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Isotropic random field with homogeneous increments. The results pre-
sented here are taken over from the current work by Dzhaparidze, van Zanten
and Zareba [9] in which some of the results of the previous papers [5]–[8] are
extended to isotropic Gaussian random fields with homogeneous increments.
Our work, inspired in large extend by Malyarenko [13], does improve upon his
general result à la our representation (8) and somewhat simplify applications to
the spacial fractional Brownian motion.

The departure point in the aforementioned papers is the spectral representa-
tion of the covariance function of a mean zero random process Xt, t ∈ R1, with
stationary increments:

EXsXt =
∫

R1

(
eiλt − 1

)(
e−iλs − 1

)
d%(λ) s, t ∈ R1 (1)

where % is a spectral function. In the special case of fBm(H) with

EXsXt =
1
2
(|t|2H + |s|2H − |t− s|2H

)
, (2)

the spectral function is known to be given by

d%(λ) = C2
H

dλ

|λ|1+2H

with a certain positive constant C2
H . Malyarenko [13] treats at once a multi-

dimensional case, a random field with homogeneous increments characterized

1



by the spectral representation

EXtXs =
∫

RN

(
ei(v,t) − 1

) (
e−i(v,s) − 1

)
d%(v) s, t ∈ RN (3)

under the additional isotropy requirement in the sense that XΩt
d= Xt for any

orthogonal matrix Ω. The spectral function %(v) then depends only on the
length |v| of the vector v ∈ RN (for simplicity we use the same symbol % also
for the resulting scalar function). The main object of study in [13] is a spacial
version of fBm(H) that is characterized by the covariance of the same form (2)
with s, t ∈ RN , whose spectral representation (3) holds with

d%(v) = CN 2
H

dv

|v|N+2H
,

CN 2
H a certain positive constant. The intention is to extend results of [5] to the

multi-dimensional case. The first step is finding the multi-dimensional analogue
to the following simple reformulation of (1): for s, t ∈ R1

EXsXt =
∫ ∞

0

(
cosλs− 1

λ

cosλt− 1
λ

+
sinλs

λ

sin λt

λ

)
µ(dλ) (4)

with µ(dλ) = 2λ2%(dλ). However, this step is not elementary. It turns out (see
[13] for details or the books [19] or [12] where the basic methodology can be
found) that (3) can be rewritten in the following form: with s, t ∈ RN

EXsXt =
πN

Γ2(N
2 )

∞∑

`=0

h(`,N)∑
m=1

∫ ∞

0

gm
` (s, λ)− gm

` (0, λ)
λ

gm
` (t, λ)− gm

` (0, λ)
λ

µ(dλ)

(5)
with

µ(dλ) =
2πN |λ|N+1%(dλ)

Γ2(N/2)
.

It will be seen in the concluding section how the system of functions gm
` is

defined and how the numbers

h(`,N) =
(2` + N − 2)(` + N − 3)!

(N − 2)!`!
(6)

occur (in case N = 1 only two terms will remain in the series (5) and it turns
into (4), of course). Meanwhile in the next section we present an interesting
consequence of the representation (5).

Series expansion. In this section we restrict our attention to the unit ball
|t| < 1. As is demonstrated in [8], in the scalar case one can make use of
Krein’s spectral theory of vibrating strings (see [11] or [4]) that allows us to
switch over to the discrete spectrum. The discrete counterpart of the spectral
function µ in (4) is defined in terms of eigenvalues and eigenfunctions of the
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corresponding string equation, and we have the representation of the following
form: for s, t ∈ R1

EXsXt =
∞∑

n=1

(
cos λns− 1

λn

cos λnt− 1
λn

+
sin λns

λn

sin λnt

λn

)
σ2

n.

Krein has developed procedures for finding the numbers λn and σ2
n in many

practically important cases (see the list of rules in [4], section 6.9), except in
the fBm(H) case. The latter is discussed in [8] where one can see that λn’s in
that case are the positive zero’s of the Bessel function J−H and that

σ2
n =

2C2
H

λ2H
n J2

1−H(λn)
.

In the paper [9] under preparation we show how the same method of vi-
brating strings does extend to the multi-dimensional case and does lead to the
representation of the following form: for s, t ∈ RN

EXsXt =
πN

Γ2(N
2 )

∞∑

`=0

h(`,N)∑
m=1

∞∑
n=1

gm
` (s, λn)−gm

` (0, λn)
λn

gm
` (t, λn)−gm

` (0, λn)
λn

σN 2
n

(7)
with the same spectrum {λn, n = 1, 2, . . .} as before and the jumps {σN 2

n , n =
1, 2, . . .} that are determined in the similar way as before. For the spacial
fBm(H), for instance, λn’s are again the positive zero’s of the Bessel function
J−H , while

σN 2
n =

2CN 2
H

λ2H
n J2

1−H(λn)
.

Precisely as in the scalar case, it follows from the representation (7) that the
following series expansion holds a.s. and uniformly in |t| ≤ 1:

Xt =
πN

Γ2(N
2 )

∞∑

`=0

h(`,N)∑
m=1

∞∑
n=1

gm
` (t, λn)−gm

` (0, λn)
λn

ηm
` n (8)

with independent Gaussian N(0, σN 2
n ) random variables ηm

` n. We have to skip
the details on the necessary arguments and conclude this note by characterizing
the system of functions gm

` .

Wave propagation in space These functions naturally occur in the spectral
theory of random fields (as developed in [19], [12], etc.) Actually, this stems
from the basic rôle they play in harmonic analysis in L2(RN ) (see in particular
[17], section 10.2.5; see also [3] or [10]). Another context to be mentioned briefly
in the sequel, is from mathematical physics (see e.g. [1], [2], [15], [14], [18]).

The wave equation that describes the propagation of sound in a media with
density ρ(x), x ∈ RN takes the form of a hyperbolic equation for the induced
pressure p:

ρ
∂2p

∂t2
= ∆p x ∈ RN
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where ∆ =
∑N

i=1 ∂2/∂x2
j is the Laplace operator. To separate the time and

space variables t and x, substitute p(t, x) = Θ(t) Ξ(x) and use the separation
constant λ2 to get two equations Θ′′ = λ2Θ and ∆Ξ = λ2ρΞ. The general
solution of the first equation in the time component t is expressed in terms of
the linear combination of trigonometric functions sinλt and cos λt. Therefore
we focus our attention to the second equation in the space component x ∈ RN .
It is handy to rewrite the Laplace operator in terms of the spherical coordinates
(r, θ1, . . . , θN−2, φ) related to the vector x = (x1, . . . , xN ) by

x1 = r cos θ1

x2 = r sin θ1 cos θ2

... ...

xN−1 = r sin θ1 sin θ2 · · · sin θN−2 cos φ

xN = r sin θ1 sin θ2 · · · sin θN−2 sin φ

where r = |x|. In these coordinates

∆ =
1

rN−1

∂

∂r

(
rN−1 ∂

∂r

)
+

1
r2

∆0

where ∆0 is the Laplace–Beltrami operator on the unit sphere SN−1, given by

∆0 =
1

sin2 θN−2

∂

∂θN−2

(
sinN−2 θn−2

∂

∂θN−2

)

+
1

sin2 θN−2 sin2 θN−3

∂

∂θN−3

(
sinN−3 θN−3

∂

∂θN−3

)

+ · · ·+ 1
sin2 θN−2 · · · sin2 θ1

∂

∂φ
,

that is a symmetric operator possessing the complete orthonormal set of squire
integrable eigenfunctions on the unit sphere, the so-called spherical harmonics,
corresponding to the eigenvalues −`(` + N − 2), ` = 0, 1, . . ., with multiplicities
(6). Denoting these eigenfunctions by {Y m

` ,m = 1, . . . , h(`,N)}, we thus have

∆0Y
m
` + `(` + N − 2)Y m

` = 0.

Let us turn back to our problem of solving the equation

∆Ξ = λ2ρΞ. (9)

By treating only the case of a radial density ρ(r), we can separate the radial
and angular coordinates r and (θ, φ) by substituting Ξ(x) = u(r)v(θ, φ) and
using a separation constant k2. We get then two equations: ∆0v + k2v = 0 for
the angular coordinates and r3−N

(
rN−1u′

)′ + (λ2r2ρ− k2)u = 0 for the radius.
As was already said, the former equation is integrated for k2 = `(` + N − 2) in
terms of the spherical harmonics. Prescribe therefore the same value to k2 also
in the radial equation. We get

r3−N
(
rN−1u′

)′ + [λ2r2ρ− `(` + N − 2)]u = 0. (10)
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Equation (10) is the subject of hard study in the literature, but the explicit
solutions are known only in several particular cases of the density ρ(r) (see,
for instance, the books on mathematical physics and quantum mechanics, cited
above). The simplest case is ρ ≡ 1, of course. The solution in this case is
well-known, since (10) is reducible to the Bessel equation. Subject to the initial
conditions u`(0) = δ` 0, we have

u`(r) = 2
N−2

2 Γ
(

N
2

)J`+ N−2
2

(λr)

(λr)
N−2

2

(see e.g. [18], p. 351, or [15], p. 231). Thus the product

gm
` (x, λ) = 2

N−2
2 Γ

(
N
2

)J`+ N−2
2

(λ|x|)
(λ|x|)N−2

2

Y m
`

(
x
|x|

)

satisfy equation (9) for ρ ≡ 1, that is in fact the characteristic equation for the
Laplace operator (the so-called Helmholtz equation; see e.g. [18], section 31, or
[16], section 2.6).

Thus the explicit expression is given for functions gm
` in the representations

(5), (7) and (8).
As was already mentioned, in the scalar case N = 1 the representation (5)

turns into (4), because the unit sphere in this degenerate case is interpreted as
the two point set {−1, 1} and we have only two spherical harmonics Y 1

0 (x) = 1
and Y 1

1 (x) = x. Besides, in this case u0(r) = cos λr and u1(r) = sin λr.
In the planar case N = 2 we have for each ` only h(`, 2) = 2 spherical

harmonics Y 1
` (φ) = cos `φ/

√
2π and Y 2

` (φ) = sin `φ/
√

2π, while u`(r) = J`(λr).
Finally, in the case N = 3, most important for physical applications, for

each ` we have

u`(r) =
√

π

2λr
J`+ 1

2
(λr)

and h(`, 3) = 2` + 1 spherical harmonics

Y m
` (θ, φ) = (−1)m

√
(1 + 2`)(`−m)!

4π (` + m)!
Pm

` (cos θ) eimφ |m| ≤ `

with the associated Legendre functions Pm
` (cos θ) (see e.g. [14], Appendix B, or

[16], section 2.4).
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