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ABSTRACT

The paper deals with the realization theory of linear and bilinear switched systems. Necessary
and sufficient conditions are formulated for a family of input-output maps to be realizable by a
(bi)linear switched system. Characterization of minimal realizations is presented. The paper
treats two types of (bi)linear switched systems. The first one is when all switching sequences
are allowed. The second one is when only a subset of switching sequences is admissible, but
within this restricted set the switching times are arbitrary. The paper uses the theory of formal
power series to derive the results on realization theory.
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REALIZATION THEORY FOR LINEAR AND BILINEAR SWITCHED SYSTEMS:
FORMAL POWER SERIES APPROACH

MIHALY PETRECZKY !

Abstract. The paper deals with the realization theory of linear and bilinear switched systems. Nec-
essary and sufficient conditions are formulated for a family of input-output maps to be realizable by
a (bi)linear switched system. Characterization of minimal realizations is presented. The paper treats
two types of (bi)linear switched systems. The first one is when all switching sequences are allowed.
The second one is when only a subset of switching sequences is admissible, but within this restricted
set the switching times are arbitrary. The paper uses the theory of formal power series to derive the
results on realization theory.

1991 Mathematics Subject Classification. 93B15 93B20 93B25 93C99 .

1. INTRODUCTION

Realization theory is one of central topics of systems theory. Apart from its theoretical relevance, realization
theory has the potential of being applied for developing control and identification methods, as development of
linear systems theory has demonstrated.

Switched systems are one of the best studied subclasses of hybrid systems. A vast literature is available on
various issues concerning switched systems, for a comprehensive survey see [12]. The current paper develops
realization theory for the following two subclasses of switched systems: linear switched systems and bilinear
switched systems.

More specifically, the paper tries to solve the following problems.

(1) Reduction to a minimal realization
Consider a linear (bilinear) switched system X, and a subset of its input-output maps ®. Find a minimal
linear (bilinear) switched system which realizes ®.

(2) Ezistence of a realization with arbitrary switching
Find necessary and sufficient condition for the existence of a linear (bilinear) switched system realizing
a given set of input-output maps.

(3) Eumistence of a realization with constrained switching
Assume that a set of admissible switching sequences is defined. Assume that the switching times of the

Keywords and phrases: Hybrid systems switched linear systems, switched bilinear systems, realization theory, formal power
series, minimal realization
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admissible switching sequences are arbitrary. Consider a set of input-output maps ® defined only for
the admissible sequences. Find sufficient and necessary conditions for the existence of a linear (bilinear)
switched system realizing ®. Give a characterization of the minimal realizations of ®.

The motivation of the Problem 3 is the following. Assume that the switching is controlled by a finite automaton
and the discrete modes are the states of this automaton. Assume that the automaton is driven by external
events, which can trigger a discrete-state transition at any time. We impose no restriction as to when an
external event takes place. Then the traces of this automaton combined with the switching times ( which are
arbitrary ) give us the admissible switching sequences.

If we can solve Problem 3 for such admissible switching sequences that the set of admissible sequences of
discrete modes is a regular language, then we can solve the following problem. Construct a realization of a set
of input-output maps by a linear (bilinear) switched system, such that switchings of that system are controlled
by an automaton which is given in advance. Notice that the set of traces of an automaton is always a regular
language.

The following results are proved in the paper.

e A linear (bilinear) switched system is a minimal realization of a set of input-output maps if and only
if it is observable and semi-reachable from the set of states which induce the input-output maps of the
given set.

e Minimal linear (bilinear) switched systems which realize a given set of input-output maps are unique
up to similarity.

e Each linear (bilinear) switched system ¥ can be transformed to a minimal realization of any set of
input-output maps which are realized by X.

e A set of input/output maps is realizable by a linear (bilinear) switched system if and only if it has
a generalized kernel representation ( generalized Fliess-series expansion ) and the rank of its Hankel-
matrix is finite. There is a procedure to construct the realization from the columns of the Hankel-matrix,
and this procedure yields a minimal realization.

e Consider a set of input-output maps ® defined on some subset of switching sequences. Assume that the
switching sequences of this subset have arbitrary switching times and that their discrete mode parts form
a regular language L. Then ® has a realization by a linear (bilinear) switched system if and only if the
® has a generalized kernel representation with constraint L ( has a generalized Fliess-series expansion)
and its Hankel-matrix is of finite rank. Again, there exists a procedure to construct a realization from
the columns of the Hankel-matrix. The procedure yields an observable and semi-reachable realization
of ®. But this realization is not a realization with the smallest state-space dimension possible.

There are some earlier work on the realization theory of switched systems, see [14,15,17]. For realization
theory for other classes of hybrid systems see [16,18].

The paper [14] developed realization theory for linear switched systems using elementary techniques. The
problem addressed in this paper, even for linear switched systems, is more general than the one dealt with
in [14]. There, realization of a single input-output map by a linear switched system was considered. Moreover
the input-output map was supposed to be realized from the zero initial state and the input-output map was
assumed to be defined on all the switching sequences. If only one input-output map is considered, which is
defined for all switching sequences and zero for constant zero input, the results of the paper imply those of [14].
If the set of discrete modes contains only one element, then the results of paper [14] imply the classical ones for
linear systems, see [2]

The paper [15] is very similar to the current paper. It approaches realization theory using formal power
series, in the same way as it is done in the current paper. However, it develops realization theory only for linear
switched systems and does not provide any of the proofs.

The paper [17] sketches realization theory for bilinear switched systems without providing the proofs. The
approach taken in [17] and the presented results are very similar to those of the current paper.

The papers [15,17] can be viewed as a short versions of parts of the current paper. The current paper contains
all the results of [15,17] and also provides all the proofs.



The brief overview of the results suggests that there is a remarkable analogy between the realization theories
of linear and bilinear switched systems. In fact, this analogy is by no means a coincidence. Both the realization
problem for linear and the realization problem for bilinear switched systems are equivalent to finding a (possibly
minimal) representation for a set of formal power series. That is, realization theory of both linear and bilinear
switched systems can be reformulated in terms of the theory of rational formal power series. This enables us
to give a very concise and simple treatment of the realization problem for linear and bilinear switched systems.
In fact, if one views switched systems as nonlinear systems and one is familiar with the realization theory of
nonlinear systems, then the results of the paper should not be too surprising. Exactly this similarity between
realization theory of linear and bilinear switched systems in terms of results and mathematical tools is the
motivation to present the realization theory of linear and bilinear switched systems in one paper.

The approach to the realization theory taken in this paper was inspired by works of M.Fliess, B. Jakubczyk
and H. Sussman [4,5,10,25]. The main tool used in the paper is the theory of rational formal power series.
Rational formal power series were used in systems theory earlier. Realization theory for bilinear systems is
one of the major applications of rational formal power series, see [8]. There are a number of definitions for
representation of rational formal power series, see [1,20,21]. All the cited works deal with representations of
a single formal power series. In this paper, we will look at representations of families of formal power series
instead. This requires a slight and straightforward extension of the existing theory.

We will not discuss the algorithmic aspects of realization theory or partial realization theory in this paper.
There are some results in this direction, see [17].

The outline of the paper is the following. The first section, Section 2, sets up some notation which will be
used throughout the paper. Section 3 describes some properties and concepts related to switched systems which
are used in the rest of the paper. Section 4 contains the necessary results on formal power series. The material
of Section 4 is an extension of the classical theory of rational formal power series ( [1,11]). The proofs of the
statements of Section 4 are given in Appendix A. In Section 5 realization theory of linear switched systems is
presented. Section 6 presents realization theory of bilinear systems.

2. PRELIMINARIES

For suitable sets S, B, S C R denote by PC(S, B) the class of piecewise-continuous maps from S to B. That
is, f € PC(S,B) if f has finitely many points of discontinuity on each finite interval and at each point of
discontinuity the right- and left-hand side limits exist and they are finite. For a set ¥ denote by ¥X* the set of
finite strings of elements of ¥. For w = ajas---a; € ¥* the length of w is denoted by |w|, i.e. |w| = k. The
empty sequence is denoted by €. The length of € is zero: |¢] = 0. Let X7 = X* \ {€}. The concatenation of two
strings v = vy -+ - Vg, W = Wy - - - Wy, € L* is the string vw = vy - Vw1 - Wy If w € QT then w” denotes the
word ww - - -w. The word w® is just the empty word e. Denote by T the set [0, +00) C R. Denote by N the set

k—times

of natural number including 0. Denote by F'(A, B) the set of all functions from the set A to the set B. By abuse
of notation we will denote any constant function f : T — A by its value. That is, if f(t) =a € Aforallt €T,
then f will be denoted by a. For any function f the range of f will be denoted by Imf. If A, B are two sets,
then the set (A x B)* will be identified with the set {(u,w) € A* x B* | |u| = |w|}. For any two sets J, X the
surjective function A : J — X is called an indezed subset of X or simply and indexed set. It will be denoted by
A={a; € X|je J}. Theset J will be called the index set of A. The indexed subset A ={a; € X |j € J}
is said to be a subset of the indexed subset B = {b; € X | i € I'} if there exists g : J — I such that a; = by(j.
The fact that A is a subset of B will be denoted by A C B.

Let f: Ax (B xC)t — D. Then for each a € A, w € Bt we define the function f(a,w,.) : C'*l — D by
fla,w,.)(v) = f(a, (w,v)),v € C"I. By abuse of notation we denote f(a,w,.)(v) by f(a,w,v).

Let ¢ : RF — RP and a = (a1, 9, . .., ax) € NF. We define D¢ as the partial derivative

o der 4o

Da = ...
T T

¢(t17 t27 B 7tk)|t1:t2:'“:tk~:0'
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Let f,g € PC(T,A) for some suitable set A. Define for any 7 € T the concatenation f#,g € PC(T,A) of f

and g by
[ r@) ift<T
Fateg(t) = { gt) ift>r
If f:T — A, then for each 7 € T define Shift (f) : T — A by Shift.(f)(t) = f(t+ 7). If X,), Z are vector
spaces over R, and F} : X — ), F5 : Y — Z are linear maps, then F; F5 denotes the composition F; o Fy of F
and Fy. If © € X, then Fyx denote the value Fy(z) of Fy at .

3. SWITCHED SYSTEMS

This section contains the definition and elementary properties of switched systems.

Definition 1. A switched ( control ) system is a tuple

L=(XUY.Q{flaeQuel} {h, |qeQ})

where
o X =R" is the state-space
e YV =RP is the output-space
e U =R™ is the input-space
e () is the finite set of discrete modes
o fq: X xU — X, is a function smooth in both variables x and u, and globally Lipschitz in x
® hy: X — )Y is smooth map for each q € Q

Elements of the set (Q x T)* are called switching sequences. The inputs of the switched system X are
functions from PC(T,U) and sequences from (@ x T)*. That is, the switching sequences are part of the input,
they are specified externally and we allow any switching sequence to occur. In fact, the switching sequences
can be considered as discrete inputs.

In the hybrid systems literature the discrete modes are usually viewed as part of the state. One can think
of switched systems as hybrid systems without guards, such that the discrete state transitions are triggered by
discrete inputs and the discrete state transition rules are trivial. More precisely, there is one-to-one correspon-
dence between discrete states and discrete inputs, and a discrete input changes the discrete state to the discrete
state which corresponds to this particular discrete input. That is, the new discrete state of the system depends
only on the discrete input, but not on the previous discrete state.

Let u € PC(T,U) and w = (q1,t2)(g2,t2) -+~ (g, t1) € (Q x T)*. The inputs u and w steer the system 2
from state xg to the state zx(zo,u, w) given by

Ty (l‘o, u, w) = F‘(qk7 Shiftzllcfl t (u), tk) o F(qkfl, Shiftzllcfz t (U), t}c,:[) O vvnnn o F‘(q17 u, tl)($0>

where F(q,u,t) : X — X and for each z € X the function F(q,u,t,z) : t — F(q,u,t)(x) is the solution of the
differential equation
d
%F(Qauatx) = fq(F((],U,f,J?),U(t)), F(Qauyovx) =T
The empty sequence € € (Q x T)* leaves the state intact: xx(xo,u,€) = xq.
The reachable set of the system X from a set of initial states X is defined by

Reach(%, X)) = {zs(zo,u,w) € X |ue PC(T,U),we (Q xT),zp € Xo}

¥ is said to be reachable from Xy if Reach(X, Xy) = X holds. ¥ is semi-reachable from Xj if X' is the smallest
vector space containing Reach(X, Xp). In other words, ¥ is semi-reachablefrom A} if

X = Span{z € X | x € Reach(3, Xp)}



Define the function yx : X x PC(T,U) x (Q x T)* — Y by

Vo € X,ue€ PC(T,U),w = (q1,t1)(qo,t2) - - - (qu, tr) € (Q x T) ™ :

yg(l‘, u7w) = th (acg(x, uvw))

By abuse of notation, for each z € X define the input-output map ys(z,.,.) : PC(T,U) x (Q x T)* — Y by

ys(z, ., ) (u,w) = ys(z, u, w)

The map ys(z, .,.) is called the input-output map of the system ¥ induced by the state x. By abuse of notation
we will use ys(z, u, w) for ys(z,.,.)(u, w).
Two states x1 # x9 € X of the switched system X are indistinguishable if

VYw € (Q x T)",u e PC(T,U) : ys (21, v, w) = yn(z2, v, w)

Y is called observable if it has no pair of indistinguishable states.
A set @ C F(PC(T,U) x (Q x T)*,Y) of input-output maps is said to be realized by a switched system
Y=(XU,Y,Q,{f,|a€QuelU},{h,|qe€Q}) if there exists y : & — X such that

Vfe®: ys(u(f),.,.)=1f

or, in other words,
Ve due PC(T,U),we (QxT): ys(u(f),u,w) = f(u,w)

By abuse of terminology, both ¥ and (X, 1) will be called a realization of ®. One can think of the map u as a
way to determine the corresponding initial condition for each element of ®. That is, X realizes ® if and only if
for each f € ® there exists a state € X’ such that ys(x,.,.) = f. Denote by dim ¥ := dim X the dimension of
the state space of the switched system X.

A switched system X is a minimal realization of ® if ¥ is a realization of ® and for each switched system X
such that Y7 is a realization of ® it holds that

dim Y < dim X,
For any L C QT define the subset of admissible switching sequences TL C (Q x T)™ by
TL:={(w,7) € (Q@xT)" |we L}

That is, T'L is the set of all those switching sequences, for which the sequence of discrete modes belongs to L
and the sequence of times is arbitrary. Notice that if L = Q* then TL = (Q x T)*. Let ® C F(PC(T,U) x
TL,Y) be a set of input-output maps defined only on switching sequences belonging to TL. The system
U =(XUV,QAf, | g€ QuelU},{h,|q € Q}) realizes & with constraint L if there exists y: ® — X' such
that

Vfe @ ys(u(f), . )peauyxre = f
or, in other words,
Vw e ®,u € PC(T,U),w € TL: ys(u(f),u,w)= f(u,w)
We will call both (3, 1) and 3 a realization of ®. Notice that if L = Q% then X realizes ® with constraint L if

and only if ¥ realizes ®. If ¥ is a switched system, then we say that the realization (3, i) is semi-reachable , if
> is semi-reachable from Imy.



4. FORMAL POWER SERIES

The section presents results on formal power series. The material of this section is based on the classical
theory of formal power series, see [1,11]. However, a number of concepts and results are extensions of the
standard ones. In particular, the definition of the rationality is more general than that one occurring in the
literature. Consequently, the theorems characterizing minimality are extensions of the well-known results. These
generalizations and extensions are rather straightforward and can be easily derived in a manner similar to the
classical case. In order to keep the exposition self-contained and complete, the proofs of those theorems which
are not part of the classical theory, will be given in Appendix A.

Let X be a finite alphabet. A formal power series S with coefficients in RP is a map

S X* - RP

We denote by R? < X™* > the set of all formal power series with coefficients in RP. Let S € RP <« X* >. For
each i = 1,...,p define the formal power series 5; € R < X* > by the following equation

Siw) = (S(w))i = ef S(w)

where e, is the ith unit vector of RP. Let J be an arbitrary (possibly infinite) set. An indexed set of formal
power series ¥ = {S; € RP < X* >>| j € J} with the index set J is called rational if there exists a vector space
X over R, dim X < 400 and linear maps

C:X—->RP, A,eX—-X ,0€eX
and an indexed set with the index set J
B={BjeX|jeJ}
such that for all j € J, 01,...,0, € X, k>0
Si(oro2---05) = CAp As,_, -+ Aoy By

The 4-tuple R = (X, {A,}.ex, B, C) is called a representation of S. The number dim X is called the dimension
of the representation R and it is denoted by dim R. We will refer to X' as the state-space of the representation
R. A formal power series S € RP <« X* > is called rational if the indexed set {S; | j € {0}}, Sp = S, with
the singleton index {(}, is rational. That is, S is rational is the above sense if and only if it is rational in the
classical sense.

In fact, a representation can be viewed as a Moore-automaton with the state-space X', with input space X*,
with output space RP. The state transition function § : X x X — X is given by the linear map é(z,0) = A, .
The output map p : X — RP is given by p(z) := Cz. The set of initial conditions is given by {B; | j € J}. The
problem of finding a representation for a set of formal power series ¥ is equivalent to finding a realization of ¥
by a Moore-automaton of the form described above. That is, finding a representation is equivalent to finding a
realization by a special class of Moore-automaton. We will not pursue the analogy with automaton theory in
this paper. Instead, to keep the presentation self-contained, we will built the theory directly.

A representation R,,;, of ¥ is called minimal if for each representation R of ¥

dim R,,;n < dim R
In the sequel the following short-hand notation will be used. Let A, : X — X, 0 € X be linear maps. Then

Ay ::A’kawk—l"'Awl yW=wiwy - w € X wy, .. wp € X



7

Let R = (X,{A.}.ex, B,C), R = (‘f, {sz}zeXyga 5) be two representations. A linear map T : X — X is
called a representation morphism from R to R and is denoted by T : R — R if the following equalities hold

TA,=A.T\Nze X, TB;=B;,VjeJ C=CT

Using the automaton-theoretic interpretation discussed one can think of representation morphisms as Moore-
automaton morphisms which are linear morphisms between the state-spaces. The representation morphism 7'
is called surjective, injective, isomorphism if 7" is a surjective, injective or isomorphism respectively if viewed as
a linear vector space morphism.

Let L C X*. If L is a regular language then, by the classical result [1], the power series L € R < X* >,
= 1 ifwel
L(w) = 0 otherwise
the Hadamard product S ©®T € RP <« X* > by

is a rational power series. Consider two power series S,T € RP < X* >. Define

(SOT)i(w) = Si(w)Ti(w),, i=1,...,p
Let w e X* and S € RP <« X* >>. Define wo S € RP <« X* > — the left shift of S by w by
Yo e X* :wo S(v) =S (wv)

The following statements are generalizations of the results on rational power series from [1,21]. The proofs are
given in the appendix. Let ¥ = {S; € R?P <« X* >>| j € J}. be an indexed set of formal power series with the
index set J. Define the set Wy by

Wy =Span{wo S; e RP <« X* >|je Jwe X"}

Define the Hankel-matrix Hy of ¥ as the infinite matrix Hy € RETXDX(X™>) 1 — £19°  »} and
(Hw) i) (w.5) = (S3)a(vu).
Theorem 1. Let U = {S; e R? < X* >|j e J}.

(i) Assume that dim Wy < 400 holds. Then a representation Ry of U is given by

R\Il = (W\I/a {AO'}O'EX7 Bv C)

— A, Wy =Wy VT €eWy: A,(T)=00T,0 € X.
-~ B={B; e Wy |jeJ}, B =_8; for each j € J.
- C: Wy =R, C(T)=T\(e).

(ii) The following equivalences hold

VU is rational <— dim Wy < 400 <= rank Hg < +o0

Moreover, dim Wy = rank Hyg holds.

The proof of the theorem is presented in the appendix. The representation Ry is called free. Using the
theorem above we can easily show that

Lemma 1. The indexed set formal power series ¥ = {S; € RP < X* >| j € J} is rational if and only if the
indexed set of formal power series & = {Sq; jy € RP | (i,7) € {1,...,p} x J} is rational, where S¢; jy = (5;)i,
jedi=1,...,p.

Proof. Indeed, define pr; : RP — R by pri(z1,...,Ti—1,Ti, Tit1,...,%p) = x; for i = 1,...,p. It is easy to see

that pr; is linear and S; ; = pr; 0.S;. Define the linear maps P; : Wy 3 T +— pr;oT, i =1,...,p. Notice that
leker P, = {0}. It is easy to see that Wg = Zle P;(Wyg). That is, dim Wy < 400 = dim Wz < +o0.
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Conversely, assume that dim W= < 4o00. Define P: Wy — @Y_, Z;, Z, =Wz, P(T) =" 2z, Vi=1,...,p:
z; = Pi(T) € Z;. Then ker P = (!_, ker P; = {0}, thus dim Wy < p - dim Wz < +oo. O

Theorem 1 implies the following lemma.

Lemma 2. Let ¥V = {S; e RR < X* >|j€ J} and © ={T; € R?P « X* >| j € J} be rational indezed sets.
Then ¥ © O := {Sj OT, eRR<«< X" >|j€ J} is a rational set. Moreover, rank Hygge < rank Hy -rank He.

The proof of the lemma can be found in Appendix A. The classical version of the lemma above can be found
in [1].

Let R = (X, {As}sex, B,C) be a representation of ¥ = {S; € R? « X* >| j € J}. Define the subspaces
Wgr and Og of X by

Wgr = Span{A,B;|we X", jeJ}
Op = [ kerCA,

weX*

The sets above have the following automaton-theoretic interpretation. The subspace W is the span of states
reachable by a w € X* from an initial state B;. Two states x1,x2 are indistinguishable, i.e.

CApz1 = CAyzo for all w e X*

if and only if 1 — 29 € Og. That is, the automaton corresponding to R is reduced if and only if Or = {0}.
We will say that the representation R is reachable if dim W = dim R, and we will say that R is observable if
Or = {0}.

Lemma 3. Let R = (X, {As}oex,B,C) be a representation of V. Then there exists a representation
Rcan = (Xcana {A(cyan}ana Bcan7 C«can)

of ¥ such that Reqn is reachable and observable, and Xeqn is isomorphic to the quotient Wr/(Or N Wg).
The proof of the lemma is presented in Appendix A.

Theorem 2 (Minimal representation). Let ¥ = {S; € R? <« X* >|j € J}. The following are equivalent.
(i) Rpin = (X, {A™"} e x, B™™ C™™) is a minimal representation of W.
(ii) Rpin s reachable and observable.
(iii) If R is a reachable representation of U then there exists a surjective representation morphism T : R —
Rmin'
(iv) rank Hyg = dim Wy = dim Ryin
Corollary 1. (a) All minimal representations of U are isomorphic.
(b) The free representation from Theorem 1 is a minimal representation.

The proof of the theorem and its corollary can be found in Appendix A.
Lemma 4. Let U = {S; € R? < X* >|j e J} and ¥ = {T; e RP < X* > j € J'} be two indexed sets

of formal power series with index sets J and J respectively. Assume that there exists a map f : J = J, such
that V5 € J S’f(j/) =Ty . Then, if ¥ is rational, then V' is also rational and rank Hy < rank Hy. If f is
surjective, then rank Hys = rank Hyg.

Proof. Indeed, let R = (X,{Az}zex,B,C) be a minimal representation of W. Then it is easy to see that
R = (X, {Am}zGX,B/,C) is a representation of \I//, where B;., = Bf(j/),j/ € J'. That is, if ¥ is rational, then
such that dim R, <

can can

’

¥’ is rational too. By Lemma 3 there exists a reachable and observable representation R
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dim R = dim R. But R;lm is a minimal representation of v Thus, rank Hy/ = dim Reqp, < dim R = rank Hy.
The representation R is reachable and observable. It is also easy to see that Or = Op = {0}, thus R is
observable too. It is also easy to see that if f is surjective, then Wy = Wg = &, that is, R’ is reachable. Thus,
if f is surjective, then R’ is a minimal representation of ¥ and rank Hy = dim R = dim R = rank Hyr. 0

Lemma 5. Let Ji,...,J, be disjoint sets. Let ¥; = {S; e RP < Q* >|j € Ji},i=1,...,n be indexed sets of
formal power series. Let J = Jy U JoU---UJ, and let ¥ ={S; e R? « Q* >| j € J}. Then VU is rational if
and only if each V;, i = 1,...n is rational.

Proof. 1t is easy to see that Wy = Span{S; |j € 1 U---UJ,} = > Span{S; | j € J;} = Wy, + -+ Wy,,.
For each ¢ = 1,...,n, Wy, is a subspace of Wy. If U is rational, then by Theorem 1 dim Wy < +o0 and

thus dim Wy, < 400 for all i = 1,...,n. That is, each ¥;, ¢ = 1,...n is rational. Conversely, if each ¥,,
i = 1,...,n is rational, then by Theorem 1, for each i = 1,...,n, dim Wy, < +o0 holds. Thus, dimWg =
dim(Wg, + -+ + Wy, ) < o0, that is, ¥ is rational O

Corollary 2. Let ¥ = {S; € R? < X* >| j € J} be an indexed set of formal power series with the index set
J. Assume that J is finite. Then ¥ is rational if and only if S; € RP < X* > is rational for each j € J

PTOOf. Let J = {jl,,jn} Let ¥, = {SJ | j € {]z}}7 i=1,...,n. Then ¥ = {57 | Jj € {]1} UU{]TL}}
Thus, by Lemma 5 ¥ is rational if and only if each ¥;, i = 1,...,n is rational. Let f; : {j;} 2 ji — 0 € {0},
i=1,...,n. BEach f; is a bijection. For each i =1,...,nlet Q; = {T; | j € {0}}, Ty = Sj,. Applying Lemma 4
to U, Q;, f; and f[l we get that @); is rational if and only if W; is rational. Thus, ¥, is rational <= §j, is
rational, for each 7 =1,...,n. Therefore, ¥ is rational <= for each j € J, S is rational. O

In the classical literature one often finds a procedure for constructing a representation of a rational formal
power series from the columns of its Hankel-matrix. A similar construction can be carried out in the set-
ting of this paper too. Indeed, let ImHy = Span{(Hy) (v € RX™X! | (v,5) € X* x J}. Then the map
T : Wy — ImHy defined by T'(w o Sj) = (Hy). (w,j) is a well defined vector space isomorphism. Moreover,
if Rf = (Wy,{A4s}sex,B,C) is the free representation of W, then TB; = (Hy). (c;), CT '(Hy) (vj) =
[(H\I/)(e,l),(v,j) e (H\I,)(E’p)’(v,j)]T and TAUT*I(H\I,)_,(W-) = (Hy)(.,(vo,j) for each o € X. Define the repre-
sentation

RH7q1 = (Iqu,, {TAgTil}gex, TB, CTﬁl)

Then it is easy to see that T': Ry — Ry v is a representation isomorphism and Ry, is a representation of W.
It is also straightforward to see that the definition of Ry y corresponds to the definition of the representation
on the columns of the Hankel-matrix as it is described in the classical literature.
If R = (X,{A,}sex, B,C) is a representation of ¥, then for any vector space isomorphism 7' : X — R",
n = dim R, the tuple
TR = (R" {TA, T }pes, TB,CT™)

is also a representation of W. It is easy to see that R is minimal if and only if TR is minimal. Moreover,
T : R — TR is a representation isomorphism. That is, when dealing with representations, we can assume
without loss of generality that X = R™. From now on, we will silently assume that X = R™ holds for any
representation considered.

So far we have not treated the algorithmic aspects of theory of rational formal power series. One may wonder
whether reachability and observability of representations is algorithmically decidable, or whether it is possible
to construct a minimal representation algorithmically. One may also wonder whether it is possible to develop
some sort of partial realization theory for rational formal power series. These issues fall outside the scope of
the article. Nevertheless, we would like to note the following. One can easily design a numerical algorithm for
computing the spaces Or and Wg for a representation R. Subsequently, one can use these spaces for checking
observability and reachability or computing a minimal representation. One can also develop partial realization
theory. For reference see for instance [7,16-18]. Moreover, since the classical theory of rational formal power
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series can be applied to the study of bilinear systems, a number of algorithmic results for bilinear systems theory
might be used in the theory of rational formal power series.

5. REALIZATION THEORY OF LINEAR SWITCHED SYSTEMS

This section deals wit the realization theory of linear switched systems. First, definition and elementary
properties of linear switched systems are presented. For more on linear switched systems see [6,12-14,23,24,26].
Subsection 5.1 deals with the structure of input/output maps realizable by linear switched systems. Subsection
5.2 presents realization theory of linear switched systems for the case when arbitrary switching is allowed.
Subsection 5.3 deals with the case when there is a set of admissible switching sequences, but there is no
restriction on the switching times.

Definition 2 (Linear switched systems). A switched system ¥ is called linear, if for each q € Q there exist
linear mappings Ag: X — X, By :U — X and Cy : X — Y such that

o Yuel, Ve e X : fy(x,u) = Agx + Byu

o Vz e X: hy(x) =Cyx
To make the notation simpler, linear switched systems will be denoted by X = (X, U, Y, Q,{(A44, By, Cy) | ¢ € Q})
The term linear switched system will be abbreviated by LSS.

Consider the linear switched systems
E1 = (X,Z/{,y,Q, {(Aquqva) ‘ qc Q}) and 22 = (Xaau7yaQa {(AZ,B;,C;) | q € Q})

A linear map S : X — X, is said to be a linear switched system morphism from ¥; to Yo and it is denoted by
S : ¥y — Y if the the following holds

AS =S4, B

q

=SB, C!S=C, VYgeQ

The map S is called surjective ( injective ) if it is surjective ( injective ) as a linear map. The map S is said to
be a linear switched system isomorphisms, if it is an isomorphisms as a linear map. By abuse of terminology,
if (3;, 1), @ = 1,2 are two linear switched system realizations and S : 31 — X is a linear switched system
morphism such that S o yu; = puo then we will say that S is linear switched system morphism from realization
(31, 1) to (Xg, p2) and we will denote it by S : (X1, u1) — (X2, u2). The linear switched systems realizations
(31, 11) and (Xo, ) are said to be algebraically similar or isomorphic if there exists an linear switched system
isomorphism S : (31, 1) — (X2, p2).
The results presented below can be found in the literature, for references see [13,23].
Proposition 1. For any LSS ¥ = (X,U,Y,Q,{(A,, B,,C,) | ¢ € Q}) the following holds

(1) Yu € PC(T.U),z9 € X,w = (q1,t1)(q2:t2) -~ (qr, tx) € (@ x T)*

x5 (zo, u, w) = exp(Ag, tr) exp(Aq, k1) - exp(Aq t1)To+

/ exp(Ag, (t — 8)) B u(D_t; + s)ds +
0 1

th_1 k—2
exp(Agytr) / exp(Age_ (b1 — 5)) By u(>_ i+ 5)ds +
1

ty
exp(Ag, tr) exp(Ag,_, tk—1) - "eXP(qufz)/ exp(Agq, (t1 — 5))Bg,u(s)ds
0

and ys(z,u, w) = Cy xx(z, u, w).
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(2) Reach(X,{0}) = {Amqu T AQkBQk+1u lu €U, q1q2 - qry1 € QF k> 0}
(3) Two states x1,x2 € X are indistinguishable if and only if

T — T2 € ﬂ kerCy,  Ag. -+ Agy
41,92, qr+1€Q,k>0

3. is observable if and only if

N ker Cyp,, Agy -+ Agy = {0}

q1,92,--,qk+1€Q,k>0

5.1. Input-output maps of linear switched systems

This section deals with properties of input-output maps of linear switched systems. We define the notion
of generalized kernel representation of a set of input-output maps, which turns out to be a notion of vital
importance for the realization theory of linear switched systems. In fact, the realization problem is equivalent
to finding a generalized kernel representation of a particular form for the specified set of input-output maps.
The section also contains a number of quite technical statements, which are used in other parts of the paper.

Recall that for any L C Q™ the set of admissible switching sequences is defined by TL = {(w,7) € (@ xT)™" |
w € L}. Let ® C F(PC(T,U) xTL,Y) be a set of maps of the form PC(T,U) x TL — Y. Define the languages
suffixL = {u € Q* | Jw € Q* : wu € L} and

Z:{u?n-u;j‘ €Q" |ur-up esufixl,u; € Q,i; >0,5=1,...,k, i1, > 0}

Definition 3 (Generalized kernel-representation with constraint L). The set ® is said to have generalized
kernel representation with constraint L if for all f € ® and for allw = wywy -+ w € L, wy,...,wx € Q, k>0,
there exist functions
K{;’q) :R¥ = RP and G® : R¥ — RP*™
such that the following holds.
(1) Vw € LYf e ®: K[® is analytic and G is analytic
(2) For each f € ® and w,v € Q* such that wqqu,wqu € L, it holds that
KL% (bt by b b2, - Hupol+1) = Kttt b+t btz - - ool joj+1)
Grogqo (1 tay b bt by - tufpoi41) = Gugo(titas o Gl b+t sz - tujfo+1)
(3) Vow e Lyw # e,Vf € ® :
Kgéi(tl, ce ,t‘v|, O,t‘v|+1, ce at|wv\) = K{{Uq)(tl,tg, ce at\vw|)
vaez,v;ée,w;&e:
quw(tl, ... ,7f|v|7 O,t‘le, - ,t|wv‘) = wa(tl, - ,t|vw|)

(4) For each f € @, (wy,t1)(wa,t2) - (wi,tg) € TL , u e PC(T,U)

k ti i—1
Fuywiwg - wy, trtg - ty) = KBS (b1, ta, ... ) + Z/ G (ti = 8t te)u(s + Y t)ds
i=170 j=1
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We say that ® has a generalized kernel representation if it has a generalized kernel representation with the
constraint L = QF. The reader may view the functions K7;® as the part of the output which depends on the
initial condition and the functions G® as functions determining the dependence of the output on the continuous
inputs.

Define the function yg : PC(T,U) x TL — Y by

k t; i—1
Y& (uywy - wp, by - ) = Z/ Gf}imwc (ti — 8ytig1y. - tp)u(s + th)ds
i=170 j=1

It follows from the fact that ® has a generalized kernel representation that y® can be expressed by Vf € @ :

yg)(uv w, T) = f(u7 w, T) - f(07 w, T)
Another straightforward consequence of the definition is that the functions {K/* G® | f € ®,w € suffixL}

completely determine the functions {K/® G® | f € &, w € E} Indeed, assume that L 3 w = 27" --- z;* such
that z1,...,2; € Q,a € N¥, o, > 0 and 21 - -- 2, € L. Then by using Part 2 and Part 3 of Definition 3 one gets

KL%t tp) = KL2., (... T = KL®..(Th,....Ty) (1)
Gg(tl,...,t|w|) = szzk(TlV'"Tk)
where T; = Z?L:Jﬂ';iierai_ltj, i=1...,kyand T; =0,i=1,...,01—1, f € ®, | = min{z | @, > 0} and

Z?:a t; is taken to be 0 if @ > b. Now, for any w € L there exist di,...,d; € Q and ¢ € N such that
dy---dy € suffixL, w = d§1 -~-dl£’ and &1,& > 0. Applying (1) to w, dy ---d; € suffix, C L we get that K&/
: and G;l{)lwdz'

Using formula (1), the chain rule and induction it is straightforward to show that for each w € L, w =
2zt 2z € Ly g >0, 1 =min{z | a, > 0} the following holds.

and G2 are uniquely determined by Kg’l’f d

dﬁl dﬁ\w\ & d"n dVE—1+1 o
75 3 ,LJf; ( 1)"'7tn) = T Y zfl)---zk(Tlv"‘ka”g
e dtl \T\ dm, dr,
w
d"t dVk—1+1 &
= dTlAfI .”dTlele Kgl’»--zk(Th"'?Tk)'Q (2)

dh dBiw > dmn dYk—1+1

—_— e ——G2(ty,.. . ty) = G . (m,...,7

dtfl dtlﬁl‘u,i,‘ UJ( 1 “) dTl“/l dT}Zk—z-H E2 zk( l k)‘g

_ _ e oty
where 8 € NI¥l v € NF=14+1 g ¢ TF=141 p e T and a; = Z?’:HSLIT.;WH ti, v = Z?;Halc_:f_kémf? B for
eachi=1,....k—=1l+1,b; =a;—141,fori=1,...,kand b; =0 fori=1,...,1—1. Substituting 0 for t1,...,¢y
we get

D5K£’¢ — DPYK;[?Z,C - D(@l*“'y)Kgl’? and DBG;{; - D“/GZ_
where O;_; = (0,0,...,0) € N'=!. The discussion above yields the following.

Proposition 2. Let 21, 29,...,25,d1,dz,...,d; € Q*. Let a = (ay,...,a;) € NF and 8 = (B1,...,3) € N/
Assume that 27" 257 - - - 2" = al?ldg2 . ~-dlﬁl. If goz129 -+ - 2pq1 € L and godids -+ - djqy € L, then

- (3)

2k

0,0,0) @ _ 0,3,0) ~®
D( )Gq2zlz2-“zk41 - D( g )GlI2d1d2'“dHI1
If 2120+ zq1 and dids - - - dijqq € L then

D(@:0) g f, @ — DBO) g fr2

Z122° 2K q1 dida--diqq
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Proof. Using (3) one gets that

pOOGe =DOLOG? . .,

42241 g2z, 2, " q

_ 1(0,1,0) ~® _ 1(0,8,0) ~®
= D¢ )Gqufl.--df’lql =psoge
where I = (1,1,...,1) € NXV @ 2 = 21+ 2,d = dy ---d;. Similarly D@OKL® = plfogle  ——
DK jgf__zgkql =DEOK jifmdf, "= DWOKL® . where | =min{z | a; >0} and o = (..., cp). O

If ® has a realization by a linear switched system, then ® has a generalized kernel representation
Proposition 3. For any LSS ¥ = (X,U,Y,Q,{(A,,B,,C,) | ¢ € Q}), (X,pn) is a realization of ® with
constraint L if and only if ® has a generalized kernel representation defined by

G® (t1,t2, ... ) = Cu, exp(Aw, ti) exp(Aw,_, th—1) - - - €xp(Aw, t1)Bu,

WLW2 Wk

and
Ko (t1 o, t) = Cuy, exp(Aw, tr) exp(Auw, _ ti—1) - - exp(Aw, t1) u(f).

where wyws - - - Wy, € L. Moreover, if (X, 1) is a realization of ®, then

ZJ(CJI> =yx(0, ., -)IPC(T,L{)XTL

Proof. (X, ) is a realization of ® if and only if for each f € ®, u € PC(T,U), w € TL it holds that
f(ua w) = yZ(/’('(f)7 U, ’LU) = quxZ(/J'(f)a u, w)

where w = w/(qk,tk). The statement of proposition follows now directly from from part (1) of Proposition
1. O

If the set ® has a generalized kernel representation with constraint L, then the collection of analytic functions
{KI® G® | w € suffixL, f € ®} determines ®. Since K/? is analytic, we get that it is determined locally by
{D*K[*® | a € N*I}. Similarly, G® is determined locally by {D*G® | a € NI*I}.

By applying the formula % fot flt,r)dr = f(t,t) + f(f 4 f(t,7)dr and Part 4 of Definition 3 one gets

Daqul)(ti---qk = Daf(oa%(h"'%w) (4)

DaGZqu"-lez = Dﬂy(()b(ez’ q1492 * - Gk, ) (5)

where N¥ 5 8 = (0,0,...,0,07 + 1,09,...,a5_;41). Here e, is the zth unit vector of R™, i.e efej = 0.
—_———

l—1——times
Formulas (4) and (5) imply that all the high-order derivatives of the functions K%, G® (f € ®, w € suffixL)
at zero can be computed from high-order derivatives with respect to the switching times of the functions from
.
Define the set S = {(a,w) € N* x Q* | a € NI* w € Q*}. For each w € Q*, q1,q2 € Q define the sets

(W) = {(v,(,2)) €Q" xS |vz € Lgowqs = 2127 -2 2,2, € Q. =1, k2 =21+~ 21}
Fo,(w) = {(v,(o,2)) € Q" xS |vze Liwg =27" -2 2,2, €Q,j=1,....k,z =21 21}

Define Ly, 4, = {w € Q* | Fy.q(w) # 0} and L, = {w € Q* | F,(w) # 0}. Denote by O the tuple
(0,0,...,0) € N\, 1 > 0. For any a € N*¥ let a™ = (ay + 1,09,...,a3) € N¥ k> 0.

The intuition behind the definition of the sets Fy, 4, (w) and Fy, (w) is the following. Let (X, 1) be a realization
of ®. Then (v, (w,2)) € Fy, 4,(w) if Do‘+y§)(vz,ej,.) = DL 10y (0, gowqy, e, .) for each j = 1,...,m.
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Similarly, (v, (a,2)) € Fy, (w) if D*f(vz,0,.) = D& L0yo(u(f),wqr,0) for each f € ®. That is, F,, 4, (w)
is non-empty if we can deduce from ® some information on the output of ¥ when the initial condition is 0 and
the switching sequence is gawg;. Similarly, F, (w) is non-empty, if we can derive from ® some information on
the output of ¥, if the initial condition is u(f), the switching sequence is wgq; and the continuous input is zero.

With the notation above, using the principle of analytic continuation and formulas (4) and (5), one gets the
following

Proposition 4. Let ® C F(PC(T,U) x TL,Y). For any LSS
E=(XUY,Q{(A; By, Cp) g€ Q})

the pair (3, u) is a realization of ® with constraint L if and only if ® has a generalized kernel representation
with constraint L and the following holds

VweLl,j=1,2,....,m,f €® acNv:
Dy (ej,w,.) = DPGY . e = Cou A2EASE1 - AYTIB,, e

W Wk —1
Df(0,w,.) = DO(K{;’(I) = kaA?viA$]Zil1 T A?ullli(f) (6)
where | = min{h | o, > 0}, e, is the zth unit vector of U, B = (ay — L, aq41,..., ;) and w = wy - Wk,
wi, ..., wx € Q. Formula (6) is equivalent to

Vwe L j=1.2...,m a0 €Q.(v,(0,2)) € Fyy g0(w) :
D(@‘“‘’Oﬁ)yg’(ej,vz7 )= D(O’Q’O)Giquej =Cy AT} -+ AT} By, e

Yw e L,q € Q, (v, (e, 2)) € Fy(w) : (7)
DO £(0,0z,.) = DO KLE = C A%k - A u(f)
Proof. First we show that ® is realized by (X, ) if and only if ® has a generalized kernel representation and

(6) holds. By Proposition 3 (X, i) is a realization of ® if and only if ® has a generalized kernel representation
of the form

G2(t1,...,tx) = Cu,exp(Ay,tr) - exp(Ay, t1)Bu, (8)
Kﬂc;’@(tlv s 7tk‘) = ka eXp(Awktk) e exp(Aw1t1),u(f)
for each w = wy---wy, € L, wy,...,wy € Q. From (1) it follows that it is enough to consider {K1® G® |

w € suffixL, f € ®}. Since K/, G? are analytic functions, their high-order derivatives at zero determine them
uniquely. Using (4), (5) we get that (8) is equivalent to (6).

Next we show that (6) is equivalent to (7). Notice that from (3) it follows that for any z = 21 -+~ 2,21 =
q2, %k = q1: DQGZ..% = D(O’O"O)Gflzy,,z,cz]c = D(O’O"O)ngql and DYK/® = D(O"O)Kgf. First, we will show
that (7) implies (6). For any w € L, a € NIl w = wy -+ wy, wy,...,wp € Q define I = min{z | a, > 0},
V=W W1, 2= W W)y and z = wf‘_lwlaf{l ccw ™l Then (v, (3,2)) € Py wy, (z) where 3 = (a; —

|w]
1,...,q)y)). Notice that (0),,37) = a. From (7) and the remark above we get that D(@\’vl’5+)gJ(‘§>(<3J-,vz7 )=
D(O’B’O)Gglzw,w,ej = DﬁG;{’ej = Do‘yg’(ej,w, )= Ow|w|Ai‘\:‘\ ~~~Aﬁ,’l’lelej. Similarly, let y = w{* wmi‘”‘

Then (e, (o, w)) € Fy, (y). Again, from the remark above and (7) we get that D f(0,w,.) = D("’O)Kﬁj’f‘w‘ =
DeKf® = Df(0,w,.) = Cy,, Aw" -+~ A% p(f). That is, (6) holds.

w1
Conversely, (6) = (7). Indeed, for any w € L, q1,¢2 € Q, (v,(a,2)) € Fy, 4,(w) it holds that vz € L,
2=z1 2, 21 = @2, 2 = 1. Then (6) implies Do)y (e5,v2,.) = DOCOGE | ej = C. A% - A% B.,
For any (v, (, 2)) € Fy(w) it holds that z = z; - - 2y, 2x = ¢ and vz € L. Then (6) implies D©@1:®) £(0,vz,.) =
DO KS® = C A%k .. A21p(f). That is, (6) implies (7). O



15

One may wonder whether a generalized kernel representation is unique, if it exists, and what is the relationship
between a generalized kernel representation and such properties of input/output maps as linearity in continuous
inputs, causality and etc. Below we will try to answer these questions.

Let f € F(PC(T,U) x TL,Y). We will say that f is causal, if for any w = (q1,¢1) - (¢, tx) € TL the

following holds
k

Vu,v € PC(T,U) : (V€ [0, t]:u(t) =v(t) = f(w,u) = f(w,v)
1
That is, the value of f(w,u) depends only on u\mz? t]-
Since Y = RP, for each f € F(PC(T,U) x TL,Y) there exist functions f; : PC(T,U) x TL — R such that
flu,w) = (fi(u,w),..., fp(u,w))T. For each t € T define the map P, : PC(T,U) — PC(T,U) by

e e

0 otherwise

For each w € T'L define the map f;(w,.) : PC(T,U) — R by f;(w,.)(u) = f;(u,w). Foreach 1 < p < 400 denote
by LP([0,t;], R"*™) the vector space of n by m matrices of functions from L?([0,¢;]). Le. f :[0,¢;] — R™*™
is an element of LP([0,¢;], R™*™), if f = (fi;j)i=1,...nj=1,...m and f; ; € LP([0,t;]), i =1,...,n, j =1,...,m.
With the notation above we can formulate the following characterization of input/output maps admitting a
generalized kernel representation.

Theorem 3. Let & C F(PC(T,U)xTL,Y). Then ® admits a generalized kernel representation with constraint
L if and only if the following conditions hold.
(1) Each f € ® is causal and there exists a function y* € F(PC(T,U) x TL,Y) such that for each f € ®

Vw € TL,u € PC(T,U) : f(u,w) = f(0,w) + 3% (u, w) (9)

(2) For each f € ®,w = (q1,t1) - (qk,tx) € TL,j = 1,2,...,p the map y}I’(w,.) : PC([0,Tx],U) > u —
le tj. Here PC([0,Ty],U) is viewed
as a subspace of L'([0,Tk],U) and the topology considered on PC([0, Ty],U) is the corresponding subspace
topology.

(3) For each fe®,s€ (QxT)", w=(wy,0) - (wg,0), v=(v1,0) - (v,0) € (Q x T)*

y}b(w, u#71,0) € R is a continuous linear functional, where Ty, = >

ws,vs € TL = (Yu € PC(T,U) : f(u,ws) = f(u,vs))
(4) For each w = (q1,t1) - (q,tx) € TL, 1 <1<k ,ue PC(T,U)
y® (u, w) = y® (Shiftr, (w), v(q, 1) - (ar, tr)) + y* (Pry (u), w)

where T = 11—1 t; and v = (¢1,0)...(q-1,0).
(5) For each f € q); w,v € (Q X T)*’ /AS Q7 ifw(qatl)(QatQ)vaw(Qatl + tQ)U € TL; then

Yu € PC(T,U) : f(u,w(q,t1)(g,t2)v) = f(u,w(q,t1 + t2)v)
For each f € ®, w,v € (Q xT)*,|v] >0, ¢ € Q, if w(q,0)v,wv € TL, then
Yu € PC(T,U) : f(u,w(q,0)v) = f(u,wv)

(6) For each q1---qx € L, uy,...ug, € U, f € ®, the maps for-quur,un : T* — YV defined below, are
analytic.

f‘h'“qmul ----- uk(tla cee vtk) = f(uv ((Ihtl) T (Qk7tk))’
where u(t) = u; if t € (Z;;ll tyy > g til-
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If ® admits a generalized kernel representation, then the ® admits an unique generalized kernel representation.

The proof of the theorem can be found in Appendix B.

The theorem above gives an important characterization of generalized kernel representation. It states that
existence of a generalized kernel representation amounts to i) causality of the input-output maps, ii) switching
sequences behaving as discrete inputs, iii) input-output maps being affine and continuous in the continuous
inputs iv) input-output maps being analytic for constant inputs. In author’s opinion, the theorem above
demonstrates that existence of a generalized kernel representation is by no means an unnatural or a very
restrictive condition. In particular, if the number of discrete modes is one, then existence of generalized kernel
representation is equivalent to the conditions which are usually imposed on the input-output maps of linear (
possibly infinite-infinite dimensional ) systems. One may also compare the conditions of the above theorem with
the so called realizability conditions from [14]. Notice that knowledge of analytic forms of K/'® and GE are not
necessary for constructing a realization of ®. All that is required is the knowledge that the functions K7/,*, G2
exist. Therefore, it hardly makes sense to try to compute the functions K7>® and G2. Note that existence of
an algorithm which computes these functions on the basis of ® would imply the existence of a representation
of ® with finite data. Since elements of ® are linear maps defined on the infinite-dimensional space PC(T,U),
existence of such a finite representation is quite unlikely.

5.2. Realization of input-output maps by linear switched systems with arbitrary switch-
ing

In this section the solution to the realization problem will be presented. That is, given a set of input-output
maps we will formulate necessary and sufficient conditions for the existence of a linear switched system realizing
that set. In addition, characterization of minimal systems realizing the given set of input-output maps will be
given. In this section we assume that there are no restrictions on the switching sequences. That is, in this
section we study realization with the trivial constraint L = Q™.

The main tool of this section is the theory of rational formal power series. The main idea of the solution
is the following. We associate a set of formal power series Vg with the set of input-output maps ® . Any
representation of Wg yields a realization of ® and any realization of ® yields a representation of Wg. Moreover,
minimal representations give rise to minimal realizations and vice versa. Then we can apply the theory of

rational formal power series to characterize minimal realizations.
Let ® C F(PC(T,U) x (Q x T)*,Y). Proposition 4 and formula (3) yield the following

Proposition 5. The LSS ¥ = (X, U, Y,Q,{(A,, B,,C,) | ¢ € Q}) is a realization of ® if and only if ® has a
generalized kernel representation and there exists p: ® — X such that

Yw =wy--Wg € Q+,Q17QQ S Q,U}l,...,U)k; S sz S {1727"'am}’f €d:
D(l’Hk’O)yg)(ezachwcha ) = D(O’Hkﬂo)G(iwa €, = qu Awk- T Aw1 B(I2ez
D(ﬂk,o)f(o,wa, ) = D(Hk,o)fg;ﬁ =  CuAw, Aw pu(f)
where T, = (1,1,...,1) € N*.
Proof. Applying (3) one gets the following equalities.

D _ ,0 @ 1y([,0) o f,®
DQK&: - D(a )K'szc)wk - D( )K£?1w;2, ,wgkwk (10)
P _ 1(0,0,0) ~® _ (0,L,,,0) ~®
DaGw - D( “ )Gwlwwk - D( )Gwlw?lw;Qmwzkwk (11)
where m = Z’f ay. The statement of the proposition follows now from Proposition 4. O

The proposition above allows us to reformulate the realization problem in terms of rationality of certain
power series. Define formal power series Sg, ¢,,2:Sf,qn ERP K Q" >, (1,2 € Q, f € P, z€ {1,2,...,m} ) by

SQMQLZ(UJ) = D(L]I‘w‘)())yg)(em q2wqz, ) ) Sf»(h (UJ) = D(lelyo)f(07wchv )
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for each w € Q*. Notice that the functions G, KJ'® are not involved in the definition of the series of Sa1.42,2
and St 4,. On the other hand, if ® has a generalized kernel representation, then

Sq1 g0,z (W) = DOT1e,0) @

q2wq1

e. and S, (w) = DUwr0) g 1@

wqi

For each ¢ € Q,2 = 1,2,...,m, f € ® define the formal power series S, ., S; € RPI?l < Q* > by

S1117q72 Sf,th

ng q,z Sf q2
Sqz = . y OfF = )

S(IN»CLZ SnyN

Where Q = {qla q2, ... 7qN}
Define the set Jo = ® U {(q,2) | ¢ € Q,z = 1,2,...,m}. Define the indexed set of formal power series

associated with ® by
Uy ={S; e RPICN < Q" >| j € Ja} (12)
Define the Hankel-matriz of ® Hg as the Hankel-matrix of the associated set of formal power series, i.e.
H@ = H\pq,.
Notice that the only information needed to construct the set of formal power series W4 are the high-order
derivatives at zero of the functions belonging to ®. The fact that ® has a generalized kernel representation is
needed only to ensure the correctness of the construction. No knowledge of the analytic forms of the functions

K5®, G2 is required in order to construct We.
Let ¥ = (X,U,Y,Q,{(A,,B,,C,) | ¢ € Q}) be a LSS, and assume that (%, 1) is a realization of ®. Define
the representation associated with (X, u) by

Ry, = (X, {Aq}tIGQv B,C)
C<h
~ ~ C ~ -
where C': X — RPICl C = ,qz and the indexed set B = {B; € X' | j € Jo} is defined by By = u(f), f € ®,
CQN

and §q7l = Bye;, 1l =1,2,...,m,q € Q, ¢ is the [th unit vector in U.
Conversely, consider a representation of Wg

R=(X,{Aq}qeq. B,C)
Then define (X g, ur) the realization associated with R by

YR = (XJ/{,y,Q, {(AquqﬂCq) | qc Q}) s wr(f) = Ef

CQ1
~ C ~
where C; : X — ), ¢ € Q are such that C' = _qz ,and Bye; = By for each [ =1,...,m. It is easy to see
CQN
that Cy, ¢ € @ are well defined, since
ealc
Cq = :
el C



18

1 ifj=px(z—1)+i
0 otherwise ’
It is easy to see that X gy, , =3, ug,, = p and Rx, ,, = R. In fact, the following theorem holds.
Theorem 4. Let ® C F(PC(T,U) x (Q x T)T,Y). Assume that ® has a generalized kernel representation.
(a) (X, n) is a realization of ® <= Ry, is a representation of Vg
(b) R = (X,{A;}qec0, B,C) is a representation of Vo <= (g, ur) is a realization of ®

Hereforq =¢, € Qforsomez=1,...,N,i=1,...,pitholdsthate,, € RPIQl and (eqi); =

Proof. First we prove part (a) of the theorem. By Proposition 5 (¥, ) is a realization of ® if and only if for
each q1,492,9 € Qa w=w- Wk € Q*a Wiy ..., WE € ka >0

D(l’ﬂk’o)yo(eza Q2wq1,.) = Sgy,5,2(W) = Cq, Aw By, €2

DU £(0,wg, ) = Sf.q(w) = CqAwp(f)
Here, the notation A,, = A, - -+ A, introduced in Section 4 is used. That is,

Spz(w) = [CT CT ... CT 1" AyBye. = CAyB,,..
Siw) = [Ch oL - CL]" Awp(f) = CA,By

q1
That is, Ry, is a representation of W.
Since R = Ry, up, part (b) follows from part (a). O

The theorem has the following corollary.

Corollary 3. Let the assumptions of Theorem 4 hold. If (3,p) is a minimal realization of ®, then Ry, is a
minimal representation of . Conversely, if R is a minimal representation of We, then (Xg, ur) is a minimal
realization of ®.

Proof. Notice that dimY = dim Ry, ;, and dim¥Xr = dim R. The statement of the corollary follows now from
Theorem 4. O

Theorem 5 (Realization of input/output map). For any set ® C F(PC(T,U) x (Q x T)*,Y) the following
holds.

(a) @ has a realization by a linear switched system if and only if ® has a generalized kernel representation
and We is rational.

(b) ® has a realization by a linear switched system if and only if ® has a generalized kernel representation
and rank He < +00.

Proof. Part (a)

If ® has a realization, then ® has a generalized kernel representation, moreover, by Theorem 4, Ug has a
representation, i,e. Wq is rational. If ® has a generalized kernel representation and V¢ is rational, i.e. it has a
representation, then by Theorem 4 ® has a realization.

Part (b)
By Theorem 1 dim Hy < 400 is equivalent to W4 being rational. The rest of the statement follows now from
Part (a) O

The theory of rational power series allows us to formulate necessary and sufficient conditions for a linear
switched system to be minimal. Before formulating a characterization of minimal realizations, additional work
has to be done. Let ¥ = (X,U,),Q,{(A,,B,,C,) | ¢ € Q}) be a linear switched system. Using Proposition 1
it is easy to see that for any p: ® — X

Wry, = Span{A,zo | w € Q%,z9 € Imu or xg = Byu,q € Q,u € U}
= Span{AthAQQ e Aquo | 1,42, --,qk € ano € Imy’} +
+Reach(%,{0})
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and
ORy g = Os = N ker Cy A, Awy_y -+ Aw

q,w1,W2,...,wEE€Q,k>0

1

Moreover, the following is true
Lemma 6. Wgy, , is the smallest vector space containing Reach(¥, Impu).
Proof. Denote by W R the set Wg,, ,. Denote by & the image of p.
First, we show that Reach(X, Xp) is contained in W R. From Proposition 1 it follows that
Reach(X, Xp) = {exp(Aq, ti) exp(Aqg,_ tk—1) - - - exp(Ag, t1)zo+
+x5(0,u, (q1,t1) - (qx, tr)) | ®o € Xo, (q1,t1)(q2,t2), -, (g, tr) € (Q X T)* k> 0,u € PC(T,U)}

But exp(A,t)r = Y %A’;x € Span{AJx | j € N}, which implies that
exp(Ag, tr) - -exp(Ag t1)zo € Span{ Ay, Ay, -+ Ay, o | w1, we, ..., wg € Q}

Since z(0,u, (q1,¢1) - - - (qx, tx)) € Reach(X,{0}), we get that Reach(X, Xy) C WR.

We will show that W R is the smallest vector space containing
Reach(%, Xy). Let W be a subspace of X' containing Reach(X, Xp). For any o € NI*l for any constant
input function u(t) = u € U D*x(xg,u,w,.) € W must hold. But z(zo,u,w,t) = z(xo,0,w,t) + 2(0,u,w,t).
It is straightforward to show that Span{D“z(0,u,w,.) | w € QT,a € N*l.u € U} = Reach(%,0). For
w € Q1 k := |w| define exp,, : T* — X by

exp,, (t1,t2, ..., tr) = exp(Aw, tr) exp(Aw,_ th—1) - - - exp(Aw, t1)To

It is easy to see that D*z(x,0,w,.) = D*exp,, = Ag';cAiZij --- AGlxo, and therefore Span{D%z(zo,0,w,.) |
we QT aeN zye Xy} = Span{A,zo | w € QT}. Thus, we get that

Span{D%z(zo,u,w,.) |we QT,a e Nl welf,zg € Xy} = WR

which implies that WR C W. O
The results above imply the following

Corollary 4. Let ¥ = (X,U,Y,Q,{(A,, B,,C,) | ¢ € Q}) and assume that (X, 1) is a realization of ®. Then
Y is observable if and only if R is observable. X is semi-reachable from Imy if and only if R is reachable.

It is a natural question to ask what the relationship is between linear switched system morphisms and
representation morphisms. The following lemma answers this question.

Lemma 7. T : (%, u) — (E/,//) is a linear switched system morphism if and only if T : Rs,,, — Ryy v is a
representation morphism.

Recall that T : (X, ) — (Z', u/) is a linear switched system morphism if 7" is a linear map from the state-space
of ¥ to the state-space of ¥ satisfying certain properties. Recall that a representation morphism between two
representations is a linear map between the state-spaces of the representations which satisfies certain properties.
Since the state spaces of Ry, and Ry ./ coincide with the state-space of ¥ and ¥ respectively, it is justified
to denote both the linear switched system morphism and the representation morphism by the same symbol,
indicating that the underlying linear map is the same.

Proof of Lemma 7. Assume that the linear switched systems ¥ and ¥ are of the form

2= (XU, Q.{(A;,B,.C,) | g€ Q}) and &' = (XU, Y,Q,{(A,,B,.C,) | € Q})
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Then T is a switched linear system morphism if and only if TA, = A;T, C, = C’;T7 TB, = B(; and

Tu(f) = ,u'(f) for each ¢ € Q,f € ®. But this is equivalent to TA, = A;T,q € Q, TEJ- = B; and

éh.: [cr ... C’qTN}T = [(C’;IT)T (C;NT)T]T — C'T, that is, to T being a representation moE
phism.

Now we can state the main result of the section.

Theorem 6 (Minimal realizations). If (3, u) is a realization of ®, then the following are equivalent.

(i) (3, p) is minimal

(ii) X is semi-reachable from Imy and it is observable
(iii) dlmE dim Hg
(iv) If (X ) realizes ® and ¥ is semi-reachable from Tmy, then there exists a surjective linear switched

system morphism T : (Z/,u/) — (X, p). In particular, all minimal realizations of ® are algebraically
simailar.

Proof. (i) <= (i)

By Corollary 3 system (X, i) is minimal if and only if R := Ry, is minimal. By Theorem 2 R is minimal if and
only if R is reachable and observable. By Corollary 4 the latter is equivalent to X being semi-reachable from
Imp and observable.

By Corollary 3 (X, p1) is minimal <= Ry , is minimal. By Theorem 2 Ry, ,, is minimal <= dim Ry, ;, = dim ¥ =
rank Hy, = rank Hg.

(i) < (iv)

Again we are using the fact that (X, ) is minimal if and only if Ry, is minimal. By Theorem 2 R, is
minimal if and only if for any reachable representation R there exists a surjective representation morphism
T : R — Rpn. It means that (X, ) is minimal if and only if for any reachable representation R of Wg there
exists a surjective representation morphism 7' : R — Ry ,. But any reachable representation R gives rise to
a semi-reachable realization of ® and vice versa. That is, we get that (X, ) is minimal if and only if for any
semi-reachable realization (Z/, ,u/) of @ there exists a surjective representation morphism 7' : Ry v — Ry .
By Lemma 7 we get that the latter is equivalent to T : (X', 1) — (2, 1) being a surjective linear switched

system morphism. From Corollary 1 it follows that if (E', ul) is a minimal realization of ®, then there exists
a representation isomorphism T': Ry — Ry, which means that (3, i) is gives rise to the linear switched

system isomorphism 7" : (Z,, ul) — (X, p), that is, ¥ and ¥ are algebraically similar. O

5.3. Realization of input-output maps with constraints on the switching

In this section the solution of the realization problem with constraints will be presented. That is, given a
set of constraints I C QT and a set of input-output maps with domain PC(T,U) x TL we will study linear
switched systems realizing this set with constraint L. As in the previous section, the theory of formal power
series will be our main tool in solving the realization problem.

Let ® C F(PC(T,U) x TL,Y). Recall that (3, u) realizes ® with constraint L if for all f € ® it holds that
F=ysu(f), ., )pcuyxrr- In the sequel, unless stated otherwise, we assume that ® has a generalized kernel
representation with constraint L.

The solution of the realization problem for ® goes as follows. As in the previous section, we associate a set
of formal power series Wg with the set of maps ®. We will show that any representation of Wg gives rise to
a realization of ® with constraint L. If L is regular, then any realization of ® with constraint L gives rise to
a representation of Wg. Unfortunately minimal representations of W4 do not yield minimal realizations of ®.
However, any minimal representation of U4 yields an observable and semi-reachable realization of ®.
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Recall from Section 5.1 the definition of the languages L, Lg,.q,» Lg and the sets Fy, 4, (w), Fy(w). Let
E=(1,1,...,1) € R"™?. Define the power series Z,, 4, € R? < Q* > by

ET  ifwe Ly g

Zwl) = {

otherwise
Define the power series I'y € RPICl « Q* > by
q1,9
Fq o l1.27q
Z(JN,q
and I € RPIQl <« Q* > by
th
po |7
ZqN
T T
where Z,(w) = { OE gtllferewf;qe and Q = {q1,...,qn}. It is a straightforward exercise in automata theory

to show that if L is regular, then the languages Zq and th(n are regular.

Lemma 8. With the notation above, if L C Q% is a regular language, then E, qu,qz and Eq are regular
languages for each q,q1,q2 € Q.

Proof. Notice that thq,z ={w e Q" | qwgy € L} and Eq ={w e Q* | wg € L}. Tt is easy to see that if
L is regular, then so are L, 4, and L,. It is also easy to see that if L is regular then suffixL is regular. Let
A= (5,Q,0,F,sg) be a deterministic automaton accepting suffixL. Here S is the state-space, F' is the set of
accepting states, J is the state-transition function, sg is the set of initial states. Recall, that the extended state-
transition function is defined as follows. For each so € S,w € Q*, §(sp, w) = s if there exists s1,...,5, =s € Q
such that w = wy ---wy € QF and s; = 6(s;_1,w;) for each i =1,... k.
Define the non-deterministic automaton B = ((S x Q) U {sy},Q,d5, F x Q, sy) in the following way. Let
0p(sg,x) 3 (s,z) if §(so, wx) = s for some w € Q*. Let (s ,u) € dp((s,z),u) if either
(i) u=2zand s =s, or
(i) there exists wu € Q*, such that 6(s, wu) = s .
We will prove that B accepts L. Denote s € 0g(z,x), s,z € (S x Q) U {sl)} by z 5 s. Then B accepts
z = z1 -2z if and only if
!’z z2 2k
Sg — (slazl) — (skazk)
where s, € F. This is equivalent to the existence of 0 < o, ...,a; € Nand wy, ..., w; € Q* such that 23:1 o =
k, 0(so,woz1) = s1 and (s;, %) = (Si+1, 2i41) for each 1 + 2(11 a; <1< Zfﬂ a; and 5(3231 oy WdZyd o) =
5145 o, forall 0 < d <1[—1. Define ug = 2145 a Then it is clear that in the original automaton A it holds

J
that 0(sg, wougwiug - - - wyuy) = s, € F. That is, woug - - - wyu; € suffixL and

0
O,mo

ay,,,0 0 Qo 0 0
ul 1‘)1’1...1‘)"7‘"1’17ML2 ...wl’l...w

_ 0 ag
Z2=Wyq W 1,m W

where w; = w; 1+ Wim;, Wil,---,Wim@) € Q. We get that B accepts exactly the elements of L. O
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Corollary 5. Define the indexed set of formal power series Q = {A; € RPN < Q* >| j € Q x {0}}, where
Ay =T, and Ag =T. If L regular then the indexed set of formal power series § is rational.

Proof. Indeed, if L is regular, then qu,qz and Eq are regular languages. Then it is easy to see that for each
B B . B o (1 ifwel,
I=1,...,pN,such that l = px (z — 1)+ i for some z = 1,...,N, i =1,...p, (I)(w) = { 0 otherwise

1 fwel
and (T'g)i(w) = 0 otherwisqez,q

I =1,...,pN. Consider the indexed set © = {(A( ;) | (I,7) € {1,...,pN} x (QU{0})}, where Ay g = (Ag)1 =
(Tg)t, Aoy = (Ag); = T'i. Then by Corollary 2 from Section 4, © is rational. By Lemma 1 from Section 4, it
implies that €2 is rational. O

. That is, (Ty);, I € R < Q* > are rational formal power series for each

Consider a set of input-output maps ® C F(PC(T,U) x TL,Y) with a L C @Q*. Assume that ® has a
generalized kernel representation.
Recall that for any o € N* ot denotes a™ = (a; + 1,as,...,a3). We define the following formal power

series. For j =1,2,...,mand f € ®, q1,q2 € Q,

D(@\’vlv“ﬂyg’(ej,vz, ) ifw e Ly, 4 and

Sgra2i (W) = (v, (@, 2)) € Fyy 4, (w)
0 otherwise
_ D(@)Ivlva)f((),vz7 D ifwe Eq and (v, (a, 2)) € Fy(w)
Sqr(w) = { 0 otherwise

We will show that the series Sy, 4,,. and S, ; are well-defined. Using formulas (4), (5) and (3) from Subsection
5.1 and the fact that (v, (a, 2)) € Fy, ¢,(w) = 21 = q2, 2z = q1 and (v, (, 2)) € Fy(w) = 2, = q we get
the following

DeG? =DOa0G? e ifwe qum and

q22q1

S‘hquj(w) = (’U7 (a7 Z)) € Ftn,qz (U))
0 otherwise
DO KS® = DOK® = DOOKL®  if we L, and
Sqp(w) = (v, (o, 2)) € Fy(w)
0 otherwise

That is, Sy, ¢,.;(w) and Sy, r(w) do not depend on the choice of v in (v, (@, 2)) € Fy, 4, (w) or (v, (e, 2)) € Fy(w)
respectively. We will argue that the value of Sy, 4,,.(w) and S, s(w) do not depend on the choice of («, 2).

If (v, (@, 2)), (u, (B,2)) € Fyy,q,(w) then z7" x@f' = 2" "'Z‘O;'f‘ =w, 21 = X1 = G2, Z|z] = T|y| = @1 and
@©2q1,2xq1 € L, so by Proposition 2, DO->0G? = pDOLOGE Similarly, if (v, (a,2)), (u, (3,2)) €

Fy(w), then o - P -~-Z|C;'IZ‘ =w and zq,xq € E, so by Proposition 2, D(Q’O)Kff = DWBOKI®

|| q2xq1*

Define the formal power series Sy ;, Sy € RPIQl <« Q* >, j€{1,2,...,m},qeQand f € ® by

Sql,q,j thf

Sq27q7j quyf
S(Lj = : ’ Sf = .

SQN:‘]:j qu\uf

Define the indezxed set of formal power series associated with ® as ¥g = {5, € RPICl <« Q* >| z € Jp} where
Jo =2U(Q x{1,2,...,m})}. Define the Hankel-matriz Hg as the Hankel-matrix of Ug.
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Consider the map g : ® U (Q x {1,2,...,m}) — Q x {0}, where g(f) = 0,Vf € ® and g((g,2)) = ¢ for all
q € Q,z=1,...,m. Recall the indexed set of formal power series €2 from Corollary 5. Define the indexed set
of formal power series Q¢ = {Z; € RPN < Q* >| j € Jo} by Zj = Ay(;), where Q = {A; | j € QU {0}}.
From Lemma 4 of Section 4 and Corollary 5 it follows that if L is regular, then Qg is rational. Let (X, u) be a
realization of ®. Define Oy, = {ys(u(f),.,.) | f € ®} C F(PC(T,U) x (Q x T)*",Y). Define U(u) : Oy, — @
by U(p)(ys(p(f),-,)) = f. The map U(p) is well defined. Indeed, if ys(u(f1),.,.) = ys(u(f2),.,.), then
fi = ys(u(f1), - )lpoauxre = ys(u(f2); - )lpcauyxrr = fo- It is easy to see that (X,u o0 U(u)) is a
realization of Oy ,. Assume that the set of formal power series associated to Oy ,, as defined in Section 5.2,
(12), is of the form

Vo, , ={I. e R <« Q" >|2€05,U(Qx{1,2,...,m})}

From Theorem 5 it follows that We,, , is rational. Define the map ¢ : Jo — Ox, U (Q x {1,2,...,m}) by
O(f) = ys(pu(f), ), f € ®and ¢((g,2)) = (¢,2),q € Q,z = 1,...,m. Define K5, = {V; e RFI®l < Q* >[j €
Jo}, V= Ty(j),J € Jo. From Lemma 4 of Section 4 it follows that K , is rational.

Let R = (X,{A.}.cq., B, C) be arepresentation of Ug. Define (X g, ugr) the linear switched system realization
associated with R as in Section 5.2. That is,

Yr= (XU Y, Q,{(A} B, Cy) | ¢ € Q}) and pr(f) = By

C(h
where Cy : X — Y, q € Q are such that C' = : and Byej = B(g ;) forallg € Q,j =1,...,m. Assume that
Can
the resulting (Xg, ug) is a realization of ® ( in fact, this will be shown later ). Let (X, u) = (Xg, ur o U(ur)).
Then (X, 1) is a realization of Oy, ,,. Let R= Ry, — the representation associated to (3, ) as defined in
Section 5.2. Then it is easy to see that R = (X, {Aq}qu,E,C), where EyzR(uR(f),<7-) = p(ys, (Lr(f),.,.) =
ur(f) = By, f € ® and E(q’j) = Bgej = Bgj)», ¢ € Q,j = 1,...,m. That is, R is observable if and
only if R is observable. R is reachable if and only if R is reachable. It is also straightforward to see that
Impr = Impg o U(ug) = Imp. Thus, by Corollary 4, the following holds. X is observable if and only if R is
observable. (X g, ug) is semi-reachable if and only if R is reachable.
Using the notation above and combining Proposition 4 and the definition of rational sets of power series one
gets the following theorems.

Theorem 7. Let ® C F(PC(T,U) x TL,Y). Then (X, u) is realization of ® with constraint L if and only if ®
has a general kernel representation with constraint L and

Vg =0 © Ky
or, in other words

Vied qe@,z=1,2,...,m
Sf = Tyz(,u(f).,.,.) oI and S, 2= Tq’z @Fq

Proof. By Proposition 4 (X, i) is a realization of ® with constraint L, if and only if ® has a generalized kernel
representation with constraint L and

Vw € qu,qw (Uv (0‘7 Z)) € FQ1,Q2 (w) :
D(Ova:O)Gg;qu = Cth Ag: T Agll qu = qu AU}BQ2
Yw € Lq, (v, (o, 2)) € Fy(w) :

DOKLY = CoAgk-- AL u(f) = Cqy Aup(f)
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But (X, 0 U(p)) is also a realization of © = Oy, , with constraint Q*, so by Proposition 5 we get that

ConAuByy = DONIDGE,,, and Cudun(f) = Cuup(U () (g (). .))) = DU DK (4000

q2wq1
That is, for each w € qum, (v,(,2)) € Fy 0u(w), g1, 02 €Q, j=1,...,m

qulz,j (w) = D(O7H|w|70)Gq®2w = D(O “ O)G‘b Stn;qz,j (w)

42ZQ1
and for each w € Ly, (v, (a,2)) € Fy(w)

Tq,yz(u(f),.,.)(w) — D(H|w|,O)Kg}2(N(f)vw)a@ — pla o)Kf<1> Sy (w)
We get that
qu,yg(u(f),.,.)(w) = Sth(w) ifwe éth
Tq17227z(w) = Sgg2.2 (w) ifwe Ly, 40

Notice that if w ¢ qu,qQ, then Sy, g, -(w) = 0 and Z,, 4, (w) = 0. Similarly, If w ¢ qu, then Sg, f(w) =0 =
Zg, (w). That is,
T,.0Tg =29, and Tyz(u(f),.,.) o= Sf

Define the language
comp(L) = {wy - -w € Q" | Ly, =0}
Intuitively, the language comp(L) contains those sequences which can never be observed if the switching system
is run with constraint L.

Theorem 8. Assume that ® has a generalized kernel representation with constraint L. If

R = ({AQ}QEQa Ba C)
is a representation of Vg, then (Zg, ugr) realizes ®. Moreover,
Vf € ®,Yu € PC(T,U),w € T(comp(L)) : ys, (ur(f), u,w) = 0

Proof. Let (X, 1) = (X, pr). If R is a representation of ®, then

vaLQqu(va( ))GFql qg( )
D(O * O)Gg;qu = Slh’qz’j (w) = Cq1 AwBtMJ
) = Oy A% A% By
Vw € Lg, (v, (a, 2)) € Fy(w)
DOKS® = S r(w) = CyAyBy
= CoAZ! - A% p(f)

Since ® has a generalized kernel representation, Proposition 4 and (13) yield that (X3, u) is a realization of @
with constraint L.
Let & = Os . Then (X, 0 U(p)) is a realization of ®'. Tt is easy to see that for all f € ®, ¢1,q2 € Q,
z=1,...,m,
Sq.f(w) = CqAuu(f) =0 ifwé Ly
Sqi,a2,2(W) = CqyAwBgez =0 if w & Ly 2 Ly g
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’

As the second step we are going to show that for each w € comp(L), ys(u(f),.,.) € @,

G% =0 and Kv=((H)-)2" g (14)

Because of analyticity of these function it is enough to prove that for each o € NI®!I: DaGi/ =0, DO‘K}Z{,E(”(f)"")’(I> =
0. But from formulas (4), (5) and Proposition 4 we get that

DGy = Cuy AuBy, and DK = Oy Ay (10 U() (ys (1), -, ) = Cuy Aunt(f)

W= Wi, Wk, Wi, ., W, € Q, v o= wit---wp*. But w € comp(L) implies Ly, = 0, that is u & Ly, u,
and v ¢ Ewk. Then it follows that Cy, A, By, = 0 and Cy, Ayu(f) = 0. It implies that D*G® = 0 and
DeKf® =0.

It is easy to see that if wy - - - wg € comp(L), then for any | < k, w; - - - wy € comp(L). Then from Definition
3, part 4 it follows that (14) implies ys(u(f),w, w) =0 for all w € PC(T,U) and w € T(comp(L)). O

If L regular then the power series I', T'y, (¢ € @) are rational. Then using Theorem 7 and Lemma 2 from
Section 4 one gets the following.

Theorem 9. Consider a language L C QT and a set ® C F(PC(T,U) x TL,Y) of input-output maps. Assume
that L is reqular. Then the following holds.

(i) @ has a realization by a linear switched system with constraint L if and only if ® has a generalized
kernel representation with constraint L and Vg is rational, or equivalently dim Hg < +o00.

(ii) ® has a realization by a linear switched system with constraint L if and only if there exists a linear
switched system realization (X, ) of ® with constraint L, such that (X, u) is semi-reachable, it is ob-
servable, and

Vfed: yZ(,u'(f)a B ')‘PC(T,U)XT(comp(L)) =0

Proof. Part (i)

If ® has a generalized kernel representation with constraint L and W4 is rational, then there exists a repre-
sentation R of Ug and by Theorem 8 (X g, ug) is a realization of ®. Conversely, assume that ® is realized by
(3, ). Then by Theorem 7 ® has a generalized kernel representation and with the notation of Theorem 7 it
holds that ¥g = Q¢ © Ky ,. Since (X, 0 U(u)) is a realization of Oy, without constraint, by Theorem 5
Ve, , is rational. Then by Lemma 4 Ky , is rational too. If L is regular, then by Corollary 5 € is rational.
Then by Lemma 4 Qg is rational. By Lemma 2 we get that V4 = Q¢ © Ky, is rational. From Theorem 1
it follows that W4 is rational if and only if rank Hy, < 4+o00. By definition He = Hyg,, so we get that Vg is
rational if and only if rank Hg < +00.

Part(ii)

® has a realization with constraint L if and only if ® has a generalized kernel representation with constraint L
and Ug is rational. Let R = ({A44}q4eq, B, C) be a minimal representation of ¥g. Consider (X, u) = (Zg, pr) —
the linear switched system realization associated with R. Then by Theorem 8 (3, i) is a realization of ® with
constraint L such that Vf € ®,Vu € PC(T,U),w € T(comp(L)) : ys(u(f),u,w) = 0. Since R is reachable and
observable, we get that (X, 1) is semi-reachableand observable. O

Lemma 2 also yields the following result.

Theorem 10. Consider a language L C QT and a set ® C F(PC(T,U)xTL,Y) of input-output maps. Assume
L that is regular and that ® has a realization by a linear switched system. Let (¥, ) be the realization of ®

from part (ii) of Theorem 9. If (i i) is an arbitrary linear switched system realizing ® with constraint L, then
dim¥ < M -dimY

where M depends only on L.
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Proof. By Theorem 7 it holds that V4 = Ky, ® Q¢. Since Ry, is a minimal representation of W¢ it holds
that dim ¥ = dim Ry, , = rank Hy,. But from Lemma 2 one gets that

rank Hy, =rank Hk, 00, < rank Hg,, , -rank Ho,

Since rank Hgy, , = rank Hy, < dim ¥ and M := rank Hq depends only on L, we get the statement of the
theorem. d

Notice that if L is finite then L is regular. It means that the results of this section in principle allow us
to construct a realization of a set of input-output map by examining a finite number of sequences of discrete
modes.

Remark
In fact, the result of the Theorem 10 is sharp in the following sense. One can construct an input-output y
map and language L and realizations 3; and Y5 such that the following holds. Both ¥; and X5 realize y from
the initial state zero with constraint L and they are both reachable from zero and observable, but dim¥; =1
and dim ¥y = 2. The construction goes as follows. Let Q = {1,2}, L = {¢fqa | K > 0}, ¥ = U = R. Define
y: PC(T,U) x TL — Y by

m

tm+1 XMt m
y(u(), g qu gzt tntmg) = / Ut =Du(s + 3 t)ds + / eimit et oy () ds

f 1
m—times

Define 21 = (R7 R7R7Q7 {(Al,anl,qcl,q) | q e {q17q2}}> by

A1y =1 Big =1 Ciq =1
Al =2 Big =1 Cig =1

Define ¥y = (RQ;Rv Ra Q{(AQ,qa B2,qa C2,q) | qc Q}) by
1 0 1
A2,111 = |:0 O:| BQ,lh = |:0:| C'2,‘11 = [O O}

Az,q,‘,:[g g} Bmzm Coe = [1 1]

Both ¥; and ¥, are reachable and observable as linear switched systems, therefore they are the minimal
realizations of ysx, (0, .,.) and yx, (0, .,.). Moreover, it is easy to see that

ys, (0, ., -)\PC(TM)XTL =y =ys,(0,., ~)|PC(T,LI)><TL

In fact, ¥z can be obtained by constructing the minimal representation of Wy, i.e., X2 is a minimal realization
of y satisfying part (iii) of Theorem 9.

6. REALIZATION THEORY FOR BILINEAR SWITCHED SYSTEMS

This section deals with the realization theory of bilinear switched systems. First, definition and certain
elementary properties of bilinear switched systems will be presented. Then, in Subsection 6.1 the structure of
the input/output maps of bilinear switched systems will be discussed. Subsection 6.2 presents the realization
theory for bilinear switched systems for the case of arbitrary switching. Subsection 6.3 deals with realization
theory for the case of switching with constraints.
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Definition 4 (Bilinear switched systems). A switched system ¥ = (X,U, Y, Q,{f, | ¢ € Q,u €U}, {h, | q € Q})
is called bilinear if for each q € @Q there exist linear mappings Ag : X — X, By; X — X, j=1,2,...,m,
Cqy: X — Y such that

e VzeX u=(uy,...,up)T €EU=R™: fy(z,u) =A ¢+ 20 uiBy

e VreX:hy=Cyx.
We will use the notation ¥ = (X,U,V,Q,{(A,,{B, ;}i=1.2...m;C,) | ¢ € Q}) to denote bilinear switched
systems.

Recall from [8,9] that the state- and output-trajectory of a bilinear system can be expressed as infinite series
of iterated integrals. A similar representation exists for switched bilinear systems. In order to formulate such a
representation some notation has to be set up. For each u = (uq,...,u;) € U denote

d¢jlul =u;,j =1,2,...,m, dGlu] =

Denote the set {0,1,...,m} by Zy,. Foreach ji, -+, jx € Zpm, k> 0,t € T,u € PC(T,U) define Vj,...;, [u](t) € R
as

1 ifk=0
Vi lul(t .
a0 = { oo e st 4o
For each wy, ..., wy € Z%,, (t1,+ ,t) €T* u € PC’(T,U) define Vi, .., [u](t1, ..., tk) € R by

le,“wwk [u](tl, N 7tk) = le (tl)[u]Vw2 (tz)[Shlftl(u)} te V(wk)[Shlftk,l(u)](tk)

where Shift;(u) = Shiftzi (), i=1,2,...,k —1. For each ¢ € Q and w = jy -+~ jx,k > 0,51, jr € Zp, let
us introduce the following notation

QO _A BQE::IdXHB :_BQchquk—l"'Bqu

where Idy denotes the identity map on X. With the notation above we can formulate the following result.

Proposition 6. Using the notation above, for each xg € X, u € PC(T,U) and s = (q1,t1) - - (q, tx) € (@XT)*
the state xx(xo,u,s) and the output ys(xo,u, s) can be expressed by the following absolutely convergent series.

l’g(l‘o, u, S) Z (B%ﬂﬂk te Bql,wlzo)vwl,...,wk [U](tlv s 7tk) (15)
W1, WE €LY,
ys(zo,u,8) = Z (OQkBQkJUk "'BQ1,w1x0)Vw1,-~7wk[u](tlv---vtk)

Wi,..., WL €LY,

Proof. To show absolute convergence of the series we will use the notion of a convergent generating series defined
in Section 6.1. Using the notation of Section 6.1 define the series ¢z, : I'* — X by oy ((q1, w1) -« - (> wi)) =
Bawn, -+ Bay s @o. Then ||eg, || < ||zl MZ=1 il where M = max{||B, || | ¢ € Q,j € Zum}. That is, c,, is a
convergent generating series and by Lemma 9 the series

Fczo (u,s) = Z € (quwk "'BQ1,w1x0)Vw1,m7wk [u](tlv"'vtk)
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It is left to show that the right-hand sides of (15 ) equal the respective left-hand sides. We will proceed by
induction on k. If k = 1, then xx(xo,u, (¢1,t)) is the state under input u at time ¢ with initial state xg of the
bilinear system £ (t) = Ag,x(t) + Y7L, (By, j¥)u; . By classical results [8] on bilinear systems

mg(xmu, (qlvt)) = Z BQHUIOVW[U’](t)

weZy,

and the series ), ;. Bgw¥oViw[ul(t) is absolutely convergent. Assume that the statement of the proposition
is true for all £ < N. Notice that for each s = (¢1,%1) - (qn,tn) € (Q x T)* it holds that

(w0, u, s(qn 41, tN11)) = wn (@ (o, Shiftsn, (u), 5), (qv41,t8+1))

Using the induction hypothesis one gets

2 (0, u, $(qN+1:tN41) = D Bayir w520, 8) Vi [un] (En41)
WwN4+1€Z7,

- Z BqN+17wN+1VwN+1[UN](tNJrl) X

WN+1 EZ;‘n

X[ Z BIIN,wN"’BQ17w1x0Vw17»--,wN[u](tla"'7tN) ] =

W1, WNELY,

= Z BQN+17'U}N+1 "'BQ1,w1x0le,-~7wN+1[u](tlv"'7tN+1)

wi,...,wN4+1EZF,

where uy = Shiftzz_\r_ Lt (u). The rest of the statement of the proposition follows easily from the fact that

ys(zo,u, (q1,t1) - -~ (qr» tr)) = Cg (0, u, (q1,t1) - (i, L))

0

Reachability and observability properties of bilinear switched systems can be easily derived from the formulas
above.

Proposition 7. Let ¥ = (X,U, YV, Q,{(A;,{B,;}i=1,2,...m,Cy) | ¢ € Q}) be a bilinear switched system. Then
the following holds.

(i) The linear span W (Xy) = Span{z € X | x € Reach(Xy,X)} of the states reachable from Xy C X is of
the following form

W(XO) = Span{qu,wk o 'thwlxo | dk,---q1 € Q7k > O7wk77' LW € Zjn,xo € XO}

(ii) Define the observability kernel Ox, of ¥ by

Os,

N Co By By

q1,..,qr€Q,E>0,w1,...,wr €LY,
1,29 € X are indistinguishable if and only if
r1 — 9 € Ox

Y. is observable if and only if
Ox ={0}
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Proof. Part (i)
For each Xy C X, q1,...,qx € Q define the set Wy, ...q, (X)) C X as

Span{xs(xo,u, (q1,t1) - (qk, t)) | u € PC(T,U),t1,...,tx € T,x0 € Xo}

Notice that zx(xo,u, (q1,t1) - - - (g, tk)) = x(xs(z0, u, s), Shiftr, (u), (qr, tx)) where s = (¢1,t1) - (Qr—1,tk—1);
T, = Zf:_ll t;. Using the fact that in the discrete mode g; the system X behaves like a bilinear system
and using the results from [8,9] one gets that for each fixed s = (q1,¢1) - (qr—1,tk-1) € (Q x T)* and
ue PC([0, 571 ¢;],U) it holds that

Wy ({5 (20,1, 5)}) = Span{By, was (o, u,s) | w € Z;,}

That is,
W(117~--7Qk (‘XO) = Span{quux | (S W!I17~~~7(Ik71(X0)7w € Z:n}
Taking into account that by [9] W,(Xy) = Span{ By 2o | To € X} and Span{z | x € Reach(%, Xp) = Span{z |
€Wy, an(X0),q1, ... qk € Q,k > 0}, the statement of the proposition follows.
Part (ii)
It is easy to deduce from (15) of Proposition 6 that ys(x,.,.) is linear in z, that is, yx(ax; + fxe,.,.) =
arys(z1, ., ) + Bys(za,.,.) That is, ys(z1,.,.) = yn(z2,.,.) is equivalent to ys(x1 — z2,.,.) = 0. Thus, it is
enough to show that
x €Oy = ys(z,.,.)=0
It is clear from Proposition 6 that z1—x9 € Oy, = ys(z1—22,.,.) = 0. It is left to show that ys(z,.,.) =0 =
x € Oyx. Assume that ys(z,.,.) = 0. Then for each fixed w = (q1,t1) - - - (qk, tx) € (Q@XT)*, u € PC(T,\U),q € Q
it holds that ys(zs(z,u,w),v,(q,t)) = ys(z,u#r,v,w(q,t)) = 0 for any v € PC(T,U), where T,, = Zlf t;.
Notice that for any g € X the map PC(T,U) x T > (v,t) — ys(xo, v, (q,t)) is the input-output map of the
classical bilinear system % x(t) = A,z + E;"Zl u;j(t)(Bg,;x(t)),y(t) = Cyz(t) induced by the inital condition zy.
Thus by the classical result for bilinear systems, see [8], ys(zx(z,u, w), v, (¢,t)) = 0,Vv € PC(T,U) implies

s (z,u,w) € ﬂ ker CyBy

veZY,

Recall from the proof of part (i) the definition of Wy, 4. ({z}). Since the choice of w and ¢1, ..., ) are arbitrary,
we get that W, . .. ({z}) € ez kerCyBy . Using the proof of part (i) we get that W, ., ({z}) =
Span{ By, wy -+ Bgr,u @ | w1, ..., wr € Z7,} which implies that

.....

T E m ker Cqu,’wBQk,wk e Bq17w1

Since the choice of ¢ and ¢1,...,qr € @ is arbitrary, we get that x € Ox. This completes the proof of the
proposition. O

Let ¥y = (Xlau, V. Q, {(Aclp {B;,j}jzl,Q ..... ms qu) | qc€ Q}) and Yo = (X2vu; Y, Q, {(Aga {Bg7j}j:1,2,...,m, Cg) |
q € Q}) be two bilinear switched systems. A linear map T : X} — X is called a bilinear switched system mor-
phism from X1 to Yo, denoted by T : 31 — Yo, if the following holds

1_ g2 1_ 2 1 _ p2
TA,=AT C,=C;T TB,;,=DB;

By abuse of terminology T is said to be a bilinear switched system morphism from (X, 1) to (E/, ul), denoted by
T:(Z,u) — (El, ,u/)7 if T:% — ¥ is a bilinear switched system morphism in the above sense and T o = 1.
If T is a linear isomorphisms then (X1, 1) and (Xo, o) are said to be isomorphic or algebraically similar.
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Note that switched systems defined above can be viewed as general non-linear systems with discrete inputs.
In particular, bilinear switched systems can be viewed as ordinary bilinear systems with particular inputs.
Indeed, let @ = {q1,...,qn} and let U=RNg (U ®RYN). Denote the standard basis of RY by e;,j =1,... N.
We will denote e; by e,;. Let bj,j =1,...,m the standard basis of . Any u € U has a unique representation

u= quQ Ugeq + Zj:l,...,vmqu Ujqbj ® eq,
Consider the bilinear switched system ¥ = (X,U,V,Q,{(A,,{B, ;}i=1.2...m,C,) | ¢ € Q}). Define the

following bilinear system with input space U and output space Y

d

22t = D) (Agr)+ > g (1) (Bg)
q€Q 4€Q,j=1,....m

y(t) = > ig(t)(Cy)
q€Q

Here u(t) € U denoted the continuous input. The bilinear system above simulates ¥ in the following sense.

Let w = (qu,t1) - (qr,tx) € (Q x T)T, u € PC(T,U). Define U, ., := u € PC(T,U) such that for each
i=0,....k=1Vr €35, tj,zz.ill ti] : Ug, 1 (T) = 1, Ug, ., 5(7) = u;(7) and Ug(T) = 0,Uj,4(T) = 0,9 # ¢it1-
Then yx(z,u,w) equals the output of the bilinear system above induced by @ and initial state x. Using
the correspondence above, one could try to reduce the realization problem for bilinear switched systems to the
realization problem for classical bilinear systems and use the existing results on the realization theory of bilinear
systems. In this paper we will not pursue this approach. The reason for that is the following. First, dealing
with restricted switching would require dealing with the realization problem of bilinear systems with input
constraints. The author is not aware of any work on this topic. Second, the author thinks that using bilinear
realization theory would not substantially simplify the solution to realization problem for bilinear switched
systems. Notice however, that the equivalence of realization problems mentioned above does explain the role of
rational formal power series in realization theory of bilinear switched systems.

6.1. Input/output maps of bilinear switched systems

Let ® C F(PC(T,U)xTL,Y) be aset of input-output maps defined for sequences of discrete modes belonging

to L C Q. Let I' = Q x Z,. Define the set

JL = {(q1,w1) - (qr,wi) € T | (qu,w1), .., (qr,wi) €T,k > 0,q1--qx € L}

Define the relation R C I'* x I'* by requiring that (q,w;)(q, w2)R(q, wiws), and (¢, €)(¢ ,w)R(q ,w) hold for
any g € Q, (¢ ,w) € I and (g, w1), (g, ws) € . Let R* be smallest congruence relation containing R. That is,
R* is the smallest relation such that R C R*, R* is symmetric, reflexive, transitive and (v,v/) € R* implies
(wou, wv'u) € R*, for each w,u € T'*.
Definition 5 (Generating convergent series on JL). A ¢: JL — Y is called a generating convergent series on
JL if the following conditions hold.

(1) (w,v) € R*,w,v € JL = c(w) = ¢(v)

(2) There exists K, M > 0 such that for each (qi,w1)--- (qx,wr) € JL, (q1,w1) ... (q, wr) € r

le((qrswi) - (g wi))|| < KMl prhonl
The notion of generating convergent series is an extension of the notion of convergent power series from [8,22].

If |Q] = 1 then a generating convergent series in the sense of Definition 5 can be viewed as a convergent formal
power series in the sense of [8,22].
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Let ¢ : JL — Y be a generating convergent series. For each v € PC(T,U) and s = (¢1,t1) - (qx, tx) € TL
define the series F.(u,s) by

Fo(us)= Y cllar,wr) - (@ wi))Vaoy ooy [ul (b1 - - B

W1,..., W €LY,

We will prove that the series above is absolutely convergent.

Lemma 9. Ifc: JL — ) is a convergent generating series, then for eachu € PC(T,U), s = (q1,t1) - - - (gx, tx) €
TL the series F(u,s) is absolutely convergent.

Proof. Since u is piecewise-continuous, there exists R > 1 such that

max{|u;(t)| | j = 1,2,...,m,t € [O,Zlf t;]} < R. Then by induction it is easy to see that for all w € Z,, it
holds that |V,,[u](t;)] < Rllewl consequently

[w]!

w1 |wg|
t t
Vior ty ot = T Vo ] ()] < 22— oo b glwnltlwsl
Vot 0] = T Vi a8 € oo P
We get that
[le((gr, wr) - - (ars wi)) Vi, [Ul (b1, - )] <
Wiy, wr €Z%, |wi|+...+|wp |<N
bt b = T
1 o k —_ e e — R—
< Y EK(MR(m+1)) T S D K (MBRm 1)) <
it A+l <N =0
< Kexp(MRk(m+1)T)
where T = Zlf t;. That is, the series F.(u, (q1,t1) - (qr,tr)) is absolutely convergent. O

In fact we can define a function F, € F(PC(T,U) x TL,Y) by
F.: PC(T\U) x TL 3 (u,w) — Fe(u,w) €Y

The map F. has some remarkable properties, listed below.

Lemma 10. Let c¢: JL — Y be a generating convergent series. Then the following holds.
(i) For each s = (q1,t1) - (qx,tx) € TL, u,v € PC(T,U)
k

(VE€ [0, il tu(t) =v(t)) = Fu(u,s) = Fo(v, s)

(ii) Yu € PC(T,U),w,s € (Q x T)*,|s| >0:
w(q,0)s,ws € TL = Fe(u,w(q,0)s) = Fe(u, ws)
(iii) Yu € PC(T,U),w,v € (Q x T)*:
r=w(qt1)(gt2)v, p=wlgtr+t)v€TL = Fe(u,r) = Fe(u,p)
(iv) Let w = (wy,0) -+ (wg,0),v = (v1,0) -+ (v;,0) € (Q x T)* and s = (q1,t1) -+ (qn, tn) € (Q x T)T

ws,vs € TL = (Yu € PC(T,U) : Fe(u, ws) = F(u,vs))
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Proof. Part (i) and (ii) follow from the obvious facts that V,[u](t) depends only on u|j 4 and V,,[u](0) = 0 for
|w| > 0. Part (iv) follows from the fact that V,[u](0) = 0 for |w| > 0 and thus Vi, .. w,., [©](0,...,0,t1,...,tp) =
0if3j € {1,...,k}:|w;| >0, and

Vw1,~~-7wk+h [u](ov w048, 7th> = Vwk+1:~~~7wk+h[u](t17 s ath)

if wg41 =+« = Wiy = €. The proof of Part (iii) is more involved. We will use the following lemma.

Lemma 11. For each w € Z},:

Volul(tr +t2) = Y Vilu](ta) Va[Shifty, (uw))(t2)

8,2€7Z% ,sz=w

Using the lemma above and assuming that w = (¢1,71) -+ (¢, 7), 8 = (@1, Tit1) - (e 7), E >0, T, =
Zj;i tj if z S i, Tl = Z;’:l ti and Tl+i = T1 + tl + tQ + Zéizz:,-ll T; We get

Fo(u,r) = Z c((gqu,wi) -+ (g5, wi) (4, )(q 2)(@ig1, wig1) -+~ (G, i) %

Wi, we,5,2€ 2,

X Va[Shifts, (w)](t1)VZ[Shift, 4. (u)](t2) 15—, Vi, [Shiftr, (u)](7;) =
= Z Z [e((qr, w1) -+ (gi, wi) (g, W) (Gis1, Wi1) -+ (g, wi)) X

wi...,wkELY, WELY,

XITE_, Vi, [Shiftr, (u)] ()] > Vi[Shiftg, (w)](t1) V2 [Shiftg, ., (w)](t2)

SZz=w

= Z {c((qr,w1) -+ (g5, wi) (¢ W) (Git 1, Wig1) -+ (g, wi)) X

W1, Wh,WELY,

115, Vi, [Shiftr, (u)] (75) Ve [Shifts, (w)](f + t2) = Fe(u, p)

Proof of Lemma 11. We proceed by induction on |w|. Assume that |w| = 1, that is, w = j € Z,,. Then
t1+to t1 t2
Vwlu](ty + t2) = / dg;(r)dr = / dg;(r)dr —|—/ d¢;(t + 7)dr = V;[u|(t1) + V;[Shifts, (u)](t2)
0 0 0
Assume that w = vj. Then
t1+to t1 t2
Valultr +t2) = [ dGoValul(rdr = [ dGrVatdrar + [ deyt +7) =
0 0 0
(2
= Vy[u](t1 + 7)dr Vo, [u] (1) —|—/ dg;(ty + 7)Vy[ul(ty + 7)dr
0
By induction hypothesis we get that

/0 G+ TVlul(t AT = S Vilul(t) / "G (1 + ) V[Shifty, (u) (7)dr =

sz=v,8,2E€7Z%,

= Y Vilul(ta)Vay Shif, (0)](12)

sz=v,8,2E€7Z%,
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That is, we get that

Volul(ti +t2) = Volul(t) + Y Valul(t)Vay[Shifty, (w)(t2) = Y~ Vilul(t1)Va[Shifty, (w)](¢2)

sz=v,s,2€Z%, sz=w,s,z,EZ%,

It is a natural to ask whether ¢ determines F,. uniquely. The following result answers this question.
Lemma 12. Let L C Q* and let d,c: JL — Y be two convergent generating series. If F, = Fy, then ¢ =d.
Proof. 1t is enough to show that for any L C Q*, d,c: JL — ), if F; = F, then for each ¢1,...,qx € L

YVwy,...,wg € Zy, : c((qr,w1) -+ (g, wi)) = d((q1,w1) - -+ (g1, wg)) (16)

We proceed by induction on k. If k = 1 and ¢; € L, then define the series. ¢ : Z¥, > w — ¢((¢1,w)) and
d: Zt, 2 w — d((q1,w)). The series ¢ and d are convergent series in the sense of [8,22]. If F, = F,, then
with the notation of [22], Felul(t) = Fe(u,(q1,t)) = Fa(u, (q1,t)) = F3[u](t), which by [8] implies that ¢ = d,
that is, ¢((q1,w)) = d((¢1,w)) for each w € Z¥,. Assume that (16) holds for each k¥ < N. Let L C Q* and let
q1--qny1 € L. Let w € Z and define ¢, o) : JHy, — YV, Hy, = {w € Q* | qqw € L}, by

) o c((qr,w)s) if s = (ga,w2) - (qns1,wn41) for some wy, ..., wyi1 € ZF,
(q1,w) 0 otherwise

It is easy to see that for all (s1,21)--- (s1,21) € JHy,
g ((s1,21) -+ (51, 20))[| < MIWLK M1t t o]

That is, cq, . is a generating convergent series. It is also easy to see that for each s € THy,

Feim(uss) = Z c((qi, w) (g2, w2) - (qN+1, WN+1)) Vg .o wp g [W] (B2, - -+ TN g1)

Wa,..., WN4+1€ELY,

if s = (g2,t2) - (gn+1,tn+1) for some to, ... ty11 € T and Feim (u,s) = 0 otherwise. It follows from the
proof of Lemma 9 that

I

Cqq,w

l
(u, (s1,71) - (s1,7))|| < le‘Kexp MRI(m +1) ZTl
1

where R > max{1l, max{|u;(¢)| | j =1,2,...,m,t € [0, Ell 7:]}}. Fix an arbitrary r = (g2,%2) ... (gn+1,tN41),
ta,...,tny4+1 € T. Then the map
Feg(u,r) 2y, 5w Fey (u,r)

is a generating convergent series. Moreover, for any v € PC(T,U),t € T

Fo(v#tu, (g, t)r) = > Fuy () Vi [0] (1)
weZy,
Define Fy, . and Fyg, (u,7) is a similar way. Then from F. = Fj; we get that for all u,v € PC(T\U), w € Z7,,
teT

Fo(v#u, (q1,t)r) = Fa(v#eu, (q1,t)r)
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For each fixed u € PC(T,U) by induction hypothesis for k = 1 we get that

Yw € Zjn : Fqu,w (ua 7‘) = qul,w (u,r)

Notice that F., ,(u,s) =0 = Fy, ,(u,s) for all s # (g2,72) - (qn+1,Tn41) for some 7o,...,7n41. That is,
Fe, . = Fa, ., and by induction hypothesis for k = N we get that c4, w(s) = dg, w(s) for all w € 75, s €

JH,,,|s| < N. In particular, for each wy - - - wn41 € Z,

C((Qlawl)((hﬂl&) s (QN+1; wN+1)) = qu,wl)(ff) = d(ql,wl)(x) = d(((h,wl)((h, w2) te ((IN+17U/N+1))

where & = (g2, w2) - - (qN+1, WN+1)- O

Now we are ready to define the concept of generalized Fliess-series representation of a set of input/output
maps.

Definition 6 (Generalized Fliess-series expansion). The set of input-output maps ® C F(PC(T,U) x TL,Y) is
said to admit a generalized Fliess-series expansion if for each f € ® there exist a generating convergent series
¢y JL — Y such that Fcf = f.

Notice that if ® has a generalized kernel representation with constraint L, then ® has a generalized Fliess-
series expansion given as follows. For each f € &, let

cr((qr,wi) - (qr, wi)) =
Dlwslslod (I® iy wy, € {0}
D‘“’k"""'wl"ng;ﬁ.q,ej if | = min{z | |w,| > 0}, w, ..., w41 € {0},
wp = vj,v € {0}, 7 € Zm \ {0}
0 otherwise

From Lemma 12 we immediately get the following corollary.

Corollary 6. Any ® C F(PC(T,U) x TL,Y) admits at most one generalized kernel representation with con-
straint L.

The following proposition gives a description of the Fliess-series expansion of ® in the case when @ is realized
by a bilinear switched system.

Proposition 8. (3, u) is a bilinear switched system realization of ® with constraint L if and only if ® has a
generalized Fliess-series expansion such that for each f € ®,(q1,w1) - (qk,wx) € JL

cf((‘]hwl) T (Qk7wk)) = Cyq, Bgiwy, -+ Bq1,w1ﬂ(f) (17)

Proof. If (¥, p) is a realization of ®, then by Proposition 6 for each f € ®, w = (q1,¢1) - (qx,tx) € TL,
u € PC(T,U)

fu, w) = ys(p(f),u,w) =
= Z qu BQk-,wk T Bq17w1Vw1 ,,,,, Wy [U](tla cee ,tk)

w,..., WL €LY,
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That is, ® admits a generalized Fliess-series expansion of the form given in (17). Conversely, if ® admits a
generalized Fliess-series expansion of the form (17), then using Proposition 6 one gets

f(’LL, ((h,tl) T (qutk)) =
= Z cf((Qlawl)"'(qk7w/€))vw1,<-~7wk [u](tlv"'vtk) =

wi,..., Wk €LY,
= Z CQkBQk’wk "'BQhwuu(f)thm,wk[u](tla""tk) =
wl,...,wkEZ:n

=ys(u(f),u, (q1,t1) -~ (qr, tr))

That is, (X, 1) is a realization of ® with constraint L. O

6.2. Realization of input/output maps by bilinear switched systems with arbitrary switch-
ing

In this section realization theory for bilinear switched systems will be developed. We start with the case

when the input/output maps are defined for all switching sequences. Let ® C F(PC(T,U) x (Q x T)*, V) be a

set of input/output maps and assume that ® has a generalized Fliess-series expansion. As in the case of linear

switched systems, we will associate with ® an indexed set of formal power series Ug. It turns out that every

representation of Ug determines a realization of ® and vice versa. We will be able to use the theory of formal

power series to derive the results on realization theory. B
Recall that ' = Q x Z%,. Let ' ={(q,j) | ¢ € Q,j € Z,}. Define ¢ : T' = T by

¢((q7w)) = (qvjl)(qvjk)v ¢((q76)) =€

where w = j1---jx € Z%,, j1,---3Jk € Zm,k > 0. The map ¢ determines a monoid morphisms ¢ : I* — I*
given by

o((qr,w1) -+ (qr, wr)) = ¢((q1,wi)) - - - ¢((qw, wi))
for each (g1, w1),. .., (qr, wi) € T,k > 0. It is also clear that any element of I' can be thought of as an element of
f, i.e. we can define the monoid morphism ¢ : I'* — r by i(e) = e and i((q1, j1) - - (qk, Jr)) = (q1,71) - - - (qks Jk),
(¢1,41),- -, (g, jr) € D CT. Tt is also easy to see that ¢(i(w)) = w,Yw € I* and w(q, €)R*i(d(w))(g,¢€), q € Q.
For each f € ®,q € Q define the formal power series S;, € R? < I'* >> as follows

Sra(s) = cs(i(s)(g;€)) , Vs € T

It is easy to see that in fact ¢f(v(q, €)) = Sy,q(0(v)) = cf(i(p(v))(q, €)), since (v(g, €),i(p(v))(g,€)) € R*. Assume
that @ = {q1,...,qn}. Define the formal power series Sy € RNP < I'* >> by

Sfylh
St

Sp=1| "

Stan

Define the set of formal power series Vg associated with ® as follows

Uy ={S; eR"P < T* >| f € B}

Define the Hankel-matriz He of ® as the Hankel-matrix of Ug. i.e. Hp = Hy,.
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Let ¥ = (X, U, Y, Q,{(A;;{B, ;}i=1.2...m,C,) | ¢ € Q}) be a bilinear switched system. Define the represen-
tation Ry , associated with the realization (X, u) of @ by

RZ,M = (Xa {B(q,j)}(q,j)el“a 1, C)

Cq 1
C‘h

where By ;) = Bgj: X = X, g€ Qi =1,....,m, Byo=4,: X = X,qeQ, C = : X — RPN and

Con
Ir=p(f)eX, fed.

Let R = (X, {M)}q.j)er: 1, C) be a representation of Wg. Define the realization (Xg, ug) associated with
R by

Er= XUV, Q.{(A;{By }i=12,..m, Cy) | 1 € Q})
where pp(f) =If € X, f € ®, Byj = Mg : X =X, q€Q,j=1,....,m, Ay = M0 : X - X,qg € Q and
Cq,
the maps C; : X — Y, q € Q are such that C = . |. It is easy to see that Ry, ., = R. It turns out that
C

aN
there is a close connection between realizations of ® and representations of WUg.

Proposition 9. Assume that ® admits a generalized Fliess-series expansion. Then, (a) (X, ) realization of
® if and only if Ry, is a representation of Ve, (b) Conversely, R is a representation of Wo if and only if
(Xgr,pr) is a realization of ®.

Proof. It is enough prove Part (a). Part (b) follows from Part (a) by using the equality Ry, ., = R. Assume
that ¥ = (X, U, Y, Q,{(A,,{B, ;}j=12...m,C,) | ¢ € Q}). Notice that the map ¢ : I — I'* is surjective and
for each wy, ..., wg € Z,, it holds that

Bgw - wp = B Bgwy 1 - Bgw, = B(q,wk) T B(q,w1) = B¢>(q,w1---wk)

Then it is easy to see that Ry , is a representation of Wq if and only if for all (g1, w1),..., (qk,wi) €T

cr((qr,w1) - (qr, wr)) = cp((qr,w1) - -+ (qr, wi)(qr, €)) =
= St.q(@((q1,w1)) -+ (g, wk))) = Cop Bg((grun)) *** Bo((arwn ) Iy =
= CQkBQkﬂUk e Bth,wl:u(f)

But by Proposition 8 this is exactly equivalent to (X, 1) being a realization of ®. O

From the discussion above using Theorem 1 one gets the following characterization of realizability.

Theorem 11. Let ® C F(PC(T,U) x (Q x T)*,Y). The following are equivalent

(i) @ has a realization by a bilinear switched system
(ii) ® has a generalized Fliess-series expansion and Vg is rational
(i) ® has a generalized Fliess-series expansion and rank He < 400

Proof. First we show that (i) <= (ii). By Proposition 8 if (X, 1) a bilinear switched system realization of @,
then ® has a generalized Fliess-series expansion. From Proposition 9 we also get that Ry , is a representation
of Uy, i.e. Uy is rational. Conversely, if ® has a generalized Fliess-series expansion and R is a representation
of ¥y, then from Proposition 9 it follows that (X g, pig) is a realization of ®. Since by Theorem 1 ¥g is rational
if and only if rank Hy, = rank Hg < +o00, we get that (ii) and (iii) are equivalent. O
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The next step will be to characterize bilinear switched systems which are minimal realizations of ®. In
order to accomplish this task, we need to the following characterization of observability and semi-reachability
of bilinear switched systems.

Lemma 13. Let X be a bilinear switched system. Assume that (3, p) is a realization of ®. Let R = Ry, .. (X, 1)
is observable if and only if R is observable. (X, 1) is semi-reachable from Im p if and only if R is reachable.

Proof. Notice that By . = Bg((q,w)) and for each (g1, w1),..., (qr, wr) € r

ker CBy((g, 1)) * Bo((aeawon)) = [ ) ket CgBgy o, By,
q€eQ

Notice that Imp = {u(f) | f € ®} = {Iy | f € ®}. Then it follows from Proposition 7 that Oy, = Og
and Wgr = Span{x | x € Reach(X,Imu)}. Then the lemma follows from Proposition 7 and the definition of
observability and reachability for representations. O

It is also easy to see that dim ¥ = dim Ry, , and dim R = dim X . In fact, Proposition 9 implies the following.

Lemma 14. If R is a minimal representation of Ve then (Xg, ugr) is a minimal realization of ®. Conversely,
if (3, ) is a minimal realization of ®, then Ry, is a minimal representation of Vg .

The following lemma clarifies the relationship between representation morphisms and bilinear switched system
morphisms.

Lemma 15. T: (X, p) — (Z/,/f) is a bilinear switched system morphism if and only if T': Ry, — (E/,ul) is
a representation morphism. Moreover, T is injective, surjective, an isomorphism as a bilinear switched system
morphism if and only if T is injective, surjective, an isomorphism as a representation morphism.

Proof. T is a bilinear switched system morphism if and only if

/

TA = AT Cy=C,T TBy;=B,,T Tu(f)=u(f)

T for each j € Zy,, TIf =

/

for each ¢ € Q,j5 = 1,2...,m and f € ®. This is equivalent to T'B, ;) = B(q 7

Tu(f) = pw'(f) = I and
Co (€, T)
C=1|:|= : =C'T
CQN (CC/IN T)
That is, T is a representation morphism. O

Using the theory of rational formal power series presented in Section 4 we get the following.

Theorem 12. Let ® C F(PC(T,U) x (Q x T)*,Y). The following are equivalent

(1) (Zmin, tmin) 18 a minimal realization of ® by a bilinear switched system
(i1) (Zmmin, tmin) s semi-reachable from Imp and it is observable
(iii) dim ¥y, = rank He
(iv) For any bilinear switched system realization (X, ) of ®, such that (X, ) is semi-reachable from Imy,
there exist a surjective homomorphism T : (X, 1) — (Zmin, min)- In particular, oll minimal realizations

of ® by bilinear switched systems are algebraically similar.

Proof. (Ymin, tmin) is a minimal realization if and only if that Ry.in = Rx.,..,. jums 1S minimal representation,
that is, by Theorem 2 R,,;, is reachable and observable. By Lemma 13 the latter is equivalent to (Zin, fimin)
being semi-reachable from Im g and observable. That is, we get that (i) <= (i4). By Theorem 2 a repre-
sentation R, is minimal if and only if dim 3,,;, = dim R,,,;, = rank Hg, = rank Hg. That is, we showed
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that (i) <= (iii). To show that (i) <= (iv), notice that (Xin, ftmin) is a minimal realization if and only
if Ry, umin 1S @ minimal representation. By Theorem 2 R,,;, is minimal if and only if for any reachable rep-
resentation R there exists a surjective representation morphism 7' : R — Ryip. It means that (X, tmin) 1S
minimal if and only if for any reachable representation R of U4 there exists a surjective representation morphism
T:R — Ry, um But any reachable representation R gives rise to a semi-reachable realization of ® and
vice versa. That is, we get that (X,,in, tmin) is minimal if and only if for any realization (Z/, /f) of ® such that
(Z,, p/) is semi-reachable from Imy there exists a surjective representation morphism 7" : Ry v — Ry, .\ pimin -

By Lemma 15 we get that the latter is equivalent to T : (E',u') — (Znin, bmin) being a surjective bilinear
switched system morphism. From Corollary 1 it follows that if (E/7 u/) is a minimal realization of ®, then there
exists a representation isomorphism T' : Ry v — Ry, u:, Which means that (Bimin, tmin) i gives rise to
the bilinear switched system isomorphism 7" : (Z',ul) — (Zmmin, tbmin), that is, (E',u/) and (X,in, min) are
algebraically similar. O

6.3. Realization of input/output maps by bilinear switched systems with constraints on
the switching

The case of restricted switching is slightly more involved. As in the case of arbitrary switching, we will asso-
ciate a set U4 of formal power series over I with the set of input-output maps ® C F(PC(T,U)xTL,Y). Every
representation of Wg gives rise to a realization of ®. If L is a regular language, then existence of a realization
of ® implies existence of a representation of Wg. However, the dimension of the minimal representation of e
might be bigger than the dimension of a realization of ®. Any minimal representation of U4 gives rise to an
observable and semi-reachable realization of ®. But this observable and semi-reachable realization need not be
a minimal one. Extraction of the right information from ® and the construction of ¥¢ is much more involved
in the case of restricted switching than in the case of arbitrary switching. -

Recall the definition of the relation R* C [* x T* from Subsection 6.1. Define the set JL C r* by

ﬁz{sef*|3w€JL:(w,s)eR*}

In fact, JL contains all those sequences in I'* for which we can derive some information based on the values of
a convergent generating series for sequences from JL. More precisely, i c:JL — ) is a generating convergent
sequence, then ¢ can be extended to a generating convergent series ¢ : JL — ) by defining ¢(s) = ¢(w) for each
s € fI//, w € JL,(s,w) € R*. It is clear that for any s € JL there exists a w € JL such that (s,w) € R* and if
(s,w), (s,v) € R*, w,v € JL, then c¢(w) = c¢(v) = ¢(s), since ¢ was assumed to be a generating convergent series.
If (s,z) € R*, then ¢(s) = ¢(z). Moreover, if (s,w) € R* and s = (21,21) -+~ (2, 27) and w = (¢1,v1) - - - (qk, Vg ),
then from the definition of R it follows that 3% |v;| = 324 |a|, that is, ||[&(s)|] = ||c(w)]] < KMl pplosl =
KME1vil = KM=l That is, ¢ : JL — Y is indeed a generating convergent series. Moreover, on JL the
sequence ¢ coincides with ¢, that is, if w € JL, then ¢(w) = ¢(w). By abuse of notation, we will denote ¢ simply
by ¢ in the sequel. .

For each ¢ € @ define JL, = {v(¢,w) € JL |v € I*, (g, w) € T}. Let Ly={wel*|3veJL;: ¢(v) =w}.
Notice that

we Ly <= i(w)(g,€) € JLq

Indeed, if i(w)(g,€) € JL4, then ¢(i(w)(q,€)) = ¢(i(w)) = w € L,. Conversely, if w € L,, then w = ¢(v) for
some v € JL,. But then v = u(g, z) and (u(qg, 2)(q, €), u(g, ze) = v) € R* and (v(g,€),i(w)(g,€)) € R* which
implies (v, i(w)(g,€)) € R*. Since v € JL, we know that i(w)(gq,€) € JL, that is, i(w)(g,€) € JLq.

Let ® C F(PC(T,U)xTL,Y) be aset of input/output maps defined on sequences of discrete modes belonging
to L. Assume ® admits a generalized Fliess-series expansion. For each ¢ € @, f € ® define the formal power
series T 4 € RP < T'" > by

| cp(i(s)(g,e)) ifse Ly
Thq(s) = { 0 otherwise
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Notice that for each s € L, there exists a w = u(g,v) € JL such hat Ty ,(s) = ¢y(w). Indeed, s € L, implies that

there exists a w = (¢1, 1) - - - (q1, 1) (¢, ©1+1) € JL such that (w,i(s)(g,€)) € R*. Thus T} 4(s) = cs(i(s)(g,€)) =

¢f(w). The intuition behind the definition of Ty, is the following. We store in T 4 the values of all those ¢f(s)

which show up in the generalized Fliess-series expansion of f(u,w), for some switching sequence w € T'L such

that w ends with discrete mode g. For all the other sequences from I'* we set the value of T 4 to zero.
Assume that Q = {qi,...,qn}. Define the formal power series Ty € R"? < I'* >> by

Tfafh

Tf _ Tf.alh

Ty

AN

Define the set of formal power series Vo associated with ® as follows
Uy ={T) e RY? < T* >| f € 3}

Define the Hankel-matriz Hg of ® as the Hankel-matrix of ¥4, that is, Hs = Hy,.
. (1,1,....,1)T ifwelL

4 * — ) 9 ) q

For each ¢ € @ define the formal power series Z, € R? < I'* > by Z,(w) = { 0 otherwise

Let Z € RNP < T > be

Z = :
Zan

and let Q be the indexed set {Z | f € ®},1e Q:® — RV? < T'* > and Q(f) = Z, f € ®. With the notation
above, the following holds.

Lemma 16. Let ¥ = (X,U,V,Q,{(A,,{B, ;}i=12...m:C,) | ¢ € Q}) be a bilinear switched system. Assume
that (3, 1) is a realization of ® and ® admits a generalized Fliess-series expansion. Let ® = {ys(u(f),.,.) €
F(PCO(T,U) x (Q xT)", ) | f € ®} and let Uy be the set of formal power series associated with ® as defined
in Subsection 6.2. That is, Uy = {S; e RN?P < T >| g€ ®'}. Let S; = Sy (u(f),.,.) and let © = {Sy | f € ®}.
Then the following holds

Upg =000

Proof. Define i’ : ® — X by p' (ys(u(f),-,.)) = pu(f). Since (3, u) is a realization of @, if for some f1, fo € @ it
holds that ys(u(f1),.,.) = Z/E/(#(fz), o), then fi =ys(u(f1), -, )po@uyxrrL :lyz(u(fz)a s )lpeeruxrr = J2.
That is, fi = fo and thus p is well-defined. It is also easy to see that (3, u ) realizes @, therefore ® has
a generalized Fliess-series expansion. For each f € ®, denote by cs : JL — Y the generating convergent
series corresponding to f, i.e. F., = f. Denote by dy : I* — ) the series corresponding to yx(u(f),.,.),
ie. Fy, = ys(u(f),.,.). By Proposition 8 (X,u) is a realization of ® with constraint L, if and only if
Vw(q,v) € JL : cy(w(q,v)) = CyBguBeuyp(f). Here we used the fact that if w = (q1,21) - (qr, 2x), then
By, 2 By 2y = Bgw)- But (3, p1) realizes @', so by Proposition 8 it holds that Vs(q,z) € JL : ds(s(g,x)) =
C’qu,xB(b(s)ul(yg(,u(f),.,.)). Notice that if (s(g,x),w(q,v)) € R*, then ¢(s(q,x)) = ¢(w(q,v)), and there-
fore Bq,quﬁ(w) = Bd)(w(q,v)) = Bd)(s(q,a:)) = Bq,$B¢(S). Notice that p(f) = ,u/(yg;(,u(f),.,.)). Thus for each
s(q,x) € JL, w(q,v) € JL we get that c¢(s(q,x)) = ¢f(w(q,v)) = ds(s(g,x)). Thus, for each ¢ € Q, f € P,
s € Lg we get that Ty q(s) = cf(i(s)(g,€)) = dy(i(s)(q,€)) = Sfq(s). Notice that for each s ¢ Lg, T q(s) =0
and Z,(s) = 0. That is, Ty, = Sy, © Z, and therefore Ty = Sy © Z. O

If L is regular, then € turns out to be a rational indexed set.
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Lemma 17. If L is regular, then Lqy,q € Q are regular languages and §) is a rational indezxed set of formal
power series.

Proof. It is enough to show that if L is a regular language, then L,,q € @ are regular languages. Indeed,
if Ly,q € @ are regular, then {e?Zq},q € @,7 = 1,...,p are rational sets of formal powers series, since

eJTZq(w) =1 <= w € L,. Therefore, {Z = [Z] --- Z{N]T} is a rational set, therefore € is a rational
indexed set of formal power series by Lemma 1. Define prg : I'" — Q* by pro((¢1, /1) -+ - (qk, Jk)) = 1 - G-
Recall from Subsection 5.1 the definition of the sets F,(w) and Zq. Lemma 8 says that if L is regular, then
Zq is regular. We shall prove that L, = prél(zq). From this equality it follows that if Eq is regular, then
L, is regular. Indeed, prg is a monoid morphism, and therefore can be realized by a regular transducer
see [3]. Then the regularity of L, follows from the classical result on regular transducers. Alternatively, if
A= (5,Q,0,F) is a finite automaton accepting Zq, then the deterministic finite automaton A = (S,T,4 , F)
defined by 8 (s, (q,7)) = 6(s,q), (¢,§) € T, s € S accepts L.

We now proceed with the proof of the equality L, = prél(zq). First we show that L, C prél(zq). If v =
(¢1,71) -+ (qi, §i) € Lg, then there exists w(q, z) € JLgy, such that ¢(w(q,p)) =v. Let w = (z1,m1) - - - (21, Mi)-
Then z---2,q € L. Let | = min{j | [m;| > 0}. Let s = z1--- 21, © = 2 --- 2. From ¢(w(q,2)) = v it
follows that z; = ¢, = --- = Qmyls Zitl = Qmg|+1 = = Qmgga|s fori=101+1,...,k—1, Qmel+1 =Gt = G,
and |p| + Zle |m;| = t. That is, we get that ¢ ---qq = Zl\mzl . ..z]Lm"‘l
(s, ((Imal, ..., Jmul, Ipl), x) € Fylgr---qr), ie. qv---q = pro((g1,71) - (qe, i) € Lq. That is, Ly C prél(Lq).
Let w € Eq and let (u, (o, h)) € Fy(w). Assume that v = qi...q and b = 21+~ 2k, Q15+, Qpu|s 21, - - 2k € Q.

qPlg and szq = 21 - z1.q € L, that is,

Since w = 27" -+ 2%, we get that v € prél(w) if and only if v = vy -+ vk, v; = (23, 41,0) -+ (%iy Jayi) € TF, Jui] =

[e%2) ji,j € Zmyl = 1,~--;Oéj7j = 17"'7k' Let]i = jl,ijQ,i-”jozuia s = (Q1a€)"'(Q|u\a€)(zlaﬂ) """ (Zkaji)
Since uv € L, we have that s € JL and z, = ¢ implies that s € JL,. But ¢(s) = ¢((21,51) - - - (é(2k, Jr)) =
v1 -V, € Lg. That is, prél(fq) C Lg, and consequently L, = prél(fq). O

Let R = (X,{M,}.er,I,C) be a representation of Ug. Define the bilinear switched system realization
(3R, tr) asscociated with R as in Section 6.2. That is,

23R = (Xau,y7Qa {(Aq7 {Bq’j}j:1,2,...,macq) ‘ q € Q}) and MR(f) = If

Clh
where Cy : X — Y, q € Q are such that C'= | : |, Byj = M, ), 4 = M(q0), ¢ € Q,5 =1,...,m. It is easy

C‘IN
to see that (Xg, ug) is semi-reachable (observable) if and only if R is reachable (observable).
Recall from Subsection 5.3 the definition of comp(L):

comp(L)z{w1-~wkEQ*|zwk =0, wy,...,w, € Q}

The following statement is an easy consequence of Proposition 8.

Theorem 13. If ® has a generalized Fliess-series expansion with constraint L and R = (X,{B.}.er, I, 5’) 18
a representation of Yo, then (Xg, ur) is a realization of ®. That is, if Yo is rational, then ® has a realization
by a bilinear switched system. Moreover, for each f € ®, w € T(comp(L))

Vu € PC(T,U) : ys(p(f), u,w) =0
Proof. Let (g, pur) the realization associated with R. Assume that

ER = (X7uay7 Q7 {(Aq7 {Bq7j}j=172,...,’m; Oq) | q S Q})
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Since R is a representation of Wg, we get that for each (g1, w1) - (¢x, wr) € JL, f € ®

cr((qr,w1) - (s, wi)) = Ty,q. (O((q1, wr) -+~ (qr, wi))) =
= CQkB¢((Qk7'wk)) o 'B¢((Q17w1))‘[f = qu:quHwk T Bth,wlﬂ(f) (18)

We used the definition of (X g, ur) and the fact that B j,)...(q.5,) = Be((g,j1--5)) for each ¢ € Q, j1, ..., j1 € Zi,.
From Proposition 8 we get that (18) implies that (X g, pur) is a realization of ®.

Let w = (q1,t1) - (qr,tr) € T(comp(L)), that is, Eqk = (). Then for each s = (q1,w1) - (g, wx) € I* we
get that Ty 4, (¢(s)) = 0, since ¢(s) ¢ Lg,. Indeed, Eqk_ = () and from the proof of Lemma 17 we know that
L, = prél(zq). If ¢(s) € Lg,, then we get that pro(d(s)) € Ly, = 0, a contradiction. But g = ys(u(f),.,.)
has a generalized Fliess-series expansion, and from Proposition 8 it follows that c¢4((g1,w1) - (qr, wr)) =
CoBywr -+ - Bayun pb(f). Since R is a representation of ¥g, we also get that Cy, By, wy, - Bgyw t(f) =
CQkB¢((Qk;wk)) e B¢((q17wl))lf = Tf,% (¢((q1,w1) cee (;S(qk, wk)) = 0. That is, if g1 ---qr € comp(L), then for
each wy,...,w, € Z}, it holds that

CQ((qlvwl) e (qkawk)) =0
Then the definition of F,, implies that I, = g = 0 for each ¢ - - - qx € T'(comp(L)). O

We see that rationality of Uy, i.e. the condition that rank He < 400, is a sufficient condition for realizability
of ®. It turns out that if L is regular, this is also a necessary condition. From the discussion above, Lemma 16
and Lemma 2 one gets the following.

Theorem 14. Assume that L is reqular. Then the following are equivalent.
(i) ® has a realization by a bilinear switched system
(ii) ® has a generalized Fliess-series expansion and rank He < 400
(iii) There exists a realization of ® by a bilinear switched system (3, u) such that ¥ is observable and semi-
reachable from Imp and

Vf €ED: yZ(,U/(f)7 ) '>|PC(T,L{)><T(compl(L)) =0
and for any (Z/,ul) bilinear switched system realization of ®
dim ¥ < rank Hg - dim &

Proof. (1) +— (ii)
By Lemma 16, if (X, 1) is a realization of ®, then ® has a generalized Fliess-series expansion and ¥4 = © ® ().
Since (X, ) is a realization of ® = {ys(u(f),.,.) | f € ®} we get that Wy is rational. Define the map
3 fi(f)=ys(u(f),.,) € d. Since © = {Si(py | f € @}, Lemma 4 implies that © is rational. Since L is
regular, by Lemma 17 Q is rational, therefore by Lemma 2 W = O @ Q is rational, that is, rank He < +oc.
Conversely, if ® admits a generalized Fliess-series expansion and rank Hg < 400, i.e. Uy is rational, then there
exists a representation R of ¥4 and by Theorem 13 (Xg, ugr) is a realization of ®

(i1) <= (iii)
It is clear that (iii) implies (i), which implies (ii). We will show that (ii) implies (iii). Assume that ® admits
a generalized Fliess-series expansion and Ve is rational. Let R be the minimal representation of Wg. Then
(3R, tr) is a realization of ®, moreover X is observable and semi-reachable from Imy. From Theorem 13 it
follows that

ys(pr(f), - )lPc(ru)xT(comp(r)) =0
Let (X', 1) be a realization of ®. Then R = Ry, is a representation of W4/, where d = {yg (W (f),..) |
f € ®}. From Lemma 16 we know that Vo = © © 2, where © = {S, /(s | [ € ®}. Assume that
.

R = (X/, {B;}Zep,ll7c,). Then R = (X/, {B;}zep,f, C/), where ff = Iyzl (' (f),..)» | € ®, is a representation
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of ©. But R is a minimal representation of Vs, therefore dim R = dim ¥z = rank Hy,. From Lemma 2 it
follows that rank Hy, = rank Hogpn < (rank Hq)(rank Hg). Since dim ¥ = dim R = dim R > rank Hg, we
get that

dim X < rank Hg - dim Y

Taking (Xg, pur) for (3, u) completes the proof. O

The following example demonstrates existence of a semi-reachable and observable realization of ®, which is
non-minimal.

Example
Let Q = {1,2}, L = {¢"q» | k > 0}, Y = U = R. Define the generating series ¢ : JL — R by ¢((q1, w1)(g2, w2)) =
2% where wy = 0902 --- 207, k = Zizojl’ zi € {1}%,i = 1,...,1. Let ® = {F.}. Define the system
L1 =R ERR,Q {(Ag, B1Cq) | ¢ € {a1,q2}}) by Agy =1,Bg,1 =1,C, =1and Ay, =2, B, 1 =1,C¢, = 1.
Define the system X5 = (R2, R, R, Q, {(A,, B, 1,
Cq) | g € Q}) by

~ 1 0 ~ 1 0 ~
Ath = |:0 0:| Bg1 = [0 0:| Cth = [0 O]

~ 0 0 ~ 0 0 ~

Ag, = [2 2:| By, = [1 1:| Cq, = [1 1]
Let py : F. — 1 and pp : F. — (1,007 € R2. Both (¥1,p1) and (X2, ) are semi-reachable from Imp
and Imps respectively and they are observable, therefore they are the minimal realizations of ys, (1,.,.) and
ys, ((1,0)T,.,.). Moreover, it is easy to see that (3;, 1), = 1,2 are both realizations of ® with constraint L.

Yet, dim¥; = 1 and dim Xs = 2. In fact, X5 can be obtained by constructing the minimal representation of
Ug, i.e., Xo is a realization of F, satisfying part (iii) of Theorem 14.

7. CONCLUSIONS

Solution to the realization problem for linear and bilinear switched systems was presented. The realization
problem considered is to find a realization of a family of input-output maps. Moreover, it is allowed to restrict
the input-output maps to some subsets of switching sequences. Thus, the realization problem covers the case
of linear and bilinear switched systems where the switching is controlled by an automaton and the automaton
is known in advance. The results of the paper extend those of [14], where a much more restricted realization
problem was studied. The paper offers a new technique, the theory of formal power series, to deal with realization
problem for switched systems.

Topics of further research include realization theory for piecewise-affine systems, switched systems with
switching controlled by an automaton or a timed automaton and non-linear switched systems.
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APPENDIX A. PROOFS FOR FORMAL POWER SERIES

Proof of Theorem 1. Part (i)
Notice that for any w € X™*, w = wy -+ - wg, w1, ..., wg € X and for any T € RP <« X* >

woT =wgo (wg_10(---(wyoT)--+)))
Since B = S, and A,T = 0 o1, we get that for all w € X*

w o Sj = Aij = Aij
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But Sj(w) = wo S;(e) = C(wo S;), so we get that S;(w) = CA,Bj, i.e., Ry is indeed a representation of U.

Part (ii)
The statement

dim Wy < 400 = V¥ is rational

follows from part (i) of the theorem. We will prove that ¥ rational = dimWy < 4o00. Assume R =
(X, Aysex, B,C) is a representation of W. Let dimX = n and let ¢, € X,l = 1,2,...,n be a basis of X.
Define Z; € K? < X* > by Zj(w) = CAye;, w € X*. For each j € J there exist o 1,...,a;, € R such that
B; =Y, aje;. We get that

Sj(w) = CA,B = Za]lCA e = a1 Zi(w
=1

On the other hand . N
w o Zl(v) = Zl(wv) = CAUAwel = Zﬂk,lCAvek = Zﬂkyle

where X 3 Aye; = >} Braer. Thus, wo S;,8; € Span{Z; | i = 1,...,n} holds, which implies that Wy C
Span{Z; | i =1,...,n}. That is, dim Wy < +o0.

Finally, we show that dim Wg < +00 <= rank Hy < 4o00. In fact, dim Wy = rank Hy and Wy is naturally
isomorphic to the span of column vectors of Hy. Indeed, it easy easy to see that woS; corresponds to (Hy). ()
and the rest of the statement follows easily from this observation. O

Proof of Lemma 3. Let R = (X,{As,}sex, B, C) be a representation of ¥. Define R, = (Wg, {4} }rex,B",C")
by A, = Aslwy, Bj = Bj € Wg and C" = C|w,. Since Wy is invariant w.r.t A,, the representation R, is
well defined. It is easy to see that C" Ay, B] = C'A, Bj, so R, is a representation of W. It is easy to see that
Wg, = Wg and O, = O N Wg. Define R, = (Wg/Or,,{As}sex, B,C) by A,[z] = [ALz], B; = [B}] and
é[x] = C"x, for each x € Wg. Here [z] denotes the equivalence class of Wgr/Opg, represented by z € Wh.
The representation R, is well defined. Indeed, if 1 — z2 € Og,, then Vw € X* : C" Al (x1 — x2) = 0, so we
get that Vw € X* : CTA”T A" (1 — x5) = 0. That is ATz — ATay € Og,. It implies that A, is well defined.
It is straightforward to see that Ej is well defined. Since x1 — z2 € Opg, implies that 1 — x2 € ker C", we
get that C is well defined too. Moreover égwéj = CA,Bj, so R, is a representation of W. It is easy to see
that Og, = {0}. That is, R, is observable. Moreover, R, is reachable, since Span{gw,B; |we X*,jeJ}=
Span{[A},B7] | j € J,w € X*} = Wg/Og, . O

Proof of Theorem 2. (i) = (ii)
Assume that Wg # X or Og
such that

in in 7 {0}. Then by Lemma 3 there exists Rean = (Rmin)ean representing ¥

dim R4, = dim WR'nLin/(ORnLin N WRmin) < dim Rpin

which implies that R,,;, is not a minimal representation.

(ii) = (iii)
Let R = (X,{A.}.ex, B, C) be areachable representation of ¥. Notice that CA,,B; = Sj(w) = C™" Ay¥" By,
Define T by T'(A, B;j) = A" Bf*™. We will show that T is well-defined. Assume that A, B; = 22:1 ag Ay, Bj,
holds for some w,wq,...w; € X* j1,....,51 € J, ai,...,a; € R. Then for each v € X* it holds that
CA,A,B; = ZL L axC A, Ay, By, which implies C™in Ain Amin pmin — $°0 | Gmin gmin gmin gmin  Tlys,
A’um"B;"i” Zk 1 akA"””B’?Zi” € Og,,.. = {0} which means that AZ””B}’”" = Zk 1 akAmmBmm That is
T(A.Bj) = Zk:l arT(Aw, Bj, ). Thus, T is indeed well-defined and linear. The mapping 7' is surjective, since
the following holds.

Xomin = Span{A}}"" B | j € J} = Span{T(A,B;) | j € J} = T(X)
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We will show that T defines a representation morphism. Equality TA, = A™"T holds since
T(A,AuBj) = A?i”Agi”Bgnm = A""T(A,B;). Equality B;”i" = T'B; holds by definition of T'. Equality
CrninT = C holds because of the fact that Cyin A" Bf*"™ = CAyBj = CninT(Aw Bj).
Indeed, if R is arepresentation of ¥, then it follows from the proof of Lemma 3 that R, = (Wg, {A.|w, }zex, B, Clwy)
is a reachable representation of ® and dim R, < dim R. By part (iii) there exists a surjective map T : R, — Rnin.
But dim R > dim R,. > dim T (Wg) = dim R,,in, 80 Rynin is indeed a minimal representation of W.

(iv) < (i)
The proof of Corollary 1 doesn’t depend on the equivalence to be proved, so we can use it. By Corollary 1 Ry
is a minimal representation of ¥. By construction dim Ry = dim Wy = rank Hyg. A representation is minimal
whenever it has the same dimension as another minimal representation. Thus we get that R,,;, is minimal if
and only if dim R,,;, = dim Ry = rank Hy = dim Wy. O

Proof of Corollary 1. Part (a)
Let Roin = (Xmin, {AT"} e x, B™" C™") be a minimal representation of ¥. Let R = (X, {4, }sex, B, C) be
another minimal representation of ¥. Then R is reachable and there exists a surjective representation morphism
T : R — Ry Since dim R < dim R,,;, and dim R,,;,, < dim R, we get that dim R = dim R,,,;;,, which implies
that dim A, = dim X = dim T'(X), which implies that T is a linear isomorphism, that is, T is a representation
isomorphism.

Part (b)
The equality Wy = Span{fwo S; | j € Jyw € X*} = Span{A,B; | j € J,w € X*} implies that Wg, = Wy.
If T € Wy has the property that for all w € X* : CA,T = 0 then it means that for all w € X™* it holds that
CwoT)=woT(e) =T(w) =0, ie T=0. So we get that Or, = {0}. By Theorem 2 we get that Ry is a
minimal representation of . O

Proof of Lemma 2. By Theorem 2 it is enough to show that

dim Wyge < 4o00. First, notice that for any 77, T € KP < X* > it holds that wo (T} ©Ts) =
Indeed, wo (T ®T3);(v) = (T1), ® (Ta)y(wv) = (Ty (wo) ) (To(wn)) = (wo Ty (v)(wo Ta)i(v)
T5))1(v). Then we get that

(woTh)®(woTh).
=((woTy)®(wo

Weoe = Span{(wosS;)© (woTy)|je€JweX"}
€ Span{(woS;)® (voT%)|zj€ Jwve X"}

Let wyoT,,,l =1,2,...m,2 € J,w; € X*be a basis of Wg. Let vy 05;,,v, € X*,k=1,2,...n,j, € J be a
basis of Wy. Then it is easy to see that

Span{(woS;)®(voT%) | z,j € J,w,v € X*} is spanned by w085, ©voT.,,l =1,2,...,mk=1,2,...n,jk, 2 €
J. That is, dim Wygpe < dim Wy - dim We. O

APPENDIX B. PROOF OF THEOREM 3

Proof of Theorem 3. only if part

Assume that ® has a generalized kernel representation. Then it is clear that for each f € ®, f is causal, since
for each w = (q1,t1) - (qu, tx) € TL we get that f;(w,u) = el K% (tr,. .. tr) + Zle v el GIL® L (t —
Syen oy tp)u(s + Zlfl tj)dsi=1,...,p, that is, fi(w,u) depends only on u|[072’fti]' It is also clear that the
function y* = y¢ defined by yg (u,w) = >, fo Gf ® o (ti—s, tk)u(erZ;;ll t;)ds satisfies (9). Moreover,
it is easy to see that y3 (w P(w,.),j=1,...,pisa contmuom linear map from PC([0, 25:1 t;],U) to RP, since it is
the sum of maps of the form ¢; : u +— fol elGY . (ti—s, ... ,tk)shiftzi_fi t) (u)(s)ds j =1,...,p and Shifty is

-
a continuous linear map on PC(T,U), and g;(s) = €] Gy, (s,tiy1,...,tx) is analytic, and thus the function

gi(s) = g;(t; —s)x({s € [0,t;]}) is in L>°(T). But then ¢;(u) = gi 'gvj(s)Shiftzi_lti (u)(s)ds and by [19] if
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follows that ¢;, 7 = 1,...,p is a a continuous linear map from PC([0, Zlf t;],U) to R? for Thus conditions 2
is satisfied. Let z = (ql,tl)---(qh,th) € (QxT)", w= (w,0) - (wg,0),v = (v1,0) - (v,0) € (Q x T)*.
Let x1 = q1 -+ qn, x2 = w1 ---wy and x3 = vy ---v;. Assume that wz,vz € TL. Then it is easy to see that
zy € suffixL. Then f(0,wz) = K2 (0,...,0,t1,...,t5) = K{f(tl,.. R) = K52 (0,...,0,t1,...,t4). Notice

ToT1 321
that

(u, wz) Z/ Gwl WrT (Op—iy1,7)u(s)ds+
+Z/ qu qh )uz ds_ / qu q} ,th)ul(s)dS:

/ Gy ooyay (Q1i41,7) d5+2/ Gy ( soo th)ui(s)ds =

= yg (u, v2)

where 7 = (t1,...,tn), Q; = (0,0,...,0) € N/, j = 1,...,0, u; = Shifts~i-1, (u). We get that f(u,wz) =
j=1"*

F(0,wz) + y& (u,wz) = f(0,vz) +y®(u,vz) = f(u,vz). That is, condition 3 is satisfied.
Let w = (q1,t1) - (q&, tx) € TL. Tt is also clear that if z = (q;,¢;) -+ - (qx, tx) and 1 <1 < k, then

t;
(u, w) Z/ Gf‘b —5,...,tg)Shifty,_ (ur)(s)ds+
+Z/ Gq“ 7qk "'7tk)uifl(8)d8 = y(?(“la(‘]lvo)"'(Ql—ho)z) +

+ Z/ Gq“ L .., t)Shiftr, (v)(s)ds = y& (u, 2) + y* (v, w)

where T; = ZJ 1t, u; = Shiftp, (uw), i =1,...,k, v = Ppu, T;; = Z;:l t;. That is, y® satisfies condition 4.
Let w,v € (@ x T)*, and assume that w(q, 71)(q, 72)v, w(g, 71 + 72)v € TL. Assume that w = (wy, 1) - (wy, t;)
and v = (vj41,ti41) - - - (Vk, tg) where v, w; € Q,i=1+1,...,k,j=1,...,1. Let T; = 23:1 t;. Then using the
properties of the functions K/ G® 2 € suffixLL one gets.

f(u w(q77—1)(Qﬂ7—2) ) Kj;;‘;v(th...,tl77'1,7'2,...,tk)+
Z/ wa wquv (ti — 8yeo oy T1, Ty o b )ug(8)ds +
+/ G?‘]U(Tl =572, 7tk)ul+1(s)d8 + yg’(ShiftTLJr‘FlJrTz (u)vv) +
0

™2
+/ G?U(TQ — 8.y tp)wr (s + 11)ds = K{:qu(tl, coy by T A To, o te)
0

l ti
Z Gg’,i,,_wlqv(ti — S, ., T1+Toy o te)ui(s)ds +
i=170

T1+72
+/ Gg)v(ﬁ + 70— 8.tk ur(s)ds + y(‘f’(Shif‘chJrnJrT2 (u),v) =
0

= f(u,w(g, 7 + T2)v)
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That is, @ satisfies condition 5. If [v| > 0, w(q,0)v,wv € TLand w = (q1,t1) - (qi, t1), v = (@41, t1+1) - - - (qk, tk),
then we get that

flu,w(q,0)v) = Kﬁ’f(tl, censtry o te)+

l t;
Z/ G nqo(ti = S, 11,0, t)Shift; (u) (s)ds
i=170

0
—|—/ G2,(0—s,...,tg)Shift;(u)(s)ds + yg (Shiftr,+0(u), v) =
0

=K%ttt +
l t;
Z/ Ggi___ww(ti —s,...,t)Shift; (u)(s)ds + y& (Shiftr, (u), v) =
i=1 70
f(u,wv)

where T; = Z;;ll t; and Shift; = Shifty,, ¢ = 1,...,k. That is, ® satisfies condition 5. Finally, it is easy to

see that @ satisfies condition 6. Indeed, fg, ... ur-us (1,---,tk) = K{f.qk (t1,. .. tg) + Zle(fot G g (ti —
Sy...,tg)ds)u;. But by definition K({f.gk and G .
analytic. That is, fy,...quu;-.-u, has to be analytic too.
if part
Assume that the set of maps ® satisfies the conditions 1 — 6. First notice that condition 3 implies that each
f € ® can be uniquely extended to a function in F(PC(T,U) x T (suffixL), )). From now on we will assume that
® C F(PC(T,U)xT(suffixL),Y). Also notice that all the conditions 1-6 still hold for the extensions of elements
of ® to F(PC(T,U) x T(suffixL),Y). Let w = (q1,t1) - (qr,trx) € T(suffixL). We will construct function
K({L’?qk and Ggl’.q.).qk for each 1 <1 < k. From condition 6 we get that for each f € ® it holds that fg,...q, 0.0 :

Tk — Y is an analytic function. Let K£7?Qk (- te) = fgrqr,0-0(0,0,...,0,%,t141,...,t,). Then it is

clear that ng,’?qu l =1,...,k are analytic. Since f satisfies the condition 4 and 5 and Kc{f?qk (try...,tk =

f(q1,0) - (qi-1,0)(q, t1) - - - (&, tx ), 0) we get that Kgl’?.qk, l=1,...,k satisfies conditions 3 and 4 of Definition
3.

are analytic, and thus fg G4 (ti — s, t)ds are

The definition of Ggl’fl.).qk is a bit more involved. For each I =1,...,k j =1,...,p define the maps

Y(qi,t) - (qrte)d PC([Oatl]vu) Su y;'b(((hatl) e (Qk;tk); ﬂ)

where u(s) = { uls = TFIO) gtflefvgz;lEZl’ﬂ]
is a continuous linear functional on PC([0,t;],U). Since PC([0,t],U) is dense in L([0,#],U), we can ex-
tend it a unique way to a continuous linear functional on L'([0,#],U/). By abuse of notation we will denote
this functional by ¥(q, ,)--(ge,tx),; t00. By Theorem 6.16 from [19] we get that there exists an a.s unique
9qit1)+(an-tr)d € Lw([ovtl}lexm) such that

where T; = Z§'=1 t;. From condition 2 it follows that ¥ g, ). (g ,tx),s

t
Ylautr)+(aw )i (u) = /0 9larstr) - (au tr),d (S)u(s)ds

Let y, : u +— [yw}l(u) yw’p(u)]T € R? and define the map g, : s — [(gml(s))T (qw’p(s))T]T €
RP*™  Then

t
y(Qlatl)"'(Qk7tk)(u) :/0 g(qmz)‘“(qmtk)(S)U(S)ds
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Note that if ® satisfies conditions 1 — 6, then y® satisfies conditions 3 - 6. We will use this fact to prove certain

properties of gig, 1) (qu.tr)-
For any w,v € (Q x T)*,|Jv| > 0 one gets that if v(q, 71)(g, 2)w, v(g, 71 + T2)w € T(suffixL), then it holds

that yv(q,ﬁ)(q,Tz)w(u) = y({) (ﬂ, 'U(Qa Tl)(‘]v TZ)w)
=y®(@,v(q, 71 + T2)w) = Yu(g,r1+72)w(w). This implies that

9v(a,m1)(a,m2)w = Gv(a,mi+72)w 8-S (19)

Similarly, if v(g, 0)w, vw € T'(suffixL), |w| > 0, [v| > 0, then vy, 0yw(u) = y® (w0, v(q, 0)w) = y® (U, vw) = Yy ()
which implies

9u(q,0)w = Guw &S (20)
Moreover, if (g,t1)(q,t2)w € T(suffixL) and (q,t; + t2)w € T(suffixL), then for each u € PC([0,t2],U) it holds
that

y(ll’tl)(%b)w(u) = y(b (ﬂ, (qa tl)(% tQ)w) = y(b (ﬁv (qa i1+ t2)w) =

t1
Y(atr+ta)w (U, 0) = /0 Y(gtr+ta)w(s)u(s)ds
By uniqueness of g4 +,)(q,t2)w We get that

g(q7t1)(q7t2)w(5) = g(q,h-i—tz)w(s) a.s. on [Ovtl] (21)

In addition, from condition 4 one gets for each (¢,t + s)w € T(suffixL) that for each u € PC([0,s],U), v €
PC([0,t + s],U), v = 0#u,

y(q,t+s)w(v) = y(b (57 (qu t+ S)’LU) = y¢(57 (q7 t)(Q7 S)w) =
yq)(Shlftt:J? (Qa S)U}) + y<1> (Pt:J? (Qa t) (qa S)w)

But Po = 0 so y*(P,(q,t)(¢,s)w) = 0, and in addition Shift;s = wu, therefore we get Y(gtt+s)w(V) =
y® (Shift (), (¢, s)w) = Y(q,s)w(u). That is,

S

t+s
Y(g,s)w(U) = / 9(g,t+s)w(2)v(2)dz = / G(g,t+s)w(z +t)u(z)dz
0 0

From uniqueness of g(4 5., We get

g(q7s)w(7—) = g(q7s+t)(7 4+ t) a.s (22)
From the equalities above we also get that we are free to change each of the maps g5, s € T(suffixL) on some set
of measure zero, so in fact we can choose the maps g, s € T'(suffixL) is such a way that the formulas (19),(20),

(21) and (22) holds not only almost surely, but exactly on the whole domain. If these equalities hold exactly,
then g(.1)uw(5) = g(q,1—s)(0). Let q; -+ g € suffixL. Define Gy,...q, : TF — RPX™ by

Goan (t, ... tk) = g(‘]l»tl)"'((Ik>tk)(0)

Formula (22) implies that Gy,...q, (t1 — 5, ,tx) = G(q ti—s)(qr,tx) (0) =
Ilar tr—s+5)-(qit) () = G(qu,t0)(qu 1) (8). We immediately get that

t;
y(‘llatl)"'(Qk7tk)(u) = /O G(Il"'tIk (tl — 8,41, atk)u(s)ds
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Now, notice that for each (q1,t1) - (qx, tx) € T(suffixL), by using condition 4 repeatedly, one can derive

k

y® (u, (g, tn) - (aus t) = Y y® (s, (g3 t) -+ (ans tr))

i=1

That is, u; = v;, v; =
0 otherwise ’ ’

Uiljo,e,] = (Shiftz;-‘: tju)|[0,t7:]~ Thus we get that for each w = (g1,t1) - - - (qr, t) € T(suffixL) and u € PC(T,U)

i1 .
where u; = Pti(ShiftEi:i tju). That is, u;(s) = { uls + 205 t5) i s €[04

k k t;
ycp(u, w) = Zy(q'i;ti)“'(Qk7tk)(vi) = ZA ng% (ti — 8, tk)ui(s)ds
1=1 1=1

and
k ti
fluy,w) = KL%, (e ti) + ) /0 Girovge (B = 5, tr)ui(s)ds (23)
=1

where u; = Shiftzz;i ;. (u). We already showed that K1® w € suffixL satisfies the conditions 1, 2 and 3 of
j=1%

Definition 3. Equalities (19),(20), (21) and (22) imply that G2 satisfies the conditions 2 and 3 too. Equation
(23) implies that part 4 of Definition 3 is satisfied too. It is left to show that GZ can be chosen to be analytic
for each f € ® and w € suffixL. Assume that w = ¢1---qx. Then condition 6 implies that the function
Py our, = farqus-ur — far--qu,0--0 is analytic for each uq,---up, € PC(T,U) constant functions. But

By oo, (tlv s 7tk) = f(uvw) - f(O,w) = y(b(u,w)

where u(t) = w; ift € (T;-1, T3], i =1,...,k, T; = Z;Zl t;. But then we get that

k t;
Pty ooy (t1, -+ -y ) = Z(/ GP oo (ti— s tig1, ... te)ds)u;
i=1 /0

Foreachi=1...,k takingu; =0,j #l and u; = e, = (0,0,...,1,0,...,0)T we get that h, . ..q, (t;,...,t8) :=
) j 15 qr \Uj
I Gg’j,,,qk (tj = $,tj41,. .., tr)e.ds is an analytic map. But h. g .., (0,t41,...,t) = 0, thus

t.
id

hegyoan (s - ) = / IhZan"'Qk (tj —s,... tx)ds
O 8

Let w(s) = Gg,.oq (S, tj 41, - th)€s — 2ohsgioq (S, i1, ..., ). That is, for each t € T we get that fot w(t —
s)ds = 0, or equivalently fot w(s)ds = 0. It implies that [, w(s)ds = 0 for each Borel-set £ C [0, N], N € N.
Then we get that w=0 a.s., that is, Gg;...q, (t,tj41,.. - tx)e. = %hzyqj..‘qk(s,tj_s_l, ..., tx) for almost all s. For

each w € suffixL let hy = (h1w,.--, Amw). It is easy to see that h, are analytic and Gg(tl,...,t‘m) =
ho(ty, ... tj)) as. in t;. That is, the set

Aplta, .. tw) = {t €T | Galtito, .. tpw)) # holtita, .t}

is of measure zero. Thus, for any a € Ay (t2, ..., t),|) there exists x,, & Ay (t2,. .., ty), imz, = a. Since hy, is
continuous, it implies that h,, satisfies the conditions 2, 3, 4 of Definition 3, if G does. That is, we can take
G? := h,, and the resulting functions will satisfy the requirements for generalized kernel representation. We
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define the functions G2 and K;'® only for w € suffixL,v € L. But it is easy to see that {G2, K| f € ®,w €
L} is uniquely determined by {G2, K/® | f € ®,w € suffixL,v € L}.

It is left to show that generalized kernel representations are unique. Assume that { K% G2} and {K/*, G2}
are two different generalize kernel representations of ®. By the remark above it is enough to show that KI® =
IN({;*‘I’ for each w € L, f € ® and G2 = éf} w € suffixL. There are two ways to proceed. One can use formula
4 to conclude that Yw € L,a € NI*I . DeK/[® = DO‘I?{;@ = D*f(0,w,.), and Vw € suffixL,a € NI*| j =
1,...,muv € Q*vw € L:D*G2e; = Do‘éiej = D(®|v\’o‘+)yé‘"¢(ej,vw, .), where Q; = (0,0,...,0) € N',] >0,
at = (a1 + 1,a9,...,a;) for each « € N¥ k > 0. That is, we get that the high-order derivatives at zero
of KI*® and Gf;® equal the respective high-order derivatives at zero of f({;fi’ and é;{; respectively. Since
KL® G2 Kf® G2 are analytic, we get the required equalities.

Alternatively, we could use the proof of existence of a generalized kernel representation. Notice that
F0,(qr,t1) - (qis tr)) = K% o (1, k) = K52 0 (1, . .., ty,) for all
(g1,t1) ... (qr,tr) € T(suffixL) and f € ®. On the other hand, from the proof above we can easily deduce that
for each w € suffixL. G2 = é‘i almost everywhere, that is, 7, = G® — CN}’E’) =0 a.s. But r,, is analytic, and if
Ty # 0, then there exists an open set V such that Vo € V' : r,(v) # 0. But no non-empty open set is of measure
zero, so we get that 7, is the constant zero function. But then G = @3 O
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