
w , GΦ

w is required in order to construct ΨΦ.
Let Σ = (X,U ,Y, Q, {(Aq, Bq, Cq) | q ∈ Q}) be a LSS, and assume that (Σ, µ) is a realization of Φ. Define

the representation associated with (Σ, µ) by

RΣ,µ = (X , {Aq}q∈Q, B̃, C̃)

where C̃ : X → Rp|Q|, C̃ =




Cq1
Cq2
...

CqN


 and the indexed set B̃ = {Bj ∈ X | j ∈ JΦ} is defined by B̃f = µ(f), f ∈ Φ,

and B̃q,l = Bqel, l = 1, 2, . . . ,m, q ∈ Q, el is the lth unit vector in U .
Conversely, consider a representation of ΨΦ

R = (X , {Aq}q∈Q, B̃, C̃)

Then define (ΣR, µR) the realization associated with R by

ΣR = (X,U ,Y, Q, {(Aq, Bq, Cq) | q ∈ Q}) , µR(f) = B̃f

where Cq : X → Y, q ∈ Q are such that C̃ =




Cq1
Cq2
...

CqN


, and Bqel = B̃q,l for each l = 1, . . . ,m. It is easy to see

that Cq, q ∈ Q are well defined, since

Cq =



eTq,1C̃

...
eTq,pC̃



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Here for q = qz ∈ Q for some z = 1, . . . , N , i = 1, . . . , p it holds that eq,i ∈ Rp|Q| and (eq,i)j =
{

1 if j = p ∗ (z − 1) + i
0 otherwise .

It is easy to see that ΣRΣ,µ = Σ, µRΣ,µ = µ and RΣR,µR = R. In fact, the following theorem holds.

Theorem 4. Let Φ ⊆ F (PC(T,U)× (Q× T )+,Y). Assume that Φ has a generalized kernel representation.
(a) (Σ, µ) is a realization of Φ ⇐⇒ RΣ,µ is a representation of ΨΦ

(b) R = (X , {Aq}q∈Q, B̃, C̃) is a representation of ΨΦ ⇐⇒ (ΣR, µR) is a realization of Φ

Proof. First we prove part (a) of the theorem. By Proposition 5 (Σ, µ) is a realization of Φ if and only if for
each q1, q2, q ∈ Q, w = w1 · · ·wk ∈ Q∗, w1, . . . , wk ∈ Q, k ≥ 0

D(1,Ik,0)y0(ez, q2wq1, .) = Sq1,q2,z(w) = Cq1AwBq2ez

D(Ik,0)f(0, wq, .) = Sf,q(w) = CqAwµ(f)
Here, the notation Aw = Awk

· · ·Aw1 introduced in Section 4 is used. That is,

Sq2,z(w) =
[
CTq1 CTq2 · · · CTqN

]T
AwBq2ez = C̃AwB̃q2,z

Sf (w) =
[
CTq1 CTq2 · · · CTqN

]T
Awµ(f) = C̃AwB̃f

That is, RΣ,µ is a representation of Ψ.
Since R = RΣR,µR , part (b) follows from part (a). ¤
The theorem has the following corollary.

Corollary 3. Let the assumptions of Theorem 4 hold. If (Σ, µ) is a minimal realization of Φ, then RΣ,µ is a
minimal representation of ΨΦ. Conversely, if R is a minimal representation of ΨΦ, then (ΣR, µR) is a minimal
realization of Φ.

Proof. Notice that dimΣ = dimRΣ,µ and dim ΣR = dimR. The statement of the corollary follows now from
Theorem 4. ¤
Theorem 5 (Realization of input/output map). For any set Φ ⊆ F (PC(T,U) × (Q × T )+,Y) the following
holds.

(a) Φ has a realization by a linear switched system if and only if Φ has a generalized kernel representation
and ΨΦ is rational.

(b) Φ has a realization by a linear switched system if and only if Φ has a generalized kernel representation
and rank HΦ < +∞.

Proof. Part (a)
If Φ has a realization, then Φ has a generalized kernel representation, moreover, by Theorem 4, ΨΦ has a
representation, i,e. ΨΦ is rational. If Φ has a generalized kernel representation and ΨΦ is rational, i.e. it has a
representation, then by Theorem 4 Φ has a realization.

Part (b)
By Theorem 1 dimHΦ < +∞ is equivalent to ΨΦ being rational. The rest of the statement follows now from
Part (a) ¤

The theory of rational power series allows us to formulate necessary and sufficient conditions for a linear
switched system to be minimal. Before formulating a characterization of minimal realizations, additional work
has to be done. Let Σ = (X,U ,Y, Q, {(Aq, Bq, Cq) | q ∈ Q}) be a linear switched system. Using Proposition 1
it is easy to see that for any µ : Φ → X

WRΣ,µ = Span{Awx0 | w ∈ Q∗, x0 ∈ Imµ or x0 = Bqu, q ∈ Q,u ∈ U}
= Span{Aq1Aq2 · · ·Aqk

x0 | q1, q2, . . . , qk ∈ Q, x0 ∈ Imµ}+
+Reach(Σ, {0})
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and
ORΣ,X0

= OΣ =
⋂

q,w1,w2,...,wk∈Q,k≥0

kerCqAwk
Awk−1 · · ·Aw1

Moreover, the following is true

Lemma 6. WRΣ,µ
is the smallest vector space containing Reach(Σ, Imµ).

Proof. Denote by WR the set WRΣ,µ
. Denote by X0 the image of µ.

First, we show that Reach(Σ,X0) is contained in WR. From Proposition 1 it follows that

Reach(Σ,X0) = {exp(Aqk
tk) exp(Aqk−1tk−1) · · · exp(Aq1t1)x0+

+xΣ(0, u, (q1, t1) · · · (qk, tk)) | x0 ∈ X0, (q1, t1)(q2, t2), . . . , (qk, tk) ∈ (Q× T )∗, k ≥ 0, u ∈ PC(T,U)}

But exp(Aqt)x =
∑+∞

0
tk

t! A
k
qx ∈ Span{Ajqx | j ∈ N}, which implies that

exp(Aqk
tk) · · · exp(Aq1t1)x0 ∈ Span{Aw1Aw2 · · ·Awk

x0 | w1, w2, . . . , wk ∈ Q}

Since x(0, u, (q1, t1) · · · (qk, tk)) ∈ Reach(Σ, {0}), we get that Reach(Σ,X0) ⊆WR.
We will show that WR is the smallest vector space containing

Reach(Σ,X0). Let W be a subspace of X containing Reach(Σ,X0). For any α ∈ N|w|, for any constant
input function u(t) = u ∈ U Dαx(x0, u, w, .) ∈ W must hold. But x(x0, u, w, t) = x(x0, 0, w, t) + x(0, u, w, t).
It is straightforward to show that Span{Dαx(0, u, w, .) | w ∈ Q+, α ∈ N|w|, u ∈ U} = Reach(Σ, 0). For
w ∈ Q+, k := |w| define expw : T k → X by

expw(t1, t2, . . . , tk) = exp(Awk
tk) exp(Awk−1tk−1) · · · exp(Aw1t1)x0

It is easy to see that Dαx(x0, 0, w, .) = Dα expw = Aαk
wk
A
αk−1
wk−1 · · ·Aα1

w1
x0, and therefore Span{Dαx(x0, 0, w, .) |

w ∈ Q+, α ∈ N|w|, x0 ∈ X0} = Span{Awx0 | w ∈ Q+}. Thus, we get that

Span{Dαx(x0, u, w, .) | w ∈ Q+, α ∈ N|w|, u ∈ U , x0 ∈ X0} = WR

which implies that WR ⊆W . ¤
The results above imply the following

Corollary 4. Let Σ = (X,U ,Y, Q, {(Aq, Bq, Cq) | q ∈ Q}) and assume that (Σ, µ) is a realization of Φ. Then
Σ is observable if and only if R is observable. Σ is semi-reachable from Imµ if and only if R is reachable.

It is a natural question to ask what the relationship is between linear switched system morphisms and
representation morphisms. The following lemma answers this question.

Lemma 7. T : (Σ, µ) → (Σ
′
, µ

′
) is a linear switched system morphism if and only if T : RΣ,µ → RΣ′ ,µ′ is a

representation morphism.

Recall that T : (Σ, µ) → (Σ
′
, µ

′
) is a linear switched system morphism if T is a linear map from the state-space

of Σ to the state-space of Σ
′
satisfying certain properties. Recall that a representation morphism between two

representations is a linear map between the state-spaces of the representations which satisfies certain properties.
Since the state spaces of RΣ,µ and RΣ′ ,µ′ coincide with the state-space of Σ and Σ

′
respectively, it is justified

to denote both the linear switched system morphism and the representation morphism by the same symbol,
indicating that the underlying linear map is the same.

Proof of Lemma 7. Assume that the linear switched systems Σ and Σ
′
are of the form

Σ = (X,U ,Y, Q, {(Aq, Bq, Cq) | q ∈ Q}) and Σ
′
= (X′ ,U ,Y, Q, {(A′q, B

′
q, C

′
q) | q ∈ Q})
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Then T is a switched linear system morphism if and only if TAq = A
′
qT , Cq = C

′
qT , TBq = B

′
q and

Tµ(f) = µ
′
(f) for each q ∈ Q, f ∈ Φ. But this is equivalent to TAq = A

′
qT, q ∈ Q, TB̃j = B̃

′
j and

C̃ =
[
CTq1 · · · CTqN

]T
=

[
(C

′
q1T )T · · · (C

′
qN
T )T

]T
= C̃

′
T , that is, to T being a representation mor-

phism. ¤

Now we can state the main result of the section.

Theorem 6 (Minimal realizations). If (Σ, µ) is a realization of Φ, then the following are equivalent.

(i) (Σ, µ) is minimal
(ii) Σ is semi-reachable from Imµ and it is observable
(iii) dimΣ = dimHΦ

(iv) If (Σ
′
, µ

′
) realizes Φ and Σ

′
is semi-reachable from Imµ

′
, then there exists a surjective linear switched

system morphism T : (Σ
′
, µ

′
) → (Σ, µ). In particular, all minimal realizations of Φ are algebraically

similar.

Proof. (i) ⇐⇒ (ii)
By Corollary 3 system (Σ, µ) is minimal if and only if R := RΣ,µ is minimal. By Theorem 2 R is minimal if and
only if R is reachable and observable. By Corollary 4 the latter is equivalent to Σ being semi-reachable from
Imµ and observable.

(i) ⇐⇒ (iii)
By Corollary 3 (Σ, µ) is minimal ⇐⇒ RΣ,µ is minimal. By Theorem 2 RΣ,µ is minimal ⇐⇒ dimRΣ,µ = dim Σ =
rank HΨΦ = rank HΦ.

(i) ⇐⇒ (iv)
Again we are using the fact that (Σ, µ) is minimal if and only if RΣ,µ is minimal. By Theorem 2 Rmin is
minimal if and only if for any reachable representation R there exists a surjective representation morphism
T : R → Rmin. It means that (Σ, µ) is minimal if and only if for any reachable representation R of ΨΦ there
exists a surjective representation morphism T : R → RΣ,µ. But any reachable representation R gives rise to
a semi-reachable realization of Φ and vice versa. That is, we get that (Σ, µ) is minimal if and only if for any
semi-reachable realization (Σ

′
, µ

′
) of Φ there exists a surjective representation morphism T : RΣ′ ,µ′ → RΣ,µ.

By Lemma 7 we get that the latter is equivalent to T : (Σ
′
, µ

′
) → (Σ, µ) being a surjective linear switched

system morphism. From Corollary 1 it follows that if (Σ
′
, µ

′
) is a minimal realization of Φ, then there exists

a representation isomorphism T : RΣ′ ,µ′ → RΣ,µ which means that (Σ, µ) is gives rise to the linear switched
system isomorphism T : (Σ

′
, µ

′
) → (Σ, µ), that is, Σ

′
and Σ are algebraically similar. ¤

5.3. Realization of input-output maps with constraints on the switching

In this section the solution of the realization problem with constraints will be presented. That is, given a
set of constraints L ⊆ Q+ and a set of input-output maps with domain PC(T,U) × TL we will study linear
switched systems realizing this set with constraint L. As in the previous section, the theory of formal power
series will be our main tool in solving the realization problem.

Let Φ ⊆ F (PC(T,U)× TL,Y). Recall that (Σ, µ) realizes Φ with constraint L if for all f ∈ Φ it holds that
f = yΣ(µ(f), ., .)|PC(T,U)×TL. In the sequel, unless stated otherwise, we assume that Φ has a generalized kernel
representation with constraint L.

The solution of the realization problem for Φ goes as follows. As in the previous section, we associate a set
of formal power series ΨΦ with the set of maps Φ. We will show that any representation of ΨΦ gives rise to
a realization of Φ with constraint L. If L is regular, then any realization of Φ with constraint L gives rise to
a representation of ΨΦ. Unfortunately minimal representations of ΨΦ do not yield minimal realizations of Φ.
However, any minimal representation of ΨΦ yields an observable and semi-reachable realization of Φ.
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Recall from Section 5.1 the definition of the languages L̃, L̃q1,q2 , L̃q and the sets Fq1,q2(w), Fq(w). Let
E = (1, 1, . . . , 1) ∈ R1×p. Define the power series Zq1,q2 ∈ Rp ¿ Q∗ À by

Zq1,q2(w) =
{
ET if w ∈ L̃q1,q2
0 otherwise

Define the power series Γq ∈ Rp|Q| ¿ Q∗ À by

Γq =




Zq1,q
Zq2,q

...
ZqN ,q




and Γ ∈ Rp|Q| ¿ Q∗ À by

Γ =




Zq1
Zq2
...

ZqN




where Zq(w) =
{
ET if w ∈ L̃q
0 otherwise

and Q = {q1, . . . , qN}. It is a straightforward exercise in automata theory

to show that if L is regular, then the languages L̃q and L̃q1,q2 are regular.

Lemma 8. With the notation above, if L ⊆ Q+ is a regular language, then L̃, L̃q1,q2 and L̃q are regular
languages for each q, q1, q2 ∈ Q.

Proof. Notice that L̃q1,q2 = {w ∈ Q∗ | q1wq2 ∈ L̃} and L̃q = {w ∈ Q∗ | wq ∈ L̃}. It is easy to see that if
L̃ is regular, then so are L̃q1,q2 and L̃q. It is also easy to see that if L is regular then suffixL is regular. Let
A = (S,Q, δ, F, s0) be a deterministic automaton accepting suffixL. Here S is the state-space, F is the set of
accepting states, δ is the state-transition function, s0 is the set of initial states. Recall, that the extended state-
transition function is defined as follows. For each s0 ∈ S,w ∈ Q∗, δ(s0, w) = s if there exists s1, . . . , sk = s ∈ Q
such that w = w1 · · ·wk ∈ Qk and si = δ(si−1, wi) for each i = 1, . . . , k.

Define the non-deterministic automaton B = ((S × Q) ∪ {s′0}, Q, δB , F × Q, s
′
0) in the following way. Let

δB(s
′
0, x) 3 (s, x) if δ(s0, wx) = s for some w ∈ Q∗. Let (s

′
, u) ∈ δB((s, x), u) if either

(i) u = x and s
′
= s, or

(ii) there exists wu ∈ Q∗, such that δ(s, wu) = s
′
.

We will prove that B accepts L̃. Denote s ∈ δB(z, x), s, z ∈ (S × Q) ∪ {s′0} by z
x→ s. Then B accepts

z = z1 · · · zk if and only if
s
′
0
z1→ (s1, z1)

z2→ · · · zk→ (sk, zk)

where sk ∈ F . This is equivalent to the existence of 0 < α1, . . . , αl ∈ N and w0, . . . , wl ∈ Q∗ such that
∑l
j=1 αj =

k, δ(s0, w0z1) = s1 and (si, zi) = (si+1, zi+1) for each 1 +
∑d

1 αj ≤ i <
∑d+1

1 αj and δ(sPd
1 αj

, wdzPd
1 αj

) =
s1+

Pd
1 αj

for all 0 ≤ d ≤ l− 1. Define ud = z1+
Pd

1 αj
. Then it is clear that in the original automaton A it holds

that δ(s0, w0u0w1u1 · · ·wlul) = sk ∈ F . That is, w0u0 · · ·wlul ∈ suffixL and

z = w0
0,1 · · ·w0

0,m0
uα1

1 w0
1,1 · · ·w0

m1,1u
α2
2 · · ·w0

l,1 · · ·w0
l,ml

uαl

l

where wi = wi,1 · · ·wi,mi , wi,1, . . . , wi,m(i) ∈ Q. We get that B accepts exactly the elements of L̃. ¤
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Corollary 5. Define the indexed set of formal power series Ω = {Λj ∈ RpN ¿ Q∗ À| j ∈ Q × {∅}}, where
Λq = Γq and Λ∅ = Γ. If L regular then the indexed set of formal power series Ω is rational.

Proof. Indeed, if L is regular, then L̃q1,q2 and L̃q are regular languages. Then it is easy to see that for each

l = 1, . . . , pN , such that l = p ∗ (z − 1) + i for some z = 1, . . . , N , i = 1, . . . p, (Γ)l(w) =
{

1 if w ∈ Lqz

0 otherwise

and (Γq)l(w) =
{

1 if w ∈ Lqz,q

0 otherwise . That is, (Γq)l,Γl ∈ R ¿ Q∗ À are rational formal power series for each

l = 1, . . . , pN . Consider the indexed set Θ = {(Λ(l,j) | (l, j) ∈ {1, . . . , pN} × (Q ∪ {∅})}, where Λ(l,q) = (Λq)l =
(Γq)l, Λ(l,∅) = (Λ∅)l = Γl. Then by Corollary 2 from Section 4, Θ is rational. By Lemma 1 from Section 4, it
implies that Ω is rational. ¤

Consider a set of input-output maps Φ ⊆ F (PC(T,U) × TL,Y) with a L ⊆ Q∗. Assume that Φ has a
generalized kernel representation.

Recall that for any α ∈ Nk, α+ denotes α+ = (α1 + 1, α2, . . . , αk). We define the following formal power
series. For j = 1, 2, . . . ,m and f ∈ Φ, q1, q2 ∈ Q,

Sq1,q2,j(w) =





D(O|v|,α+)yΦ
0 (ej , vz, .) if w ∈ L̃q1,q2 and

(v, (α, z)) ∈ Fq1,q2(w)
0 otherwise

Sq,f (w) =
{
D(O|v|,α)f(0, vz, .) if w ∈ L̃q and (v, (α, z)) ∈ Fq(w)
0 otherwise

We will show that the series Sq1,q2,z and Sq,f are well-defined. Using formulas (4), (5) and (3) from Subsection
5.1 and the fact that (v, (α, z)) ∈ Fq1,q2(w) =⇒ z1 = q2, z|z| = q1 and (v, (α, z)) ∈ Fq(w) =⇒ z|z| = q we get
the following

Sq1,q2,j(w) =





DαGΦ
z = D(0,α,0)GΦ

q2zq1ej if w ∈ L̃q1,q2 and
(v, (α, z)) ∈ Fq1,q2(w)

0 otherwise

Sq,f (w) =





D(O|v|,α)Kf,Φ
vz = DαKf,Φ

z = D(α,0)Kf,Φ
zq if w ∈ L̃q and

(v, (α, z)) ∈ Fq(w)
0 otherwise

That is, Sq1,q2,j(w) and Sq,f (w) do not depend on the choice of v in (v, (α, z)) ∈ Fq1,q2(w) or (v, (α, z)) ∈ Fq(w)
respectively. We will argue that the value of Sq1,q2,z(w) and Sq,f (w) do not depend on the choice of (α, z).
If (v, (α, z)), (u, (β, x)) ∈ Fq1,q2(w) then xβ1

1 · · ·xβ|x||x| = zα1
1 · · · zα|z||z| = w, z1 = x1 = q2, z|z| = x|x| = q1 and

q2zq1, q2xq1 ∈ L̃, so by Proposition 2, D(0,α,0)GΦ
q2zq1 = D(0,β,0)GΦ

q2xq1 . Similarly, if (v, (α, z)), (u, (β, x)) ∈
Fq(w), then xβ1

1 · · ·xβ|x||x| = zα1
1 · · · zα|z||z| = w and zq, xq ∈ L̃, so by Proposition 2, D(α,0)Kf,Φ

zq = D(β,0)Kf,Φ
q2xq1 .

Define the formal power series Sq,j , Sf ∈ Rp|Q| ¿ Q∗ À, j ∈ {1, 2, . . . ,m}, q ∈ Q and f ∈ Φ by

Sq,j =




Sq1,q,j
Sq2,q,j

...
SqN ,q,j


 , Sf =




Sq1,f
Sq2,f

...
SqN ,f




Define the indexed set of formal power series associated with Φ as ΨΦ = {Sz ∈ Rp|Q| ¿ Q∗ À| z ∈ JΦ} where
JΦ = Φ ∪ (Q× {1, 2, . . . ,m})}. Define the Hankel-matrix HΦ as the Hankel-matrix of ΨΦ.
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Consider the map g : Φ ∪ (Q × {1, 2, . . . ,m}) → Q × {∅}, where g(f) = ∅,∀f ∈ Φ and g((q, z)) = q for all
q ∈ Q, z = 1, . . . ,m. Recall the indexed set of formal power series Ω from Corollary 5. Define the indexed set
of formal power series ΩΦ = {Ξj ∈ RpN ¿ Q∗ À| j ∈ JΦ} by Ξj = Λg(j), where Ω = {Λj | j ∈ Q ∪ {∅}}.
From Lemma 4 of Section 4 and Corollary 5 it follows that if L is regular, then ΩΦ is rational. Let (Σ, µ) be a
realization of Φ. Define ΘΣ,µ = {yΣ(µ(f), ., .) | f ∈ Φ} ⊆ F (PC(T,U)× (Q× T )+,Y). Define U(µ) : ΘΣ,µ → Φ
by U(µ)(yΣ(µ(f), ., )) = f . The map U(µ) is well defined. Indeed, if yΣ(µ(f1), ., .) = yΣ(µ(f2), ., .), then
f1 = yΣ(µ(f1), ., .)|PC(T,U)×TL = yΣ(µ(f2), ., .)|PC(T,U)×TL = f2. It is easy to see that (Σ, µ ◦ U(µ)) is a
realization of ΘΣ,µ. Assume that the set of formal power series associated to ΘΣ,µ as defined in Section 5.2,
(12), is of the form

ΨΘΣ,µ = {Tz ∈ Rp|Q| ¿ Q∗ À| z ∈ ΘΣ,µ ∪ (Q× {1, 2, . . . ,m})}
From Theorem 5 it follows that ΨΘΣ,µ is rational. Define the map ψ : JΦ → ΘΣ,µ ∪ (Q × {1, 2, . . . ,m}) by
ψ(f) = yΣ(µ(f), ., .), f ∈ Φ and ψ((q, z)) = (q, z), q ∈ Q, z = 1, . . . ,m. Define KΣ,µ = {Vj ∈ Rp|Q| ¿ Q∗ À| j ∈
JΦ}, Vj = Tψ(j), j ∈ JΦ. From Lemma 4 of Section 4 it follows that KΣ,µ is rational.

Let R = (X , {Az}z∈Q, B, C) be a representation of ΨΦ. Define (ΣR, µR) the linear switched system realization
associated with R as in Section 5.2. That is,

ΣR = (X,U ,Y, Q, {(Aq, Bq, Cq) | q ∈ Q}) and µR(f) = Bf

where Cq : X → Y, q ∈ Q are such that C =



Cq1
...

CqN


 and Bqej = B(q,j) for all q ∈ Q, j = 1, . . . ,m. Assume that

the resulting (ΣR, µR) is a realization of Φ ( in fact, this will be shown later ). Let (Σ, µ) = (ΣR, µR ◦ U(µR)).
Then (Σ, µ) is a realization of ΘΣR,µR

. Let R̃ = RΣ,µ – the representation associated to (Σ, µ) as defined in
Section 5.2. Then it is easy to see that R̃ = (X , {Aq}q∈Q, B̃, C), where B̃yΣR

(µR(f),.,.) = µ(yΣR(µR(f), ., .)) =

µR(f) = Bf , f ∈ Φ and B̃(q,j) = Bqej = B(q,j), q ∈ Q, j = 1, . . . ,m. That is, R is observable if and
only if R̃ is observable. R is reachable if and only if R̃ is reachable. It is also straightforward to see that
ImµR = ImµR ◦ U(µR) = Imµ. Thus, by Corollary 4, the following holds. ΣR is observable if and only if R is
observable. (ΣR, µR) is semi-reachable if and only if R is reachable.

Using the notation above and combining Proposition 4 and the definition of rational sets of power series one
gets the following theorems.

Theorem 7. Let Φ ⊆ F (PC(T,U)× TL,Y). Then (Σ, µ) is realization of Φ with constraint L if and only if Φ
has a general kernel representation with constraint L and

ΨΦ = ΩΦ ¯KΣ,µ

or, in other words

∀f ∈ Φ, q ∈ Q, z = 1, 2, . . . ,m
Sf = TyΣ(µ(f),.,.) ¯ Γ and Sq,z = Tq,z ¯ Γq

Proof. By Proposition 4 (Σ, µ) is a realization of Φ with constraint L, if and only if Φ has a generalized kernel
representation with constraint L and

∀w ∈ L̃q1,q2 , (v, (α, z)) ∈ Fq1,q2(w) :
D(0,α,0)GΦ

q2zq1 = Cq1A
αk
zk
· · ·Aα1

z1 Bq2 = Cq1AwBq2
∀w ∈ L̃q, (v, (α, z)) ∈ Fq(w) :

D(α,0)Kf,Φ
zq1 = Cq1A

αk
zk
· · ·Aα1

z1 µ(f) = Cq1Awµ(f)
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But (Σ, µ ◦ U(µ)) is also a realization of Θ = ΘΣ,µ with constraint Q+, so by Proposition 5 we get that

Cq1AwBq2 = D(0,I|w|,0)GΘ
q2wq1 and CqAwµ(f) = CqAwµ(U(µ)(yΣ(µ(f), ., .))) = D(I|w|,0)KyΣ(µ(f),.,.),Θ

wq

That is, for each w ∈ L̃q1,q2 , (v, (α, z)) ∈ Fq1,q2(w), q1, q2 ∈ Q, j = 1, . . . ,m

Tq1,q2,j(w) = D(0,I|w|,0)GΘ
q2wq1ej = D(0,α,0)GΦ

q2zq1ej = Sq1,q2,j(w)

and for each w ∈ L̃q, (v, (α, z)) ∈ Fq(w)

Tq,yΣ(µ(f),.,.)(w) = D(I|w|,0)KyΣ(µ(f),.,.),Θ
wq = D(α,0)Kf,Φ

zq = Sq,f (w)

We get that
Tq1,yΣ(µ(f),.,.)(w) = Sq1,f (w) if w ∈ L̃q1

Tq1,z2,z(w) = Sq1,q2,z(w) if w ∈ L̃q1,q2
Notice that if w /∈ L̃q1,q2 , then Sq1,q2,z(w) = 0 and Zq1,q2(w) = 0. Similarly, If w /∈ L̃q1 , then Sq1,f (w) = 0 =
Zq1(w). That is,

Tq,z ¯ Γq = Sq,z and TyΣ(µ(f),.,.) ¯ Γ = Sf

¤

Define the language
comp(L) = {w1 · · ·wk ∈ Q∗ | L̃wk

= ∅}
Intuitively, the language comp(L) contains those sequences which can never be observed if the switching system
is run with constraint L.

Theorem 8. Assume that Φ has a generalized kernel representation with constraint L. If

R = ({Aq}q∈Q, B,C)

is a representation of ΨΦ, then (ΣR, µR) realizes Φ. Moreover,

∀f ∈ Φ, ∀u ∈ PC(T,U), w ∈ T (comp(L)) : yΣR
(µR(f), u, w) = 0

Proof. Let (Σ, µ) = (ΣR, µR). If R is a representation of Φ, then

∀w ∈ L̃q1,q2 , (v, (α, z)) ∈ Fq1,q2(w)
D(0,α,0)GΦ

q2zq1ej = Sq1,q2,j(w) = Cq1AwBq2,j
= Cq1A

αk
zk
· · ·Aα1

z1 Bq2ej
∀w ∈ L̃q, (v, (α, z)) ∈ Fq(w)

D(α,0)Kf,Φ
zq = Sq,f (w) = CqAwBf

= CqA
α1
z1 · · ·Aαk

zk
µ(f)

(13)

Since Φ has a generalized kernel representation, Proposition 4 and (13) yield that (Σ, µ) is a realization of Φ
with constraint L.

Let Φ
′

= ΘΣ,µ. Then (Σ, µ ◦ U(µ)) is a realization of Φ
′
. It is easy to see that for all f ∈ Φ, q1, q2 ∈ Q,

z = 1, . . . ,m,
Sq,f (w) = CqAwµ(f) = 0 if w /∈ L̃q
Sq1,q2,z(w) = Cq1AwBq2ez = 0 if w /∈ L̃q1 ⊇ L̃q1,q2
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As the second step we are going to show that for each w ∈ comp(L), yΣ(µ(f), ., .) ∈ Φ
′
,

GΦ
′

w = 0 and KyΣ(µ(f),.,.),Φ
′

w = 0 (14)

Because of analyticity of these function it is enough to prove that for each α ∈ N|w|: DαGΦ
′

w = 0 , DαK
yΣ(µ(f),.,.),Φ

′

w =
0. But from formulas (4), (5) and Proposition 4 we get that

DαGΦ
′

w = Cwk
AvBw1 and DαKyΣ(µ(f),.,),Φ

′

w = Cwk
Av(µ ◦ U(µ))(yΣ(µ(f), ., .)) = Cwk

Avµ(f)

w = w1, · · ·wk, w1, . . . , wk ∈ Q, v = wα1
1 · · ·wαk

k . But w ∈ comp(L) implies L̃wk
= ∅, that is u /∈ L̃wk,wl

and v /∈ L̃wk
. Then it follows that Cwk

AvBw1 = 0 and Cwk
Avµ(f) = 0. It implies that DαGΦ

′

w = 0 and
DαKf,Φ

′

w = 0.
It is easy to see that if w1 · · ·wk ∈ comp(L), then for any l ≤ k, wl · · ·wk ∈ comp(L). Then from Definition

3, part 4 it follows that (14) implies yΣ(µ(f), u, w) = 0 for all u ∈ PC(T,U) and w ∈ T (comp(L)). ¤
If L regular then the power series Γ, Γq, (q ∈ Q) are rational. Then using Theorem 7 and Lemma 2 from

Section 4 one gets the following.

Theorem 9. Consider a language L ⊆ Q+ and a set Φ ⊆ F (PC(T,U)×TL,Y) of input-output maps. Assume
that L is regular. Then the following holds.

(i) Φ has a realization by a linear switched system with constraint L if and only if Φ has a generalized
kernel representation with constraint L and ΨΦ is rational, or equivalently dimHΦ < +∞.

(ii) Φ has a realization by a linear switched system with constraint L if and only if there exists a linear
switched system realization (Σ, µ) of Φ with constraint L, such that (Σ, µ) is semi-reachable, it is ob-
servable, and

∀f ∈ Φ : yΣ(µ(f), ., .)|PC(T,U)×T (comp(L)) = 0

Proof. Part (i)
If Φ has a generalized kernel representation with constraint L and ΨΦ is rational, then there exists a repre-
sentation R of ΨΦ and by Theorem 8 (ΣR, µR) is a realization of Φ. Conversely, assume that Φ is realized by
(Σ, µ). Then by Theorem 7 Φ has a generalized kernel representation and with the notation of Theorem 7 it
holds that ΨΦ = ΩΦ ¯ KΣ,µ. Since (Σ, µ ◦ U(µ)) is a realization of ΘΣ,µ without constraint, by Theorem 5
ΨΘΣ,µ is rational. Then by Lemma 4 KΣ,µ is rational too. If L is regular, then by Corollary 5 Ω is rational.
Then by Lemma 4 ΩΦ is rational. By Lemma 2 we get that ΨΦ = ΩΦ ¯ KΣ,µ is rational. From Theorem 1
it follows that ΨΦ is rational if and only if rank HΨΦ < +∞. By definition HΦ = HΨΦ , so we get that ΨΦ is
rational if and only if rank HΦ < +∞.

Part(ii)
Φ has a realization with constraint L if and only if Φ has a generalized kernel representation with constraint L
and ΨΦ is rational. Let R = ({Aq}q∈Q, B, C) be a minimal representation of ΨΦ. Consider (Σ, µ) = (ΣR, µR) –
the linear switched system realization associated with R. Then by Theorem 8 (Σ, µ) is a realization of Φ with
constraint L such that ∀f ∈ Φ,∀u ∈ PC(T,U), w ∈ T (comp(L)) : yΣ(µ(f), u, w) = 0. Since R is reachable and
observable, we get that (Σ, µ) is semi-reachableand observable. ¤

Lemma 2 also yields the following result.

Theorem 10. Consider a language L ⊆ Q+ and a set Φ ⊆ F (PC(T,U)×TL,Y) of input-output maps. Assume
L that is regular and that Φ has a realization by a linear switched system. Let (Σ, µ) be the realization of Φ
from part (ii) of Theorem 9. If (Σ̃, µ̃) is an arbitrary linear switched system realizing Φ with constraint L, then

dim Σ ≤M · dim Σ̃

where M depends only on L.
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Proof. By Theorem 7 it holds that ΨΦ = KΣ,µ ¯ ΩΦ. Since RΣ,µ is a minimal representation of ΨΦ it holds
that dim Σ = dimRΣ,µ = rank HΨΦ . But from Lemma 2 one gets that

rank HΨΦ = rank HKΣ,µ¯ΩΦ ≤ rank HKΣ,µ
· rank HΩΦ

Since rank HKΣ,µ = rank HΨΘ ≤ dim Σ̃ and M := rank HΩ depends only on L, we get the statement of the
theorem. ¤

Notice that if L is finite then L is regular. It means that the results of this section in principle allow us
to construct a realization of a set of input-output map by examining a finite number of sequences of discrete
modes.

Remark
In fact, the result of the Theorem 10 is sharp in the following sense. One can construct an input-output y
map and language L and realizations Σ1 and Σ2 such that the following holds. Both Σ1 and Σ2 realize y from
the initial state zero with constraint L and they are both reachable from zero and observable, but dim Σ1 = 1
and dim Σ2 = 2. The construction goes as follows. Let Q = {1, 2}, L = {qk1q2 | k > 0}, Y = U = R. Define
y : PC(T,U)× TL→ Y by

y(u(.), q1 · · · q1︸ ︷︷ ︸
m−times

q2, t1 · · · tmtm+1) =
∫ tm+1

0

e2(tm+1−s)u(s+
m∑
1

ti)ds+
∫ Pm

1 ti

0

e2tm+1e
Pm

1 ti−su(s)ds

Define Σ1 = (R,R,R, Q, {(A1,q, B1,qC1,q) | q ∈ {q1, q2}}) by

A1,q1 = 1 B1,q1 = 1 C1,q1 = 1
A1,q2 = 2 B1,q2 = 1 C1,q2 = 1

Define Σ2 = (R2,R,R, Q{(A2,q, B2,q, C2,q) | q ∈ Q}) by

A2,q1 =
[
1 0
0 0

]
B2,q1 =

[
1
0

]
C2,q1 =

[
0 0

]

A2,q2 =
[
0 0
2 2

]
B2,q2 =

[
0
1

]
C2,q2 =

[
1 1

]

Both Σ1 and Σ2 are reachable and observable as linear switched systems, therefore they are the minimal
realizations of yΣ1(0, ., .) and yΣ2(0, ., .). Moreover, it is easy to see that

yΣ1(0, ., .)|PC(T,U)×TL = y = yΣ2(0, ., .)|PC(T,U)×TL

In fact, Σ2 can be obtained by constructing the minimal representation of Ψ{y}, i.e., Σ2 is a minimal realization
of y satisfying part (iii) of Theorem 9.

6. Realization theory for bilinear switched systems

This section deals with the realization theory of bilinear switched systems. First, definition and certain
elementary properties of bilinear switched systems will be presented. Then, in Subsection 6.1 the structure of
the input/output maps of bilinear switched systems will be discussed. Subsection 6.2 presents the realization
theory for bilinear switched systems for the case of arbitrary switching. Subsection 6.3 deals with realization
theory for the case of switching with constraints.
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Definition 4 (Bilinear switched systems). A switched system Σ = (X,U ,Y, Q, {fq | q ∈ Q,u ∈ U}, {hq | q ∈ Q})
is called bilinear if for each q ∈ Q there exist linear mappings Aq : X → X , Bq,j : X → X , j = 1, 2, . . . ,m ,
Cq : X → Y such that

• ∀x ∈ X , u = (u1, . . . , um)T ∈ U = Rm : fq(x, u) = Aqx+
∑m
j=1 ujBq,jx

• ∀x ∈ X : hq = Cqx.
We will use the notation Σ = (X,U ,Y, Q, {(Aq, {Bq,j}j=1,2,...,m, Cq) | q ∈ Q}) to denote bilinear switched
systems.

Recall from [8,9] that the state- and output-trajectory of a bilinear system can be expressed as infinite series
of iterated integrals. A similar representation exists for switched bilinear systems. In order to formulate such a
representation some notation has to be set up. For each u = (u1, . . . , uk) ∈ U denote

dζj [u] = uj , j = 1, 2, . . . ,m, dζ0[u] = 1

Denote the set {0, 1, . . . ,m} by Zm. For each j1, · · · , jk ∈ Zm, k ≥ 0, t ∈ T , u ∈ PC(T,U) define Vj1···jk [u](t) ∈ R
as

Vj1···jk [u](t) =
{

1 if k = 0∫ t
0
dζjk [u(τ)]Vj1,...,jk−1 [u](τ)dτ if k > 1

For each w1, . . . , wk ∈ Z∗m, (t1, · · · , tk) ∈ T k, u ∈ PC(T,U) define Vw1,...,wk
[u](t1, . . . , tk) ∈ R by

Vw1,...,wk
[u](t1, . . . , tk) = Vw1(t1)[u]Vw2(t2)[Shift1(u)] · · ·V (wk)[Shiftk−1(u)](tk)

where Shifti(u) = ShiftPi
1 ti

(u), i = 1, 2, . . . , k − 1. For each q ∈ Q and w = j1 · · · jk, k ≥ 0, j1, · · · jk ∈ Zm let
us introduce the following notation

Bq,0 := Aq, Bq,ε := IdX , , Bq,w := Bq,jkBq,jk−1 · · ·Bq,j1

where IdX denotes the identity map on X . With the notation above we can formulate the following result.

Proposition 6. Using the notation above, for each x0 ∈ X , u ∈ PC(T,U) and s = (q1, t1) · · · (qk, tk) ∈ (Q×T )∗

the state xΣ(x0, u, s) and the output yΣ(x0, u, s) can be expressed by the following absolutely convergent series.

xΣ(x0, u, s) =
∑

w1,...,wk∈Z∗m

(Bqk,wk
· · ·Bq1,w1x0)Vw1,...,wk

[u](t1, . . . , tk) (15)

yΣ(x0, u, s) =
∑

w1,...,wk∈Z∗m

(Cqk
Bqk,wk

· · ·Bq1,w1x0)Vw1,...,wk
[u](t1, . . . , tk)

Proof. To show absolute convergence of the series we will use the notion of a convergent generating series defined
in Section 6.1. Using the notation of Section 6.1 define the series cx0 : Γ̃∗ → X by cx0((q1, w1) · · · (qk, wk)) =
Bqk,wk

· · ·Bq1,w1x0. Then ||cx0 || ≤ ||x0||M
Pk

i=1 |wi|, where M = max{||Bq,j || | q ∈ Q, j ∈ Zm}. That is, cx0 is a
convergent generating series and by Lemma 9 the series

Fcx0
(u, s) =

∑
w1,...,wk

∈ (Bqk,wk
· · ·Bq1,w1x0)Vw1,...,wk

[u](t1, . . . , tk)

is absolutely convergent, which also implies the absolute convergence of

∑

w1,...,wk∈Z∗m

(Cqk
Bqk,wk

· · · · · ·Bq1,w1x0)Vw1,...,wk
[u](t1, . . . , tk)
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It is left to show that the right-hand sides of (15 ) equal the respective left-hand sides. We will proceed by
induction on k. If k = 1, then xΣ(x0, u, (q1, t)) is the state under input u at time t with initial state x0 of the
bilinear system d

dtx(t) = Aq1x(t) +
∑m
j=1(Bq1,jx)uj . By classical results [8] on bilinear systems

xΣ(x0, u, (q1, t)) =
∑

w∈Z∗m

Bq,wx0Vw[u](t)

and the series
∑
w∈Z∗m

Bq,wx0Vw[u](t) is absolutely convergent. Assume that the statement of the proposition
is true for all k ≤ N . Notice that for each s = (q1, t1) · · · (qN , tN ) ∈ (Q× T )∗ it holds that

xΣ(x0, u, s(qN+1, tN+1)) = xΣ(xΣ(x0, ShiftPN
1 ti

(u), s), (qN+1, tN+1))

Using the induction hypothesis one gets

xΣ(x0, u, s(qN+1, tN+1) =
∑

wN+1∈Z∗m

BqN+1,wN+1xΣ(x0, u, s)VwN+1 [uN ](tN+1)

=
∑

wN+1∈Z∗m

BqN+1,wN+1VwN+1 [uN ](tN+1)×

×[
∑

w1,...,wN∈Z∗m

BqN ,wN
· · ·Bq1,w1x0Vw1,...,wN

[u](t1, . . . , tN ) ] =

=
∑

w1,...,wN+1∈Z∗m

BqN+1,wN+1 · · ·Bq1,w1x0Vw1,...,wN+1 [u](t1, . . . , tN+1)

where uN = ShiftPN
i=1 ti

(u). The rest of the statement of the proposition follows easily from the fact that

yΣ(x0, u, (q1, t1) · · · (qk, tk)) = Cqk
xΣ(x0, u, (q1, t1) · · · (qk, tk))

¤
Reachability and observability properties of bilinear switched systems can be easily derived from the formulas

above.

Proposition 7. Let Σ = (X,U ,Y, Q, {(Aq, {Bq,j}j=1,2,...,m, Cq) | q ∈ Q}) be a bilinear switched system. Then
the following holds.

(i) The linear span W (X0) = Span{z ∈ X | x ∈ Reach(X0,Σ)} of the states reachable from X0 ⊆ X is of
the following form

W (X0) = Span{Bqk,wk
· · ·Bq1,w1x0 | qk, . . . q1 ∈ Q, k ≥ 0, wk, . . . , w1 ∈ Z∗m, x0 ∈ X0}

(ii) Define the observability kernel OΣ of Σ by

OΣ =
⋂

q1,...,qk∈Q,k≥0,w1,...,wk∈Z∗m

Cqk
Bqk,wk

· · ·Bq1,w1

x1, x2 ∈ X are indistinguishable if and only if

x1 − x2 ∈ OΣ

Σ is observable if and only if
OΣ = {0}
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Proof. Part (i)
For each X0 ⊆ X , q1, . . . , qk ∈ Q define the set Wq1···qk

(X0) ⊆ X as

Span{xΣ(x0, u, (q1, t1) · · · (qk, tk)) | u ∈ PC(T,U), t1, . . . , tk ∈ T, x0 ∈ X0}

Notice that xΣ(x0, u, (q1, t1) · · · (qk, tk)) = xΣ(xΣ(x0, u, s), ShiftTs(u), (qk, tk)) where s = (q1, t1) · · · (qk−1, tk−1),
Ts =

∑k−1
i=1 ti. Using the fact that in the discrete mode qk the system Σ behaves like a bilinear system

and using the results from [8, 9] one gets that for each fixed s = (q1, t1) · · · (qk−1, tk−1) ∈ (Q × T )∗ and
u ∈ PC([0,

∑k−1
1 tj ],U) it holds that

Wqk
({xΣ(x0, u, s)}) = Span{Bqk,wxΣ(x0, u, s) | w ∈ Z∗m}

That is,
Wq1,...,qk

(X0) = Span{Bqk,wx | x ∈Wq1,...,qk−1(X0), w ∈ Z∗m}
Taking into account that by [9] Wq(X0) = Span{Bq,wx0 | x0 ∈ X0} and Span{x | x ∈ Reach(Σ,X0) = Span{x |
x ∈Wq1,...,qk

(X0), q1, . . . , qk ∈ Q, k ≥ 0}, the statement of the proposition follows.
Part (ii)

It is easy to deduce from (15) of Proposition 6 that yΣ(x, ., .) is linear in x, that is, yΣ(αx1 + βx2, ., .) =
α1yΣ(x1, ., ) + βyΣ(x2, ., .) That is, yΣ(x1, ., .) = yΣ(x2, ., .) is equivalent to yΣ(x1 − x2, ., .) = 0. Thus, it is
enough to show that

x ∈ OΣ ⇐⇒ yΣ(x, ., .) = 0
It is clear from Proposition 6 that x1−x2 ∈ OΣ =⇒ yΣ(x1−x2, ., .) = 0. It is left to show that yΣ(x, ., .) = 0 =⇒
x ∈ OΣ. Assume that yΣ(x, ., .) = 0. Then for each fixed w = (q1, t1) · · · (qk, tk) ∈ (Q×T )∗, u ∈ PC(T,U), q ∈ Q
it holds that yΣ(xΣ(x, u, w), v, (q, t)) = yΣ(x, u#Twv, w(q, t)) = 0 for any v ∈ PC(T,U), where Tw =

∑k
1 ti.

Notice that for any x0 ∈ X the map PC(T,U) × T 3 (v, t) 7→ yΣ(x0, v, (q, t)) is the input-output map of the
classical bilinear system d

dtx(t) = Aqx+
∑m
j=1 uj(t)(Bq,jx(t)), y(t) = Cqx(t) induced by the inital condition x0.

Thus by the classical result for bilinear systems, see [8], yΣ(xΣ(x, u, w), v, (q, t)) = 0, ∀v ∈ PC(T,U) implies

xΣ(x, u, w) ∈
⋂

v∈Z∗m

kerCqBq,v

Recall from the proof of part (i) the definition of Wq1,...,qk
({x}). Since the choice of u and t1, . . . , tk are arbitrary,

we get that Wq1,...,qk
({x}) ⊆ ⋂

v∈Z∗m
kerCqBq,v. Using the proof of part (i) we get that Wq1,...,qk

({x}) =
Span{Bqk,wk

· · ·Bq1,w1x | w1, . . . , wk ∈ Z∗m} which implies that

x ∈
⋂

w,w1,...,wk∈Z∗m

kerCqBq,wBqk,wk
· · ·Bq1,w1

Since the choice of q and q1, . . . , qk ∈ Q is arbitrary, we get that x ∈ OΣ. This completes the proof of the
proposition. ¤

Let Σ1 = (X1,U ,Y, Q, {(A1
q, {B1

q,j}j=1,2,...,m, C
1
q ) | q ∈ Q}) and Σ2 = (X2,U ,Y, Q, {(A2

q, {B2
q,j}j=1,2,...,m, C

2
q ) |

q ∈ Q}) be two bilinear switched systems. A linear map T : X1 → X2 is called a bilinear switched system mor-
phism from Σ1 to Σ2, denoted by T : Σ1 → Σ2, if the following holds

TA1
q = A2

qT C1
q = C2

qT TB1
q,j = B2

q,j

By abuse of terminology T is said to be a bilinear switched system morphism from (Σ, µ) to (Σ
′
, µ

′
), denoted by

T : (Σ, µ) → (Σ
′
, µ

′
), if T : Σ → Σ

′
is a bilinear switched system morphism in the above sense and T ◦ µ = µ

′
.

If T is a linear isomorphisms then (Σ1, µ1) and (Σ2, µ2) are said to be isomorphic or algebraically similar.
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Note that switched systems defined above can be viewed as general non-linear systems with discrete inputs.
In particular, bilinear switched systems can be viewed as ordinary bilinear systems with particular inputs.
Indeed, let Q = {q1, . . . , qN} and let Ũ = RN ⊕ (U ⊗RN ). Denote the standard basis of RN by ej , j = 1, . . . N .
We will denote ej by eqj . Let bj , j = 1, . . . ,m the standard basis of U . Any ũ ∈ Ũ has a unique representation
ũ =

∑
q∈Q ũqeq +

∑
j=1,...,m,q∈Q ũj,qbj ⊗ eq,

Consider the bilinear switched system Σ = (X,U ,Y, Q, {(Aq, {Bq,j}j=1,2,...,m, Cq) | q ∈ Q}). Define the
following bilinear system with input space Ũ and output space Y

d

dt
x(t) =

∑

q∈Q
ũq(t)(Aqx) +

∑

q∈Q,j=1,...,m

ũq,j(t)(Bq,jx)

y(t) =
∑

q∈Q
ũq(t)(Cqx)

Here ũ(t) ∈ Ũ denoted the continuous input. The bilinear system above simulates Σ in the following sense.
Let w = (q1, t1) · · · (qk, tk) ∈ (Q × T )+, u ∈ PC(T,U). Define Uu,w := ũ ∈ PC(T, Ũ) such that for each
i = 0, . . . , k − 1 ∀τ ∈ [

∑i
j=1 tj ,

∑i+1
j=1 tj ] : ũqi+1(τ) = 1, ũqi+1,j(τ) = uj(τ) and ũq(τ) = 0, ũj,q(τ) = 0, q 6= qi+1.

Then yΣ(x, u, w) equals the output of the bilinear system above induced by ũ and initial state x. Using
the correspondence above, one could try to reduce the realization problem for bilinear switched systems to the
realization problem for classical bilinear systems and use the existing results on the realization theory of bilinear
systems. In this paper we will not pursue this approach. The reason for that is the following. First, dealing
with restricted switching would require dealing with the realization problem of bilinear systems with input
constraints. The author is not aware of any work on this topic. Second, the author thinks that using bilinear
realization theory would not substantially simplify the solution to realization problem for bilinear switched
systems. Notice however, that the equivalence of realization problems mentioned above does explain the role of
rational formal power series in realization theory of bilinear switched systems.

6.1. Input/output maps of bilinear switched systems

Let Φ ⊆ F (PC(T,U)×TL,Y) be a set of input-output maps defined for sequences of discrete modes belonging
to L ⊆ Q+. Let Γ̃ = Q× Z∗m. Define the set

JL = {(q1, w1) · · · (qk, wk) ∈ Γ̃∗ | (q1, w1), . . . , (qk, wk) ∈ Γ̃, k ≥ 0, q1 · · · qk ∈ L}

Define the relation R ⊆ Γ̃∗ × Γ̃∗ by requiring that (q, w1)(q, w2)R(q, w1w2), and (q, ε)(q
′
, w)R(q

′
, w) hold for

any q ∈ Q, (q′ , w) ∈ Γ̃ and (q, w1), (q, w2) ∈ Γ̃. Let R∗ be smallest congruence relation containing R. That is,
R∗ is the smallest relation such that R ⊆ R∗, R∗ is symmetric, reflexive, transitive and (v, v

′
) ∈ R∗ implies

(wvu,wv
′
u) ∈ R∗, for each w, u ∈ Γ̃∗.

Definition 5 (Generating convergent series on JL). A c : JL → Y is called a generating convergent series on
JL if the following conditions hold.

(1) (w, v) ∈ R∗, w, v ∈ JL =⇒ c(w) = c(v)
(2) There exists K,M > 0 such that for each (q1, w1) · · · (qk, wk) ∈ JL, (q1, w1) . . . (qk, wk) ∈ Γ̃

||c((q1, w1) · · · (qk, wk))|| < KM |w1| · · ·M |wk|

The notion of generating convergent series is an extension of the notion of convergent power series from [8,22].
If |Q| = 1 then a generating convergent series in the sense of Definition 5 can be viewed as a convergent formal
power series in the sense of [8, 22].
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Let c : JL → Y be a generating convergent series. For each u ∈ PC(T,U) and s = (q1, t1) · · · (qk, tk) ∈ TL
define the series Fc(u, s) by

Fc(u, s) =
∑

w1,...,wk∈Z∗m

c((q1, w1) · · · (qk, wk))Vw1,...,wk
[u](t1, . . . , tk)

We will prove that the series above is absolutely convergent.

Lemma 9. If c : JL→ Y is a convergent generating series, then for each u ∈ PC(T,U), s = (q1, t1) · · · (qk, tk) ∈
TL the series Fc(u, s) is absolutely convergent.

Proof. Since u is piecewise-continuous, there exists R > 1 such that
max{|uj(t)| | j = 1, 2, . . . ,m, t ∈ [0,

∑k
1 ti]} < R. Then by induction it is easy to see that for all w ∈ Zm it

holds that |Vw[u](ti)| ≤ R|w|t|w|
|w|! , consequently

|Vw1,...,wk
[u](t1, . . . , tk)| = Πk

i=1|Vwi
[u](ti)| ≤ t

|w1|
1

|w1|! · · ·
t
|wk|
k

|wk|!R
|w1|+···+|wk|

We get that
∑

w1,...,wk∈Z∗m,|w1|+...+|wk|≤N
||c((q1, w1) · · · (qk, wk))Vw1,...,wk

[u](t1, . . . , tk)|| ≤

≤
∑

l1+···+lk≤N
K(MR(m+ 1))l1+···+lk

tl11
l1!
· · · t

lk
k

lk!
≤

N∑

l=0

K(MRk(m+ 1))l
T l

l!
≤

≤ K exp(MRk(m+ 1)T )

where T =
∑k

1 ti. That is, the series Fc(u, (q1, t1) · · · (qk, tk)) is absolutely convergent. ¤
In fact we can define a function Fc ∈ F (PC(T,U)× TL,Y) by

Fc : PC(T,U)× TL 3 (u,w) 7→ Fc(u,w) ∈ Y

The map Fc has some remarkable properties, listed below.

Lemma 10. Let c : JL→ Y be a generating convergent series. Then the following holds.
(i) For each s = (q1, t1) · · · (qk, tk) ∈ TL, u, v ∈ PC(T,U)

(∀t ∈ [0,
k∑
1

ti] : u(t) = v(t)) =⇒ Fc(u, s) = Fc(v, s)

(ii) ∀u ∈ PC(T,U), w, s ∈ (Q× T )∗, |s| > 0 :

w(q, 0)s, ws ∈ TL =⇒ Fc(u,w(q, 0)s) = Fc(u,ws)

(iii) ∀u ∈ PC(T,U), w, v ∈ (Q× T )∗ :

r = w(q, t1)(q, t2)v, p = w(q, t1 + t2)v ∈ TL =⇒ Fc(u, r) = Fc(u, p)

(iv) Let w = (w1, 0) · · · (wk, 0), v = (v1, 0) · · · (vl, 0) ∈ (Q× T )∗ and s = (q1, t1) · · · (qh, th) ∈ (Q× T )+

ws, vs ∈ TL =⇒ (∀u ∈ PC(T,U) : Fc(u,ws) = Fc(u, vs))



32

Proof. Part (i) and (ii) follow from the obvious facts that Vw[u](t) depends only on u|[0,t] and Vw[u](0) = 0 for
|w| > 0. Part (iv) follows from the fact that Vw[u](0) = 0 for |w| > 0 and thus Vw1,...,wk+h

[u](0, . . . , 0, t1, . . . , th) =
0 if ∃j ∈ {1, . . . , k} : |wj | ≥ 0, and

Vw1,...,wk+h
[u](0, . . . , 0, t1, . . . , th) = Vwk+1,...,wk+h

[u](t1, . . . , th)

if wk+1 = · · · = wk+h = ε. The proof of Part (iii) is more involved. We will use the following lemma.

Lemma 11. For each w ∈ Z∗m:

Vw[u](t1 + t2) =
∑

s,z∈Z∗m,sz=w

Vs[u](t1)Vz[Shiftt1(u)](t2)

Using the lemma above and assuming that w = (q1, τ1) · · · (qi, τi), s = (qi+1, τi+1) · · · (qk, τk), k ≥ 0, Tz =∑z−1
j=1 tj if z ≤ i, T̂i =

∑i
j=1 ti and Tl+i = T̂i + t1 + t2 +

∑l+i−1
j=i+1 τj we get

Fc(u, r) =
∑

w1,...,wk,s,z∈Z∗m

c((q1, w1) · · · (qi, wi)(q, s)(q, z)(qi+1, wi+1) · · · (qk, wk))×

×Vs[ShiftT̂i
(u)](t1)Vz[Shiftt+T̂i

(u)](t2)Πk
j=1Vwj [ShiftTj (u)](τj) =

=
∑

w1...,wk∈Z∗m

∑

w∈Z∗m

[c((q1, w1) · · · (qi, wi)(q, w)(qi+1, wi+1) · · · (qk, wk))×

×Πk
j=1Vwj [ShiftTj (u)](τj)]

∑
sz=w

Vs[ShiftT̂i
(u)](t1)Vz[ShiftT̂i+t1

(u)](t2)

=
∑

w1,...,wk,w∈Z∗m

{c((q1, w1) · · · (qi, wi)(q, w)(qi+1, wi+1) · · · (qk, wk))×

Πk
j=1Vwi [ShiftTj (u)](τj)}Vw[ShiftT̂i

(u)](t1 + t2) = Fc(u, p)

¤

Proof of Lemma 11. We proceed by induction on |w|. Assume that |w| = 1, that is, w = j ∈ Zm. Then

Vw[u](t1 + t2) =
∫ t1+t2

0

dζj(τ)dτ =
∫ t1

0

dζj(τ)dτ +
∫ t2

0

dζj(t1 + τ)dτ = Vj [u](t1) + Vj [Shiftt1(u)](t2)

Assume that w = vj. Then

Vw[u](t1 + t2) =
∫ t1+t2

0

dζj(τ)Vv[u](τ)dτ =
∫ t1

0

dζj(τ)Vv[u](τ)dτ +
∫ t2

0

dζj(t1 + τ) =

= Vv[u](t1 + τ)dτVw[u](t1) +
∫ t2

0

dζj(t1 + τ)Vv[u](t1 + τ)dτ

By induction hypothesis we get that

∫ t2

0

dζj(t1 + τ)Vv[u](t1 + τ)dτ =
∑

sz=v,s,z∈Z∗m

Vs[u](t1)
∫ t2

0

dζj(t1 + τ)Vz[Shiftt1(u)](τ)dτ =

=
∑

sz=v,s,z∈Z∗m

Vs[u](t1)Vzj [Shiftt1(u)](t2)
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That is, we get that

Vw[u](t1 + t2) = Vw[u](t1) +
∑

sz=v,s,z∈Z∗m

Vs[u](t1)Vzj [Shiftt1(u)](t2) =
∑

sz=w,s,z,∈Z∗m

Vs[u](t1)Vz[Shiftt1(u)](t2)

¤

It is a natural to ask whether c determines Fc uniquely. The following result answers this question.

Lemma 12. Let L ⊆ Q∗ and let d, c : JL→ Y be two convergent generating series. If Fc = Fd, then c = d.

Proof. It is enough to show that for any L ⊆ Q∗, d, c : JL→ Y, if Fd = Fc then for each q1, . . . , qk ∈ L

∀w1, . . . , wk ∈ Z∗m : c((q1, w1) · · · (qk, wk)) = d((q1, w1) · · · (q1, wk)) (16)

We proceed by induction on k. If k = 1 and q1 ∈ L, then define the series. c̃ : Z∗m 3 w 7→ c((q1, w)) and
d̃ : Z∗m 3 w 7→ d((q1, w)). The series c̃ and d̃ are convergent series in the sense of [8, 22]. If Fc = Fd, then
with the notation of [22], Fec[u](t) = Fc(u, (q1, t)) = Fd(u, (q1, t)) = Fed[u](t), which by [8] implies that c̃ = d̃,
that is, c((q1, w)) = d((q1, w)) for each w ∈ Z∗m. Assume that (16) holds for each k ≤ N . Let L ⊆ Q∗ and let
q1 · · · qN+1 ∈ L. Let w ∈ Z∗m and define c(q1,w) : JHq1 → Y, Hq1 = {w ∈ Q∗ | q1w ∈ L}, by

c(q1,w)(s) =
{
c((q1, w)s) if s = (q2, w2) · · · (qN+1, wN+1) for some w2, . . . , wN+1 ∈ Z∗m

0 otherwise

It is easy to see that for all (s1, z1) · · · (sl, zl) ∈ JHq1

||c(q1,w)((s1, z1) · · · (sl, zl))|| < M |w|KM |z1|+...+|zk|

That is, cq1,w is a generating convergent series. It is also easy to see that for each s ∈ THq1

Fc(q1,w)(u, s) =
∑

w2,...,wN+1∈Z∗m

c((q1, w)(q2, w2) · · · (qN+1, wN+1))Vw2,...,wN+1 [u](t2, . . . , tN+1)

if s = (q2, t2) · · · (qN+1, tN+1) for some t2, . . . , tN+1 ∈ T and Fc(q1,w)(u, s) = 0 otherwise. It follows from the
proof of Lemma 9 that

||Fcq1,w(u, (s1, τ1) · · · (sl, τl))|| ≤M |w|K exp(MRl(m+ 1)
l∑
1

τl)

where R ≥ max{1,max{|uj(t)| | j = 1, 2, . . . ,m, t ∈ [0,
∑l

1 τi]}}. Fix an arbitrary r = (q2, t2) . . . (qN+1, tN+1),
t2, . . . , tN+1 ∈ T . Then the map

Fc,q1(u, r) : Z∗m 3 w 7→ Fcq1,w(u, r)

is a generating convergent series. Moreover, for any v ∈ PC(T,U), t ∈ T

Fc(v#tu, (q1, t)r) =
∑

w∈Z∗m

Fcq1 ,w
(u, r)Vw[v](t)

Define Fdq1,w1
and Fd,q1(u, r) is a similar way. Then from Fc = Fd we get that for all u, v ∈ PC(T,U), w ∈ Z∗m,

t ∈ T
Fc(v#tu, (q1, t)r) = Fd(v#tu, (q1, t)r)
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For each fixed u ∈ PC(T,U) by induction hypothesis for k = 1 we get that

∀w ∈ Z∗m : Fcq1,w(u, r) = Fdq1,w(u, r)

Notice that Fcq1,w(u, s) = 0 = Fdq1,w(u, s) for all s 6= (q2, τ2) · · · (qN+1, τN+1) for some τ2, . . . , τN+1. That is,
Fcq1,w = Fdq1,w , and by induction hypothesis for k = N we get that cq1,w(s) = dq1,w(s) for all w ∈ Z∗m, s ∈
JHq1 , |s| ≤ N . In particular, for each w1 · · ·wN+1 ∈ Z∗m

c((q1, w1)(q2, w2) · · · (qN+1, wN+1)) = cq1,w1)(x) = d(q1,w1)(x) = d((q1, w1)(q2, w2) · · · (qN+1, wN+1))

where x = (q2, w2) · · · (qN+1, wN+1). ¤

Now we are ready to define the concept of generalized Fliess-series representation of a set of input/output
maps.

Definition 6 (Generalized Fliess-series expansion). The set of input-output maps Φ ⊆ F (PC(T,U)×TL,Y) is
said to admit a generalized Fliess-series expansion if for each f ∈ Φ there exist a generating convergent series
cf : JL→ Y such that Fcf

= f .

Notice that if Φ has a generalized kernel representation with constraint L, then Φ has a generalized Fliess-
series expansion given as follows. For each f ∈ Φ, let

cf ((q1, w1) · · · (qk, wk)) =



D|wk|,...,|w1|Kf,Φ
q1···qk if w1, . . . , wk ∈ {0}∗

D|wk|,...,|wl|−1Gf,Φqk···qlej if l = min{z | |wz| > 0}, wk, . . . , wl+1 ∈ {0}∗,
wl = vj, v ∈ {0}∗, j ∈ Zm \ {0}

0 otherwise

From Lemma 12 we immediately get the following corollary.

Corollary 6. Any Φ ⊆ F (PC(T,U) × TL,Y) admits at most one generalized kernel representation with con-
straint L.

The following proposition gives a description of the Fliess-series expansion of Φ in the case when Φ is realized
by a bilinear switched system.

Proposition 8. (Σ, µ) is a bilinear switched system realization of Φ with constraint L if and only if Φ has a
generalized Fliess-series expansion such that for each f ∈ Φ, (q1, w1) · · · (qk, wk) ∈ JL

cf ((q1, w1) · · · (qk, wk)) = Cqk
Bqk,wk

· · ·Bq1,w1µ(f) (17)

Proof. If (Σ, µ) is a realization of Φ, then by Proposition 6 for each f ∈ Φ, w = (q1, t1) · · · (qk, tk) ∈ TL,
u ∈ PC(T,U)

f(u,w) = yΣ(µ(f), u, w) =

=
∑

w1,...,wk∈Z∗m

Cqk
Bqk,wk

· · ·Bq1,w1Vw1,...,wk
[u](t1, . . . , tk)
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That is, Φ admits a generalized Fliess-series expansion of the form given in (17). Conversely, if Φ admits a
generalized Fliess-series expansion of the form (17), then using Proposition 6 one gets

f(u, (q1, t1) · · · (qk, tk)) =

=
∑

w1,...,wk∈Z∗m

cf ((q1, w1) · · · (qk, wk))Vw1,...,wk
[u](t1, . . . , tk) =

=
∑

w1,...,wk∈Z∗m

Cqk
Bqk,wk

· · ·Bq1,w1µ(f)Vw1,...,wk
[u](t1, . . . , tk) =

= yΣ(µ(f), u, (q1, t1) · · · (qk, tk))

That is, (Σ, µ) is a realization of Φ with constraint L. ¤

6.2. Realization of input/output maps by bilinear switched systems with arbitrary switch-
ing

In this section realization theory for bilinear switched systems will be developed. We start with the case
when the input/output maps are defined for all switching sequences. Let Φ ⊆ F (PC(T,U)× (Q× T )+,Y) be a
set of input/output maps and assume that Φ has a generalized Fliess-series expansion. As in the case of linear
switched systems, we will associate with Φ an indexed set of formal power series ΨΦ. It turns out that every
representation of ΨΦ determines a realization of Φ and vice versa. We will be able to use the theory of formal
power series to derive the results on realization theory.

Recall that Γ̃ = Q× Z∗m. Let Γ = {(q, j) | q ∈ Q, j ∈ Zm}. Define φ : Γ̃ → Γ by

φ((q, w)) = (q, j1) · · · (q, jk), φ((q, ε)) = ε

where w = j1 · · · jk ∈ Z∗m, j1, . . . , jk ∈ Zm, k ≥ 0. The map φ determines a monoid morphisms φ : Γ̃∗ → Γ∗

given by
φ((q1, w1) · · · (qk, wk)) = φ((q1, w1)) · · ·φ((qk, wk))

for each (q1, w1), . . . , (qk, wk) ∈ Γ̃, k ≥ 0. It is also clear that any element of Γ can be thought of as an element of
Γ̃, i.e. we can define the monoid morphism i : Γ∗ → Γ̃∗ by i(ε) = ε and i((q1, j1) · · · (qk, jk)) = (q1, j1) · · · (qk, jk),
(q1, j1), . . . , (qk, jk) ∈ Γ ⊆ Γ̃. It is also easy to see that φ(i(w)) = w, ∀w ∈ Γ∗ and w(q, ε)R∗i(φ(w))(q, ε), q ∈ Q.

For each f ∈ Φ, q ∈ Q define the formal power series Sf,q ∈ Rp ¿ Γ∗ À as follows

Sf,q(s) = cf (i(s)(q, ε)) , ∀s ∈ Γ∗

It is easy to see that in fact cf (v(q, ε)) = Sf,q(φ(v)) = cf (i(φ(v))(q, ε)), since (v(q, ε), i(φ(v))(q, ε)) ∈ R∗. Assume
that Q = {q1, . . . , qN}. Define the formal power series Sf ∈ RNp ¿ Γ∗ À by

Sf =




Sf,q1
Sf,q2

...
Sf,qN




Define the set of formal power series ΨΦ associated with Φ as follows

ΨΦ = {Sf ∈ RNp ¿ Γ∗ À| f ∈ Φ}

Define the Hankel-matrix HΦ of Φ as the Hankel-matrix of ΨΦ. i.e. HΦ = HΨΦ .
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Let Σ = (X,U ,Y, Q, {(Aq, {Bq,j}j=1,2,...,m, Cq) | q ∈ Q}) be a bilinear switched system. Define the represen-
tation RΣ,µ associated with the realization (Σ, µ) of Φ by

RΣ,µ = (X , {B(q,j)}(q,j)∈Γ, I, C̃)

where B(q,j) = Bq,j : X → X , q ∈ Q, j = 1, . . . ,m, Bq,0 = Aq : X → X , q ∈ Q, C̃ =




Cq1
Cq2
...

CqN


 : X → RpN and

If = µ(f) ∈ X , f ∈ Φ.
Let R = (X , {M(q,j)}(q,j)∈Γ, I, C̃) be a representation of ΨΦ. Define the realization (ΣR, µR) associated with

R by
ΣR = (X,U ,Y, Q, {(Aq, {Bq,j}j=1,2,...,m, Cq) | q ∈ Q})

where µR(f) = If ∈ X , f ∈ Φ, Bq,j = M(q,j) : X → X , q ∈ Q, j = 1, . . . ,m, Aq = M(q,0) : X → X ,q ∈ Q and

the maps Cq : X → Y, q ∈ Q are such that C̃ =



Cq1
...

CqN


. It is easy to see that RΣR,µR

= R. It turns out that

there is a close connection between realizations of Φ and representations of ΨΦ.

Proposition 9. Assume that Φ admits a generalized Fliess-series expansion. Then, (a) (Σ, µ) realization of
Φ if and only if RΣ,µ is a representation of ΨΦ, (b) Conversely, R is a representation of ΨΦ if and only if
(ΣR, µR) is a realization of Φ.

Proof. It is enough prove Part (a). Part (b) follows from Part (a) by using the equality RΣR,µR = R. Assume
that Σ = (X,U ,Y, Q, {(Aq, {Bq,j}j=1,2,...,m, Cq) | q ∈ Q}). Notice that the map φ : Γ̃∗ → Γ∗ is surjective and
for each w1, . . . , wk ∈ Zm it holds that

Bq,w1···wk
= Bq,wk

Bq,wk−1 · · ·Bq,w1 = B(q,wk) · · ·B(q,w1) = Bφ(q,w1···wk)

Then it is easy to see that RΣ,µ is a representation of ΨΦ if and only if for all (q1, w1), . . . , (qk, wk) ∈ Γ̃

cf ((q1, w1) · · · (qk, wk)) = cf ((q1, w1) · · · (qk, wk)(qk, ε)) =
= Sf,qk

(φ((q1, w1)) · · ·φ((qk, wk))) = Cqk
Bφ((q1,w1)) · · ·Bφ((q1,w1))If =

= Cqk
Bqk,wk

· · ·Bq1,w1µ(f)

But by Proposition 8 this is exactly equivalent to (Σ, µ) being a realization of Φ. ¤

From the discussion above using Theorem 1 one gets the following characterization of realizability.

Theorem 11. Let Φ ⊆ F (PC(T,U)× (Q× T )+,Y). The following are equivalent
(i) Φ has a realization by a bilinear switched system
(ii) Φ has a generalized Fliess-series expansion and ΨΦ is rational
(iii) Φ has a generalized Fliess-series expansion and rank HΦ < +∞

Proof. First we show that (i) ⇐⇒ (ii). By Proposition 8 if (Σ, µ) a bilinear switched system realization of Φ,
then Φ has a generalized Fliess-series expansion. From Proposition 9 we also get that RΣ,µ is a representation
of ΨΦ, i.e. ΨΦ is rational. Conversely, if Φ has a generalized Fliess-series expansion and R is a representation
of ΨΦ, then from Proposition 9 it follows that (ΣR, µR) is a realization of Φ. Since by Theorem 1 ΨΦ is rational
if and only if rank HΨΦ = rank HΦ < +∞, we get that (ii) and (iii) are equivalent. ¤
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The next step will be to characterize bilinear switched systems which are minimal realizations of Φ. In
order to accomplish this task, we need to the following characterization of observability and semi-reachability
of bilinear switched systems.

Lemma 13. Let Σ be a bilinear switched system. Assume that (Σ, µ) is a realization of Φ. Let R = RΣ,µ. (Σ, µ)
is observable if and only if R is observable. (Σ, µ) is semi-reachable from Im µ if and only if R is reachable.

Proof. Notice that Bq,w = Bφ((q,w)) and for each (q1, w1), . . . , (qk, wk) ∈ Γ̃

ker C̃Bφ((q1,w1)) · · ·Bφ((qk,wk)) =
⋂

q∈Q
kerCqBq1,w1 · · ·Bqk,wk

Notice that Imµ = {µ(f) | f ∈ Φ} = {If | f ∈ Φ}. Then it follows from Proposition 7 that OΣ = OR
and WR = Span{x | x ∈ Reach(Σ, Imµ)}. Then the lemma follows from Proposition 7 and the definition of
observability and reachability for representations. ¤

It is also easy to see that dim Σ = dimRΣ,µ and dimR = dim ΣR. In fact, Proposition 9 implies the following.

Lemma 14. If R is a minimal representation of ΨΦ then (ΣR, µR) is a minimal realization of Φ. Conversely,
if (Σ, µ) is a minimal realization of Φ, then RΣ,µ is a minimal representation of ΨΦ.

The following lemma clarifies the relationship between representation morphisms and bilinear switched system
morphisms.

Lemma 15. T : (Σ, µ) → (Σ
′
, µ

′
) is a bilinear switched system morphism if and only if T : RΣ,µ → (Σ

′
, µ

′
) is

a representation morphism. Moreover, T is injective, surjective, an isomorphism as a bilinear switched system
morphism if and only if T is injective, surjective, an isomorphism as a representation morphism.

Proof. T is a bilinear switched system morphism if and only if

TAq = A
′
qT Cq = C

′
qT TBq,j = B

′
q,jT Tµ(f) = µ

′
(f)

for each q ∈ Q, j = 1, 2 . . . ,m and f ∈ Φ. This is equivalent to TB(q,j) = B
′
(q,j)T for each j ∈ Zm, TIf =

Tµ(f) = µ
′
(f) = I

′
f and

C̃ =



Cq1
...

CqN


 =




(C
′
q1T )
...

(C
′
qN
T )


 = C̃

′
T

That is, T is a representation morphism. ¤

Using the theory of rational formal power series presented in Section 4 we get the following.

Theorem 12. Let Φ ⊆ F (PC(T,U)× (Q× T )+,Y). The following are equivalent
(i) (Σmin, µmin) is a minimal realization of Φ by a bilinear switched system
(ii) (Σmin, µmin) is semi-reachable from Imµ and it is observable
(iii) dimΣmin = rank HΦ

(iv) For any bilinear switched system realization (Σ, µ) of Φ, such that (Σ, µ) is semi-reachable from Imµ,
there exist a surjective homomorphism T : (Σ, µ) → (Σmin, µmin). In particular, all minimal realizations
of Φ by bilinear switched systems are algebraically similar.

Proof. (Σmin, µmin) is a minimal realization if and only if that Rmin = RΣmin,µmin is minimal representation,
that is, by Theorem 2 Rmin is reachable and observable. By Lemma 13 the latter is equivalent to (Σmin, µmin)
being semi-reachable from Im µ and observable. That is, we get that (i) ⇐⇒ (ii). By Theorem 2 a repre-
sentation Rmin is minimal if and only if dim Σmin = dimRmin = rank HΦΨ = rank HΦ. That is, we showed
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that (i) ⇐⇒ (iii). To show that (i) ⇐⇒ (iv), notice that (Σmin, µmin) is a minimal realization if and only
if RΣmin,µmin is a minimal representation. By Theorem 2 Rmin is minimal if and only if for any reachable rep-
resentation R there exists a surjective representation morphism T : R → Rmin. It means that (Σmin, µmin) is
minimal if and only if for any reachable representation R of ΨΦ there exists a surjective representation morphism
T : R → RΣmin,µmin

. But any reachable representation R gives rise to a semi-reachable realization of Φ and
vice versa. That is, we get that (Σmin, µmin) is minimal if and only if for any realization (Σ

′
, µ

′
) of Φ such that

(Σ
′
, µ

′
) is semi-reachable from Imµ there exists a surjective representation morphism T : RΣ′ ,µ′ → RΣmin,µmin

.
By Lemma 15 we get that the latter is equivalent to T : (Σ

′
, µ

′
) → (Σmin, µmin) being a surjective bilinear

switched system morphism. From Corollary 1 it follows that if (Σ
′
, µ

′
) is a minimal realization of Φ, then there

exists a representation isomorphism T : RΣ′ ,µ′ → RΣmin,µmin
which means that (Σmin, µmin) is gives rise to

the bilinear switched system isomorphism T : (Σ
′
, µ

′
) → (Σmin, µmin), that is, (Σ

′
, µ

′
) and (Σmin, µmin) are

algebraically similar. ¤

6.3. Realization of input/output maps by bilinear switched systems with constraints on
the switching

The case of restricted switching is slightly more involved. As in the case of arbitrary switching, we will asso-
ciate a set ΨΦ of formal power series over Γ with the set of input-output maps Φ ⊆ F (PC(T,U)×TL,Y). Every
representation of ΨΦ gives rise to a realization of Φ. If L is a regular language, then existence of a realization
of Φ implies existence of a representation of ΨΦ. However, the dimension of the minimal representation of ΨΦ

might be bigger than the dimension of a realization of Φ. Any minimal representation of ΨΦ gives rise to an
observable and semi-reachable realization of Φ. But this observable and semi-reachable realization need not be
a minimal one. Extraction of the right information from Φ and the construction of ΨΦ is much more involved
in the case of restricted switching than in the case of arbitrary switching.

Recall the definition of the relation R∗ ⊆ Γ̃∗ × Γ̃∗ from Subsection 6.1. Define the set J̃L ⊆ Γ̃∗ by

J̃L = {s ∈ Γ̃∗ | ∃w ∈ JL : (w, s) ∈ R∗}

In fact, J̃L contains all those sequences in Γ̃∗ for which we can derive some information based on the values of
a convergent generating series for sequences from JL. More precisely, if c : JL→ Y is a generating convergent
sequence, then c can be extended to a generating convergent series c̃ : J̃L→ Y by defining c̃(s) = c(w) for each
s ∈ J̃L, w ∈ JL, (s, w) ∈ R∗. It is clear that for any s ∈ J̃L there exists a w ∈ JL such that (s, w) ∈ R∗ and if
(s, w), (s, v) ∈ R∗, w, v ∈ JL, then c(w) = c(v) = c̃(s), since c was assumed to be a generating convergent series.
If (s, x) ∈ R∗, then c̃(s) = c̃(x). Moreover, if (s, w) ∈ R∗ and s = (z1, x1) · · · (zl, xl) and w = (q1, v1) · · · (qk, vk),
then from the definition of R it follows that

∑k
1 |vi| =

∑l
1 |xi|, that is, ||c̃(s)|| = ||c(w)|| ≤ KM |v1| · · ·M |vk| =

KM
Pk

1 |vi| = KM
Pl

1 |xl|. That is, c̃ : J̃L → Y is indeed a generating convergent series. Moreover, on JL the
sequence c̃ coincides with c, that is, if w ∈ JL, then c̃(w) = c(w). By abuse of notation, we will denote c̃ simply
by c in the sequel.

For each q ∈ Q define JLq = {v(q, w) ∈ J̃L | v ∈ Γ̃∗, (q, w) ∈ Γ̃}. Let Lq = {w ∈ Γ∗ | ∃v ∈ JLq : φ(v) = w}.
Notice that

w ∈ Lq ⇐⇒ i(w)(q, ε) ∈ JLq
Indeed, if i(w)(q, ε) ∈ JLq, then φ(i(w)(q, ε)) = φ(i(w)) = w ∈ Lq. Conversely, if w ∈ Lq, then w = φ(v) for
some v ∈ JLq. But then v = u(q, z) and (u(q, z)(q, ε), u(q, zε) = v) ∈ R∗ and (v(q, ε), i(w)(q, ε)) ∈ R∗ which
implies (v, i(w)(q, ε)) ∈ R∗. Since v ∈ J̃L, we know that i(w)(q, ε) ∈ J̃L, that is, i(w)(q, ε) ∈ JLq.

Let Φ ⊆ F (PC(T,U)×TL,Y) be a set of input/output maps defined on sequences of discrete modes belonging
to L. Assume Φ admits a generalized Fliess-series expansion. For each q ∈ Q, f ∈ Φ define the formal power
series Tf,q ∈ Rp ¿ Γ∗ À by

Tf,q(s) =
{
cf (i(s)(q, ε)) if s ∈ Lq

0 otherwise



39

Notice that for each s ∈ Lq there exists a w = u(q, v) ∈ JL such hat Tf,q(s) = cf (w). Indeed, s ∈ Lq implies that
there exists a w = (q1, x1) · · · (ql, xl)(q, xl+1) ∈ JL such that (w, i(s)(q, ε)) ∈ R∗. Thus Tf,q(s) = cf (i(s)(q, ε)) =
cf (w). The intuition behind the definition of Tf,q is the following. We store in Tf,q the values of all those cf (s)
which show up in the generalized Fliess-series expansion of f(u,w), for some switching sequence w ∈ TL such
that w ends with discrete mode q. For all the other sequences from Γ∗ we set the value of Tf,q to zero.

Assume that Q = {q1, . . . , qN}. Define the formal power series Tf ∈ RNp ¿ Γ∗ À by

Tf =




Tf,q1
Tf,q2

...
Tf,qN




Define the set of formal power series ΨΦ associated with Φ as follows

ΨΦ = {Tf ∈ RNp ¿ Γ∗ À| f ∈ Φ}

Define the Hankel-matrix HΦ of Φ as the Hankel-matrix of ΨΦ, that is, HΦ = HΨΦ .

For each q ∈ Q define the formal power series Zq ∈ Rp ¿ Γ∗ À by Zq(w) =
{

(1, 1, . . . , 1)T if w ∈ Lq
0 otherwise .

Let Z ∈ RNp ¿ Γ À be

Z =



Zq1
...

ZqN




and let Ω be the indexed set {Z | f ∈ Φ}, i.e Ω : Φ → RNp ¿ Γ∗ À and Ω(f) = Z, f ∈ Φ. With the notation
above, the following holds.

Lemma 16. Let Σ = (X,U ,Y, Q, {(Aq, {Bq,j}j=1,2,...,m, Cq) | q ∈ Q}) be a bilinear switched system. Assume
that (Σ, µ) is a realization of Φ and Φ admits a generalized Fliess-series expansion. Let Φ

′
= {yΣ(µ(f), ., .) ∈

F (PC(T,U)× (Q× T )+,Y) | f ∈ Φ} and let Ψ
′
Φ be the set of formal power series associated with Φ

′
as defined

in Subsection 6.2. That is, ΨΦ′ = {Sg ∈ RNp ¿ Γ À| g ∈ Φ
′}. Let Sf = SyΣ(µ(f),.,.) and let Θ = {Sf | f ∈ Φ}.

Then the following holds
ΨΦ = Θ¯ Ω

Proof. Define µ
′
: Φ

′ → X by µ
′
(yΣ(µ(f), ., .)) = µ(f). Since (Σ, µ) is a realization of Φ, if for some f1, f2 ∈ Φ it

holds that yΣ(µ(f1), ., .) = yΣ(µ(f2), ., .), then f1 = yΣ(µ(f1), ., .)|PC(T,U)×TL = yΣ(µ(f2), ., .)|PC(T,U)×TL = f2.
That is, f1 = f2 and thus µ

′
is well-defined. It is also easy to see that (Σ, µ

′
) realizes Φ

′
, therefore Φ

′
has

a generalized Fliess-series expansion. For each f ∈ Φ, denote by cf : J̃L → Y the generating convergent
series corresponding to f , i.e. Fcf

= f . Denote by df : Γ̃∗ → Y the series corresponding to yΣ(µ(f), ., .),
i.e. Fdf

= yΣ(µ(f), ., .). By Proposition 8 (Σ, µ) is a realization of Φ with constraint L, if and only if
∀w(q, v) ∈ JL : cf (w(q, v)) = CqBq,vBφ(w)µ(f). Here we used the fact that if w = (q1, z1) · · · (qk, zk), then
Bqk,zk

· · ·Bq1,z1 = Bφ(w). But (Σ, µ
′
) realizes Φ

′
, so by Proposition 8 it holds that ∀s(q, x) ∈ J̃L : df (s(q, x)) =

CqBq,xBφ(s)µ
′
(yΣ(µ(f), ., .)). Notice that if (s(q, x), w(q, v)) ∈ R∗, then φ(s(q, x)) = φ(w(q, v)), and there-

fore Bq,vBφ(w) = Bφ(w(q,v)) = Bφ(s(q,x)) = Bq,xBφ(s). Notice that µ(f) = µ
′
(yΣ(µ(f), ., .)). Thus for each

s(q, x) ∈ J̃L, w(q, v) ∈ JL we get that cf (s(q, x)) = cf (w(q, v)) = df (s(q, x)). Thus, for each q ∈ Q, f ∈ Φ,
s ∈ Lq we get that Tf,q(s) = cf (i(s)(q, ε)) = df (i(s)(q, ε)) = Sf,q(s). Notice that for each s /∈ Lq, Tf,q(s) = 0
and Zq(s) = 0. That is, Tf,q = Sf,q ¯ Zq and therefore Tf = Sf ¯ Z. ¤

If L is regular, then Ω turns out to be a rational indexed set.
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Lemma 17. If L is regular, then Lq, q ∈ Q are regular languages and Ω is a rational indexed set of formal
power series.

Proof. It is enough to show that if L is a regular language, then Lq, q ∈ Q are regular languages. Indeed,
if Lq, q ∈ Q are regular, then {eTj Zq}, q ∈ Q, j = 1, . . . , p are rational sets of formal powers series, since

eTj Zq(w) = 1 ⇐⇒ w ∈ Lq. Therefore, {Z =
[
ZTq1 · · · ZTqN

]T } is a rational set, therefore Ω is a rational
indexed set of formal power series by Lemma 1. Define prQ : Γ∗ → Q∗ by prQ((q1, j1) · · · (qk, jk)) = q1 · · · qk.
Recall from Subsection 5.1 the definition of the sets Fq(w) and L̃q. Lemma 8 says that if L is regular, then
L̃q is regular. We shall prove that Lq = pr−1

Q (L̃q). From this equality it follows that if L̃q is regular, then
Lq is regular. Indeed, prQ is a monoid morphism, and therefore can be realized by a regular transducer
see [3]. Then the regularity of Lq follows from the classical result on regular transducers. Alternatively, if
A = (S,Q, δ, F ) is a finite automaton accepting L̃q, then the deterministic finite automaton A′

= (S,Γ, δ
′
, F )

defined by δ
′
(s, (q, j)) = δ(s, q), (q, j) ∈ Γ, s ∈ S accepts Lq.

We now proceed with the proof of the equality Lq = pr−1
Q (L̃q). First we show that Lq ⊆ pr−1

Q (L̃q). If v =
(q1, j1) · · · (qt, jt) ∈ Lq, then there exists w(q, z) ∈ JLq, such that φ(w(q, p)) = v. Let w = (z1,m1) · · · (zk,mk).
Then z1 · · · zkq ∈ L. Let l = min{j | |mj | > 0}. Let s = z1 · · · zl−1, x = zl · · · zk. From φ(w(q, z)) = v it
follows that zl = q1 = · · · = q|ml|, zi+1 = q|mi|+1 = · · · = q|mi+1|, for i = l, l + 1, . . . , k − 1, q|mk|+1 = · · · qt = q,
and |p| + ∑k

i=1 |mi| = t. That is, we get that q1 · · · qtq = z
|ml|
l · · · z|mk|

k q|p|q and sxq = z1 · · · zkq ∈ L, that is,
(s, ((|m1|, . . . , |mk|, |p|), x) ∈ Fq(q1 · · · qt), i.e. q1 · · · qt = prQ((q1, j1) · · · (qt, jt)) ∈ L̃q. That is, Lq ⊆ pr−1

Q (L̃q).
Let w ∈ L̃q and let (u, (α, h)) ∈ Fq(w). Assume that u = q1 . . . q|u| and h = z1 · · · zk, q1, . . . , q|u|, z1, . . . zk ∈ Q.
Since w = zα1

1 · · · zαk

k , we get that v ∈ pr−1
Q (w) if and only if v = v1 · · · vk, vi = (zi, j1,i) · · · (zi, jαi,i) ∈ Γ∗, |vi| =

αi, ji,j ∈ Zm, i = 1, . . . , αj , j = 1, . . . , k. Let ji = j1,ij2,i . . . jαi,i, s = (q1, ε) · · · (q|u|, ε)(z1, j1) · · · · · · (zk, jk).
Since uv ∈ L, we have that s ∈ JL and zk = q implies that s ∈ JLq. But φ(s) = φ((z1, j1) · · · (φ(zk, jk)) =
v1 · · · vk ∈ Lq. That is, pr−1

Q (L̃q) ⊆ Lq, and consequently Lq = pr−1
Q (L̃q). ¤

Let R = (X , {Mz}z∈Γ, I, C) be a representation of ΨΦ. Define the bilinear switched system realization
(ΣR, µR) asscociated with R as in Section 6.2. That is,

ΣR = (X,U ,Y, Q, {(Aq, {Bq,j}j=1,2,...,m, Cq) | q ∈ Q}) and µR(f) = If

where Cq : X → Y, q ∈ Q are such that C =



Cq1
...

CqN


, Bq,j = M(q,j), Aq = M(q,0), q ∈ Q, j = 1, . . . ,m. It is easy

to see that (ΣR, µR) is semi-reachable (observable) if and only if R is reachable (observable).
Recall from Subsection 5.3 the definition of comp(L):

comp(L) = {w1 · · ·wk ∈ Q∗ | L̃wk
= ∅, w1, . . . , wk ∈ Q}

The following statement is an easy consequence of Proposition 8.

Theorem 13. If Φ has a generalized Fliess-series expansion with constraint L and R = (X , {Bz}z∈Γ, I, C̃) is
a representation of ΨΦ, then (ΣR, µR) is a realization of Φ. That is, if ΨΦ is rational, then Φ has a realization
by a bilinear switched system. Moreover, for each f ∈ Φ, w ∈ T (comp(L))

∀u ∈ PC(T,U) : yΣ(µ(f), u, w) = 0

Proof. Let (ΣR, µR) the realization associated with R. Assume that

ΣR = (X,U ,Y, Q, {(Aq, {Bq,j}j=1,2,...,m, Cq) | q ∈ Q})
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Since R is a representation of ΨΦ, we get that for each (q1, w1) · · · (qk, wk) ∈ JL, f ∈ Φ

cf ((q1, w1) · · · (qk, wk)) = Tf,qk
(φ((q1, w1) · · · (qk, wk))) =

= Cqk
Bφ((qk,wk)) · · ·Bφ((q1,w1))If = Cqk

Bqk,wk
· · ·Bq1,w1µ(f) (18)

We used the definition of (ΣR, µR) and the fact that B(q,j1)···(q,jl) = Bφ((q,j1···jl)) for each q ∈ Q, j1, . . . , jl ∈ Zm.
From Proposition 8 we get that (18) implies that (ΣR, µR) is a realization of Φ.

Let w = (q1, t1) · · · (qk, tk) ∈ T (comp(L)), that is, L̃qk
= ∅. Then for each s = (q1, w1) · · · (qk, wk) ∈ Γ̃∗ we

get that Tf,qk
(φ(s)) = 0, since φ(s) /∈ Lqk

. Indeed, L̃qk
= ∅ and from the proof of Lemma 17 we know that

Lq = pr−1
Q (L̃q). If φ(s) ∈ Lqk

, then we get that prQ(φ(s)) ∈ L̃qk
= ∅, a contradiction. But g = yΣ(µ(f), ., .)

has a generalized Fliess-series expansion, and from Proposition 8 it follows that cg((q1, w1) · · · (qk, wk)) =
Cqk

Bqk,wk
· · ·Bq1,w1µ(f). Since R is a representation of ΨΦ, we also get that Cqk

Bqk,wk
· · ·Bq1,w1µ(f) =

Cqk
Bφ((qk,wk)) · · ·Bφ((q1,w1))If = Tf,qk

(φ((q1, w1) · · ·φ(qk, wk)) = 0. That is, if q1 · · · qk ∈ comp(L), then for
each w1, . . . , wk ∈ Z∗m it holds that

cg((q1, w1) · · · (qk, wk)) = 0
Then the definition of Fcg

implies that Fcg
= g = 0 for each q1 · · · qk ∈ T (comp(L)). ¤

We see that rationality of ΨΦ, i.e. the condition that rank HΦ < +∞, is a sufficient condition for realizability
of Φ. It turns out that if L is regular, this is also a necessary condition. From the discussion above, Lemma 16
and Lemma 2 one gets the following.

Theorem 14. Assume that L is regular. Then the following are equivalent.
(i) Φ has a realization by a bilinear switched system
(ii) Φ has a generalized Fliess-series expansion and rank HΦ < +∞
(iii) There exists a realization of Φ by a bilinear switched system (Σ, µ) such that Σ is observable and semi-

reachable from Imµ and

∀f ∈ Φ : yΣ(µ(f), ., .)|PC(T,U)×T (compl(L)) = 0

and for any (Σ
′
, µ

′
) bilinear switched system realization of Φ

dim Σ ≤ rank HΩ · dimΣ
′

Proof. (i) ⇐⇒ (ii)
By Lemma 16, if (Σ, µ) is a realization of Φ, then Φ has a generalized Fliess-series expansion and ΨΦ = Θ¯Ω.
Since (Σ, µ) is a realization of Φ

′
= {yΣ(µ(f), ., .) | f ∈ Φ} we get that ΨΦ′ is rational. Define the map

Φ 3 f 7→ i(f) = yΣ(µ(f), ., ) ∈ Φ
′
. Since Θ = {Si(f) | f ∈ Φ}, Lemma 4 implies that Θ is rational. Since L is

regular, by Lemma 17 Ω is rational, therefore by Lemma 2 ΨΦ = Θ ¯ Ω is rational, that is, rank HΦ < +∞.
Conversely, if Φ admits a generalized Fliess-series expansion and rank HΦ < +∞, i.e. ΨΦ is rational, then there
exists a representation R of ΨΦ and by Theorem 13 (ΣR, µR) is a realization of Φ

(ii) ⇐⇒ (iii)
It is clear that (iii) implies (i), which implies (ii). We will show that (ii) implies (iii). Assume that Φ admits
a generalized Fliess-series expansion and ΨΦ is rational. Let R be the minimal representation of ΨΦ. Then
(ΣR, µR) is a realization of Φ, moreover ΣR is observable and semi-reachable from Imµ. From Theorem 13 it
follows that

yΣ(µR(f), ., .)|PC(T,U)×T (comp(L)) = 0

Let (Σ
′
, µ

′
) be a realization of Φ. Then R

′
= RΣ′ ,µ′ is a representation of ΨΦ′ , where Φ

′
= {yΣ′ (µ

′
(f), ., .) |

f ∈ Φ}. From Lemma 16 we know that ΨΦ = Θ ¯ Ω, where Θ = {Sy
Σ′ (µ

′ (f),.,.) | f ∈ Φ}. Assume that

R
′
= (X ′

, {B′
z}z∈Γ, I

′
, C

′
). Then R̃ = (X ′

, {B′
z}z∈Γ, Ĩ, C

′
), where Ĩf = Iy

Σ′ (µ
′ (f),.,.), f ∈ Φ, is a representation
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of Θ. But R is a minimal representation of ΨΦ, therefore dimR = dim ΣR = rank HΨΦ . From Lemma 2 it
follows that rank HΨΦ = rank HΘ¯Ω ≤ (rank HΩ)(rank HΘ). Since dim Σ = dimR

′
= dim R̃ ≥ rank HΘ, we

get that
dimΣR ≤ rank HΩ · dimΣ

′

Taking (ΣR, µR) for (Σ, µ) completes the proof. ¤
The following example demonstrates existence of a semi-reachable and observable realization of Φ, which is

non-minimal.
Example

Let Q = {1, 2}, L = {qk1q2 | k > 0}, Y = U = R. Define the generating series c : J̃L→ R by c((q1, w1)(q2, w2)) =
2k, where w2 = 0j0z1 · · · zl0jl , k =

∑l
i=0 jl, zi ∈ {1}∗, i = 1, . . . , l. Let Φ = {Fc}. Define the system

Σ1 = (R,R,R, Q, {(Aq, Bq,1Cq) | q ∈ {q1, q2}}) by Aq1 = 1, Bq1,1 = 1, Cq1 = 1 and Aq2 = 2, Bq2,1 = 1, Cq2 = 1 .
Define the system Σ2 = (R2,R,R, Q, {(Ãq, B̃q,1,
C̃q) | q ∈ Q}) by

Ãq1 =
[
1 0
0 0

]
B̃q1,1 =

[
1 0
0 0

]
C̃q1 =

[
0 0

]

Ãq2 =
[
0 0
2 2

]
B̃q2,1 =

[
0 0
1 1

]
C̃q2 =

[
1 1

]

Let µ1 : Fc 7→ 1 and µ2 : Fc 7→ (1, 0)T ∈ R2. Both (Σ1, µ1) and (Σ2, µ2) are semi-reachable from Imµ1

and Imµ2 respectively and they are observable, therefore they are the minimal realizations of yΣ1(1, ., .) and
yΣ2((1, 0)T , ., .). Moreover, it is easy to see that (Σi, µi), i = 1, 2 are both realizations of Φ with constraint L.
Yet, dimΣ1 = 1 and dim Σ2 = 2. In fact, Σ2 can be obtained by constructing the minimal representation of
ΨΦ, i.e., Σ2 is a realization of Fc satisfying part (iii) of Theorem 14.

7. Conclusions

Solution to the realization problem for linear and bilinear switched systems was presented. The realization
problem considered is to find a realization of a family of input-output maps. Moreover, it is allowed to restrict
the input-output maps to some subsets of switching sequences. Thus, the realization problem covers the case
of linear and bilinear switched systems where the switching is controlled by an automaton and the automaton
is known in advance. The results of the paper extend those of [14], where a much more restricted realization
problem was studied. The paper offers a new technique, the theory of formal power series, to deal with realization
problem for switched systems.

Topics of further research include realization theory for piecewise-affine systems, switched systems with
switching controlled by an automaton or a timed automaton and non-linear switched systems.
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Appendix A. Proofs for formal power series

Proof of Theorem 1. Part (i)
Notice that for any w ∈ X∗, w = w1 · · ·wk, w1, . . . , wk ∈ X and for any T ∈ Rp ¿ X∗ À

w ◦ T = wk ◦ (wk−1 ◦ (· · · (w1 ◦ T ) · · · )))

Since Bj = Sj , and AσT = σ ◦ T , we get that for all w ∈ X∗

w ◦ Sj = AwSj = AwBj
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But Sj(w) = w ◦ Sj(ε) = C(w ◦ Sj), so we get that Sj(w) = CAwBj , i.e., RΨ is indeed a representation of Ψ.
Part (ii)

The statement
dimWΨ < +∞ =⇒ Ψ is rational

follows from part (i) of the theorem. We will prove that Ψ rational =⇒ dimWΨ < +∞. Assume R =
(X , Aσσ∈X , B, C) is a representation of Ψ. Let dimX = n and let el ∈ X , l = 1, 2, . . . , n be a basis of X .
Define Zl ∈ Kp ¿ X∗ À by Zl(w) = CAwel, w ∈ X∗. For each j ∈ J there exist αj,1, . . . , αj,n ∈ R such that
Bj =

∑n
l=1 αj,lel. We get that

Sj(w) = CAwB =
n∑

l=1

αj,lCAwel =
∑

l=1

αj,lZl(w)

On the other hand

w ◦ Zl(v) = Zl(wv) = CAvAwel =
n∑

k=1

βk,lCAvek =
n∑

k=1

βk,lZk

where X 3 Awel =
∑n
k βk,lek. Thus, w ◦ Sj , Sj ∈ Span{Zi | i = 1, . . . , n} holds, which implies that WΨ ⊆

Span{Zi | i = 1, . . . , n}. That is, dimWΨ < +∞.
Finally, we show that dimWΨ < +∞⇐⇒ rank HΨ < +∞. In fact, dimWΨ = rank HΨ and WΨ is naturally

isomorphic to the span of column vectors of HΨ. Indeed, it easy easy to see that w◦Sj corresponds to (HΨ).,(w,j)
and the rest of the statement follows easily from this observation. ¤
Proof of Lemma 3. Let R = (X , {Aσ}σ∈X , B,C) be a representation of Ψ. Define Rr = (WR, {Arσ}σ∈X , Br, Cr)
by Arσ = Aσ|WR

, Brj = Bj ∈ WR and Cr = C|WR
. Since WR is invariant w.r.t Aσ, the representation Rr is

well defined. It is easy to see that CrArwB
r
j = CAwBj , so Rr is a representation of Ψ. It is easy to see that

WRr = WR and ORr = OR ∩WR. Define Ro = (WR/ORr , {Ãσ}σ∈X , B̃, C̃) by Ãσ[x] = [Arσx], B̃j = [Brj ] and
C̃[x] = Crx, for each x ∈ WR. Here [x] denotes the equivalence class of WR/ORr represented by x ∈ WR.
The representation Ro is well defined. Indeed, if x1 − x2 ∈ ORr , then ∀w ∈ X∗ : CrArw(x1 − x2) = 0, so we
get that ∀w ∈ X∗ : CrArwA

r
σ(x1 − x2) = 0. That is Arσx1 − Arσx2 ∈ ORr . It implies that Ãσ is well defined.

It is straightforward to see that B̃j is well defined. Since x1 − x2 ∈ ORr implies that x1 − x2 ∈ kerCr, we
get that C̃ is well defined too. Moreover C̃ÃwB̃j = CAwBj , so Ro is a representation of Ψ. It is easy to see
that ORo = {0}. That is, Ro is observable. Moreover, Ro is reachable, since Span{ÃwB̃j | w ∈ X∗, j ∈ J} =
Span{[ArwBrj ] | j ∈ J,w ∈ X∗} = WR/ORr . ¤

Proof of Theorem 2. (i) =⇒ (ii)
Assume that WRmin 6= X or ORmin 6= {0}. Then by Lemma 3 there exists Rcan = (Rmin)can representing Ψ
such that

dimRcan = dimWRmin/(ORmin ∩WRmin) < dimRmin

which implies that Rmin is not a minimal representation.
(ii) =⇒ (iii)

LetR = (X , {Az}z∈X , B, C) be a reachable representation of Ψ. Notice that CAwBj = Sj(w) = CminAminw Bminj .
Define T by T (AwBj) = Aminw Bminj . We will show that T is well-defined. Assume that AuBj =

∑l
k=1 αkAwk

Bjk
holds for some u,w1, . . . wl ∈ X∗, j1, . . . , jl ∈ J , α1, . . . , αl ∈ R. Then for each v ∈ X∗ it holds that
CAvAuBj =

∑l
k=1 αkCAvAwk

Bjl which implies CminAminv Aminu Bminj =
∑l
k=1 αkC

minAminv Aminwk
Bminjl

. Thus,
Aminu Bminj −∑l

k=1 αkA
min
wk

Bminjk
∈ ORmin = {0} which means that Aminu Bminj =

∑l
k=1 αkA

min
wk

Bminjk
. That is

T (AuBj) =
∑l
k=1 αkT (Awk

Bjk). Thus, T is indeed well-defined and linear. The mapping T is surjective, since
the following holds.

Xmin = Span{Aminw Bminj | j ∈ J} = Span{T (AwBj) | j ∈ J} = T (X )
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We will show that T defines a representation morphism. Equality TAσ = Aminσ T holds since
T (AσAwBj) = Aminσ Aminw Bminj = Aminσ T (AwBj). Equality Bminj = TBj holds by definition of T . Equality
CminT = C holds because of the fact that CminAminw Bminj = CAwBj = CminT (AwBj).

(iii) =⇒ (i)
Indeed, ifR is a representation of Ψ, then it follows from the proof of Lemma 3 thatRr = (WR, {Az|WR

}z∈X , B,C|WR
)

is a reachable representation of Φ and dimRr ≤ dimR. By part (iii) there exists a surjective map T : Rr → Rmin.
But dimR ≥ dimRr ≥ dimT (WR) = dimRmin, so Rmin is indeed a minimal representation of Ψ.

(iv) ⇐⇒ (i)
The proof of Corollary 1 doesn’t depend on the equivalence to be proved, so we can use it. By Corollary 1 RΨ

is a minimal representation of Ψ. By construction dimRΨ = dimWΨ = rank HΨ. A representation is minimal
whenever it has the same dimension as another minimal representation. Thus we get that Rmin is minimal if
and only if dimRmin = dimRΨ = rank HΨ = dimWΨ. ¤

Proof of Corollary 1. Part (a)
Let Rmin = (Xmin, {Aminσ }σ∈X , Bmin, Cmin) be a minimal representation of Ψ. Let R = (X , {Aσ}σ∈X , B, C) be
another minimal representation of Ψ. Then R is reachable and there exists a surjective representation morphism
T : R→ Rmin. Since dimR ≤ dimRmin and dimRmin ≤ dimR, we get that dimR = dimRmin, which implies
that dimXmin = dimX = dimT (X ), which implies that T is a linear isomorphism, that is, T is a representation
isomorphism.

Part (b)
The equality WΨ = Span{w ◦ Sj | j ∈ J,w ∈ X∗} = Span{AwBj | j ∈ J,w ∈ X∗} implies that WRΨ = WΨ.
If T ∈ WΨ has the property that for all w ∈ X∗ : CAwT = 0 then it means that for all w ∈ X∗ it holds that
C(w ◦ T ) = w ◦ T (ε) = T (w) = 0, i.e T=0. So we get that ORΨ = {0}. By Theorem 2 we get that RΨ is a
minimal representation of Ψ. ¤

Proof of Lemma 2. By Theorem 2 it is enough to show that
dimWΨ¯Θ < +∞. First, notice that for any T1, T2 ∈ Kp ¿ X∗ À it holds that w◦(T1¯T2) = (w◦T1)¯(w◦T2).
Indeed, w ◦ (T1¯T2)l(v) = (T1)l¯ (T2)l(wv) = (T1(wv))l(T2(wv))l = (w ◦T1)l(v)(w ◦T2)l(v) = ((w ◦T1)¯ (w ◦
T2))l(v). Then we get that

WΨ¯Θ = Span{(w ◦ Sj)¯ (w ◦ Tj) | j ∈ J,w ∈ X∗}
⊆ Span{(w ◦ Sj)¯ (v ◦ Tz) | z, j ∈ J,w, v ∈ X∗}

Let wl ◦ Tzl
, l = 1, 2, . . .m, zl ∈ J,wl ∈ X∗be a basis of WΘ. Let vk ◦ Sjk , vk ∈ X∗, k = 1, 2, . . . n, jk ∈ J be a

basis of WΨ. Then it is easy to see that
Span{(w◦Sj)¯(v◦Tz) | z, j ∈ J,w, v ∈ X∗} is spanned by wk◦Sjk¯vl◦Tzl

, l = 1, 2, . . . ,m, k = 1, 2, . . . n, jk, zl ∈
J . That is, dimWΨ¯Θ ≤ dimWΨ · dimWΘ. ¤

Appendix B. Proof of Theorem 3

Proof of Theorem 3. only if part
Assume that Φ has a generalized kernel representation. Then it is clear that for each f ∈ Φ, f is causal, since
for each w = (q1, t1) · · · (qk, tk) ∈ TL we get that fi(w, u) = eTi K

f,Φ
q1···qk(t1, . . . , tk) +

∑k
i=1

∫ ti
0
eTi G

f,Φ
qi,...,qk

(ti −
s, . . . , tk)u(s +

∑i−1
j=1 tj)ds i = 1, . . . , p, that is, fi(w, u) depends only on u|[0,Pk

1 ti]
. It is also clear that the

function yΦ = yΦ
0 defined by yΦ

0 (u,w) =
∑k
i=1

∫ ti
0
Gf,Φqi,...,qk

(ti−s, . . . , tk)u(s+
∑i−1
j=1 tj)ds satisfies (9). Moreover,

it is easy to see that yΦ
j (w, .),j = 1, . . . , p is a continuous linear map from PC([0,

∑k
j=1 tj ],U) to Rp, since it is

the sum of maps of the form φj : u 7→ ∫ ti
0
eTj G

Φ
qi···qk

(ti − s, . . . , tk)ShiftPi−1
j=1 tj

(u)(s)ds j = 1, . . . , p and ShiftT is

a continuous linear map on PC(T,U), and gj(s) = eTj G
Φ
qi···qk

(s, ti+1, . . . , tk) is analytic, and thus the function
g̃j(s) = gj(ti − s)χ({s ∈ [0, ti]}) is in L∞(T ). But then φj(u) =

∫ ti
0
g̃j(s)ShiftPi−1

1 ti
(u)(s)ds and by [19] if
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follows that φj , j = 1, . . . , p is a a continuous linear map from PC([0,
∑k

1 ti],U) to Rp for Thus conditions 2
is satisfied. Let z = (q1, t1) · · · (qh, th) ∈ (Q × T )+, w = (w1, 0) · · · (wk, 0), v = (v1, 0) · · · (vl, 0) ∈ (Q × T )∗.
Let x1 = q1 · · · qh, x2 = w1 · · ·wk and x3 = v1 · · · vl. Assume that wz, vz ∈ TL. Then it is easy to see that
x1 ∈ suffixL. Then f(0, wz) = Kf,Φ

x2x1
(0, . . . , 0, t1, . . . , th) = Kf,Φ

x1
(t1, . . . , th) = Kf,Φ

x3x1
(0, . . . , 0, t1, . . . , th). Notice

that

yΦ
0 (u,wz) =

k∑

i=1

∫ 0

0

GΦ
wi···wkx1

(Ol−i+1, τ)u(s)ds+

+
h∑

i=1

∫ ti

0

GΦ
qi···qh

(ti − s, . . . , th)ui(s)ds =
h∑

i=1

∫ ti

0

GΦ
qi···qh

(ti − s, . . . , th)ui(s)ds =

l∑

i=1

∫ 0

0

GΦ
vi···vlx1

(Ol−i+1, τ)u(s)ds+
h∑

i=1

∫ ti

0

GΦ
qi···qh

(ti − s, . . . , th)ui(s)ds =

= yΦ
0 (u, vz)

where τ = (t1, . . . , th), Oj = (0, 0, . . . , 0) ∈ Nj , j = 1, . . . , l, ui = ShiftPi−1
j=1 ti

(u). We get that f(u,wz) =

f(0, wz) + yΦ
0 (u,wz) = f(0, vz) + yΦ(u, vz) = f(u, vz). That is, condition 3 is satisfied.

Let w = (q1, t1) · · · (qk, tk) ∈ TL. It is also clear that if z = (ql, tl) · · · (qk, tk) and 1 ≤ l ≤ k, then

yΦ
0 (u,w) =

k∑

i=l

∫ ti

0

Gf,Φqi···qk
(ti − s, . . . , tk)ShiftTi−1,l

(ul)(s)ds+

+
l−1∑

i=1

∫ ti

0

Gf,Φqi,...,qk
(ti − s, . . . , tk)ui−1(s)ds = yΦ

0 (ul, (q1, 0) · · · (ql−1, 0)z) +

+
k∑

i=1

∫ ti

0

Gf,Φqi,...,qk
(ti − s, . . . , tk)ShiftTi(v)(s)ds = yΦ

0 (ul, z) + yΦ(v, w)

where Ti =
∑i−1
j=1 tj , ui = ShiftTi(u), i = 1, . . . , k, v = PTl

u, Ti,l =
∑i
j=l tj . That is, yΦ satisfies condition 4.

Let w, v ∈ (Q×T )∗, and assume that w(q, τ1)(q, τ2)v, w(q, τ1 + τ2)v ∈ TL. Assume that w = (w1, t1) · · · (wl, tl)
and v = (vl+1, tl+1) · · · (vk, tk) where vi, wj ∈ Q, i = l + 1, . . . , k, j = 1, . . . , l. Let Ti =

∑i
j=1 ti. Then using the

properties of the functions Kf,Φ
z , Gf,Φz , z ∈ suffixL one gets.

f(u,w(q, τ1)(q, τ2)v) = Kf,Φ
wqqv(t1, . . . , tl, τ1, τ2, . . . , tk)+

l∑

i=1

∫ ti

0

GΦ
wi···wlqqv

(ti − s, . . . , τ1, τ2, . . . , tk)ui(s)ds+

+
∫ τ1

0

GΦ
qqv(τ1 − s, τ2, . . . , tk)ul+1(s)ds+ yΦ

0 (ShiftTl+τ1+τ2(u), v) +

+
∫ τ2

0

GΦ
qv(τ2 − s, . . . , tk)ul+1(s+ τ1)ds = Kf,Φ

wqv(t1, . . . , tl, τ1 + τ2, . . . , tk) +

l∑

i=1

∫ ti

0

GΦ
wi···wlqv

(ti − s, . . . , τ1 + τ2, . . . , tk)ui(s)ds+

+
∫ τ1+τ2

0

GΦ
qv(τ1 + τ2 − s, . . . , tk)ul+1(s)ds+ yΦ

0 (ShiftTl+τ1+τ2(u), v) =

= f(u,w(q, τ1 + τ2)v)
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That is, Φ satisfies condition 5. If |v| > 0, w(q, 0)v, wv ∈ TL and w = (q1, t1) · · · (ql, tl), v = (ql+1, tl+1) · · · (qk, tk),
then we get that

f(u,w(q, 0)v) = Kf,Φ
wv (t1, . . . , tl, . . . , tk)+

l∑

i=1

∫ ti

0

GΦ
wi···wlqv

(ti − s, . . . , tl, 0, . . . , tk)Shifti(u)(s)ds

+
∫ 0

0

GΦ
qv(0− s, . . . , tk)Shiftl(u)(s)ds+ yΦ

0 (ShiftTl+0(u), v) =

= Kf,Φ
wv (t1, . . . , tl, . . . , tk) +

l∑

i=1

∫ ti

0

GΦ
wi···wlv

(ti − s, . . . , tk)Shifti(u)(s)ds+ yΦ
0 (ShiftTl

(u), v) =

f(u,wv)

where Ti =
∑i−1
j=1 tj and Shifti = ShiftTi

, i = 1, . . . , k. That is, Φ satisfies condition 5. Finally, it is easy to

see that Φ satisfies condition 6. Indeed, fq1···qk,u1···uk
(t1, . . . , tk) = Kf,Φ

q1···qk(t1, . . . , tk) +
∑k
i=1(

∫ ti
0
GΦ
qi···qk

(ti −
s, . . . , tk)ds)ui. But by definition Kf,Φ

q1···gk and GΦ
qi···qk

are analytic, and thus
∫ ti
0
GΦ
qi···qk

(ti − s, . . . , tk)ds are
analytic. That is, fq1···qk,u1···uk

has to be analytic too.
if part

Assume that the set of maps Φ satisfies the conditions 1 – 6. First notice that condition 3 implies that each
f ∈ Φ can be uniquely extended to a function in F (PC(T,U)×T (suffixL),Y). From now on we will assume that
Φ ⊆ F (PC(T,U)×T (suffixL),Y). Also notice that all the conditions 1-6 still hold for the extensions of elements
of Φ to F (PC(T,U) × T (suffixL),Y). Let w = (q1, t1) · · · (qk, tk) ∈ T (suffixL). We will construct function
Kf,Φ
ql···qk and Gf,Φql···qk for each 1 ≤ l ≤ k. From condition 6 we get that for each f ∈ Φ it holds that fq1···qk,0···0 :

T k → Y is an analytic function. Let Kf,Φ
ql···qk(tl · · · , tk) = fq1···qk,0···0(0, 0, . . . , 0, tl, tl+1, . . . , tk). Then it is

clear that Kf,Φ
ql···qk , l = 1, . . . , k are analytic. Since f satisfies the condition 4 and 5 and Kf,Φ

ql···qk(tl, . . . , tk =
f((q1, 0) · · · (ql−1, 0)(ql, tl) · · · (qk, tk), 0) we get that Kf,Φ

ql···qk , l = 1, . . . , k satisfies conditions 3 and 4 of Definition
3.

The definition of Gf,Φql···qk is a bit more involved. For each l = 1, . . . , k j = 1, . . . , p define the maps

y(ql,tl)···(qk,tk),j : PC([0, tl],U) 3 u 7→ yΦ
j ((q1, t1) · · · (qk, tk), ũ)

where ũ(s) =
{
u(s− Tl−1) if s ∈ [Tl−1, Tl]

0 otherwise where Ti =
∑i
j=1 tj . From condition 2 it follows that y(ql,tl)···(qk,tk),j

is a continuous linear functional on PC([0, tl],U). Since PC([0, tl],U) is dense in L1([0, tl],U), we can ex-
tend it a unique way to a continuous linear functional on L1([0, tl],U). By abuse of notation we will denote
this functional by y(ql,tl)···(qk,tk),j too. By Theorem 6.16 from [19] we get that there exists an a.s unique
g(ql,tl)···(qk,tk),j ∈ L∞([0, tl],R1×m) such that

y(ql,tl)···(qk,tk),j(u) =
∫ tl

0

g(ql,tl)···(qk,tk),j(s)u(s)ds

Let yw : u 7→ [
yw,1(u) · · · yw,p(u)

]T ∈ Rp and define the map gw : s 7→ [
(gw,1(s))T · · · (qw,p(s))T

]T ∈
Rp×m. Then

y(ql,tl)···(qk,tk)(u) =
∫ tl

0

g(ql,tl)···(qk,tk)(s)u(s)ds
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Note that if Φ satisfies conditions 1 – 6, then yΦ satisfies conditions 3 - 6. We will use this fact to prove certain
properties of g(q1,t1)···(qk,tk).

For any w, v ∈ (Q × T )∗,|v| > 0 one gets that if v(q, τ1)(q, τ2)w, v(q, τ1 + τ2)w ∈ T (suffixL), then it holds
that yv(q,τ1)(q,τ2)w(u) = yΦ(ũ, v(q, τ1)(q, τ2)w)
= yΦ(ũ, v(q, τ1 + τ2)w) = yv(q,τ1+τ2)w(u). This implies that

gv(q,τ1)(q,τ2)w = gv(q,τ1+τ2)w a.s. (19)

Similarly, if v(q, 0)w, vw ∈ T (suffixL), |w| > 0, |v| > 0, then yv(q,0)w(u) = yΦ(ũ, v(q, 0)w) = yΦ(ũ, vw) = yvw(u)
which implies

gv(q,0)w = gvw a.s (20)

Moreover, if (q, t1)(q, t2)w ∈ T (suffixL) and (q, t1 + t2)w ∈ T (suffixL), then for each u ∈ PC([0, t2],U) it holds
that

y(q,t1)(q,t2)w(u) = yΦ(ũ, (q, t1)(q, t2)w) = yΦ(ũ, (q, t1 + t2)w) =

y(q,t1+t2)w(u#t10) =
∫ t1

0

g(q,t1+t2)w(s)u(s)ds

By uniqueness of g(q,t1)(q,t2)w we get that

g(q,t1)(q,t2)w(s) = g(q,t1+t2)w(s) a.s. on [0, t1] (21)

In addition, from condition 4 one gets for each (q, t + s)w ∈ T (suffixL) that for each u ∈ PC([0, s],U), v ∈
PC([0, t+ s],U), v = 0#tu,

y(q,t+s)w(v) = yΦ(ṽ, (q, t+ s)w) = yΦ(ṽ, (q, t)(q, s)w) =

yΦ(Shifttṽ, (q, s)w) + yΦ(Ptṽ, (q, t)(q, s)w)

But Ptṽ = 0 so yΦ(Ptṽ, (q, t)(q, s)w) = 0, and in addition Shifttṽ = ũ, therefore we get y(q,t+s)w(v) =
yΦ(Shiftt(ṽ), (q, s)w) = y(q,s)w(u). That is,

y(q,s)w(u) =
∫ t+s

0

g(q,t+s)w(z)v(z)dz =
∫ s

0

g(q,t+s)w(z + t)u(z)dz

From uniqueness of g(q,s)w we get
g(q,s)w(τ) = g(q,s+t)(τ + t) a.s (22)

From the equalities above we also get that we are free to change each of the maps gs, s ∈ T (suffixL) on some set
of measure zero, so in fact we can choose the maps gs, s ∈ T (suffixL) is such a way that the formulas (19),(20),
(21) and (22) holds not only almost surely, but exactly on the whole domain. If these equalities hold exactly,
then g(q,t)w(s) = g(q,t−s)(0). Let ql · · · qk ∈ suffixL. Define Gql···qk

: T k → Rp×m by

Gql···qk
(tl, . . . , tk) = g(ql,tl)···(qk,tk)(0)

Formula (22) implies that Gql···qk
(tl − s, · · · , tk) = g(ql,tl−s)···(qk,tk)(0) =

g(ql,tl−s+s)···(qk,tk)(s) = g(ql,tl)···(qk,tk)(s). We immediately get that

y(ql,tl)···(qk,tk)(u) =
∫ tl

0

Gql···qk
(tl − s, tl+1, . . . , tk)u(s)ds
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Now, notice that for each (q1, t1) · · · (qk, tk) ∈ T (suffixL), by using condition 4 repeatedly, one can derive

yΦ(u, (q1, t1) · · · (qk, tk)) =
k∑

i=1

yΦ(ui, (qi, ti) · · · (qk, tk))

where ui = Pti(ShiftPi−1
j=1 tj

u). That is, ui(s) =
{
u(s+

∑i−1
j=1 tj) if s ∈ [0, ti]

0 otherwise
That is, ui = ṽi, vi =

ui|[0,ti] = (ShiftPi−1
j=1 tj

u)|[0,ti]. Thus we get that for each w = (q1, t1) · · · (qk, tk) ∈ T (suffixL) and u ∈ PC(T,U)

yΦ(u,w) =
k∑

i=1

y(qi,ti)···(qk,tk)(vi) =
k∑

i=1

∫ ti

0

GΦ
qi···qk

(ti − s, · · · tk)ui(s)ds

and

f(u, , w) = Kf,Φ
q1···qk

(t1, . . . , tk) +
k∑

i=1

∫ ti

0

GΦ
qi···qk

(ti − s, · · · tk)ui(s)ds (23)

where ui = ShiftPi−1
j=1 tj

(u). We already showed that Kf,Φ
w w ∈ suffixL satisfies the conditions 1, 2 and 3 of

Definition 3. Equalities (19),(20), (21) and (22) imply that GΦ
w satisfies the conditions 2 and 3 too. Equation

(23) implies that part 4 of Definition 3 is satisfied too. It is left to show that GΦ
w can be chosen to be analytic

for each f ∈ Φ and w ∈ suffixL. Assume that w = q1 · · · qk. Then condition 6 implies that the function
hu1···uk

= fq1···qk,u1···uk
− fq1···qk,0···0 is analytic for each u1, · · ·uk ∈ PC(T,U) constant functions. But

hu1···uk
(t1, . . . , tk) = f(u,w)− f(0, w) = yΦ(u,w)

where u(t) = ui if t ∈ (Ti−1, Ti], i = 1, . . . , k, Ti =
∑i
j=1 tj . But then we get that

hu1···uk
(t1, . . . , tk) =

k∑

i=1

(
∫ ti

0

GΦ
qi···qk

(ti − s, ti+1, . . . , tk)ds)ui

For each i = 1 . . . , k taking ul = 0, j 6= l and uj = ez = (0, 0, . . . , 1, 0, . . . , 0)T we get that hz,qj ···qk
(tj , . . . , tk) :=∫ tj

0
GΦ
qj ···qk

(tj − s, tj+1, . . . , tk)ezds is an analytic map. But hz,qj ···qk
(0, tj+1, . . . , tk) = 0, thus

hz,qj ···qk
(tj , . . . , tk) =

∫ tj

0

d

ds
hz,qj ···qk

(tj − s, . . . , tk)ds

Let w(s) = Gqj ···qk
(s, tj+1, . . . , tk)ez − d

dshz,qj ···qk
(s, tj+1, . . . , tk). That is, for each t ∈ T we get that

∫ t
0
w(t −

s)ds = 0, or equivalently
∫ t
0
w(s)ds = 0. It implies that

∫
E
w(s)ds = 0 for each Borel-set E ⊆ [0, N ], N ∈ N.

Then we get that w=0 a.s., that is, Gqj ···qk
(t, tj+1, . . . tk)ez = d

dtj
hz,qj ···qk

(s, tj+1, . . . , tk) for almost all s. For
each w ∈ suffixL let hw = (h1,w, . . . , hm,w). It is easy to see that hw are analytic and GΦ

w(t1, . . . , t|w|) =
hw(t1, . . . , t|w|) a.s. in t1. That is, the set

Aw(t2, . . . , t|w|) = {t ∈ T | GΦ
w(t, t2, . . . , t|w|) 6= hw(t, t2, . . . , t|w|)}

is of measure zero. Thus, for any a ∈ Aw(t2, . . . , t|w|) there exists xn /∈ Aw(t2, . . . , t|w|), limxn = a. Since hw is
continuous, it implies that hw satisfies the conditions 2, 3, 4 of Definition 3, if GΦ

w does. That is, we can take
GΦ
w := hw and the resulting functions will satisfy the requirements for generalized kernel representation. We
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define the functions GΦ
w and Kf,Φ

v only for w ∈ suffixL, v ∈ L. But it is easy to see that {GΦ
w,K

f,Φ
w | f ∈ Φ, w ∈

L̃} is uniquely determined by {GΦ
w,K

f,Φ
v | f ∈ Φ, w ∈ suffixL, v ∈ L}.

It is left to show that generalized kernel representations are unique. Assume that {Kf,Φ
w , GΦ

w} and {K̃f,Φ
w , G̃Φ

w}
are two different generalize kernel representations of Φ. By the remark above it is enough to show that Kf,Φ

w =
K̃f,Φ
w for each w ∈ L, f ∈ Φ and GΦ

w = G̃Φ
w w ∈ suffixL. There are two ways to proceed. One can use formula

4 to conclude that ∀w ∈ L,α ∈ N|w| : DαKf,Φ
w = DαK̃f,Φ

w = Dαf(0, w, .), and ∀w ∈ suffixL,α ∈ N|w|, j =
1, . . . ,m, v ∈ Q∗, vw ∈ L : DαGΦ

wej = DαG̃Φ
wej = D(O|v|,α+)yf,Φ0 (ej , vw, .), where Ol = (0, 0, . . . , 0) ∈ Nl, l ≥ 0,

α+ = (α1 + 1, α2, . . . , αk) for each α ∈ Nk, k ≥ 0. That is, we get that the high-order derivatives at zero
of Kf,Φ

w and Gf,Φw equal the respective high-order derivatives at zero of K̃f,Φ
w and G̃Φ

w respectively. Since
Kf,Φ
w , GΦ

w, K̃
f,Φ
w , G̃Φ

w are analytic, we get the required equalities.
Alternatively, we could use the proof of existence of a generalized kernel representation. Notice that

f(0, (q1, t1) · · · (qk, tk)) = Kf,Φ
q1···qk(t1, . . . , tk) = K̃f,Φ

q1···qk(t1, . . . , tk) for all
(q1, t1) . . . (qk, tk) ∈ T (suffixL) and f ∈ Φ. On the other hand, from the proof above we can easily deduce that
for each w ∈ suffixL. GΦ

w = G̃Φ
w almost everywhere, that is, rw = GΦ

w − G̃Φ
w = 0 a.s. But rw is analytic, and if

rw 6= 0, then there exists an open set V such that ∀v ∈ V : rw(v) 6= 0. But no non-empty open set is of measure
zero, so we get that rw is the constant zero function. But then GΦ

w = G̃Φ
w. ¤
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