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1. INTRODUCTION

Integral inequalities play a significant role in the theory of integro-differential equa-
tions. Mostly it is difficult to solve these equations. However, it is useful to investigate
some properties of the solutions of equations, such as existence, uniqueness and stability.
There are many classical methods to investigate existence and uniqueness of the solutions
of integro-differential equations, see for instance [8, 9]. In order to establish stability of
the solutions of these equations integral inequalities are widely used, see for instance [2, 3].

Gronwall in 1919 showed the following lemma [1].

Lemma 1.1. If M = const > 0, § = const > 0 and continuous function x(t) > 0 satisfies
the inequalities

2(t) < M/tw(s)ds +5

fort € [0,T], then
z(t) < dexp[Mt], 0<t<T.

The primary contribution of Lemma 1.1 is that it can be applied in the study of stability
of the solutions of various types of integral equations and boundary value problems for
ordinary or partial differential equations. In this work we will derive some generalizations
of Gronwall’s integral inequality.

Most scientific and technical problems can be solved by using mathematical modelling
and new numerical methods. This is based on the mathematical description of real pro-
cesses and the subsequent solving of the appropriate mathematical problems on the com-
puter. The mathematical models of many scientific and technical problems follow to
already known or new problems of Partial Differential Equations. Indeed, in most of the
cases it is difficult to find the exact solutions of the problems for the Partial Differential
Equations. This is usually so due to the fact that required solution cannot be expressed
by using only known elementary functions. For this reason discrete methods play a sig-
nificant role, especially due to increasing the role of mathematical methods of the solving
problems in various areas of science and engineering, and also with the appearance of

Key words and phrases. generalization, Gronwall’s integral inequality, discrete analogy, integro-
differential equations.
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highly-efficient computers. A well-known and widely applied method of approximate so-
lutions for problems of differential equations is the method of difference schemes. Modern
computers allow us to implement highly accurate difference schemes. Hence, the task is to
construct and investigate highly accurate difference schemes for various types of boundary
value of partial differential equations. The investigation of stability and convergence of
these difference schemes is based on the discrete analogies of integral inequalities.

In numerical analysis literature, see for instance [5, 6], one can find the following discrete
analogy of Lemma 1.1.

Lemma 1.2. Ifz;, 7 =0, N is a sequence of real numbers with
i1

@il <6+hM Y |z;|, i=T,N,

3=0
where M = const > 0 and 0 = const > 0, then
|z;| < (hM|zo| + &) exp [Mih], i=1,N.

The primary contribution of Lemma 1.2 is that it can be used in order to demonstrate
the convergence of the discrete solutions of difference schemes to the solution of corre-
sponding differential equations in case of some discretization procedure. In this work we
will derive the discrete analogies of generalizations of the Gronwall’s integral inequality
which can be used as a powerful tool in the analysis of finite difference equations.

2. GRONWALL’S TYPE INTEGRAL INEQUALITIES WITH TWO DEPENDENT LIMITS AND
THEIR DISCRETE ANALOGIES

Theorem 2.1. Assume thatv; >0, a; >0, 6; >0 (i = —N, N + 2M) are the sequences
of real numbers and the inequalities
li—M|+M—1
(2.1) v; <4+ h Z ajv; —apyvym |, i=—-N,N+2M
j=—|i-M|+M+1

hold. Then for v; the inequalities

(2.2) vp-1 S O0m—1, U1 S 0mer, U < O+ h(an—10m-1 + ap10n11),
i M|+ M—1
(23) v; < 0;+h Z (aj6j+a2M,j(52M,j)Bij, i=M+ 2, N + QM,Z = —N, M —2
j=M+1

are satisfied, where

|i—M|+M—1
exp |h an+aspr—n)|, f7=M+1|t — M|+ M -2,
(24) By = 2, (@ntazun) [i = M|
1, ifj=li—M|+M-1.

Proof. Bu putting ¢ = M — 1, M + 1, M directly in (2.1), we obtain the inequalities (2.2),
correspondingly. Let us prove (2.3). We denote
li—M|+M—1
(2.5) y; = h > auj—amvm |, i=-N,N+2M.
j=—|i—-M|+M+1
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Then (2.1) gets the form
For i > M from (2.5) we have

i i—1
Yit1 —Yi=h ( Z a;v; — anM> —h < Z a;v; — anM>

j=2M i j=2M it1
= h(a;v; + asp—vanmr—i) > 0,
and

|M—i|+M—1

i1
Yom—i = h Z a;v; — apmum = h< Z ajvj—aMUM> = .

j=—|M—il+M+1 j=2M—i+1
So, ¥i < yiv1 and yaps ; = y; for i > M. Moreover, by using (2.6), we obtain
Yir1 — ¥i = h(av; + aonr—ivans—i) < hai(y; + 6;) + haonr—i(Yanr—i + d2nr—i)
< h(a; + agnr—i)yi + h(aidi + aonr—ibans i),
or
Yir1 < [1+ h(a; + aopr4)yi + h(a;0; + agpr—idapr i), > M.
Then by induction we can prove that

i—M-1

Yi < H (1 + h(arrsn + aymn))Ynr+1
n=1
i—M—2 i—M—1
+ ) Blamours +au—0m-5) [ 1+ harrin +an-n))
j=1 n=j+1

+ h(ai—10i—1 + aep—iv102m—iv1), =M +2,N +2M.

Since yar+1 = 0, we have

i—M—-2 i—M—-1
v <h Y (amegbues +an—0u—;) [ (1 +R(arin +ar-n))
j=1 n=j+1

i—1

i—2
+ h(a;—10;—1 + aopm—it102m—iv1) = h Z (a;0; + aspr—j0an—j) H (1 + h(an + a2nm—n))
j=M+1 n=j+1

i—2 i—1
+h(ai—10;-1 + aanm—iv1020—i11) < h Z (a;6; + asn—jbani—j) €Xp [h Z (an + a2M—n)]

j=M+1 n=j+1
+ h(ai-10;-1 + asp—i+102m-iv1), =M +2,N +2M.

Now, by using (2.6) and the notation (2.4), we obtain (2.3) for i = M + 2, N + 2M.
Let us prove (2.3) for i = —N, M — 2. From (2.1) we have

2M—i—1

v,-§5i+h< Z ajvj—anM>, 1=—N,M —2.

j=itl



4 MAKSAT ASHYRALIYEV

2M—i—1 2M—i—1
Since Y, ajv;= >, asm—_jvam—;, we have
j=it1 j=it1

2M—i—1
V; §(51+h< Z agMj’UgMj—aM’UM> y ’i:—N,M—Q.
j=i+1
We denote ¢t = 2M —4y. So, i1 =2M — i > M and
71—1
VoM —iy S 52M—i1 + h Z QoM —jV2M—5 — CLM’UM) y il =M+ 2, N+ 2M.
j=2M —i1+1

By denoting vep;_ = Wi, aapr—k = by, dopr—k = Mg, We rewrite it as
71—1
wi; < A +h< Z bj'wj_bM’wM> , 1 =M+2,N+2M.

j=2M—iy+1

By using the proved part of the theorem, namely the inequalities (2.3) for
1=M+ 2, N +2M, we obtain

11—2 i1—1
W;, S /\z'1 + h Z (bj)\j + b2M7j)\2M7j) exp !h Z (bn + b2Mn)]

j=M+1 n=j+1
+ h(bil—l)\il—l + sz_il_H)\QM_il_H), il =M+ 2, N + 2M,

which can be rewritten as

11—2 i1—1
Vor—iy < Oapr—iy +h Z (@onr—j0ani—j + a;jé;) exp [h Z (@opr—n + )
=M1 n—j+1

+ h(agnr—iy 41020 —iy+1 + @iy —105, 1), 41 =M +2,N + 2M,

or
2M—1—2 2M—i—1
V; S 51 + h Z (agM_j52M_j + ajéj) exp [h Z (CLQM_n + an)
j=M+1 n=j7+1

+ h(aiy10i41 + aopr—i-10om—i-1), t=—N,M —2.
The Theorem 2.1 is proved. ]

By putting Nh = 1, 2Mh = T and passing to limit A — 0 in the Theorem 2.1, we
obtain the following generalization of Gronwall’s integral inequality.

Theorem 2.2. Assume that v(t) > 0, 6(t) > 0 are the continuous functions on [—1,1+T]
and a(t) > 0 is an integrable function on [—1,1+ T] and the inequalities

o(t) < 5(t) + sgn <t _ I) /t a(s)o(s)ds, —1<t<1+T

2) Jrt

hold. Then for v(t) the inequalities

t

v(t) < o(t) + / (a(8)d(s) + a(T — s)6(T — s)) exp [/ (a(7) + a(T — 7))dT| ds,

T

2

| N

<t<1+T,
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(a(8)d(s) + a(T — 5)6(T — s)) exp [/ 7t(a(7') +a(T — 7))dr| ds,

1<t<T
- 2

are satisfied.

By putting 6(t) = const and a(t) = const in the Theorem 2.2, we get the following
theorem, which was early obtained in [2].

Theorem 2.3. Assume that v(t) > 0 is a continuous function on [—1,1 + T| and the
inequalities

t
v(t) §C+L/ sgn(t—T/2)v(s)ds, —-1<t<1+T

T—t

hold, where C' = const > 0, L = const > 0. Then for v(t) the inequalities
v(t) <Cexp (2Lt —T/2]), —-1<t<1+T
are satisfied.

By putting 7' = 0 in the Theorem 2.2, we obtain the following generalization of Gron-
wall’s integral inequality with two dependent limits.

Theorem 2.4. Assume that v(t) > 0, 6(t) > 0 are the continuous functions on [—1,1]
and a(t) > 0 is an integrable function on [—1,1] and the inequalities

t

v(t) < 4(t) + sgn(t)/ a(s)v(s)ds, —-1<t<1

-1

hold. Then for v(t) the inequalities

are satisfied.

By putting 6(t) = const and a(t) = const in the Theorem 2.4, we get the following
theorem, which was early obtained in [3].

Theorem 2.5. Assume that v(t) > 0 is a continuous function on [—1,1] and the inequal-
ities
t
v(t) < C+ L/ sgn(t)v(s)ds, —-1<t<1

—t
hold, where C' = const > 0, L = const > 0. Then for v(t) the inequalities

v(t) < Cexp2Lft]], —-1<t<1
are satisfied.

By putting M = 0 and a; =0, ¢ = —N, 0 in the Theorem 2.1, we obtain the following
generalization of Lemma 1.2.



6 MAKSAT ASHYRALIYEV

Theorem 2.6. Assume thatv; > 0,a; >0 (i=0,N), 6; >0 (i =1, N) are the sequences
of real numbers and the inequalities

i—1
vi§6i+h<2ajvj—a0vo> y izl,

J=0

=

hold. Then for v; the inequalities

i—2 i—1
U1 S (51, (%) S (52+h(11(51, V; S (Sz+h <Z 0/]'6]' exp !h Z Qp,

n=j+1

+ Cli_15i_1) ) = 3, N

j=1
are satisfied.
By putting Nh = 1 and passing to limit h — 0 in the Theorem 2.6, we get the following

generalization of Gronwall’s integral inequality with one dependent limit, which was early
obtained in [4].

Theorem 2.7. Assume that v(t) > 0, §(t) > 0 are the continuous functions on [0, 1] and
a(t) > 0 is an integrable function on [0,1] and the inequalities

o(t) < 8(t) + /ta(s)v(s)ds, 0<t<1

hold. Then for v(t) the inequalities

o) < 8(t) + /0 " a(5)8(s) exp { / ta(T)dT} ds, 0<t<1

are satisfied.

Now, we consider the generalizations of Gronwall’s type integral inequalities with the
singular kernel.

Theorem 2.8. Assume that v(t) > 0, a(t) > 0 are the integrable functions on [—1,1] and
the inequalities
t

(2.7) v(t) <al(t) + Lsgn(t)/ (It] = |s])? tu(s)ds, —1<t<1

—t
hold, where L >0, B > 0. Then for v(t) the inequalities

(2.8)  w(t) <a(t)+ 22"1%3%@) /(|t| — s a(s)ds, —-1<t<1

are satisfied, where G(B) is the Gamma function of (3.
Proof. We denote

(2.9) Bu(t) = Lsgn(t) /t(|t| — |s])P tu(s)ds, —1<t<1.

—t

Then by using (2.7), we have

(2.10) v(t) <> Ba(t)+ B™(t), —1<t<1
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Let us prove that
t
sgn(t)/(|t| s tu(s)ds, —1<t<1
—t
holds for any n € N. (2.11) for n = 1 follows from (2.9) directly. Assume that (2.11)

holds for some n € N.
Then for 0 <t <1 we have

(2.11) B"y(t) = 2"!

Bt =1 [ (¢ |sl)P Br(s)ds = Lor GO

¢ G(np)
< [ 15 tsgn(s) [ (15 - |T|)nﬂ—1v(7)d7ds:L2n—1%
x [ / (t— s / (s — 7))~ Yo(r)drds + / (t+ )" / (—s— T|)”ﬁlv(7')d7'ds]
I 7<I0:)) il I SN VRV
- S L/U(T)T/(t VP 1(s — ) ldsd

t t —T

+ /0 o(r) / (t— 5P~ \(s + 1) dsdr + / o(r) / (t+5)° (=5 — 1) dsdr

—t —r 0 —t

] L@

+ / o(r) / (t+5)5 (s + 7)™ 'dsdr

—t —t

X [/t v(T) t/_Tzﬁl(t — 17— 2)" Ydzdr + /O’U(’T) 7Tzﬁ1(t +7— z)"ﬁldsz]

0 0 —t 0

e | | VI s
=12 Gnp) L/U(T)(tT)( )8 dT—i-_/tv(T)(t—i-T)( ) dT]

(LGE)" [\ ooy, CB)GE)
G| TN TGS

-t

1
x/w*u—mW*szw
0
So,

ny gy . (LG(B))™ 1) DB 1y 6\ ds
(212)  BYly(t) —2 —G((n+1)ﬁ)/(t 1s)) (s)ds, 0<t<1.

In the similar way for —1 <t < 0 we have

Bly(t) = L /t (—t— s} BRu(s)ds = L2"17(L(§7(fﬂ)))n
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—t

X —t — |s])#tsgn(s S s| — [T Yu(1)drds = "_1—(LG(ﬁ))n
/(t s) g()_/s(u P tu(r)drds = L2 S
X [/(t )Pt /(s — 7)™ o(T)drds + /(—t—l—s)ﬁ_1 /(—s — T)"ﬂlv(T)des:|
= "’li(LG(m)n _tv T _t— —8)" s = )" dsdr
- Sl L/()/(t )1 (s — ) Ndsd

—t —t —T

4 /0 o(7) / (—t — )" (s + 7)™ dsdr + / o(r) / (=t + )51 (—s — )P 1dsdr

-7 0 t

T

OU s s+ 1) ldsdr| = n(LG(B))"
+/ /t+ H=s+7)" ldsd L2

—t —t—7 —t+7
X [/U(T) / 2P Yt —7— )”ﬁ 1dsz—i-/ / 28 Yt 47— ”ﬂ 1oizoh-]
0 0 t 0

—t 0
G(6)) |:/v(7')(— - ”“)ﬂ 1d7‘+/’U —t+7) (n+1B-1 g

0

3
~

% /pﬂ—l(l _p)nﬂ—ldp: Lon (LG(B))n /’U(T)(—t— |7_|)(n+1) dTG(ﬂ)G(nﬁ)

G(np) t G(nB + B)
So,
wit, oy on (LGB)™ w11
(2.13) B™ly(t) =2 m/(—t—|3|)< B-1y(s)ds, —1<t<0.

Combining (2.12) and (2.13), we prove by induction that (2.11) holds for any n € N.
Since B"v(t) > 0 for any n € N and

I¢]
t| — |s|) (DB 1y (s)ds
iy _are@cen Y sa@ems
Bro(t G(n+1 It - G((n+1
D I N )

—tl

)

—0, n— oo,

we have lim,,_,,, B"v(t) = 0. Then, by letting n — oo in (2.10) and using (2.11), we
obtain the inequalities (2.8). O

Note that by putting 5 = 1 and a(t) = const in the Theorem 2.8, we obtain the
Theorem 2.5.
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Theorem 2.9. Assume that L>0,8>0,1>7>0,8+7>1,a>0 andv(t) >0 is
an integrable function on [—1,1] and the inequalities

t
(2.14) v(t) <a+ Lsgn(t)/ (It] = |s))P~ s u(s)ds, —1<t<1
—t
hold. Then for v(t) the following inequalities hold
(2.15) v(t) < ai & (LGP 1", -1<t<1
= G(j +np)
Proof. We denote
t
(2.16) Bu(t) = Lsgn(t)/ (It] = |s)PYs]" Tu(s)ds, —1<t<1.
—t
Then by using (2.14), we have
n—1
(2.17) v(t) <Y B*a+Bmo(t), -1<t<1
k=0

Let us prove that

(2.18) B u(t) < (2t~ %SQn(t)/(ltl — s s u(s)ds, —1<t<1

holds for any n € N. (2.18) for n = 1 follows from (2.16) directly. Assume that (2.18)
holds for some n € N.
Then for 0 < ¢ < 1 we have
t 2n—1Ln+1(G(/B))n

B1u(t) = L/xt =187 s T B (s)ds < —— g

t s

< [ 6= 1o s Dsgn(s) [ (15| = +1) b to(r)drds

—t —s

t s

ol (G(B))" C 016D [ (s 1l (o drds
- /(t % /( )" i o(r)drd

0 —s

—S

$)B Y (=s)"U=D [ (=g — |7)™ |7 u(r)drds | = 2 LHG(B))"
+ [+ 9800 [ (s ol r u(r)drd i

—t s
t t

X /le’l)(T) /(t — 5)P (s — 1) Lsn UV dsdr

0 T
0 t

+ / (=) to(r) / (t—s)" s+ 1) 's"U Vdsdr

—t —T

t —T

+ [0l [(t49)5 (=5 = 1S (=90 Vsar

0 —t
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+/(—T)j_11)(7') /(t + )P (—s + T)"ﬁl(—s)"(jl)dsdT]

-t -t

t t—1
n T ntl n ) )
< 2" L (G(ﬁ)) tn(]—l) [/ T]—IU(T) / Zﬂ—l(t_T_Z)nB—ldsz
0

G(np) J
[ 7L (G(B))"
_\i—1 B—1 _ ,\nB-1 — n(j—1)
+/( T) U(T)O/Z (t+7—2) dsz] Gnp) t
0 1
X 7Yt — )OOy (D dr 4+ [ (=7 (4 7)Yy (r)dr P71 — p)"Ptdp
e / [
_ QnLnH(G(ﬂ))n n(j—1) t i1 (n+1)B-1 G(B)G(np)
= [w (# = I D5 () G,

So,

(2.19)  B™lu(t) < (267" —éL((C;(i))lr;; /(t — |s)) VB g 1y(s)ds, 0<t< 1.

In the similar way for —1 < ¢ < 0 we have

2L G(E)”
G(nf)

—t
B lo(t) = L / (=t — |s)P~|si~ Bho(s)ds <
t
—t s

< [t = 1s)P 5P Vsgn(s) [(sl = |7 to(r)drds

_ L;In(ﬁG)(ﬁ))n [ 0/ (—t — 5)f 150D _/ (5 — 7)™ e Yo (r)drds
0 —t + 8)P 1 (—g) D) i —s— |7 Y7 u(r)drds | = 2LMHG(B))"
+/< 4 ) (~s) S/( ) e <>dd] o
X [/ 7~ o(T) /(—t— s)ﬁ_l(s —T)”ﬂ_ls”(j_l)dsdT
+ /(—T)j_l’l}(’r) /(—t —5)P (s +T)”B_ls”(j_1)dsd7'

" / () / (—t+8)P 1 (5 — 7)™} (—g)"0-Vdlsdr

0 t
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PLHGEN" iy | [ ity [ sty st
S awp Y L/ ()O/‘*(t ) dzd
+/(—T)j_1v(7') / Zﬁl(—t—i-T—z)nﬂldsz]

—t

_ Q"L"‘H(G(B))n _ \n(i-1) A A\ mADE=T oy g
awp) Y [/ (=t=7) (7)d

0

+ /(—T> (it o ) BTy dT] / (1= )™ 1dp
0

t

»IGE)” G(B)G
=g 1)/ 7 (=t = )5 o) SO,

So,
(2.20)

B™h(t) < (2(-t)7 )" % /(—t — |s]) B 5ty (s)ds, —1<t<O.

Combining (2.19) and (2.20), by induction we prove that (2.18) holds for any n € N.
Right-hand side of (2.18), which we denote by Q™v(t), goes to 0 when n — oco. Indeed,
Q™v(t) > 0 for any n € N and
[]
J ([t = [sDTFDP s~ 1o(s)ds
Qtw(t) _ 2LG(B)G(nB)[t " -1y < 2LG(P)G(np)
Qmu(t G((n+1 It . - G((n+1)p
) (+1)9) J ([t = [shm8- s 1o (s)ds (n+ 10

— 1l

when n — oo. Then, by letting n — oo in (2.17) and using (2.18), we obtain

v(t) < ZB”CL = aZ (2|t|j—1)"*1 %syn(ﬂ /(|t| — |s])" Y s~ 1ds

;0 2|t|] 1 (LC;(( ))) 2|t|n6+] 1/,07 . nﬂ 1dp

ad 2LG |t|ﬂ+ﬂ " G(H)G( i—1\n
oy J+n5 Z G 7 (RLG@IT)"

n=0

O
Note that by putting 7 = = 1 in the Theorem 2.9, we obtain again the Theorem 2.5.
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3. APPLICATIONS

In applications, we consider the initial value problem
{ ®l) 4 sgn(t)Au(t) = [, B(s)u(s)ds + f(t), —1<t<1,

u(0) = g
in an arbitrary Banach space E with unbounded linear operators A and B(t) in E with
dense domain D(A) C D(B(t)) and

IBOA Y gop <M, —-1<t<1.

Suppose that the following estimates hold:
(3.2) le ™| eoe < M, |[tAe™™|poe <M, 0<t<1.

A function u(t) is called a solution of the problem (3.1) if the following conditions are
satisfied:

i) u(t) is continuously differentiable on [—1, 1]. The derivatives at the endpoints are
understood as the appropriate unilateral derivatives.
ii) The element u(t) belongs to D(A) for all ¢ € [—1, 1], and the functions Au(t) and
B(t)u(t) are continuous on [—1,1].
iii) u(t) satisfies the equation and the initial condition (3.1).

Theorem 3.1. Suppose that F(t) € C([-1,1], E), K(t,s) € C([-1,1], E), where
C([-1,1], E) is the Banach space of all continuous abstarct functions v(t) defined on

[—1,1] with norm ||v||c(-1,11,5) = max, |lv(t)||g- Then there is a unique solution of the

(3.1)

integral equation
t
z2(t) = F(t) +sgn(t) | Kl(t, s)z(s)ds, —1<t<1.
—t
Proof. The proof of this theorem is based on a fixed point theorem. It is easy to see that

the operator
t

Az(t) = F(t) + sgn(t) | K(t,s)z(s)ds, —-1<t<1

maps C([—1,1], E) into C([—1, 1], E). By using a special value of A in the norm

or(-11,p) = max e Mo(t)| g,

||U| —1<t<1

we can prove that A is the contracting operator on C*([—1, 1], E'). Indeed, we have

It

M Ax(t) — Aut)e < [ Kt 5)mpe e o(s) = u(s) eds

—ltl

It
< max K@ 9)moe [ ez = ulonoimds
-t

— _1<s,t<1

[¢]
~ 2 max ||K(t9)||psn / e 1= s |z — |
0

—1<s,¢<1

C*([-1,1],E)

1— e A
CH (LB Ty

2_max |K(ts)|psp(1—e™)

—1<s,t<
C*([_171]7E) )\

=2 max [K(t s)llz-ellz — ul

< [lz = ul
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for any t € [-1,1]. So,
||Az — Au|

2_max_ [K(ts)|s-m(1-e) )
== and ay — 0 when A — oo. Finally, we note that

c(-1,1,8) < |12 = uller(-1,11,m),

where oy =

)
the norms
_ —Alt]
Iollo-q-rm = max, o)
and
Iolloq 18 = max lo(®)ls
are equivalent in C'([-1,1], E). O

Theorem 3.2. Suppose that ug € D(A) and f(t) is a continuously differentiable on [—1,1]
function. Then there is a unique solution of the problem (8.1) and stability inequality

g 1
O+ max 14wz < 0 lAuls + 17O+ [ 17z

holds, where M* does not depend on f(t), t and ug.

(3.3)

X
J1<t<1

Proof. The proof of the existence and uniqueness of the solution of problem (3.1) is based
on the following formula

u(t) = e 1Ay, + sgn(t)A1f(t) — sgn(t)e"”AA’lf(O) — sgn(t) /t e’(”"'s')AA’lf'(s)ds
0

(3.4) +sgn(t) /t [I — e UF=DA] A1 B(s)u(s)ds, —-1<t<1

—t
and the Theorem 3.1. Let us prove (3.4). First, we consider the case when 0 < ¢ < 1. It
is well-known that the Cauchy problem

{ ) 4 Au(t) = F(t), 0<t<1,

dt
u(0) = g

for differential equations in an arbitrary Banach space F with positive operator A has a
unique solution

t
u(t) = e g +/ e COAR(s)ds, 0<t<1
0

for smooth F(t). By putting F(t) = fit B(s)u(s)ds + f(t), we obtain
t t s
wt) = e o+ [N peds+ [ [ BruCrIards = o+ 47 500
0 0 —s
t t t
= —e AT f(0) - / e AT (s)ds + / / e IAB(r)u(r)dsdr
0 0 Jr
0 pt
+ / / e EDAB(Tu(t)dsdr = e ug + ATLF(t) — e A ATIF(0)
—tJ—7
t t
_ / e~(=IA 471 f/(5)ds + / (T — =) A\ B(r)u(r)dr
0 0

N /0 ([ _ 6—(t+‘r)A) A_lB(T)U(T)dT _ G_tAUO + A_lf(t) _ e—tAA—lf(O)

—t
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- /t e A AT (5)ds + /t (I— e_(t_|s|)A) A™'B(s)u(s)ds
0 —t

So, we proved (3.4) for 0 <t < 1.
Now, let —1 <t < 0. Then we consider the problem

{ WO _ Au(t) = F(t), —1<t<0,
u(O) = ug

for differential equations in an arbitrary Banach space E with positive operator A. We
denote ¢t = —7 and u(—7) = v(7). Then the problem

®) | Av(r) = —F(-1), 0<7<1,
v(0) = ug

has a unique solution

T 0
o(1) = e g —/ e "TIAF(—s)ds = e up — / e T E(s)ds, 0<7T<1.
0

—T

So,
0
u(t) = ey —/ e CHIAR(s)ds, —1<t<0.
¢

By putting F(t f B(s)u(s)ds + f(t), we obtain

0 0 —s
u(t) = etug —/ e_(_t+s)Af(s)d3+/ e_(_t+s)A/ B(r)u(r)drds = etug— A7 £(2)

t t

0 —t -7
+ etAAflf(O) _ / ef(fH-s)AA—lfl(S)ds + / / e_(_t+s)AB(T)U(T)deT
t 0 t

/ / (AR (MY u(T)dsdr = eAug— A f (¢ )—i—etAA_lf(O)—/O e~ (THDAA-L 1 (5)ds

/0 (I — e =4 AP B(7)u(r)dr + /t 0 (I —e D4 A7 B(r)u(r)dr = eug
— A f(t) 4t AT F(0)— /t ’ e AL () ds+ /t B (I — e DAY A7 B(s)u(s)ds.
So, we proved (3.4) for —1 < ¢ < 0. From (3.4) we have
Au(t) = e "M Aug + sgn(t) £(t) — sgn(t)e "4 £(0) — sgn(t) /0 t e (=14 f'(5)ds
+ sgn(t) /t [ — e~ U=1D4] B(s)u(s)ds, —1<t<1.

—t

Applying the triangle inequality and estimates (3.2), we obtain

1Au@®)llz < lle™ |- sllAuollz + 1 F @)l + lle™ Il £l £(0)1

||
i / e DA ol £ (5) | mds
—t|

It
+/ [1+ le” MDA 5 g T |1 B(5) A7 | 5 £l Au(s) || pds
~1t
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<(M+1) [nAuonE s+ [ ||f'<s>||Eds} +sgn(®MO+1) [ 4u(s)ods.
So,

1
lAu@®)lls < (M +1) [nAuonE 5O+ [ ||f'<s>||Eds]
t
+ sgn(t)M (M + 1)/ |Au(s)||pds, —1<t<1.
—t
Then from the Theorem 2.5 we have

1
| Au()lls < (M +1) [nAuonE O+ [ ||f'<s>||Eds] M+

1
< (M + 1)e*M O+ [IlAuollE +1£(0)]l= +/ I|f’(s)||Ed5] , —1<t<1.
1
So,
1
35 Al < 07+ DO |Lugls + 17O+ [ 17)ads].

By applying the triangle inequality in (3.1), we obtain

It

'd“ff) < Au(®)]|» + / 1B(5) A~ 5o pll Au(s) | s + | £ ()]
B l
< (2M+1) xax [|4u(t) 5 + £ O)1p + / S @lds, 1<t
So,
d 1
e [ S2] < @M+ 1) s LAu@lle < 17O+ [ 156 o,

Then using (3.5), we have

max [lAu(t)|lp < 2(M +1) max [[Au(t)]|e + /(0]

—1<t<1 —1<t<1

+ / 1FGleds < (2000 + 12O 11) [l uals + 17O+ [ 176

So, stability inequality (3.3) holds with M* = 2(M + 1)2e2M(M+1) 4 1, O

Now, we consider the Rothe difference scheme for approximate solutions of prob-
lem (3.1).

( k—1
% +Aur, = >, Buit+ ¢, k=1,N,
i=—k+1
(36) 3 % - Auk—l = - Z BiuiT T Pks k=—-N+ 170a
i=k
Bk:B(tk), tk:k’]', k:—N,N,
[ uo = u(0).
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Theorem 3.3. Suppose that the requirements of the Theorem 3.2 are satisfied. Then for
the solution of difference scheme (8.6) the following stability inequalities

max ||k M=l max_[|4u|s
k=—N+1,N T E k=—N,N
N
|Augllz + 0olle + Y ok — or-1lle
— N+1

hold, where M* does not depend on ¢y, k = —N, N and ug.

Proof. By induction we can prove that the initial value problem
Up, — Ug— I
b Rl Awg =, k=T1,N, uo=u(0)

for difference equations in an arbitrary Banach space E with positive operator A has a
unique solution wuyg:

k
=Rfug+ Y R*"yr, k=1N,
=1
k—1

where R = (I + 7A)~'. By putting ¥ = Y. Byu;T + ¢, we obtain
i=—k+1

k k i—1
(37)  Aup=RFAug+A) RMMor+ A RN N B, k=1,N.

=1 =1 j=—1+1

Since

k
T Y RV —r(R+R’+...+R¥)=rR(I+R+...+RF

i=tj+1

= 7R(I — R)"Y(I — R*¥7) = A~1(I — R*¥¥),
we have

AZR’“ i Z Bju;* = A Z Z RFH1B; u]T—|-AZ Z RE 1 Bjuyr

j=—i+1 j=—k+1 i=—j+1 — i=j+1

k—1 k—1
— A Z AT =R Bjur+ AY AT -R¥9)Bjur= Y [T— R B,
j=—k+1 Jj=1 i=—k+1

Putting it in (3.7), we get

k k1
Aup = AR*uy + A Z RFHlyr + Z [I— Rk_m]BiuiT, k

~1,N.
i=1 i=—k+1
Since TAR = I — R, we obtain
k k k k
AN RMMlor =3 (I-R)R* ;=) RMipi— ) Ry,
i=1 i=1 i=1 i=1
k+1 k k k

_ ZRk_iH%_l _ ZRk—i—l-l(pi _ ZRk_iH(‘Oi_l _ RkSOO + o — Z Rk_iHSOi

=1 =1 =1
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k
= op — Rfpo — Z RM (i — @i 1)
i=1
Therefore, we have

k
Aw, = R* Aug + o1 — R¥pg — Y R*" (i — i 1)
i=1
k-1
+ > [I=R*"Bur + (I - R*)Bougr, k=1,N.
i=—k+1
i£0
Applying the triangle inequality and the estimates (3.2), we obtain

k
| Aug||z < || R¥|| 55l Aol s+ |kl e+ | R¥ - sllpoll 2+ D IR || s plloi — pica ||z
i=1
k—1
+ > (L4 IR M psp)1B:A ™ bl Ausl| o7 + (1 + | R¥|| 5-2) || BoA ™| s l| Auo|| 27

i=—k+1
i#0

k k
< M| Auglls + | > (@i = ¢i-1) + olls + Mllwolle + MY lloi — @ialle

=1 =1

k—1
+ MM +1) Y Au|leT + M(M +1)7]| Aug|ls < M(1+ (M + 1)) || Aug||5
i:i;éka—i-l
N k—1
+(M+1) > llei—gialle+(M+1)|lgolle+MM+1) Y [|Aullgr, k=T,N.
i=—N+1 i=—k+1

i£0
So,

N
[Aug||p < M(1+7(M +1))[| Auoll 2 + (M + 1) < Y o =il + ||<P0||E)

i=—N+1
k—1

(3.8) +M(M+1) Y ||Aulpr, k=1,N.
i:;%—e—l

In the similar way by induction we can prove that the initial value problem

Up — Up_ -

S Aup =, k=-N+1,0, up=u(0)
-
for difference equations in an arbitrary Banach space E with positive operator A has a
unique solution wuy:

0
up =R *ug— Y R *hr, k=—N,0.
i=k+1

—k
By putting ¢ = — > B;u;7 + ¢k, we obtain
i—k
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(3.9) Aup=RFAuy— A Z R ipr+ A Z R_k“ZB u;m?, k= —N,0.

1=k+1 i=k+1 j=t

Since

+j
7Y R*™=rR+R+...+R*"™)=7R(I+R+...+ R*7)

i=k+1
=7R(I - R)7'(I - R7"™) = A"Y(I - R™*),
we have
A3 RS
i=k+1
—k—1 —J
AZ ZRk+’BuJT+AZ ZRH’BUJ
j=k+1 i=k+1 = i=k+1
—k—1 —k—1
—A Z AN I-R™*)Bjujr+A Y AT (I-R*7)Bju;r = ) [T-R™* M| By,
j=k+1 j=1 i=k+1
Putting it in (3.9), we obtain
—k—1
Aup = R™*Aug— A Z R*igr+ Y [T - R*MBur, k=-N,0.
i=k+1 i=k+1
Since
0 0
A Z R_k—HgOiT: Z (I R)R—k—l—z 1 Z R—k—l—z 1 Z R—k—l—z
i=k+1 i=k+1 i=k+1 i=k+1
0
Z R—k—H 1 Z R—k—l—z 1902 1= Z R—k—l—z 1 _R_k800+(,0k_ Z R_k—H._lQOzf
i=k+1 i=k+2 i=k+1 i=k+1
0
— o= R %00+ Y RN pi— i),
i=k+1
we obtain

0

Aug = R *Aug— o+ R *oo— Y R ¥ Npi—¢i1)
1=k+1
k-1
+ >[I = R*¥Baur + (I - R™*)Bouer, k=—N,0.
i<kt
Applying the triangle inequality and the estimates (3.2), we obtain

|Aue|| g < [|R*||p=EllAuolls + llekll e + |R*|z=Ell@ol 2
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0 —k—1
+ Y B Y pspllei — el + Y L+ IR 5o )| BA | ol Al o7
i=k+1 z':.;:é—(i)-l

0
+ (L + R M| 8) | BoA™ || p-smll Auoll 57 < M| Auollm + || = D (0i = 0ic1) + ol

i=k+1
0 —k—1
+ M||eollr + M Z i — iille + M(M + 1) Z | Auil|[ T + M(M + 1)7[| Auo|| £
i=k+1 i=k+1
i#£0
N
< M(1+7(M +1)[|Auolle + (M +1) Y lloi = picalls + (M + 1)l polls
i=—N+1
—k—1
+M(M+1) Y ||Aulgr, k==N,0.
i=k+1

i#0
So,

N
[Aug||p < M(1+7(M +1))[| Auol| 2 + (M + 1) < Y. lei—winlle+ ||<P0||E)

i=—N+1
—k—1
(3.10) +M(M +1) Y [|Aw|gr, k=—=N,0.
i=k+1
i#0
Now, the proof of this theorem is based on the Theorem 2.1 in the case M = 0 and the
inequalities (3.8) and (3.10). O

Now, we consider the initial value problem

Tl + Au(t) = [*, Bp)u(p)dp + (1), —1<t<1,
(3.11) { u(O) = . u’(O) :%P p)ap

for differential equation in a Hilbert space H, where A = A* > I (6 > 0) is a positive
definite and self-adjoint operator with dense domain D(A) = H, and B(t) in H with
domain D(B(t)), D(A) C D(B(t)) and
IBOA g <M, —-1<t<1.
A function u(t) is called a solution of the problem (3.11) if the following conditions are
satisfied:
i) u(t) is twice continuously differentiable on [—1, 1]. The derivative at the endpoints
of the segment are understood as the appropriate unilateral derivatives.
ii) The element u(t) belongs to D(A) for all ¢ € [—1,1], and the function Au(t) is

continuous on [—1, 1].
iii) u(t) satisfies the equations and the initial conditions (3.11).

Theorem 3.4. Suppose that ug € D(A), uy € D(AY?) and f(t) is a continuously dif-
ferentiable function on [-1,1]. Then there is a unique solution of the problem (8.11) and
stability inequalities

+ max |[|Au(t)||m
—1<t<1

d?u(t)
dt?

max
—1<t<1
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1
(3.12) < M* ||| Auollz + | A gl + [1£(0) |z + » ||f'(8)||Hd8}

hold, where M* does not depend on ug, uy and f(t), t € [-1,1].

Proof. The proof of the existence and uniqueness of the solution of problem (3.11) is based
on the following formula

u(t) = c(tA)ug + s(tA)uy + A7 f(t) — A 'c(tA) £(0) — /0 A7e((Jt] — |[7)A) f(T)dT

(3.13) +59n(t)/ AT = e(([t] = ITDA)) B(r)u(r)dr, —1<t<1

—t
and the Theorem 3.1. Here
itAl/2 —itAl/2 itAl/2 —itAl/2
+e e —e
tA) =A"?

Let us prove (3.13). First, we consider the case when 0 < ¢t < 1. It is well-known that the
Cauchy problem

e

c(tA) =

dt?

u(0) = ug, u'(0) =y
for differential equations in an arbitrary Hilbert space H with positive and self-adjoint
operator A has a unique solution

{ Pul) L Au(t) = F(t), 0<t<1,

u(t) = c(tA)ug + s(tA)ugy + /ts((t —7)A)F(r)dr, 0<t<1

for smooth F(t). By putting F(t) = [*, B(p)u(p)dp + f(t), we obtain

T

u(t) = c(tA)uo + s(tA)u) + /0 s((t — 7)A)f(r)dr + /0 s((t — 7)A) / B(p)u(p)dpdr

—T

= c(tA)ug + s(tA)uy + A7 f(t) — A7 e(tA) £(0) — /0 A7le((t —1)A) f'(1)dr

/ / (t = 7)A)B(p)u(p)drdp + / /Zs«t—ﬂA)B(p)u(dedp

= c(tA)ug + s(tA)ugy + A_lf(t) — A_lc(tA)f(O) - /Ot A_lc((t —1)A)f'(r)dr
n / AT = of(t - p)A)) Blp)u(p)dp + / ATV (I = c((t + p)A)) B(p)ulp)dp

—t

= c(tA)ug + s(tA)uy + A7 f(t) — A7 c(tA) £(0) — /Ot A7te((t = 1)A) f(7)dr

+ / AN — c((t — |7)A)) B(T)u(T)dr

—t
So, we proved (3.13) for 0 <t < 1. Now, let —1 <t < 0. Then we consider the problem

{ d?u(t) + Au(t) = F(t), —1<t<0,

e
u(0) = uo, w'(0) = u

for differential equations in an arbitrary Banach space E with positive operator A. We
denote t = —7 and u(—7) = v(7). Then the problem
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{ —di;;(;) + Av(1) = F(-71), 0<7<1,
has a unique solution
o(r) = clrAyuo = s(r Ay + [ (7 = AF(=p)dp

= c(TA)ug — s(TA)ug +/_ s((t+ p)A)F(p)dp, 0<7<1.
So, .
u(t) = c(tA)ug + s(tA)uy +/ s((=t+71)A)F(r)dr, —-1<t<0.

By putting F(t f B(p)u(p)dp + f(t), we obtain

—T

u(t) = c(tA)ug-+s(tA) + /t s((—t+7)A) f(r)dr— /1t s((—t+7)A) / B(p)u(p)dpdr

T

— o(tA)uo + s(tA)l + ALF(£) — A e(—tA) F(0) + / Ale((—t + T)A) f(7)dr
/ / —t+17)A dep—i—/ / —t+7)A Yu(p)drdp
— c(tA)ug + s(tA) + A LF () — A 1e(tA) F(0) + /t A (=t + 7)A) f(F)dr

+ /Ot AT = (=t = p)A)) B(p)u(p)dp + /t AT = ¢((=t + p)A)) B(p)u(p)dp
= c(tA)ug + s(tA)ufy + A7 f(t) — A7 c(tA) £(0) + /t A7e((=t +1)A)f'(T)dT

+/t_ A7 (T = (=t — |7])A)) B(r)u(r)dr
So, we proved (3.13) for —1 < ¢ < 0. From (3.13) we have
Au(t) = c(tA)Aug + s(tA)Aug + f(t) — c(tA)f(0) — /0 c((|t] = |7 A) f'(7)dr

t

+ sgn(t) /t(I —c((Jt] = |TDA))B(T)u(r)dr, —-1<t<1.

Applying the triangle inequality and the following estimates
el mom <1, [[AY?s(tA)lnon <1,

we get

lAu@)llzr < lle@A) | m-sullAuollir + [AY2sEA) | | A 2ugll s + 11 () |

g
+ e a-mllfO)m + /M (2l = [T A - ll £ ()| ndT

t
+/_|t| [+ lle((t] = [TD A -m] 1B(T) A || - all Au(T) L dr
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t

1
<2 [Auolln + 1465l + 15O+ [ 17(9ads| + 2215g0(0) [ 1u(s)uds.
—1 —t

Then, by using the Theorem 2.5, we obtain

1
lAu@®)]ln < 2 [nAuonH 42+ 1O+ [ ||f'<s)||Hds} Mt
—1
1
< 2t [nAuonH 1Al + 1O+ [ ||f'(s)||Hds] L S1<t<L
—1
So,

1
(3.14)  max [[Au(t)|n < 26 [nAuonH 1A+ 17O+ [ ||f'(s>||Hds} .

By applying the triangle inequality in (3.11), we obtain

I¢|

d2
' 2 <1au@lln+ [ 1BA Ao ldo + 15Ol
H
— |t
1
<(2M +1) _max, |Au() ||l + [|£0) ||z + /_1 I f'(s)l|lds, —1<t<1.
So,
& !
s, | | < M0 e WA+ 15O+ [ 176 s

Then, using (3.14), we have

Pult) H
dt?

+ max [|Au(t)llg < 2(M +1) max [lAu(t)lx + /1 1/ ()| zzdls

—1<t<1

max
—1<t<1
1
HIF O < (4(M +1)e™™ +1) {HAuollH + 1A 25|z + 11 £ (0) | +/ ||f'(8)||Hd8} :
-1
So, stability inequality (3.12) holds with M* = 4(M + 1)e*M + 1. O
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