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Abstract

It is known that, within the service time distribution class DHR, the FB dis-
cipline minimizes the mean delay in the M/G/1 queue among all work-conserving
and non-anticipating service disciplines. It is also believed that a similar result
is valid within a more general distribution class IMRL. However, we point out a
flaw in the existing proof of this latter result that cannot be overcome. More-
over, by constructing a counter-example, we demonstrate that FB is not optimal
within class IMRL. On the other hand, we prove that the mean delay for FB is
smaller than that of PS within class IMRL giving a weaker version of an earlier
hypothesis.

Keywords Queueing theory, scheduling, M/G/1, IMRL, mean delay, FB, PS, MLPS

1 Introduction

Consider an M/G/1 queue with arrival rate λ, mean service time E[S], and load ρ =
λE[S] < 1. Jobs are served according to a work-conserving and non-anticipating
service (scheduling) discipline π. Discipline π is work-conserving if it does not idle
when there are jobs waiting and non-anticipating if the remaining service times of jobs
are unknown for the server. Let Π denote the family of such service disciplines. For
example, the well known disciplines FCFS and PS belong to this family, while SRPT
(Shortest-Remaining-Processing-Time) does not.

Let F (x) = P{S ≤ x}, x ≥ 0, denote the cumulative service time distribution
function of any job. We assume that F (x) < 1 for all x. If the service time distribution
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has density f(x), the hazard rate h(x) is defined by

h(x) =
f(x)∫ ∞

x
f(y) dy

. (1)

A service time distribution belongs to class DHR (Decreasing Hazard Rate) if h(x) is
decreasing for all x, i.e., h(x) ≥ h(y) whenever x ≤ y.

Yashkov [10] has shown that, within class DHR, the mean delay is minimized by
the FB (Foreground-Background) discipline, which gives priority to the job with the
least attained service. In fact, Righter and Shanthikumar [7] have proved that FB
minimizes, not only the mean delay and the mean queue length, but the queue length
even in the stochastic sense. The FB discipline is also known as FBPS (Feedback
Processor-Sharing), LAST (Least-Attained-Service-Time) and LAS (Least-Attained-
Service).

Let then F (x) denote the corresponding tail distribution function, F (x) = 1−F (x),
and define

H(x) =
F (x)∫∞

x
F (y) dy

. (2)

A service time distribution belongs to class IMRL (Increasing Mean Residual Lifetime)
if H(x) is decreasing for all x, i.e., H(x) ≥ H(y) whenever x ≤ y. This is due to the
fact that

E[S − x | S > x] =

∫ ∞
x

F (y) dy

F (x)
=

1
H(x)

. (3)

Note that this conditional expectation is well defined since we assumed that F (x) > 0
for all x. It is known that IMRL is a weaker condition than DHR. In other words,
DHR ⊂ IMRL. Righter et al. [8, Theorem 3.14] state that FB minimizes the mean
delay even within class IMRL. (Unfortunately, there is a misprint in the abstract of [8]
stating just the opposite. The right form is given in [8, Theorem 3.14].)

Still a more general class consists of those service time distributions for which
C2[S] ≥ 1, where C2[S] refers to the squared cofficient of variation of the service time
distribution, C2[S] = D2[S]/E[S]2. Wierman et al. [9, Example 1] demonstrate, by
constructing a counter-example, that FB is not optimal within this class. In particular,
they evert the hypothesis by Coffman and Denning that the mean delay for FB would
be smaller than that of PS (Processor-Sharing) whenever C2[S] > 1. The distribution
given in their counter-example, while having a greater squared cofficient of variation
than 1, does not belong to class IMRL. (Unfortunately, there is also a misprint in
[9, Example 1]. The corrected version reads as follows: P{S = 1} = 4

5
+ ε and

P{S = 6} = 1
5 − ε. Then C2[S] > 1 for any 0 < ε < 1

10 .)
In this paper, we prove that, contrary to [8, Theorem 3.14], FB does not minimize

the mean delay within class IMRL. More specifically, we first identify a flaw in the
proof of [8, Theorem 3.14] that cannot be overcome. Then we choose a service time
distribution that belongs to IMRL but not to DHR, and construct a discipline for which
the mean delay is smaller than that of FB. On the other hand, we prove that the mean
delay for FB is smaller than that of PS within class IMRL giving a weaker version of
the hypothesis by Coffman and Denning.
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The rest of the paper is organized as follows. First, in Section 2, we recall an
essential point in the proof of [8, Theorem 3.14], which a relationship between the
mean delay and so called truncated workload. Then, in Section 3, we consider the
sample paths of the truncated workload process, and prove that FB is not pathwisely
optimal, which contradicts with [8, Lemma 3.5]. In Section 4, we prove that FB is
neither optimal with respect to the mean truncated workload but still outperforms PS.
In Section 5, we finally construct the counter-example demonstrating that FB does not
minimize the mean delay within class IMRL, which contradicts with [8, Theorem 3.14].

2 Relationship between mean delay and truncated

workload

In this section we recall a relationship between the mean delay and so called truncated
workload, which the proof of [8, Theorem 3.14] is based on. We define the truncated
workload as the sum of remaining service times of those jobs in the system whose
attained service is less than a given truncation threshold x. The relationship is given
below in Proposition 1.

Let N
π

denote the mean number of jobs in the system and V
π
x the mean truncated

workload with truncation threshold x. Righter et al. [8, Lemma 3.12] show that, for
any π ∈ Π,

N
π

=
∫ ∞

0−
H(x) dV

π

x, (4)

where H(x) is as given in (2). In fact, Righter et al. define the truncated workload as
the sum of remaining service times of those jobs in the system whose attained service is
less than or equal to a given truncation threshold x. However, since H(x) is continuous
from the right, formula (4) is valid also with our definition.

Assume then that the function H(x) is monotonous so that the service time distri-
bution belongs to either IMRL or DMRL. In this case the mean number of jobs in two
systems with disciplines π, π′ ∈ Π, respectively, may be compared as follows:

N
π − N

π′

= −
∫ ∞

0

(V
π
x − V

π′

x ) dH(x). (5)

This equation follows from (4) after a partial integration, and can be found from the

proof of [8, Theorem 3.14]. Thus, if V
π

x ≤ V
π′

x for all x and the service time distribution
belongs to class IMRL so that −H(x) is increasing, then

N
π ≤ N

π′

.

Let then T
π

denote the mean delay of a job. By applying Little’s result, N
π

=
λT

π
, we finally get the following relationship between the mean delay and truncated

workload.

Proposition 1 Let π, π′ ∈ Π. Assume that the service time distribution belongs to
class IMRL. If V

π

x ≤ V
π′

x for all x, then T
π ≤ T

π′

.
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Righter et al. [8] use this result, which is valid an sich, to show that FB minimizes
the mean delay within class IMRL. The problem lies in their Lemma 3.5, where they
state that FB is optimal with respect to the truncated workload even in each sample
path. Below in Proposition 3, we, however, show that this is not the case. Furthermore,
in Proposition 4, we show that FB is neither optimal with respect to the mean truncated
workload. Finally, in Theorem 1, we show that FB is not optimal with respect to the
mean delay.

In all these cases, a better discipline is found from the family of MLPS disciplines,
which were introduced by L. Kleinrock in the early 1970’s [5]. They have recently
attracted attention in the context of the Internet as an appropriate flow-level model
for the bandwidth sharing obtained when priority is given to short TCP connections
[4, 3, 2, 1, 6].

An MLPS discipline π is defined by a finite set of level thresholds a1 < · · · < aN

defining N + 1 levels, N ≥ 0. A job belongs to level n if its attained service is at least
an−1 but less than an, where a0 = 0 and aN+1 = ∞. Between these levels, a strict
priority discipline is applied with the lowest level having the highest priority. Thus,
those jobs with attained service less than a1 are served first. Within each level n,
an internal discipline Dn is applied. The internal disciplines may vary in the set
{FB, PS, FCFS}. We denote by MLPS the family of MLPS disciplines. All these
disciplines belong to the family Π of work-conserving and non-anticipating disciplines.

In particular, we are interested in those MLPS disciplines π for which the internal
discipline at the first level is FCFS. For any x > 0, let FCFSx denote the subfamily
of MLPS disciplines π such that a1 = x and D1 = FCFS. For example, the two-level
discipline FCFS + FB(x) with level threshold x, which applies FCFS at the first level
and FB at the second level, belongs to this subfamily.

3 Sample path results for the truncated workload

In this section we show that FB is not pathwisely optimal with respect to the truncated
workload, which contradicts with [8, Lemma 3.5].

Consider a single server queueing system starting empty at time t = 0 and obeying
a service discipline π ∈ Π. We assume that jobs arrive one at a time. They are indexed
with i = 1, 2, . . . according to their arrival order.

Let Ai denote the arrival epoch of job i and Si its service time. In addition, let
Xπ

i (t) denote the attained service of job i at time t. Let then A(t) and N π(t) denote
the set of jobs arrived and those in the system at time t, respectively,

A(t) = {i : Ai ≤ t}, N π(t) = {i ∈ A(t) : Xπ
i (t) < Si}.

For any x > 0, let N π
x (t) denote the set of those jobs in the system whose attained

service is less than x,

N π
x (t) = {i ∈ A(t) : Xπ

i (t) < min{x, Si}}.

Denote further A(t) = |A(t)|, Nπ(t) = |N π(t)|, and Nπ
x (t) = |N π

x (t)|.
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For any x ≥ 0, let V π
x (t) denote the remaining workload in the system at time t

contributed by those jobs with attained service less than x,

V π
x (t) =

∑

i∈Nπ
x (t)

(Si − Xπ
i (t)), (6)

which is briefly called the truncated workload with truncation threshold x. Note that in
the limit x → ∞ the truncated workload equals the ordinary workload of this system,
i.e., the sum of remaining service times of all jobs, which is the same for all work-
conserving disciplines.

To get another expression for the truncated workload V π
x (t), let Rπ

x(t) denote the
total rate at which service is provided to the jobs with attained service less than x at
time t. Whenever there are such jobs, the truncated workload is decreasing continuously
with this rate. But it may also decrease discontinuously: whenever the attained service
of a job reaches the truncation threshold x so that the job drops out from N π

x (t), the
truncated workload decreases by a step that equals the remaining service time of that
job. Thus, we have

V π
x (t) =

∑

i∈A(t)

Si −
∫ t

0

Rπ
x(u) du −

∑

i∈A(t)\Nπ
x (t)

(Si − min{x, Si}). (7)

First we show that certain MLPS disciplines are not worse than FB with respect
to the truncated workload.

Proposition 2 Let x > 0 and π∗ ∈ FCFSx. Then, for any t ≥ 0,

V π∗

x (t) ≤ V FB
x (t).

Proof. Both the disciplines, π∗ and FB, give full priority for the jobs with attained
service less than x. Thus, Rπ∗

x (t) = RFB
x (t) for all t ≥ 0, and consequently

∫ t

0

Rπ∗

x (u) du =
∫ t

0

RFB
x (u) du.

It follows that the second term in (7) is the same for both disciplines.
Let us then consider the third term in (7). Note first that, for any π ∈ Π,

∑

i∈A(t)\Nπ
x (t)

(Si − min{x, Si}) =
∑

i∈Ax(t)\Nπ
x (t)

(Si − min{x, Si}),

where
Ax(t) = {i ∈ A(t) : Si > x}.

In the FB system the jobs with Si > x reach the attained service level x in batches. In
the corresponding π∗ system, where the discipline is FCFS below this level, the same
jobs reach level x one-by-one in such a way that the job arrived last reaches this level
not later than the whole batch in the FB system. This is due to the work-conserving
principle. Thus,

Ax(t) \ NFB
x (t) ⊂ Ax(t) \ N π∗

x (t),
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which implies that
∑

i∈Ax(t)\NFB
x (t)

(Si − min{x, Si}) ≤
∑

i∈Ax(t)\Nπ∗
x (t)

(Si − min{x, Si}).

By combining these results with (7), we get

V π∗

x (t) =
∑

i∈A(t)

Si −
∫ t

0

Rπ∗

x (u) du −
∑

i∈Ax(t)\Nπ∗
x (t)

(Si − min{x, Si})

≤
∑

i∈A(t)

Si −
∫ t

0

RFB
x (u) du −

∑

i∈Ax(t)\NFB
x (t)

(Si − min{x, Si})

= V FB
x (t),

which completes the proof. 2

Then we show that these disciplines are strictly better than FB.

Proposition 3 Let x > 0 and π∗ ∈ FCFSx. There is a sample path and t ≥ 0 such
that

V π∗

x (t) < V FB
x (t).

Proof. Assume that A1 = 0, S1 = 3x/2, A2 = x/2, S2 = x/2, and A3 = 3x.
Discipline FB serves job 1 in the intervals [0, x/2) and [x, 2x), and job 2 in the interval
[x/2, x). Whereas discipline π∗ serves job 1 in the intervals [0, x) and [3x/2, 2x), and
job 2 in the interval [x, 3x/2). As a result,

V π∗

x (5x/4) = x/4 < 3x/4 = V FB
x (5x/4).

In fact, V π∗

x (t) < V FB
x (t) for all t ∈ (x, 3x/2), as can be seen from Fig. 1 where we have

chosen x = 2. 2

Remark 1 Note that Proposition 3 contradicts with [8, Lemma 3.5], which states
that FB is optimal with respect to the truncated workload. This is essentially due to
the fact that Righter et al. confuse the truncated workload V π

x (t) with the variable
Uπ

x (t) defined by
Uπ

x (t) =
∑

i∈Nπ
x (t)

(min{Si, x} − Xπ
i (t)), (8)

which we call unfinished truncated work with truncation threshold x. So the remaining
truncated service times are summed up instead of the ordinary remaining service times
as in (6). It is true that FB is pathwisely optimal with respect to the unfinished
truncated work [1, Proposition 5] but, as Proposition 3 reveals, not with respect to the
truncated workload. The confusion in [8] can be explained as follows. As given in [1,
Equation (16)], we have

Uπ
x (t) =

∑

i∈A(t)

Si −
∫ t

0

Rπ
x(u) du. (9)
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Figure 1: The truncated workload V π
x (t) as a function of time t for disciplines FB (solid

line) and π∗ (dashed line) with x = 2.

This corresponds to [8, Equation (3.1)]. Thus, Righter et al. miss the downward steps
in the sample paths of the truncated workload process V π

x (t).

Remark 2 Strictly speaking, if the truncated workload were defined as in [8], i.e.,
as the sum of remaining service times of those jobs in the system whose attained
service is less than or equal to the given truncation threshold x, the disciplines π∗ and
FB considered in the proof of Proposition 3 would have the same truncated workload
for all t. However, in that case, a slightly modified discipline π∗ ∈ FCFSx+ε with
sufficiently small ε > 0 would serve as a counter-example for [8, Lemma 3.5], which is
easily verified.

4 Mean value results for the truncated workload

Righter et al. [8] applied their Lemma 3.5 to prove that, for all π ∈ Π and x > 0,

V
FB
x ≤ V

π
x, (10)

which would be a sufficient (but not necessary) condition for the optimality of FB with
respect to mean delay according to Proposition 1. However, as shown above, their
Lemma 3.5 is not valid. So it remains an open question whether (10) is valid or not.

In this section we show that (10) is neither valid. We start with some preliminary
results related to a modified queue where the service times are replaced by their trun-
cated versions in Section 4.1. In Section 4.2, we derive some fundamental formulas for
the mean truncated workload. Then, in Section 4.3, we give the mean truncated work-
load formulas for FB, PS and FCFSx disciplines. Finally, in Section 4.4, we show that
FB is not optimal with respect to the mean truncated workload but still outperforms
PS.
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4.1 Truncated service times

Let x ≥ 0, and consider, for a while, a modified M/G/1 queue where the original service
times S are replaced by their truncated versions S ∧ x = min{S, x}. It is easy to see
that

E[S ∧ x] =
∫ x

0

F (y) dy, E[(S ∧ x)2] = 2
∫ x

0

yF (y) dy. (11)

Furthermore, let
ρx = λE[(S ∧ x)] (12)

denote the truncated load. The mean workload for a work conserving M/G/1 queue
with truncated service times is, by the Pollaczek-Khinchin formula (cf. [5, Equa-
tion (4.26)]),

W x =
λE[(S ∧ x)2]

2(1 − ρx)
. (13)

Regarding the derivative, it is easy to verify that

∂

∂x
W x = λ

W x + x

1 − ρx
F (x). (14)

Letting x → ∞, we get the ordinary Pollaczek-Khinchin formula:

W∞ =
λE[S2]
2(1 − ρ)

.

4.2 Mean truncated workload

Consider then again the original M/G/1 queue with service times S and load ρ,

ρ = λE[S] = λ

∫ ∞

0

F (x) dx. (15)

Note that ρ > ρx for all x > 0, since we assumed that F (x) > 0 for all x.
Let V

π

x denote the mean truncated workload with truncation threshold x. In ad-
dition, let N

π
x denote the mean number of those jobs in the system whose attained

service is less than x. Since π is work-conserving and non-anticipating, we have (cf. [8,
Equation (3.13)])

V
π
x =

∫ x−

0−
E[S − y | S > y] dN

π
y . (16)

As noted earlier in Remark 1, the truncated workload V π
x differs from the unfinished

truncated work Uπ
x . For a work-conserving and non-anticipating discipline π, the mean

unfinished truncated work reads as follows:

U
π
x =

∫ x−

0−
E[(S ∧ x) − y | S > y] dN

π
y . (17)

Note further that the limit V
π

∞ = U
π

∞ = W∞ is the same for all π ∈ Π.
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Let then T
π
(x) denote the conditional mean delay of a job with service time x. We

note that T
π
(x) is increasing and continuous from the left, T

π
(x−) = T

π
(x) ≤ T

π
(x+).

It is also known [5, Equation (4.11)] that

dN
π

y = λF (y) dT
π
(y).

Thus, by (16) and (3),

V
π
x

(16)
= λ

∫ x−

0−
E[S − y | S > y] F (y) dT

π
(y)

(3)
= λ

∫ x−

0−

∫ ∞

y

F (t) dt dT
π
(y)

= λ

∫ x

0

T
π
(y)F (y) dy + λT

π
(x)

∫ ∞

x

F (y) dy

= λ

∫ x

0

T
π
(y)F (y) dy + T

π
(x)(ρ − ρx). (18)

Note that V
π

x is increasing and continuous from the left, V
π

x− = V
π

x ≤ V
π

x+ .
Since, by [5, Equation (4.60)],

U
π
x = λ

∫ x

0

T
π
(y)F (y) dy, (19)

the mean truncated workload can also be given as follows:

V
π

x = U
π

x + T
π
(x)(ρ − ρx).

4.3 Mean truncated workload for some MLPS disciplines

Now we calculate the mean truncated workload for some MLPS disciplines in an M/G/1
queue. First we consider the FB discipline. By [5, Equation (4.27)],

T
FB

(x) =
W x + x

1 − ρx
.

Thus, by (14),

λT
FB

(x)F (x) =
∂

∂x
W x

implying, by (18), that

V
FB
x = W x +

W x + x

1 − ρx
(ρ − ρx) = W x

(
1 +

ρ − ρx

1 − ρx

)
+ x

ρ − ρx

1 − ρx
. (20)

Then we consider the PS discipline. By [5, Equation (4.17)],

T
PS

(x) =
x

1 − ρ
.

9



Thus, by (18) and (13),

V
PS

x = W x
1 − ρx

1 − ρ
+ x

ρ − ρx

1 − ρ
. (21)

Finally we consider any π ∈ FCFSx. By [5, Equation (4.35)], we have, for all y ≤ x,

T
π
(y) = Wx + y.

Thus, by (18), for all y ≤ x,

V
π
y = W xρ + W y(1 − ρy) + y(ρ − ρy).

In particular,
V

π
x = W x(1 + ρ − ρx) + x(ρ − ρx). (22)

In the sequel we also need the following equality, which is valid for any π ∈ FCFSx,

U
π
x = U

FB
x = W x. (23)

This is easily verified by (19) and the conditional mean delay formulas given above.
In fact, this property follows from the pathwise local optimality of these policies with
respect to the unfinished truncated work, see [1, Section 3.1].

4.4 Comparison with the FB discipline

Now we are ready to show that FB is not optimal with respect to the mean truncated
workload.

Proposition 4 Consider any service time distribution. Let x > 0 and π∗ ∈ FCFSx.
Then

V
π∗

x < V
FB

x .

Proof. By (20) and (22),

V
FB

x − V
π∗

x =
(W x + x)(ρ − ρx)ρx

1 − ρx
> 0,

since 0 < ρx < ρ < 1. 2

As a numerical example, consider the exponential service time distribution with rate
parameter equal to 1, F (x) = e−x and E[S] = 1. Let λ = 1/2, so that we have a stable
system with load ρ = λE[S] = 1/2 < 1. Then

V
FB

1 = 0.514, V
FCFS+FB(1)

1 = 0.413,

implying that (10) is not valid in this case. This result is illustrated also in Fig. 2,
where we have depicted the mean truncated workload V

π

x as a function of the truncation
threshold x for disciplines FB and FCFS+FB(1).
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Figure 2: The mean truncated workload V
π

x as a function of the truncation threshold
x for disciplines FB (solid line) and FCFS+FB(1) (dashed line).

Remark 3 Again strictly speaking, if the truncated workload were defined as in [8],
i.e., as the sum of remaining service times of those jobs in the system whose attained
service is less than or equal to the given truncation threshold x, the disciplines π∗

and FB considered in Proposition 4 could have the same mean truncated workload for
the truncation threshold x. However, in that case, we can easily verify that, for any
sufficiently small ε > 0,

V
FB

x−ε − V
π∗

x−ε > 0,

which is also demonstrated by the numerical example in Fig. 2.

Finally we show that, while not being optimal, FB still outperforms PS with respect
to the mean truncated workload.

Proposition 5 Consider any service time distribution. Let x > 0. Then

V
FB

x < V
PS

x .

Proof. By (20) and (21),

V
PS

x − V
FB

x =
(W x + x)(ρ − ρx)2

(1 − ρ)(1 − ρx)
> 0,

since ρx < ρ < 1. 2

5 Mean delay results

In this section we justify our principal claim that FB does not minimize the mean delay
within class IMRL, which contradicts with [8, Theorem 3.14]. On the other hand, we
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show that FB still outperforms PS with respect to the mean delay within class IMRL,
which can be considered as a generalization of [9, Theorem 1].

Theorem 1 There is a service time distribution belonging to class IMRL and π ∈ Π
such that

T
π

< T
FB

.

Proof. 1◦ First we need a distribution that belongs to IMRL but not to DHR. Here
is a candidate (for any c > 1):

F (x) =
{

c−x, 0 ≤ x ≤ c
x−c, x > c.

(24)

So we first have an exponential part and then a Pareto-type tail. The corresponding
density function is

f(x) =
{

c−x ln c, 0 ≤ x ≤ c
cx−c−1, x > c.

(25)

The hazard rate is as follows:

h(x) =
{

ln c, 0 ≤ x ≤ c
cx−1, x > c.

(26)

It is easy to see that F (x) belongs to DHR if and only if h(c−) ≥ h(c+), which is
equivalent to the requirement that c ≥ e. In Fig. 3 we have depicted the function h(x)
for c = 2.
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0.6

0.8

1

H
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z
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r
d
r
a
t
e

Figure 3: Hazard rate for the service time distribution defined in (24) with c = 2.

The mean residual lifetime function is as follows:

1
H(x)

=





1
ln c

+
(

c

c − 1
− 1

ln c

)
cx−c, 0 ≤ x ≤ c

x

c − 1
, x > c.

(27)
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Since, for all c > 1,
c

c − 1
− 1

ln c
> 0,

we deduce from (27) that F (x) belongs to IMRL with any c > 1. In Fig. 4 we have
depicted the function 1/H(x) for c = 2. All in all, F (x) belongs to IMRL but not to
DHR if and only if

1 < c < e ≈ 2.71828.
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Figure 4: Mean residual lifetime for the service time distribution defined in (24) with
c = 2.

2◦ Use then the following heuristic to construct a discipline that might be better
than FB: whenever the hazard rate is increasing, FCFS is optimal, and whenever it
is decreasing, FB is optimal. So let us compare disciplines FB and FCFS + FB(c + ε)
with ε ≥ 0. The conditional mean delays read as follows:

T
FB

(x) =
W x + x

1 − ρx
, x ≥ 0, (28)

and

T
FCFS+FB(c+ε)

(x) =





W c+ε + x, 0 ≤ x ≤ c + ε

T
FB

(x), x > c + ε.

(29)

2.1◦ First we consider the FCFS + FB(c) discipline with ε = 0 and show that

T
FCFS+FB(c)

= T
FB

. (30)

By (28) and (29),

T
FCFS+FB(c) − T

FB
=

∫ c

0

(
T

FCFS+FB(c)
(x) − T

FB
(x)

)
f(x)dx.
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Since, by (25), f(x) = F (x) ln c for any x ≤ c, we get

T
FCFS+FB(c) − T

FB
= ln c

∫ c

0

(
T

FCFS+FB(c)
(x) − T

FB
(x)

)
F (x)dx,

implying, by (19) and (23), that

T
FCFS+FB(c) − T

FB
=

ln c

λ

(
U

FCFS+FB(c)
c − U

FB
c

)
= 0.

2.2◦ If we now can prove that

∂

∂ε
T

FCFS+FB(c+ε)
∣∣∣∣
ε=0+

< 0, (31)

it follows from (30) that there is δ > 0 such that, for any 0 < ε < δ,

T
FCFS+FB(c+ε)

< T
FB

(32)

revealing the non-optimality of FB for this distribution.
By (28) and (29),

T
FCFS+FB(c+ε)

=
∫ c+ε

0

(W c+ε + x)f(x) dx +
∫ ∞

c+ε

W x + x

1 − ρx
f(x) dx.

Thus, by (14), we get the desired result as follows:

∂

∂ε
T

FCFS+FB(c+ε)
=

(
∂

∂ε
W c+ε

)
F (c + ε) + (W c+ε + c + ε)f(c + ε) − W c+ε + c + ε

1 − ρc+ε
f(c + ε)

(14)
= λ

W c+ε + c + ε

1 − ρc+ε
F (c + ε) F (c + ε) − W c+ε + c + ε

1 − ρc+ε
f(c + ε) ρc+ε

= λ
W c+ε + c + ε

1 − ρc+ε

(
(c + ε)−c (1 − (c + ε)−c) − c(c + ε)−c−1 ρc+ε

λ

)

ε→0+

→ λ
W c + c

1 − ρc

(
c−c (1 − c−c) − c−c ρc

λ

)
.

Since
ρc

λ
= E[S ∧ c]

(11)
=

∫ c

0

F (x) dx
(24)
=

∫ c

0

c−x dx =
1

ln c
(1 − c−c),

we finally get

∂

∂ε
T

FCFS+FB(c+ε)
∣∣∣∣
ε=0+

= λ
W c + c

1 − ρc
c−c(1 − c−c)

(
1 − 1

ln c

)
< 0,

where the inequality follows from the fact that 1/ ln c > 1 for all 1 < c < e. 2
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As numerical examples, we have computed the following results:

c = 2.0, λ = 0.5, ρ = 0.791, ε = 1.0 : T
FB

= 5.901, T
FCFS+FB(c+ε)

= 5.811,

c = 2.1, λ = 0.5, ρ = 0.733, ε = 0.7 : T
FB

= 4.640, T
FCFS+FB(c+ε)

= 4.584,

c = 2.5, λ = 0.5, ρ = 0.575, ε = 0.2 : T
FB

= 2.561, T
FCFS+FB(c+ε)

= 2.558.

So in all these cases FCFS + FB(c + ε) is found to be better than FB.

Theorem 2 Assume that the service time distribution belongs to class IMRL. Then

T
FB ≤ T

PS
.

Proof. Due to Proposition 1, this follows immediately from Proposition 5. 2

References

[1] Aalto, S., Ayesta, U. and Nyberg-Oksanen, E. (2004). Two-level processor-sharing schedul-
ing disciplines: mean delay analysis. In ACM SIGMETRICS/PERFORMANCE 2004, New
York, pp. 97–105.

[2] Avrachenkov, K., Ayesta, U., Brown, P. and Nyberg, E. (2004). Differentiation between
short and long TCP flows: predictability of the response time. In IEEE Infocom 2004, Hong
Kong, pp. 762–773.

[3] Feng, H. and Misra, V. (2003). Mixed scheduling disciplines for network flows. ACM SIG-
METRICS Performance Evaluation Review 31, 36–39.

[4] Guo, L. and Matta, I. (2002). Differentiated control of web traffic: A numerical analysis. In
SPIE ITCOM’2002, Boston.

[5] Kleinrock, L. (1976). Queueing Systems, Volume II: Computer Applications. John Wiley &
Sons, New York.

[6] Rai, I., Urvoy-Keller, G., Vernon, M. and Biersack, E. (2004). Performance analy-
sis of LAS-based scheduling disciplines in a packet switched network. In ACM SIGMET-
RICS/PERFORMANCE 2004, New York, pp. 106–117.

[7] Righter, R. and Shanthikumar, J. G. (1989). Scheduling multiclass single server queueing
systems to stochastically maximize the number of successful departures. Probability in the En-
gineering and Informational Sciences 3, 323–333.

[8] Righter, R., Shanthikumar, J. G. and Yamazaki, G. (1990). On extremal service disciplines
in single-stage queueing systems. Journal of Applied Probability 27, 409–416.

[9] Wierman, A., Bansal, N. and Harchol-Balter, M. (2004). A note on comparing response
times in the M/GI/1/FB and M/GI/1/PS queues. Operations Research Letters 32, 73–76.

[10] Yashkov, S. F. (1987). Processor-sharing queues: Some progress in analysis. Queueing Systems
2, 1–17.

15


