Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Modelling, Analysis and Simulation

CWI is the National Research Institute for Mathematics and Computer Science. It is sponsored by the Netherlands Organization for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.
CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)
Soffware Engineering (SEN)
Modelling, Analysis and Simulation (MAS)
Information Systems (INS)

Copyright © 2005, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 205929333
Telefax +31 205924199

First order approximation of an elliptic 3D singular perturbation problem

Abstract

A three-dimensional elliptic singular perturbation problem with discontinuous boundary values is considered. The solution of the problem is written in terms of a double integral. A saddle point analysis is used to obtain a first approximation, which is expressed in terms of a function that can be viewed as a generalization of the complementary error function.

2000 Mathematics Subject Classification: 35B25, 35B40, 35C05, 35C20, 35J25, 41A60, 65D20.
Keywords and Phrases: Three-dimensional elliptic singular perturbation problem, asymptotic analysis, saddle point method, complementary error function.
Note: Accepted for publication in Studies of Applied Mathematics.

First Order Approximation of an Elliptic 3D Singular Perturbation Problem

José L. López
Departamento de Matématica e Informática, Universidad Pública de Navarra, 31006-Pamplona, Spain
Ester Pérez Sinusía
Departamento de Matématica e Informática, Universidad Pública de Navarra, 31006-Pamplona, Spain
Nico M. Temme
CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands.
e-mail: jl.lopez@unavarra.es, ester.perez@unavarra.es, nicot@cwi.nl

September 6, 2005

Abstract

A three-dimensional elliptic singular perturbation problem with discontinuous boundary values is considered. The solution of the problem is written in terms of a double integral. A saddle point analysis is used to obtain a first approximation, which is expressed in terms of a function that can be viewed as a generalization of the complementary error function.

2000 Mathematics Subject Classification: 35B25, 35B40, 35C05, 35C20, 35J25, 41A60, 65D20.
Keywords \& Phrases: Three-dimensional elliptic singular perturbation problem, asymptotic analysis, saddle point method, complementary error function.

1 Introduction

We consider a singularly perturbed convection-diffusion problem defined on the positive half-space: $\Omega=(-\infty, \infty) \times(-\infty, \infty) \times(0, \infty)$, with a "square
shaped source of contamination" located at the plane $z=0$ (see Figure 1):

$$
\begin{cases}-\varepsilon \Delta U+U_{z}=0, & \text { if }(x, y, z) \in \Omega \tag{1.1}\\ U(x, y, 0)=\chi_{(-1,1)}(x) \chi_{(-1,1)}(y), & \text { for }-\infty \leq x, y \leq \infty\end{cases}
$$

where ε is a small positive parameter and $\chi_{(a, b)}(x)$ is the characteristic function of the interval (a, b) :

$$
\chi_{(a, b)}(x) \equiv\left\{\begin{array}{lll}
1 & \text { if } & x \in(a, b) \tag{1.2}\\
0 & \text { if } & x \notin(a, b)
\end{array}\right.
$$

Observe that the Dirichlet data at $z=0$ are discontinuous at the boundary of the unit square in the plane $z=0$.

Figure 1: Domain Ω and Dirichlet conditions of problem (1.1).
The solution of this problem may be derived by using Fourier transforms with respect to x and y, and solving the resulting equation by separating the variables. We obtain

$$
\begin{equation*}
U(x, y, z)=\frac{e^{\omega z}}{\pi^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\sin (\omega t)}{t} \frac{\sin (\omega s)}{s} e^{i \omega x t+i \omega y s-z \omega \sqrt{1+t^{2}+s^{2}}} d t d s \tag{1.3}
\end{equation*}
$$

where

$$
\begin{equation*}
\omega=\frac{1}{2 \varepsilon} \tag{1.4}
\end{equation*}
$$

It is easy to check by direct substitution that this function is a solution of problem (1.1). But this solution may not be unique unless we impose additional hypotheses on problem (1.1). In $\S 6$ we give a more precise formulation of the problem in (1.1) and prove that (1.3) is the unique solution of problem (1.1).

We investigate the behaviour of U when ε is small, in particular for x and y values near ± 1. These values correspond with the discontinuous boundary values at $z=0$, and for $z>0$ and near $x= \pm 1, y= \pm 1$ boundary layers occur. We use saddle point analysis for the double integral in (1.3) to obtain a first approximation for $U(x, y, z)$. The approximation holds uniformly for $z \geq z_{0}>0$, where z_{0} is a fixed number, and for all $-\infty \leq x, y \leq \infty$; in particular it is uniformly valid near the values $x= \pm 1$ and $y= \pm 1$.

This paper is a further step in studying singular perturbation problems with rather simple differential operators, discontinuous boundary conditions, and domains. For these problems we are able to solve the boundary-value problems in terms of an integral, from which detailed information can be obtained of the asymptotic behavior of the solutions of the problem. For our earlier recent research on this topic for two-dimensional problems we refer to [4] and [5]; see also [7] and [8]. In these papers the (complementary) error function plays an important role for describing the asymptotic behavior of the solutions as well as inside as outside the boundary layer, because of the uniform nature of the approximations.

In the present paper, in which we consider a model problem of an elliptic singular pertubation problem in three space dimensions, the role of the complementary error function is taken over by a generalization of this function. We give several properties of this function, and describe how the function $U(x, y, z)$ given by the double integral in (1.3) can be approximated by this generalization.

The knowledge of the asymptotic behavior of the solutions of model singular perturbation problems is of interest in the development of suitable numerical methods for this kind of problems because it gives the possibility of comparing the values obtained from numerical schemes with those obtained from analytical approximations. Of special interest are boundary- or initial-value problems with discontinuous boundary or initial values; see, for example, [2].

2 Asymptotic analysis

We replace the sine functions in (1.3) by exponentials, but first we shift the paths of integration slightly upwards in the complex s and t planes. In this way the poles at the origins are avoided. This gives four integrals, and we can write

$$
\begin{equation*}
U(x, y, z)=\frac{e^{\omega z}}{4 \pi^{2}}\left(-U_{1,1}+U_{-1,1}+U_{1,-1}-U_{-1,-1}\right), \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
U_{j, k}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{i \omega(j+x) t+i \omega(k+y) s-z \omega \sqrt{1+t^{2}+s^{2}}} \frac{d t d s}{t s}, \quad j, k= \pm 1 \tag{2.2}
\end{equation*}
$$

All four integrals in (2.2) are of the type

$$
\begin{equation*}
V(\xi, \eta, z)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\omega \phi(s, t)} \frac{d t d s}{t s} \tag{2.3}
\end{equation*}
$$

where

$$
\begin{equation*}
\phi(s, t)=-i \xi t-i \eta s+z \sqrt{1+t^{2}+s^{2}} \tag{2.4}
\end{equation*}
$$

where $\xi= \pm 1+x, \eta= \pm 1+y$, and the paths in the t-plane and s-plane in the integral in (2.3) run slightly above the real axes.

To start, we assume that $\xi>0, \eta>0$, and we always assume that $z>0$. In the two-dimensional saddle point analysis we try to find saddle points by solving the equations $\partial \phi / \partial s=0$ and $\partial \phi / \partial t=0$. That is, we have to solve the equations

$$
\begin{equation*}
\frac{\partial \phi}{\partial t}=-i \xi+\frac{z t}{\sqrt{1+t^{2}+s^{2}}}=0, \quad \frac{\partial \phi}{\partial s}=-i \eta+\frac{z s}{\sqrt{1+t^{2}+s^{2}}}=0 \tag{2.5}
\end{equation*}
$$

Solutions s_{0} and t_{0} of these equations satisfy

$$
\begin{equation*}
s_{0}^{2}=-\frac{\eta^{2}}{\rho^{2}}, \quad t_{0}^{2}=-\frac{\xi^{2}}{\rho^{2}}, \tag{2.6}
\end{equation*}
$$

where ρ is the positive number defined by

$$
\begin{equation*}
\rho=\sqrt{\xi^{2}+\eta^{2}+z^{2}} \tag{2.7}
\end{equation*}
$$

Taking square roots in (2.6) gives several possibilities for s_{0} and t_{0}, but only the following solutions satisfy the equations in (2.5):

$$
\begin{equation*}
s_{0}=i \frac{\eta}{\rho}, \quad t_{0}=i \frac{\xi}{\rho} \tag{2.8}
\end{equation*}
$$

We expand $\phi(s, t)$ at the saddle points up to and including second order terms. We obtain, because $\phi\left(s_{0}, t_{0}\right)=\rho$ and the first-order terms vanish at the saddle points,

$$
\begin{equation*}
\phi(s, t)=\rho+\frac{1}{2} \frac{\partial^{2} \phi}{\partial s^{2}}\left(s-s_{0}\right)^{2}+\frac{\partial^{2} \phi}{\partial s \partial t}\left(s-s_{0}\right)\left(t-t_{0}\right)+\frac{1}{2} \frac{\partial^{2} \phi}{\partial t^{2}}\left(t-t_{0}\right)^{2}+\ldots \tag{2.9}
\end{equation*}
$$

where the partial derivatives are evaluated at $\left(s_{0}, t_{0}\right)$. That is,

$$
\begin{equation*}
\frac{\partial^{2} \phi}{\partial s^{2}}=\frac{\rho\left(\eta^{2}+z^{2}\right)}{z^{2}}, \quad \frac{\partial^{2} \phi}{\partial s \partial t}=\frac{\rho \xi \eta}{z^{2}}, \quad \frac{\partial^{2} \phi}{\partial t^{2}}=\frac{\rho\left(\xi^{2}+z^{2}\right)}{z^{2}} \tag{2.10}
\end{equation*}
$$

For a first approximation we replace $\phi(s, t)$ in (2.3) by the first terms in the Taylor expansion given in (2.9). We also shift the two paths of integration in (2.3) through the saddle points s_{0} and t_{0} on the positive imaginary axes, and we introduce the new variables of integration

$$
\begin{equation*}
\sigma=s-s_{0}, \quad \tau=t-t_{0} \tag{2.11}
\end{equation*}
$$

This gives the approximation

$$
\begin{equation*}
V_{1}(\xi, \eta, z)=e^{-\omega \rho} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\lambda\left(A \sigma^{2}+2 B \sigma \tau+C \tau^{2}\right)} \frac{d \tau d \sigma}{\left(\tau+t_{0}\right)\left(\sigma+s_{0}\right)} \tag{2.12}
\end{equation*}
$$

where the integration is along the real τ and σ axes, and

$$
\begin{equation*}
\lambda=\frac{1}{2} \frac{\rho \omega}{z^{2}}, \quad A=\eta^{2}+z^{2}, \quad B=\xi \eta, \quad C=\xi^{2}+z^{2} . \tag{2.13}
\end{equation*}
$$

3 Reducing to a standard form

When in the saddle point method the saddle point is coinciding with a pole, the standard methods of asymptotics cannot be used for obtaining a correct approximation. To obtain a uniform expansion that holds when pole and saddle point coalesce the complementary error function can be used. See [6] and [10]. In fact we need in that case

$$
\begin{equation*}
w(z)=\frac{1}{\pi i} \int_{-\infty}^{\infty} \frac{e^{-t^{2}}}{t-z} d t, \quad \Im z>0 \tag{3.1}
\end{equation*}
$$

Putting $t=-s$ in the integral, we obtain

$$
\begin{equation*}
w(z)=-\frac{1}{\pi i} \int_{-\infty}^{\infty} \frac{e^{-s^{2}}}{s+z} d s, \quad \Im z>0 \tag{3.2}
\end{equation*}
$$

The function $w(z)$ is an entire function, and we have (see [9, p. 275])

$$
\begin{equation*}
w(z)=e^{-z^{2}} \operatorname{erfc}(-i z) \tag{3.3}
\end{equation*}
$$

where the complementary error function is defined by

$$
\begin{equation*}
\operatorname{erfc} z=\frac{2}{\sqrt{\pi}} \int_{z}^{\infty} e^{-t^{2}} d t \tag{3.4}
\end{equation*}
$$

Another integral representation of the complementary error function is (see [1, Eq. 7.4.11])

$$
\begin{equation*}
\operatorname{erfc} z=\frac{2 e^{-z^{2}}}{\pi} \int_{0}^{\infty} \frac{e^{-z^{2} t^{2}}}{t^{2}+1} d t \tag{3.5}
\end{equation*}
$$

Because of the relation

$$
\begin{equation*}
\operatorname{erfc}(-z)=2-\operatorname{erfc} z \tag{3.6}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
w(-z)=2 e^{-z^{2}}-w(z), \quad z \in \mathbb{C} \tag{3.7}
\end{equation*}
$$

This relation can also be obtained from (3.2) by allowing $\Im z<0$ and at the same time shifting the contour of integration downwards in the complex plane. By shifting back the path to the real line, picking up the residue, and using (3.1) and (3.2), we obtain again the symmetry relation (3.7).

The two-dimensional integral in (2.12) shows also the phenomenon that poles are near saddle points. When ξ and η are small, both poles at $-t_{0}$ and $-s_{0}$ are also small. In the singular perturbation problem (1.1) small values of ξ or η correspond with small values of $\pm 1+x$ or $\pm 1+y$. These values correspond with the boundaries of the unit square in the x, y-plane, where we have discontinuous boundary conditions. The poles in (2.12) lie on imaginary axes in the complex σ and τ planes, and when $\xi=0$ and $\eta=0$ the poles coincide with saddle points at the origins of these planes.

In this paper we consider the following double integral as the twodimensional analogue of $w(z)$ introduced in (3.1):

$$
\begin{equation*}
W(z, \zeta)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{e^{-t^{2}-s^{2}}}{(t+\alpha s-z)(t+\beta s-\zeta)} d t d s \tag{3.8}
\end{equation*}
$$

where α and β are real and z and ζ are complex. The integral in (2.12) cannot simply be written as a product of two integrals, because of the term $2 B \sigma \tau$ in the exponential function. Also for (3.8) a simple splitting is not possible.

In the next section we transform the integral in (2.12) into an integral of the form (3.8), in which the poles are located on certain lines in the complex plane, that again will pass through the origins when ξ and η become 0 . We evaluate (3.8) into one-dimensional integrals that can be viewed as standard forms, and as generalizations as the complementary eror function defined by (3.4).

In [3] the two-dimensional integral

$$
\begin{equation*}
I(\alpha, \beta)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{e^{-i a \cosh x-i b \cosh y}}{\sin \frac{1}{2}(i x+\alpha) \sin \frac{1}{2}(i x-i y+\beta)} d x d y \tag{3.9}
\end{equation*}
$$

is considered with similar phenomena when α and β tend to zero. Jones considered his integral as a prototype and he introduced the function

$$
\begin{equation*}
G(z, \zeta)=\zeta e^{i z^{2}} \int_{z}^{\infty} \frac{e^{-i t t^{2}}}{t^{2}+\zeta^{2}} d t \tag{3.10}
\end{equation*}
$$

that can be used for describing the uniform asymptotic phenomena. This function cannot be expressed in terms of a known special function, and it reduces in certain circumstances to a Fresnel integral.

Jones' function can be viewed as a generalization of the Fresnel integral. In the present case we have a real phase function (see (2.12) and (3.8)), and we write the integral (3.8) as a sum of two functions of the form

$$
\begin{equation*}
F(\lambda, u, v)=\int_{0}^{\infty} \frac{r e^{-\lambda r^{2}} d r}{\sqrt{r^{2}+u^{2}}\left(r^{2}+v^{2}\right)}, \tag{3.11}
\end{equation*}
$$

where we assume that $\lambda>0, u \geq 0$, and $v>0 . F$ can be viewed as a generalization of the error function. For $u=0$ it becomes, see (3.5),

$$
\begin{equation*}
F(\lambda, 0, v)=\frac{\pi}{2 v} e^{\lambda v^{2}} \operatorname{erfc}(\sqrt{\lambda} v) \tag{3.12}
\end{equation*}
$$

where the complementary error function $\operatorname{erfc} z$ is defined in (3.4). When we change the variable of integration by writing $r^{2}+u^{2}=s^{2}$, we obtain

$$
\begin{equation*}
F(\lambda, u, v)=e^{\lambda u^{2}} \int_{u}^{\infty} \frac{e^{-\lambda s^{2}} d s}{s^{2}+v^{2}-u^{2}} . \tag{3.13}
\end{equation*}
$$

Observe that F and G are related by

$$
\begin{equation*}
\zeta F(i, z, \zeta)=G(z, \zeta) . \tag{3.14}
\end{equation*}
$$

and that our function $F(\lambda, u, v)$ can be viewed as a function of two variables, because

$$
\begin{equation*}
F(\lambda, u, v)=\sqrt{\lambda} F(1, u \sqrt{\lambda}, v \sqrt{\lambda}) \tag{3.15}
\end{equation*}
$$

When λ is large and $v \rightarrow 0$, the saddle point at the origin of the integral in (3.11) coalesces with poles at $r= \pm i v$. If, in addition, $u \rightarrow 0$, the saddle point coalesces also with two algebraic singularities.

In (3.13) the saddle point is outside the domain of integration, and when $u \rightarrow 0$ the saddle point coalesces with an endpoint. If, in addition, $v \rightarrow 0$, the saddle point coalesces also with two poles.

In $\S 7$ some other properties of F are derived.

4 Evaluating $V_{1}(\xi, \eta, z)$

First we evaluate $V_{1}(\xi, \eta, z)$ of (2.12) for the cases $\xi \downarrow 0$ and $\eta \downarrow 0$. In these limits the quantity B defined in (2.13) becomes zero, and the double integral can be written as two single integrals. When $\xi \downarrow 0$ we have

$$
\begin{equation*}
V_{1}(0, \eta, z)=e^{-\omega \rho} \int_{-\infty}^{\infty} e^{-\lambda A \sigma^{2}} \frac{d \sigma}{\sigma+s_{0}} \int_{-\infty}^{\infty} e^{-\lambda C \tau^{2}} \frac{d \tau}{\tau}, \tag{4.1}
\end{equation*}
$$

where in the τ-integral the path runs above the origin. The τ-integral equals (see (3.2)) $-i \pi w(0)=-i \pi$. For the σ-integral we use (3.2) again, and we obtain

$$
\begin{equation*}
V_{1}(0, \eta, z)=-\pi^{2} e^{-\omega \rho+\lambda \eta^{2}} \operatorname{erfc}(\eta \sqrt{\lambda}) . \tag{4.2}
\end{equation*}
$$

In a similar way,

$$
\begin{equation*}
V_{1}(\xi, 0, z)=-\pi^{2} e^{-\omega \rho+\lambda \xi^{2}} \operatorname{erfc}(\xi \sqrt{\lambda}) . \tag{4.3}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
V_{1}(0,0, z)=-\pi^{2} e^{-\omega z} . \tag{4.4}
\end{equation*}
$$

4.1 Positive values of $\boldsymbol{\xi}$ and $\boldsymbol{\eta}$

We can use several transformations for obtaining a pure quadratic form in the exponential function in (2.12). For example, we can write

$$
\begin{align*}
A \sigma^{2}+2 B \sigma \tau+C \tau^{2} & =A\left(\sigma^{2}+\frac{2 B \sigma \tau}{A}\right)+C \tau^{2} \\
& =A\left(\sigma+\frac{B}{A} \tau\right)^{2}+\left(C-\frac{B^{2}}{A}\right) \tau^{2} \tag{4.5}
\end{align*}
$$

and introduce the new variables of integration

$$
\begin{equation*}
p=\sqrt{A}\left(\sigma+\frac{B}{A} \tau\right), \quad q=\sqrt{\frac{A C-B^{2}}{A}} \tau . \tag{4.6}
\end{equation*}
$$

The inverted relations read, because $A C-B^{2}=\rho^{2} z^{2}$,

$$
\begin{equation*}
\sigma=\frac{1}{\sqrt{\eta^{2}+z^{2}}}\left(p-\frac{\xi \eta}{\rho z} q\right), \quad \tau=\frac{\sqrt{\eta^{2}+z^{2}}}{\rho z} q . \tag{4.7}
\end{equation*}
$$

Performing these relations on (2.12) we obtain

$$
\begin{equation*}
V_{1}(\xi, \eta, z)=e^{-\omega \rho} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\lambda\left(p^{2}+q^{2}\right)} \frac{d q d p}{(p-\alpha q+i \beta)(q+i \gamma)}, \tag{4.8}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha=\frac{\xi \eta}{\rho z}, \quad \beta=\frac{\eta}{\rho} \sqrt{\eta^{2}+z^{2}}, \quad \gamma=\frac{\xi z}{\sqrt{\eta^{2}+z^{2}}} \tag{4.9}
\end{equation*}
$$

Hence, when $\xi>0, \eta>0$ the quantities α, β and γ are all positive, and they become small when ξ and η become small.

The location of the poles in the complex p and q planes resembles that of the integral in (3.9). Also, we can perform the p-integration in terms of the error function by using the function $w(z)$ defined in (3.1). However, then the q-integral is not easy to handle. In addition, the symmetry with respect to ξ and η, which is obvious in (2.12), is no longer obvious in (4.8).

We obtain a symmetric representation by using the transformation of variables

$$
\begin{equation*}
\sigma=\frac{1}{\sqrt{\xi^{2}+\eta^{2}}}(\eta p+\xi q), \quad \tau=\frac{1}{\sqrt{\xi^{2}+\eta^{2}}}(\xi p-\eta q), \tag{4.10}
\end{equation*}
$$

or in inverted form

$$
\begin{equation*}
p=\frac{1}{\sqrt{\xi^{2}+\eta^{2}}}(\eta \sigma+\xi \tau), \quad q=\frac{1}{\sqrt{\xi^{2}+\eta^{2}}}(\xi \sigma-\eta \tau) \tag{4.11}
\end{equation*}
$$

This gives

$$
\begin{equation*}
A \sigma^{2}+2 B \sigma \tau+C \sigma^{2}=\rho^{2} p^{2}+z^{2} q^{2} \tag{4.12}
\end{equation*}
$$

and after scaling $\rho p \rightarrow p, z q \rightarrow q$ we obtain

$$
\begin{align*}
& V_{1}(\xi, \eta, z)=\rho z\left(\xi^{2}+\eta^{2}\right) e^{-\omega \rho} \times \\
& \quad \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{e^{-\lambda\left(p^{2}+q^{2}\right)} d q d p}{\left(\xi z p-\eta \rho q+\widetilde{t_{0}}\right)\left(\eta z p+\xi \rho q+\widetilde{s_{0}}\right)} \tag{4.13}
\end{align*}
$$

where

$$
\begin{equation*}
\tilde{t_{0}}=\rho z t_{0} \sqrt{\xi^{2}+\eta^{2}}, \quad \widetilde{s_{0}}=\rho z s_{0} \sqrt{\xi^{2}+\eta^{2}} \tag{4.14}
\end{equation*}
$$

4.1.1 Writing $V_{1}(\xi, \eta, z)$ in terms of $F(\lambda, u, v)$

Next we verify how to write $V_{1}(\xi, \eta, z)$ defined in (4.13) in terms of the integral in (3.11). We introduce polar coordinates

$$
\begin{equation*}
p=r \cos \theta, \quad q=r \sin \theta, \quad 0 \leq \theta \leq 2 \pi \tag{4.15}
\end{equation*}
$$

This gives

$$
\begin{equation*}
V_{1}(\xi, \eta, z)=\rho z\left(\xi^{2}+\eta^{2}\right) e^{-\omega \rho} \int_{0}^{\infty} e^{-\lambda r^{2}} f(r) r d r \tag{4.16}
\end{equation*}
$$

where

$$
\begin{equation*}
f(r)=\int_{0}^{2 \pi} \frac{d \theta}{\left(\xi z r \cos \theta-\eta \rho r \sin \theta+\widetilde{t_{0}}\right)\left(\eta z r \cos \theta+\xi \rho r \sin \theta+\widetilde{s_{0}}\right)} . \tag{4.17}
\end{equation*}
$$

We evaluate this integral by putting $s=e^{i \theta}$ and integrating around the unit circle in the complex s-plane. This gives, because $d s=i s d \theta$,

$$
\begin{equation*}
f(r)=\frac{-4 i}{P R} \int_{|s|=1} \frac{s d s}{\left(s^{2}+2 \widetilde{t_{0}} s / P+Q / P\right)\left(s^{2}+2 \widetilde{s_{0}} s / R+S / R\right)} \tag{4.18}
\end{equation*}
$$

where

$$
\begin{array}{ll}
P=(\xi z+i \eta \rho) r, & Q=(\xi z-i \eta \rho) r \tag{4.19}\\
R=(\eta z-i \xi \rho) r, & S=(\eta z+i \xi \rho) r
\end{array}
$$

The zeros of the quadratic factors in (4.18) are

$$
\begin{align*}
& s_{1}=\frac{i \sqrt{\xi^{2}+\eta^{2}}}{P}\left(-\xi z+\sqrt{\xi^{2} z^{2}+\left(\eta^{2}+z^{2}\right) r^{2}}\right) \\
& s_{2}=\frac{i \sqrt{\xi^{2}+\eta^{2}}}{P}\left(-\xi z-\sqrt{\xi^{2} z^{2}+\left(\eta^{2}+z^{2}\right) r^{2}}\right) \\
& s_{3}=\frac{i \sqrt{\xi^{2}+\eta^{2}}}{R}\left(-\eta z+\sqrt{\eta^{2} z^{2}+\left(\xi^{2}+z^{2}\right) r^{2}}\right) \tag{4.20}\\
& s_{4}=\frac{i \sqrt{\xi^{2}+\eta^{2}}}{R}\left(-\eta z-\sqrt{\eta^{2} z^{2}+\left(\xi^{2}+z^{2}\right) r^{2}}\right)
\end{align*}
$$

Observe that $\left|s_{1} s_{2}\right|=1$ and $\left|s_{3} s_{4}\right|=1$. The zeros s_{1} and s_{3} are inside the unit circle, and can be used for evaluating the integral by using residues.

First we write

$$
\begin{align*}
& \frac{s}{\left(s^{2}+2 \widetilde{t_{0}} s / P+Q / P\right)\left(s^{2}+2 \widetilde{s_{0}} s / R+S / R\right)} \\
& \quad=\frac{a_{1} s+a_{2}}{s^{2}+2 \widetilde{t_{0}} s / P+Q / P}+\frac{a_{3} s+a_{4}}{s^{2}+2 \widetilde{s_{0}} s / R+S / R} \tag{4.21}
\end{align*}
$$

It is straightforward to verify that

$$
\begin{equation*}
a_{1}=\frac{-i P R r}{T}, \quad a_{2}=\frac{Q R \sqrt{\xi^{2}+\eta^{2}}}{T}, \quad a_{3}=\frac{i P R r}{T}, \quad a_{4}=\frac{-P S \sqrt{\xi^{2}+\eta^{2}}}{T} \tag{4.22}
\end{equation*}
$$

where

$$
\begin{equation*}
T=2 r \rho z\left(\xi^{2}+\eta^{2}\right)\left(\xi^{2}+\eta^{2}+r^{2}\right) \tag{4.23}
\end{equation*}
$$

Calculating the two residues in the integral in (4.18) gives

$$
\begin{equation*}
f(r)=\frac{8 \pi}{P R}\left(\frac{a_{1} s_{1}+a_{2}}{s_{1}-s_{2}}+\frac{a_{3} s_{3}+a_{4}}{s_{3}-s_{4}}\right) \tag{4.24}
\end{equation*}
$$

which can be evaluated in the form

$$
\begin{equation*}
f(r)=-\frac{2 \pi}{z\left(\xi^{2}+\eta^{2}\right)\left(r^{2}+v^{2}\right)}\left(\frac{\xi / \sqrt{\xi^{2}+z^{2}}}{\sqrt{r^{2}+u_{1}^{2}}}+\frac{\eta / \sqrt{\eta^{2}+z^{2}}}{\sqrt{r^{2}+u_{2}^{2}}}\right) \tag{4.25}
\end{equation*}
$$

where v, u_{1} and u_{2} are defined by

$$
\begin{equation*}
v=\sqrt{\xi^{2}+\eta^{2}}, \quad u_{1}=\frac{\eta z}{\sqrt{\xi^{2}+z^{2}}}, \quad u_{2}=\frac{\xi z}{\sqrt{\eta^{2}+z^{2}}} . \tag{4.26}
\end{equation*}
$$

It follows that in terms of F of (3.11):

$$
\begin{equation*}
V_{1}(\xi, \eta, z)=-2 \pi \rho e^{-\omega \rho}\left[\frac{\xi}{\sqrt{\xi^{2}+z^{2}}} F\left(\lambda, u_{1}, v\right)+\frac{\eta}{\sqrt{\eta^{2}+z^{2}}} F\left(\lambda, u_{2}, v\right)\right] . \tag{4.27}
\end{equation*}
$$

When we write this in terms of the integral in (3.13) we introduce the notation

$$
\begin{equation*}
\zeta_{1}^{2}=v^{2}-u_{1}^{2}=\frac{\rho^{2} \xi^{2}}{\xi^{2}+z^{2}}, \quad \zeta_{2}^{2}=v^{2}-u_{2}^{2}=\frac{\rho^{2} \eta^{2}}{\eta^{2}+z^{2}} \tag{4.28}
\end{equation*}
$$

This gives

$$
\begin{equation*}
V_{1}(\xi, \eta, z)=-2 \pi e^{-\omega \rho}\left[\frac{\xi e^{\lambda u_{1}^{2}}}{\sqrt{\xi^{2}+z^{2}}} \int_{u_{1}}^{\infty} \frac{e^{-\lambda s^{2}} d s}{s^{2}+\zeta_{1}^{2}}+\frac{\eta e^{\lambda u_{2}^{2}}}{\sqrt{\eta^{2}+z^{2}}} \int_{u_{2}}^{\infty} \frac{e^{-\lambda s^{2}} d s}{s^{2}+\zeta_{2}^{2}}\right] \tag{4.29}
\end{equation*}
$$

When we let $\xi \downarrow 0$ we have $v=\eta, u_{1}=\eta$, and $\rho=\sqrt{\eta^{2}+z^{2}}$. It follows that (4.27) becomes

$$
\begin{equation*}
V_{1}(0, \eta, z)=-\pi^{2} e^{-\omega \rho+\lambda \eta^{2}} \operatorname{erfc}(\eta \sqrt{\lambda}) \tag{4.30}
\end{equation*}
$$

where we have used (3.12). This confirms (4.2). In a similar way we find (4.3) and (4.4).

5 Negative values of $\boldsymbol{\xi}$ and $\boldsymbol{\eta}$

When $\xi<0$ or $\eta<0$ the saddle points t_{0} or s_{0} defined in (2.8) become negative. With some modifications we can repeat the evaluations of $\S(4)$. Recall that in (2.3) the paths run above the real t-axis and s-axis. To obtain a representation through the saddle points t_{0} and s_{0}, of which t_{0} or s_{0} are on the negative imaginary t-axis or s-axis, we now have to pass the poles at $t=0$ or $s=0$. This gives one or two residues in the form of a single integral.

$5.1 \xi<0, \eta>0$

In this case we obtain from (2.3), by shifting the path in the t-plane downwards, across the origin,

$$
\begin{equation*}
V(\xi, \eta, z)=-2 \pi i \int_{-\infty}^{\infty} e^{-\omega\left[-i \eta s+z \sqrt{\left.1+s^{2}\right]}\right.} \frac{d s}{s}+\tilde{V}(\xi, \eta, z) \tag{5.1}
\end{equation*}
$$

where $\tilde{V}(\xi, \eta, z)$ is as in (2.3), now with the path of integration for the t-integral below the origin in the t-plane. By changing $t \rightarrow-t$ we see that $\tilde{V}(\xi, \eta, z)=-V(-\xi, \eta, z)$, and we can write

$$
\begin{equation*}
V(-\xi, \eta, z)=-2 \pi i \int_{-\infty}^{\infty} e^{-\omega\left[-i \eta s+z \sqrt{1+s^{2}}\right]} \frac{d s}{s}-V(\xi, \eta, z), \quad \xi>0, \quad \eta>0 \tag{5.2}
\end{equation*}
$$

where $V(\xi, \eta, z)$ is as in (2.3) with both paths running above the origins. The s-integral in (5.2) runs above the origin and has a saddle point at $i \eta / \sqrt{A}$, where A is defined in (2.13). By an asymptotic analysis as performed for the double integral in $\S 2$ it follows that the integral can be approximated by (see (3.2))

$$
\begin{equation*}
-2 \pi i e^{-\omega \sqrt{A}} \int_{-\infty}^{\infty} e^{-v^{2}} \frac{d v}{v+i \sqrt{\mu} \eta}=-2 \pi^{2} e^{-\omega \sqrt{A}} w(i \sqrt{\mu} \eta) \tag{5.3}
\end{equation*}
$$

where

$$
\begin{equation*}
\mu=\frac{\omega \sqrt{A}}{2 z^{2}} \tag{5.4}
\end{equation*}
$$

By using (3.3) we obtain

$$
\begin{equation*}
V(-\xi, \eta, z) \sim-2 \pi^{2} e^{-\omega \sqrt{A}} e^{\mu \eta^{2}} \operatorname{erfc}(\eta \sqrt{\mu})-V_{1}(\xi, \eta, z), \quad \xi>0, \quad \eta>0 \tag{5.5}
\end{equation*}
$$

where $V_{1}(\xi, \eta, z)$ can be written in terms of the F-function; see (4.27) and (4.29).

$5.2 \xi>0, \eta<0$

In a similar way,

$$
\begin{equation*}
V(\xi,-\eta, z) \sim-2 \pi^{2} e^{-\omega \sqrt{C}} e^{\nu \xi^{2}} \operatorname{erfc}(\xi \sqrt{\nu})-V_{1}(\xi, \eta, z), \quad \xi>0, \quad \eta>0, \tag{5.6}
\end{equation*}
$$

where C is defined in (2.13) and

$$
\begin{equation*}
\nu=\frac{\omega \sqrt{C}}{2 z^{2}} . \tag{5.7}
\end{equation*}
$$

$5.3 \xi<0, \eta<0$

Consider (5.2) with η replaced by $-\eta$, with $\eta>0$. Then the function $V(\xi,-\eta, z)$ follows from (5.6). After the change $\eta \rightarrow-\eta$ in (5.2), the saddle point of the integral is now at $-i \eta / \sqrt{A}$, and for the asymptotic analysis of this integral we shift it downwards, across the pole at $s=0$, giving a residue $-4 \pi^{2} e^{-\omega z}$. The final result reads for $\xi>0$ and $\eta>0$

$$
\begin{align*}
V(-\xi,-\eta, z) & \sim V_{1}(\xi, \eta, z)-4 \pi^{2} e^{-\omega z} \\
& +2 \pi^{2} e^{-\omega \sqrt{A}} e^{\mu \eta^{2}} \operatorname{erfc}(\eta \sqrt{\mu})+2 \pi^{2} e^{-\omega \sqrt{C}} e^{\nu \xi^{2}} \operatorname{erfc}(\xi \sqrt{\nu}) \tag{5.8}
\end{align*}
$$

6 Proof of uniqueness of problem (1.1)

We give a more precise formulation of the problem in (1.1). To prove uniqueness of the problem in (1.1) we need extra conditions on the problem. A more precise formulation of problem (1.1) is then
$\begin{cases}U \in \mathcal{C}(\tilde{\Omega}) \cap \mathcal{D}^{2}(\Omega) & U \text { bounded in bounded subsets of } \tilde{\Omega}, \\ -\varepsilon \Delta U+U_{z}=0 & \text { in } \Omega, \\ U(x, y, 0)=\chi_{(-1,1)}(x) \chi_{(-1,1)}(y), & \text { for }-\infty \leq x, y \leq \infty, \\ U(x, y, z)=o\left(\frac{e^{\omega\left(r_{k}+z\right)}}{\sqrt{\omega r_{k}}}\right) & \text { as } r_{k} \rightarrow \infty \text { in } \Omega \text { with } k=1,2,3,\end{cases}$
where $\omega=1 /(2 \varepsilon), r_{1} \equiv \sqrt{x^{2}+z^{2}}, r_{2} \equiv \sqrt{y^{2}+z^{2}}$ and $r_{3} \equiv \sqrt{x^{2}+y^{2}}$.
Observe that the Dirichlet datum at $z=0$ is discontinuous at the boundary $\partial \Omega_{L}$ of a square Ω_{L} located in the plane $z=0$:

$$
\Omega_{L} \equiv\left\{(x, y, 0) \in \mathbb{R}^{3} ;-1 \leq x, y \leq 1\right\} .
$$

Figure 2: Graphs of the first order approximations to the solution of problem (1.1) for different values of z. The graphs are obtained by using (4.27) for $V_{1}(\xi, \eta, z)$ and the relations for negative ξ and η of $\S 5$. $V_{1}(\xi, \eta, z)$ is the first order approximation of $V(\xi, \eta, z)$ of (2.3), the function that represents any of the four components in (2.1). We observe that the solution takes a value close to 1 on the square $(x, y) \in[-1,1] \times[-1,1]$ and 0 everywhere else. On the sides of this square the solutions takes the value $\frac{1}{2}$ and experiences a fast transition from 0 to 1 . We also observe that the larger z is, the smoother the solution is.

The set $\tilde{\Omega}$ in (6.1) is precisely the closed set $\bar{\Omega}$ with that contour removed:

$$
\tilde{\Omega} \equiv \bar{\Omega} \backslash \partial \Omega_{L}
$$

We have the following uniqueness result:

Theorem 1 Problem (6.1) has at most one solution.

Proof. Suppose that U_{1} and U_{2} are two solutions of (6.1). Then, the
function $G(x, y, z) \equiv\left(U_{1}(x, y, z)-U_{2}(x, y, z)\right) e^{-\omega z}$ verifies:

$$
\begin{cases}G \in \mathcal{C}(\tilde{\Omega}) \cap \mathcal{D}^{2}(\Omega) & G \text { bounded on bounded subsets of } \tilde{\Omega}, \tag{6.2}\\ \Delta G-\omega^{2} G=0 & \text { in } \Omega \\ G(x, y, 0)=0 & \text { for }-\infty \leq x, y \leq \infty \\ G(x, y, z)=o\left(\frac{e^{\omega r_{k}}}{\sqrt{\omega r_{k}}}\right) & \text { as } r_{k} \rightarrow \infty \text { in } \Omega \text { with } k=1,2,3\end{cases}
$$

Consider the following auxiliary function defined on $\bar{\Omega}$:

$$
V_{a}(x, y, z) \equiv\left\{\begin{array}{cll}
\frac{G(x, y, z)}{H_{a}(x, y, z)} & \text { if } & r_{1}^{ \pm} \neq 0 \neq r_{2}^{ \pm} \\
0 & \text { if } & r_{1}^{ \pm}=0 \text { or } r_{2}^{ \pm}=0
\end{array}\right.
$$

with

$$
\begin{aligned}
& H_{a}(x, y, z) \equiv K_{0}\left(\omega r_{1}^{+}\right)+K_{0}\left(\omega r_{1}^{-}\right)+K_{0}\left(\omega r_{2}^{+}\right)+K_{0}\left(\omega r_{2}^{-}\right) \\
&+I_{0}\left(\omega r_{1}\right)+I_{0}\left(\omega r_{2}\right)+I_{0}\left(\omega r_{3}\right)+a, \\
& r_{1}^{ \pm} \equiv \sqrt{(x \pm 1)^{2}+z^{2}}, \quad r_{2}^{ \pm} \equiv \sqrt{(y \pm 1)^{2}+z^{2}}, \quad a>0,
\end{aligned}
$$

and K_{0} and I_{0} being modified Bessel functions of order zero. The function $H_{a}(x, y, z)$ is positive in Ω, of the order $\mathcal{O}\left(e^{\omega r_{k}} / \sqrt{\omega r_{k}}\right)$ as $\omega r_{k} \rightarrow \infty$ for $k=1,2,3$ and $\mathcal{O}\left(\log \left(\omega r_{k}^{ \pm}\right)\right)$as $\omega r_{k}^{ \pm} \rightarrow 0$ for $k=1,2$ ([1, Eqs. 9.7.1 and 9.6.13]). Moreover, $H_{a}(x, y, z) \in \mathcal{D}^{2}(\Omega)$ and satisfies the equation: $\Delta H_{a}-$ $\omega^{2} H_{a}+a \omega^{2}=0$ in Ω [1, Eq. 9.6.1]). Therefore, using also that G is bounded near $\partial \Omega_{L}$, we have that the auxiliary function V_{a} is continuous in $\bar{\Omega}$ and verifies:

$$
\begin{cases}\Delta V_{a}+\frac{2}{H_{a}} \vec{\nabla} H_{a} \cdot \vec{\nabla} V_{a}=\frac{a \omega^{2}}{H_{a}} V_{a} & \text { in } \Omega, \\ V_{a}(x, y, 0)=0 & \text { for }-\infty \leq x, y \leq \infty, \\ \lim _{r_{k} \rightarrow \infty} V_{a}(x, y, z)=0 & \forall(x, y, z) \in \bar{\Omega}, k=1,2,3\end{cases}
$$

Consider the open finite box of size $R: \Omega_{R} \equiv(-R, R) \times(-R, R) \times(0, R)$. At points $(x, y, z) \in \Omega_{R}$ where $\vec{\nabla} V_{a}=0$ and $V_{a} \neq 0$, we have that $V_{a} \cdot \Delta V_{a}>0$. Therefore, V_{a} has not positive relative maximums neither negative relative minimums in Ω_{R}. Then $\operatorname{Sup}_{\Omega_{R}}\left|V_{a}\right| \leq \operatorname{Sup}_{\partial \Omega_{R}}\left|V_{a}\right|$.

Using that $V_{a}(x, y, 0)=0 \forall(x, y) \in R^{2}$ and that $\lim _{r_{k} \rightarrow \infty} V_{a}(x, y, z)=0$ for $k=1,2,3$ we have that, $\forall \delta>0$, there is a $R>0$ such that $\left|V_{a}(x, y, z)\right| \leq$ $\delta \forall(x, y, z) \in \partial \Omega_{R}$. Therefore, $\left|V_{a}(x, y, z)\right| \leq \delta \forall \delta>0$ and every $(x, y, z) \in$ Ω_{R}. Taking the limit $\delta \rightarrow 0(R \rightarrow \infty)$ we have that $V_{a}=0$ in $\bar{\Omega}$. Therefore, $G=0$ and $U_{1}=U_{2}$ in Ω.

7 Further properties of $F(\lambda, u, v)$

We give a few further properties of the function (see (3.11) - (3.13))

$$
\begin{align*}
F(\lambda, u, v) & =\int_{0}^{\infty} \frac{r e^{-\lambda r^{2}} d r}{\sqrt{r^{2}+u^{2}}\left(r^{2}+v^{2}\right)} \\
& =e^{\lambda u^{2}} \int_{u}^{\infty} \frac{e^{-\lambda s^{2}} d s}{s^{2}+\zeta^{2}} \tag{7.1}\\
& =\frac{\pi}{2 w} e^{\lambda v^{2}} \operatorname{erfc}(\zeta \sqrt{\lambda})-e^{\lambda u^{2}} \int_{0}^{u} \frac{e^{-\lambda s^{2}} d s}{s^{2}+\zeta^{2}},
\end{align*}
$$

where $\zeta^{2}=v^{2}-u^{2}$.
The function F reduces to a complementary error function when $u=v$. We have

$$
\begin{equation*}
F(\lambda, u, u)=e^{\lambda u^{2}} \int_{u}^{\infty} \frac{e^{-\lambda s^{2}}}{s^{2}} d s=\frac{1}{2} \sqrt{\lambda} e^{\lambda u^{2}} \Gamma\left(-\frac{1}{2}, \lambda u^{2}\right), \tag{7.2}
\end{equation*}
$$

where we use the incomplete gamma function defined by

$$
\begin{equation*}
\Gamma(a, z)=\int_{z}^{\infty} t^{a-1} e^{-t} d t . \tag{7.3}
\end{equation*}
$$

By using integration by parts, we can write

$$
\begin{equation*}
F(\lambda, u, u)=\frac{1}{u}-\sqrt{\pi \lambda} e^{\lambda u^{2}} \operatorname{erfc}(u \sqrt{\lambda}) . \tag{7.4}
\end{equation*}
$$

A series in powers of λ follows by expanding the exponential function in the third integral in (7.1). This gives

$$
\begin{equation*}
F(\lambda, u, v)=\frac{\pi}{2 \zeta} e^{\lambda v^{2}} \operatorname{erfc}(\zeta \sqrt{\lambda})-e^{\lambda u^{2}} \sum_{n=0}^{\infty} \frac{(-\lambda)^{n}}{n!} \Phi_{n}(u, v), \tag{7.5}
\end{equation*}
$$

where

$$
\begin{equation*}
\Phi_{n}(u, v)=\int_{0}^{u} \frac{s^{2 n}}{s^{2}+\zeta^{2}} d s, \quad n=0,1,2, \ldots . \tag{7.6}
\end{equation*}
$$

We have

$$
\begin{equation*}
\Phi_{0}(u, v)=\frac{1}{\zeta} \arctan \frac{u}{\zeta}, \tag{7.7}
\end{equation*}
$$

and the remaining Φ_{n} can be computed through the recursion relation

$$
\begin{equation*}
\Phi_{n+1}(u, v)=\frac{u^{2 n+1}}{2 n+1}-\zeta^{2} \Phi_{n}(u, v), \quad n=0,1,2, \ldots \tag{7.8}
\end{equation*}
$$

To obtain a series with positive terms we expand

$$
\begin{equation*}
F(\lambda, u, v)=\frac{\pi}{2 \zeta} e^{\lambda v^{2}} \operatorname{erfc}(\zeta \sqrt{\lambda})-\sum_{n=0}^{\infty} \frac{\lambda^{n}}{n!} \Psi_{n}(u, v), \tag{7.9}
\end{equation*}
$$

where

$$
\begin{equation*}
\Psi_{n}(u, v)=\int_{0}^{u} \frac{\left(u^{2}-s^{2}\right)^{n}}{s^{2}+\zeta^{2}} d s, \quad n=0,1,2, \ldots \tag{7.10}
\end{equation*}
$$

We have $\Psi_{0}(u, v)=\Phi_{0}(u, v)$, and for the other ones we have

$$
\begin{equation*}
\Psi_{n+1}(u, v)=v^{2} \Psi_{n}(u, v)-u^{2 n+1} \frac{\Gamma\left(\frac{3}{2}\right) n!}{\Gamma\left(n+\frac{3}{2}\right)}, \quad n=0,1,2, \ldots . \tag{7.11}
\end{equation*}
$$

The Ψ_{n} are in fact hypergeometric functions. We have (see [9, p. 110])

$$
\Psi_{n}(u, v)=\frac{u^{2 n+1}}{\zeta^{2}} \frac{\Gamma\left(\frac{3}{2}\right) n!}{\Gamma\left(n+\frac{3}{2}\right)} 2 F_{1}\left(\begin{array}{c}
1, \frac{1}{2} \tag{7.12}\\
n+\frac{3}{2}
\end{array} ;-\frac{u^{2}}{\zeta^{2}}\right),
$$

or

$$
\Psi_{n}(u, v)=\frac{u^{2 n+1}}{v^{2}} \frac{\Gamma\left(\frac{3}{2}\right) n!}{\Gamma\left(n+\frac{3}{2}\right)} 2_{1} F_{1}\left(\begin{array}{c}
1, n+1 \tag{7.13}\\
n+\frac{3}{2}
\end{array} ; \frac{u^{2}}{v^{2}}\right) .
$$

An asymptotic expansion for large values of λ follows from the first integral in (7.1) by expanding

$$
\begin{equation*}
\frac{u v^{2} r}{\sqrt{r^{2}+u^{2}}\left(r^{2}+v^{2}\right)}=\sum_{n=0}^{\infty} c_{n} r^{2 n+1} . \tag{7.14}
\end{equation*}
$$

We have

$$
\begin{equation*}
c_{0}=1, \quad c_{1}=-\frac{2 u^{2}+v^{2}}{2 u^{2} v^{2}}, \quad c_{2}=\frac{8 u^{4}+4 u^{2} v^{2}+3 v^{4}}{8 u^{4} v^{4}} . \tag{7.15}
\end{equation*}
$$

More coefficients can be computed by using the recursion relation

$$
\begin{equation*}
u^{2} v^{2}(n+1) c_{n+1}=-\left[(n+1) u^{2}+\left(n+\frac{1}{2}\right) v^{2}\right] c_{n}-\left(n+\frac{1}{2}\right) c_{n-1}, \quad n \geq 1 . \tag{7.16}
\end{equation*}
$$

By substituting the expansion in (7.14) into (7.1) the following asymptotic expansion

$$
\begin{equation*}
F(\lambda, u, v) \sim \frac{1}{2 u v^{2} \lambda} \sum_{n=0}^{\infty} c_{n} \frac{n!}{\lambda^{n}}, \quad \lambda \rightarrow \infty \tag{7.17}
\end{equation*}
$$

is obtained, which holds uniformly for $u \geq u_{0}, v \geq v_{0}$, where u_{0} and v_{0} are fixed positive numbers.

Acknowledgments

J.L. López and E.P. Sinusía acknowledge financial support from the Dirección General de Ciencia y Tecnología (REF. MTM2004-05221) and the Sec. Est. Educ. y Univ., Programa Salvador de Madariaga, res. 28/03/03. N.M. Temme acknowledges financial support from Ministerio de Ciencia y Tecnología from project SAB2003-0113.

References

[1] Milton Abramowitz and Irene A. Stegun. Handbook of mathematical functions with formulas, graphs, and mathematical tables, volume 55 of National Bureau of Standards Applied Mathematics Series. For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1964.
[2] P. W. Hemker and G. I. Shishkin. Approximation of parabolic PDEs with a discontinuous initial condition. East-West J. Numer. Math., 1(4):287-302, 1993.
[3] D. S. Jones. A uniform asymptotic expansion for a certain double integral. Proc. Roy. Soc. Edinburgh Sect. A, 69:205-226, 1970/71.
[4] José L. López and Ester Pérez Sinusía. Analytic approximations for a singularly perturbed convection-diffusion problem with discontinuous data in a half-infinite strip. Acta Appl. Math., 82(1):101-117, 2004.
[5] José L. López and Ester Pérez Sinusía. Asymptotic expansions for two singularly perturbed convection-diffusion problems with discontinuous data: the quarter plane and the infinite strip. Stud. Appl. Math., 113(1):57-89, 2004.
[6] Frank W. J. Olver. Asymptotics and special functions. AKP Classics. A K Peters Ltd., Wellesley, MA, 1997. Reprint of the 1974 original [Academic Press, New York; MR 55 \#8655].
[7] Shagi-Di Shih. A novel uniform expansion for a singularly perturbed parabolic problem with corner singularity. Methods Appl. Anal., $3(2): 203-227,1996$.
[8] Shagi-Di Shih. Angular layer of a singularly perturbed parabolic problem with corner singularity. Canad. Appl. Math. Quart., 9(2):159-188, 2001.
[9] Nico M. Temme. Special functions. An introduction to the classical functions of mathematical physics. A Wiley-Interscience Publication. John Wiley \& Sons Inc., New York, 1996.
[10] R. Wong. Asymptotic approximations of integrals, volume 34 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2001. Corrected reprint of the 1989 original.

