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ABSTRACT
Size-based scheduling strategies such as Shortest Remaining Processing Time first (SRPT)
and Least Attained Service first (LAS) provide popular mechanisms for improving the overall
delay performance by favoring smaller service requests over larger ones. The performance
gains from these disciplines have been thoroughly investigated for single-server systems, and
have also been experimentally demonstrated in web servers for example. In the present paper
we explore the fundamental stability properties of size-based scheduling strategies in multi-
resource systems, such as bandwidth-sharing networks, where users require service from
several shared resources simultaneously. In particular, we establish the exact stability
conditions for the SRPT and LAS disciplines in various limiting regimes. The results indicate
that size-based scheduling strategies may fail to use the available resources efficiently, and in
fact cause instability effects, even at arbitrarily low traffic loads, and will therefore not yield
optimal delay performance. The qualitative findings confirm the tendency for users with long
routes and large service requirements to experience severe performance degradation.
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Abstract

Size-based scheduling strategies such as Shortest Remaining Processing Time first
(SRPT) and Least Attained Service first (LAS) provide popular mechanisms for im-
proving the overall delay performance by favoring smaller service requests over larger
ones. The performance gains from these disciplines have been thoroughly investigated
for single-server systems, and have also been experimentally demonstrated in web servers
for example. In the present paper we explore the fundamental stability properties of
size-based scheduling strategies in multi-resource systems, such as bandwidth-sharing
networks, where users require service from several shared resources simultaneously. In
particular, we establish the exact stability conditions for the SRPT and LAS disciplines
in various limiting regimes. The results indicate that size-based scheduling strategies may
fail to use the available resources efficiently, and in fact cause instability effects, even
at arbitrarily low traffic loads, and will therefore not yield optimal delay performance.
The qualitative findings confirm the tendency for users with long routes and large service
requirements to experience severe performance degradation.
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1 Introduction

The past few years have witnessed a tremendous interest in the design and analysis of service
disciplines for efficient delivery of digital documents in communication systems, such as page
requests in web servers and file transfers in the Internet. These disciplines have mostly been
proposed with two related but different objectives in mind: (i) improving the overall delay
performance by exploiting the variability in service demands, and giving precedence to smaller
requests over larger ones; (ii) supporting service differentiation among competing users based
on Quality-of-Service requirements, traffic characteristics, or tariff structures.
(i) The Shortest Remaining Processing Time first (SRPT) discipline provides a canonical ex-
ample of a size-based scheduling strategy. The SRPT discipline minimizes the mean response
time (and in fact the number of jobs in the system, sample-path wise) among the class of all
strategies [32]. The rationale for size-based scheduling has been greatly amplified by empiri-
cal findings indicating that file sizes in the Internet show extreme variability and commonly
have infinite variance [13]. Note that in case of infinite variance the mean delay under the
First-Come First-Served discipline is infinite for any load, whereas the SRPT discipline yields
a finite mean delay as long as the system is stable [33]. For the latter reasons, the SRPT
discipline has been widely adopted as an effective mechanism for improving the response time
performance in web servers [11, 18]. To some extent, the huge variability in job sizes also
alleviates the long-standing concerns that have surrounded SRPT regarding the perceived
unfairness towards extremely long jobs [7, 16, 35]. It turns out that in case of heavy-tailed
distributions only an exceedingly small fraction of the jobs is worse off than under Processor
Sharing (PS) as the prototype of perfect fairness.
(ii) A typical example of differentiated scheduling is a strict priority discipline, either preemp-
tive or non-preemptive. This form of service differentiation has for example been suggested
as a potential mechanism for supporting low-priority data transfers without affecting regular
TCP flows [20, 23]. The Discriminatory Processor Sharing (DPS) discipline offers a more
flexible instrument for accomplishing service differentiation [21]. In DPS, jobs belong to one
of several classes, and the total service rate is shared among competing requests in proportion
to class-dependent weight factors. There are strong indications that DPS achieves a certain
degree of isolation among classes and in particular immunity from highly variable service
demands [6, 9], in contrast to strict priority disciplines.
Besides fairness aspects, a further major issue surrounding size-based scheduling in general
and SRPT in particular, is that it relies on knowledge of (remaining) job sizes. While such
information is typically available in web servers, it is usually nearly impossible to obtain in
Internet routers. An alternative strategy which has therefore been advocated for scheduling
data flows is the Least Attained Service first (LAS) discipline also known as Foreground-
Background Processor Sharing (FBPS) [22, 27, 29, 30]. In case the service requirement
distribution has a decreasing failure rate, it has been shown that LAS stochastically minimizes
the number of jobs in the system among all strategies that use no knowledge of the remaining
job sizes [31]. While this implies that the LAS discipline improves the performance for a rich
class of highly variable service requirement distributions, there is no guarantee that it will
do better than FCFS or PS in general, and in fact it performs worse for distributions with
increasing failure rates. A discrete-class version of LAS that has recently attracted renewed
attention is the Multi-Level Processor Sharing (MLPS) discipline [1, 2, 5, 15, 22].
The performance gains from size-based scheduling disciplines have been thoroughly analyzed
in the literature for single-server systems. In practice however, users commonly require service
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from several shared resources simultaneously, like traffic flows that traverse multiple links
in bandwidth-sharing networks as considered in [9, 25] for example. While single-server
systems provide tractable results and useful insights, they do not exhibit the potential non
work-conserving behavior that may arise in systems with concurrent resource possession.
The performance characteristics of size-based scheduling disciplines in such resource-sharing
networks have only received limited attention so far. As one of the few exceptions, Yang &
De Veciana [36, 37] evaluated the potential performance benefits from SRPT scheduling in
bandwidth-sharing networks supporting best-effort traffic. They found that SRPT scheduling
may yield considerable performance improvements in terms of mean transfer delays and user
throughputs, but also observed that flows on long routes with large sizes may experience a
marked performance degradation.
In the present paper, we explore the fundamental stability properties of size-based schedul-
ing strategies in systems with simultaneous resource possession, like the bandwidth-sharing
networks mentioned above. In particular, we establish the exact stability conditions for the
SRPT and LAS disciplines in various limiting regimes. Due to concurrency constraints, these
disciplines may use the available resources inefficiently and persistently leave critical resources
underutilized, even when congestion builds up. As a result, the SRPT and LAS disciplines
may fail to achieve stability, and will therefore certainly not yield optimal delay performance.
In particular, instability effects may occur when the users with long routes have larger service
requirements than the ones with shorter routes. For networks with sufficiently many nodes,
it turns out that instability phenomena may in fact arise at arbitrarily low traffic loads.
The latter conclusions corroborate the findings in [36, 37]. The results further suggest that
low-priority transfer protocols as proposed in [20, 23] may not provide satisfactory through-
put performance to users with long routes. In the opposite regime, where the users with
long routes have smaller service requirements than the ones with shorter routes, size-based
scheduling strategies are less prone to instability effects. However, prioritization of users with
long routes will evidently not optimize the delay performance in general.
It is worth drawing a distinction with the situation in queueing networks with feedback where
the usual necessary stability conditions are not sufficient either, as first exemplified in Lu &
Kumar [24] for priority scheduling and later studied in Bramson [10] for FIFO (First-In First-
Out). In these networks, users visit the various nodes along their route through the network
in succession, whereas traffic flows in bandwidth-sharing networks require service at all nodes
along their route simultaneously. The way in which the queues build up in these networks
with feedback is also qualitatively different, and typically involves oscillatory behavior.
On a final note, instability is to a certain extent a theoretical concept that cannot occur in an
actual system with an inherently finite user population. In practice, peak rate limitations will
also inhibit strict prioritization and tend to promote fair bandwidth sharing, thus reducing
the scope for instability effects. However, it is plausible that instability phenomena will be
reflected in poor performance in terms of long delays, low throughputs, and user impatience
in practical circumstances as well.
The remainder of the paper is organized as follows. In Section 2 we present a detailed
model description and give some preliminary results. In Section 3 we examine the stability
conditions for SERPT (Shortest Expected Remaining Processing Time first) scheduling in
linear networks with exponentially distributed service requirements. We turn the attention to
SRPT scheduling in Section 4. In Section 5 we derive stability properties for LAS scheduling.
In Section 6 we make some concluding remarks.
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2 Model description and preliminary results

We consider a linear network with L nodes. For convenience, we assume each of the nodes to
have a unit service rate. With minor modifications, most of the results extend to scenarios
where the various nodes have heterogeneous service rates.
In order to present the results in the simplest possible setting, we focus on a traffic scenario
with L + 1 classes, where class i requires service at node i only, i = 1, . . . , L, while class 0
requires service at all L nodes simultaneously. The above ‘toy’ scenario appears already
sufficiently rich to exhibit many of the qualitative phenomena that may occur for general
network topologies and route structures. Class-i users arrive according to independent Poisson
processes of rate λi, and have generally distributed service requirements Bi with distribution
function Bi(x) = P(Bi < x) and mean βi, i = 0, . . . , L. Define the traffic load of class i as
ρi := λiβi. Thus the load at node i is ρ0 + ρi, i = 1, . . . , L.
The queue of class-i users is referred to as Qi. Note that in bandwidth-sharing networks,
the queue is a purely virtual entity in the sense that the users do not actually reside in
physical queues, but rather keep the bulk of the backlogged work stored in their own buffers.
Denote by Ni(t) the length of Qi at time t, i.e., the number of class-i users in the system at
time t. Define Ni as a random variable with the time-average distribution of Ni(t) for t →∞,
assuming it exists.
In the sequel, Qi is said to be stable if P(Ni = 0) > 0. Node i, for i = 1, . . . , L, will be called
stable if both Q0 and Qi are stable. Obviously, ρ0 + ρi < 1, for i = 1, . . . , L, are necessary
conditions for the various nodes i to be stable, and thus for stability of the entire system.
It follows from the results in [9] that these conditions are in fact also sufficient for α-fair
bandwidth-sharing policies. For conciseness, these conditions will often be referred to as the
‘standard’ conditions.
Denote by σi := lim

T→∞
1
T

∫ T
t=0 si(t)dt the long-term average service rate of class i (assuming

it exists), with si(t) denoting the service rate allocated to class i at time t. Note that
σi = ρi when Qi is stable. We have the identity relation σ0 + σi + ui = 1, where ui :=
lim

T→∞
1
T

∫ T
t=0 ui(t)dt, with ui(t) := 1 − s0(t) − si(t), denotes the long-term unused average

service rate at node i. Noting that ui(t) = 1 when N0(t) = 0, Ni(t) = 0, we may write
ui = wi + P(N0 = 0, Ni = 0), where wi := lim

T→∞
1
T

∫ T
t=0 ui(t)I{N0(t)>0 or Ni(t)>0}dt stands for

the long-term average ‘wasted’ service rate at node i, (assuming it exists). Since P(N0 =
0, Ni = 0) > 0 implies stability of node i, it follows that node i is stable if ρ0 + ρi + wi < 1.
The above observation reflects the fact that the stability condition may not only depend on
the first moments of the service requirements as captured through the loads, but also on
higher-order characteristics, as was found in [8] as well.
The scheduling discipline prescribes the allocation of the service rates among competing users,
depending on the state of the network. It relies on some underlying criterion which for every
possible state of the network defines a priority ranking among all users, e.g. based on some
class parameter (SERPT), remaining service requirement (SRPT), or amount of attained
service (LAS). Since class-0 users require simultaneous service at all nodes, without any
further arbitration mechanism, capacity can be left unused. Therefore the priority ranking
needs to be augmented with a further arbitration mechanism to arrive at the allocation of
service rates among competing users. We will distinguish between two options: (i) ‘weak
priority’, which means that the capacity in node i that is left unused, is re-allocated to class
i; (ii) ‘strict priority’, which implies that this capacity is left unused. We have the following
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useful property.

Property 2.1 (i) A sufficient condition for stability of the system is
∑L

i=0 ρi < 1, provided
that at least one of the nodes operates at the full service rate whenever the system is non-
empty.
(ii) A sufficient condition for stability of Qi, for i = 1, . . . , L, is ρ0 + ρi < 1, provided that
node i operates at the full service rate whenever Qi is non-empty.

Statement (i) follows from the fact that the total workload (of classes i = 0, . . . , L), is sto-
chastically dominated by that in a system where classes i = 1, . . . , L are never served at the
same time. Statement (ii) deserves some more elaboration. Suppose that ρ0 + ρi < 1, and
hence σ0+σi < 1, while Qi is not stable. Since Qi is unstable, in the long run there are always
class-i users and because node i operates at the full service rate whenever Qi is non-empty,
we have wi = 0. Therefore σ0 + σi = 1, which is in contradiction with our initial supposition.
For the scheduling disciplines considered in this paper (SERPT, SRPT, LAS), the first prop-
erty is always satisfied, while the second property only holds for the variants with weak
priority.

3 SERPT scheduling

In preparation for the analysis of the SRPT and LAS disciplines, we first consider the Short-
est Expected Remaining Processing Time first (SERPT) discipline. We assume that class-i
users have exponentially distributed service requirements with mean βi = 1/µi. The SERPT
discipline then simply gives priority to class-i users over class-0 users when µ0 < µi and vice
versa when µ0 > µi. The stability results below in fact hold for generally distributed service
requirements, general renewal arrival processes, and any static class-based priority discipline.

3.1 Large class-0 users

We start with the case µ0 < µ1, . . . , µL. Since class-i users for i = 1, . . . , L, always receive
priority over class-0 users, they behave as in an isolated M/M/1 queue with class i only.
Therefore, Qi is stable if and only if ρi < 1, for i = 1, . . . , L. Moreover, N1, . . . , NL are
independent, so P(N1 = n1, . . . , NL = nL) = (1 − ρ1)ρn1

1 · · · (1 − ρL)ρnL
L . Class-0 users can

be served if and only if there are no class-i users, for i = 1, . . . , L. Hence, Q0 is stable if and
only if

ρ0 < P(N1 = 0, . . . , NL = 0) = ΠL
i=1(1− ρi).

Note that the above condition is more stringent than the standard conditions (unless ρi > 0
for at most one i = 1, . . . , L). In fact, the system can be unstable for arbitrarily low values
of ρ0 if the number of traversed nodes is large. In Sections 4 and 5 we show that the SRPT
and LAS disciplines inherit these difficulties.

3.2 Small class-0 users

Now focus on the case µ0 > µ1, . . . , µL. Because class-0 users receive priority over all class-i
users, i = 1, . . . , L, Q0 will be stable as long as ρ0 < 1. Class-i users, for i = 1, . . . , L, behave
as in an isolated priority queue with classes 0 and i only, so that Qi will be stable when
ρ0 + ρi < 1.
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3.3 Intermediate-size class-0 users

We now extend the model with class-i′ users which require service from resource i, arrive
according to a Poisson process of rate λi′ , and have exponentially distributed service require-
ments with mean 1/µi′ . We assume µi > µ0 > µi′ for all i = 1, . . . , L. Denote the traffic load
of class i′ by ρi′ := λi′/µi′ , i = 1, . . . , L.
First observe that class-i users, i = 0, . . . , L, are not affected by the presence of class-i′ users,
i = 1, . . . , L. It thus follows from the results in Subsection 3.1 that Qi is stable if and only if
ρi < 1 and that Q0 is stable if and only if ρ0 < (1− ρ1) · · · (1− ρL).
In order to establish the stability condition for Qi′ , i = 1, . . . , L, it is important to know
whether we have weak or strict SERPT. ‘Strict’ SERPT only allows a class-i′ user to be
served when there are no class-0 and class-i users in the system. In contrast, ‘weak’ SERPT
also allows a class-i′ user to be served when there are class-0 users in the system which are
however blocked from service by class-j users, i 6= j, and there are no class-i users present.

3.3.1 Weak SERPT

For weak SERPT, class-i′ users can be served during the time that Qi is empty. However,
class-0 users may be served during this time as well. Thus, the stability condition for Qi′

may be written as ρi′ < 1 − ρi − σ0, or equivalently ρi + ρi′ + σ0 < 1, where σ0 denotes the
fraction of time that class-0 users are served. In order to determine the value of σ0, we need
to distinguish whether Q0 is stable or not, i.e., whether ρ0 < (1 − ρ1) · · · (1 − ρL) or not. If
Q0 is stable, then σ0 = ρ0, and thus the stability condition for Qi′ becomes ρi′ < 1− ρi − ρ0,
or simply ρ0 + ρi + ρi′ < 1. If Q0 is unstable, then σ0 = (1 − ρ1) · · · (1 − ρL), so that the
stability condition for Qi′ takes the form

ρi′ < 1− ρi − (1− ρ1) · · · (1− ρL) = (1− ρi)(1−
∏
j 6=i

(1− ρj)).

3.3.2 Strict SERPT

For strict SERPT, the stability condition for Qi′ may be expressed as ρi′ < P(N0 = 0, Ni = 0)
for i = 1, . . . , L. In general no tractable expression appears to exist for P(N0 = 0, Ni = 0).

4 SRPT scheduling

We turn the attention to the Shortest Remaining Processing Time first (SRPT) discipline.
A class-0 user receives the total capacity of all nodes whenever it has the smallest remaining
service requirement among all users. Otherwise, in case of weak SRPT, in node i the total
capacity is given to the class-i user with the smallest remaining service requirement. However,
in case of strict SRPT the total capacity in node i is only given to a class-i user, if this user
has indeed the smallest remaining size among all class-0 and class-i users. Possible ties
(which occur with non-zero probability in case of discrete service requirement distributions)
are assumed to be broken at random.
For each class i, define x∗i as the smallest value of x such that Qi is unstable in a reference
system where all class-i users with service requirement x or larger are denied access. Denote
by

ρi(x) := λiE(BiI{Bi<x}) = λi

∫ x−

y=0ydBi(y) (1)

6



the traffic load of class i when all class-i users of size x or larger are rejected. It is important
to note that users of size exactly x are excluded in this definition. It may be checked that,
due to the mechanics of the SRPT discipline, in the original system all class-i users of smaller
size than x∗i eventually complete service and leave the system with probability one, whereas
in the long run class-i users of size larger than or equal to x∗i never complete service and stay
in the system forever with non-zero probability. In fact, class-i users of size strictly larger
than x∗i will never even enter service in the long run. Note that Qi is stable in the original
system when P(Bi < x∗i ) = 1 (so, in particular when x∗i = ∞ in case Bi has infinite support).

Observation 4.1 For both weak and strict SRPT, ρ0(x∗0) + ρi(x∗i ) ≤ 1, for i = 1, . . . , L. For
weak SRPT ρ0(x∗0)+ρi(x∗i ) = 1 if Qi is unstable and B0 and Bi have a continuous distribution.

The observation follows from the properties that (i) σ0 + σi ≤ 1, i = 1, . . . , L, with equality
for weak SRPT in case Qi is unstable, and (ii) σj ≥ ρj(x∗j ), j = 0, . . . , L, for both weak and
strict SRPT, with equality in case Bj has a continuous distribution.

The next proposition gives a general relationship between the values of x∗0 and x∗i , i = 1, . . . , L.

Proposition 4.2 For weak SRPT, x∗0 ≤ x∗i , for i = 1, . . . , L, and for strict SRPT, x∗0 = x∗i ,
for i = 1, . . . , L.

Proof In order to avoid technicalities, we assume in this proof that the service requirement
distributions of all classes have support everywhere. With minor modifications, the proof
extends to distributions with zero density in some points by introducing ‘fictitious’ users and
observing that B0 and Bi cannot both have zero density in x∗0 and x∗i , respectively.
The idea of the proof may be described as follows. Under SRPT, class-0 users with a given
service requirement x cannot enter service until all the class-i users present at the time of
their arrival with a service requirement smaller than or equal to x have completed service.
Thus, if class-0 users with a given service requirement eventually leave the system, then class-i
users with a smaller or equal service requirement must do so as well, which implies x∗0 ≤ x∗i .
Moreover, for strict SRPT the reverse implication also holds.
In order to formalize the above arguments, suppose x∗0 > x∗i . For both weak and strict SRPT,
we can reach a contradiction as follows. By definition of x∗i , in the long run, when a class-i
user arrives with service requirement si, x∗i < si < x∗0, it will never leave the system (and
in fact never even enter service). Now suppose that subsequently a class-0 user arrives with
service requirement si < s0 < x∗0. Because of SRPT, this user cannot enter service before the
class-i user leaves the system. Since the latter never happens, the class-0 user never leaves
the system either, which contradicts the assumption s0 < x∗0 and the definition of x∗0. Thus,
for both weak and strict SRPT, x∗0 ≤ x∗i , for i = 1, . . . , L.
For strict SRPT, it may be shown along similar lines that x∗0 < x∗i leads to a contradiction.
By definition of x∗0, in the long run, when a class-0 user arrives with service requirement s0,
x∗0 < s0 < x∗i , it will never leave the system (and in fact never even enter service). Now
suppose that subsequently a class-i user arrives with service requirement s0 ≤ si < x∗i . Be-
cause of the scheduling rule, this user cannot enter service before the class-0 user leaves the
system. Since the latter never happens, the class-i user never leaves the system either, which
contradicts the assumption si < x∗i and the definition of x∗i . Thus, for strict SRPT, x∗0 ≥ x∗i ,
so that in fact x∗0 = x∗i , for i = 1, . . . , L. �
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Combining Observation 4.1 and Proposition 4.2, it follows that if ρ0 + ρi > 1 for some
i = 1, . . . , L, then for strict SRPT x∗0 = x∗i < ∞, so that both Q0 and Qi are unstable in case
B0 and Bi have infinite support. Unfortunately, the above results do not suffice to determine
the exact values of x∗i in general, since Observation 4.1 gives equality only for weak SRPT,
whereas the relation in Proposition 4.2 only holds with equality for strict SRPT. In order to
establish exact stability conditions, we need to impose some additional assumptions on the
service requirement distributions, as will be done in the next subsections.

4.1 Large class-0 users

In this subsection we consider class-0 users with large service requirements, compared to all
other classes.

4.1.1 Stability of Qi, for i = 1, . . . , L

Define mi := inf{x : Bi(x) > 0} and Mi := sup{x : Bi(x) < 1} as the minimum and maximum
values of the class-i service requirements, i = 0, . . . , L. We focus on the case where class 0
has larger service requirements than all classes i, i.e., m0 > Mi, for i 6= 0. Thus, a class-0
user can only enter service when there are no class-i users in the system. When a class-0 user
is in service and a class-i user arrives, the service is preempted when the remaining service
requirement of the class-0 user is larger than that of the arriving class-i user.
Evidently, ρi < 1 is a necessary condition for stability of Qi, i = 1, . . . , L, because otherwise
Qi would be unstable even in the absence of any class-0 users. The next proposition shows
that for weak SRPT with m0 > Mi this condition is sufficient as well.

Proposition 4.3 Suppose the service discipline is weak SRPT and m0 > Mi. Then the
condition ρi < 1 is sufficient for stability of Qi.

Proof As observed above, the fact that m0 > Mi implies that class i receives preemptive
priority over class 0, unless a class-0 user has a smaller remaining service requirement than
all class-i users (so at most Mi) and is being served. In the presence of this class-0 user, it
depends on the other classes whether class 0 or class i is being served. But, as long as Qi

remains non-empty after the arrival of a new class-i user, it will be prevented from service
for at most a duration Mi, since weak SRPT does not leave any capacity in node i unused
when class i is present. When this class-0 user leaves the system, no new class-0 users are
taken into service under SRPT as long as class i is present, since we assumed that m0 > Mi.
It follows that the number of class-i users behaves as in an isolated queue with class i only
and random service interruptions whose total duration during each busy period is bounded
by Mi. Lemma 4.4 implies that a queue with service interruptions of deterministic size in
each busy period, is stable for any ρi < 1. �

Lemma 4.4 Consider an M/G/1 queue with traffic load ρ and with service interruptions.
Assume that the total duration of the service interruptions in any contiguous period during
which the queue is continuously backlogged is stochastically bounded by the random variable
M . Further assume that M is independent of the arrival process and the service requirements
and that E(M) < ∞. Then for any work-conserving policy the queue is stable when ρ < 1.

Proof In an ordinary M/G/1 queue without service interruptions we know that if ρ < 1,
then E(BP ) < ∞, where BP is the random variable denoting the length of a busy period.
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Let the random variable C denote the length of a contiguous period during which the queue
is continuously backlogged. With each user we can associate a sub-busy period during which
that user is served, as well as users that arrived during that service time (not counting those
that arrive when that service time is interrupted), those that arrived during the service of
those users and so on. The period C can now be split into the following three components:
the service interruptions, the sub-busy periods of the user that arrived at an empty system
when there is no service interruption (this user may not be present) and the sub-busy periods
of the users that arrived during a service interruption. The expected number of users that
arrive while the service is interrupted is bounded by λE(M). We can therefore write

E(C) ≤ E(M) + (1 + λE(M))E(BP ) < ∞.

This implies P(N = 0) > 0, which establishes the stability of the queue. �

The next proposition indicates that for strict SRPT the condition ρi < 1 is not sufficient in
general for Qi to be stable.

Proposition 4.5 Suppose the service discipline is strict SRPT and m0 > Mi. Then the
condition for stability of Qi is

ρi < 1 and ρj(Mi) < 1 for all j 6= 0, i.

Proof We first prove that the above condition is sufficient. The fact that m0 > Mi implies
that class i receives preemptive priority over class 0, and will be entitled to service, unless
a class-0 user is present with a smaller remaining service requirement than all class-i users,
regardless of whether it is being served or not. Although the service of such a class-0 user
may repeatedly be interrupted by arriving class-j users, j = 1, . . . , L, the latter users all have
service requirements of at most Mi.
At the moment that Qi is empty and there is an arrival of a class-i user, the time that class i is
prevented from service while Qi remains non-empty is denoted by Di. The number of class-i
users behaves as in an isolated queue with class i only and random service interruptions with
a total duration of Di during each busy period. By Lemma 4.4, such a queue is stable for any
ρi < 1, when Di has a finite mean. Therefore it remains to be shown that E(Di) < ∞.
Ti is defined as the time it takes for a class-0 user with a remaining service requirement of
r0 = Mi, to receive the last Mi part of its service. Di can be bounded from above by Ti, since
class i only notices the class-0 user, when r0 ≤ Mi. Note that at the moment that the class-0
user is being served and r0 reaches the level Mi, because of SRPT, it is necessary that there
are no other users present with remaining service requirement smaller than Mi, that is there
are no class-1, . . . , L users present.
Denote by r0(t) the smallest remaining service requirement of all the class-0 users present at
time t. A class-0 user with remaining service requirement smaller than Mi is being served until
a user of size smaller than r0(t1) arrives at time t1 (so it necessarily is of class i, i = 1, . . . , L).
This user preempts the class-0 user. The class-0 user can resume its service when all newly
arrived users with size not larger than r0(t1) have left the system. This period is called a
busy period of classes 1, . . . , L.
After this busy period the class-0 user can enter service again, until at a certain time t2 a
user arrives with size smaller than r0(t2) (such a user is necessarily of class i, i = 1, . . . , L).
A new busy period starts of class-i users, i = 1, . . . , L, with sizes smaller than or equal to
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r0(t2). This pattern repeats itself until the class-0 user has received its complete service and
leaves the system.
Note that an upper bound for these busy periods is obtained when instead we look at the
busy periods of users with size smaller than or equal to Mi. It is sufficient to show that T̃i,
defined as the total length of interruption in a busy period of this upper-bounding queue,
has a finite mean. Since the class-0 user needs a total of Mi service, we can conclude that
(1−ρ1(Mi)) · · · (1−ρL(Mi))E(T̃i) = Mi. Hence, the class-0 user will eventually complete ser-
vice, i.e. E(Ti) < ∞, since ρj(Mi) < 1 for all j = 1, . . . , L. The fact that E(Di) ≤ E(Ti) < ∞
concludes the proof that the above condition is sufficient.

It remains to be shown that the above condition is necessary as well. ρi < 1 is clearly a
necessary condition. To show that the second condition is necessary too, suppose it is not
satisfied. Then ρj(Mi) > 1 for some j. Define sj = sup{s : ρj(s) ≤ 1}, hence sj < Mi. There
is an b, sj < b ≤ Mi, such that there arrive class-j users with sizes in the interval (sj , b].
For these class-j users the queue is unstable. Consider the last time epoch t∗ that a class-j
user arrives with size in the interval (sj , b] and in Qj there are no users with size less than or
equal to b. With a certain non-zero probability, there is a class-0 user in the system at time t∗

with remaining service requirement r, with sj < b ≤ r ≤ Mi. The service of this class-0 user
will be preempted by the newly arrived class-j user at time t∗, and the service will never be
resumed, since Qj will never empty of class-j users with size less than or equal to b again
from time t∗ onward. In the presence of this class-0 user, a possible present class-i user with
remaining service requirement smaller than r can still be served, but after this class-i user
has left, no class-i users with size greater than r will ever enter service again. Hence Qi will
grow indefinitely from time t∗ onward. �

4.1.2 Stability of Q0

We now turn to the stability of Q0. To determine the sufficient condition for stability of Q0,
we will consider the network in a limiting regime, obtained by scaling the dynamics of some
classes with a common parameter ε and passing ε ↓ 0. This technique is usually referred to as
analytic perturbation or nearly-complete decomposability and has successfully been applied
to study steady-state performance as a function of ε, as ε ↓ 0, see for instance [3, 12].

We assume B0 and Bi, i = 1, . . . , L to be generally distributed. We will consider a sequence
of systems, indexed by ε, where the class-i arrival rate in the ε-system is λ

(ε)
i := λi/ε and the

class-i service requirements are B
(ε)
i := εBi, for i = 1, . . . , L. Note that the traffic load of

class i in the ε-system is ρ
(ε)
i = λi

ε εβi = ρi, hence it is independent of ε. Furthermore, when
we let ε ↓ 0, the class-i service requirements will become extremely small compared to class
0, so we are indeed in the situation of large class-0 users.

In the ε-system we will make a distinction between class-i users with original size smaller or
larger than

√
ε.

For i = 1, . . . , L, we define I
√

ε
i as a period where class-i users with original size smaller than

√
ε are not served in the ε-system. Denote by N

√
ε

i (t) the number of class-i users in the
ε-system with original size smaller than

√
ε present at time t. It is possible that N

√
ε

i (t) > 0
during a period I

√
ε

i , but that these class-i users are blocked from service by a class-0 user
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or a class-i user with an original size larger than
√

ε, and a remaining service requirement
smaller than

√
ε. We define A

√
ε

i , for i = 1, . . . , L, as a period where class-i users with original
size smaller than

√
ε are served in the ε-system. Note that in this period the total capacity

of node i is allocated to a class-i user with original size smaller than
√

ε. With minor abuse
of notation, I

√
ε

i and A
√

ε
i will also be used to indicate that the event occurs at an arbitrary

time epoch. In these definitions we implicitly assume the stationary distributions of I
√

ε
i and

A
√

ε
i to exist.

Note that class-i users with original size smaller than
√

ε, for i = 1, . . . , L, receive preemptive
priority over all other users, unless one of the other users is being served with a remaining
service requirement smaller than or equal to

√
ε. The latter will occur at most a fraction of

order
√

ε of the time, so class-i users with original size smaller than
√

ε will receive priority over
the other users virtually all the time as ε ↓ 0. Thus, class i restricted to

√
ε will approximately

behave as in an isolated queue with class i restricted to
√

ε only as ε ↓ 0. Moreover, since
ρ
(ε)
i (
√

ε) → ρi and classes i for i = 1, . . . , L will behave roughly independently, this suggests
that P(I

√
ε

1 , . . . , I
√

ε
L ) → ΠL

i=1(1− ρi), as is confirmed by the next proposition.

Proposition 4.6 For the network under consideration in the limiting regime, with the weak
SRPT discipline and ρ0 + ρi < 1 for i = 1, . . . , L, it holds that

lim
ε↓0

P(I
√

ε
1 , . . . , I

√
ε

L ) = ΠL
i=1(1− ρi).

Proof As described earlier, class i restricted to
√

ε behaves as in an isolated queue with class i
only and random service interruptions. Let us now introduce a reference system with class
i only and with the same arrival process and service requirements as in the original system,
and class-i users with sizes larger than

√
ε are rejected. Define Â

√
ε

i and Î
√

ε
i as the active and

idle periods of the reference system, respectively.
Note that P(A

√
ε

i , Â
√

ε
i ) = P(Â

√
ε

i )−P(I
√

ε
i , Â

√
ε

i ) and P(A
√

ε
i , Â

√
ε

i ) = P(A
√

ε
i )−P(Î

√
ε

i , A
√

ε
i ), so

P(Â
√

ε
i ) − P(I

√
ε

i , Â
√

ε
i ) = P(A

√
ε

i ) − P(Î
√

ε
i , A

√
ε

i ). Property 2.1 (ii) gives that Q1, . . . , QL are
stable in the original system, hence P(A

√
ε

i ) = ρ
(ε)
i (
√

ε). Since P(Â
√

ε
i ) = ρ

(ε)
i (
√

ε) = P(A
√

ε
i ),

it follows that P(I
√

ε
i , Â

√
ε

i ) = P(Î
√

ε
i , A

√
ε

i ).
We now proceed to derive an upper bound for the latter probabilities. Let us denote by
(I
√

ε
i , Â

√
ε

i ) the event that the original system is in I
√

ε
i and the reference system is in Â

√
ε

i .
Observe that when the reference system is active at time t, i.e. N̂

√
ε

i (t) > 0, it holds that
N
√

ε
i (t) > 0, because N

√
ε

i (t) ≥ N̂
√

ε
i (t). Thus, in order for the event (I

√
ε

i , Â
√

ε
i ) to occur, it

must be the case that N
√

ε
i (t) > 0, i.e. there is a class-i user with original size smaller than√

ε, but it is not served. As noted earlier, this can only arise when a class-i user with original
size greater than

√
ε or a class-0 user is present with a remaining service requirement smaller

than
√

ε.
Define T[0,t](I

√
ε

i , Â
√

ε
i ) as the amount of time that the event (I

√
ε

i , Â
√

ε
i ) occurs during the

interval [0, t]. We have the bound T[0,t](I
√

ε
i , Â

√
ε

i ) ≤
∑N[0,t]

n=1 D
√

ε
i,n, with N[0,t] denoting the

number of class-0 users and class-i users with original size larger than
√

ε, that are served
during the interval [0, t]; the index n is used to denote the n-th such user, and D

√
ε

i,n is the
amount of time that class-i users with original size smaller than

√
ε are prevented from service
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because of user n. For weak SRPT, we have D
√

ε
i,n ≤

√
ε, since no capacity is left unused in

the presence of class-i users and user n needs only its last
√

ε amount of service.

Using the strong law of large numbers, we can conclude that for weak SRPT,

P(I
√

ε
i , Â

√
ε

i ) = lim
t→∞

T[0,t](I
√

ε
i , Â

√
ε

i )
t

≤ lim
t→∞

N[0,t]

t

√
ε ≤ (λ0 + λ

(ε)
i P(B(ε)

i >
√

ε))
√

ε. (2)

Furthermore we have limε↓0 λ
(ε)
i P(B(ε)

i >
√

ε)
√

ε = limε↓0
λi√

ε
P(Bi > 1√

ε
). It can be shown that

when E(Bi) ≤ ∞, the last limit is equal to 0. Together with (2) we can conclude that

lim
ε↓0

P(I
√

ε
i , Â

√
ε

i ) = 0 for all i = 1, . . . , L. (3)

It follows that limε↓0 P(I
√

ε
1 , . . . , I

√
ε

L ) = limε↓0 P(Î
√

ε
1 , . . . , Î

√
ε

L ) = ΠL
i=1(1 − ρi), where we use

P(I
√

ε
i , Â

√
ε

i ) = P(Î
√

ε
i , A

√
ε

i ), the fact that Î
√

ε
1 , . . . , Î

√
ε

L are independent, P(Î
√

ε
i ) = 1− ρ

(ε)
i (
√

ε)
for all ε > 0 and ρ

(ε)
i (
√

ε) → ρi, for i = 1, . . . , L. �

From Proposition 4.6 we can now derive the stability condition for ε small enough in an
ε-system.

Corollary 4.7 For the network under consideration in the limiting regime, with the weak
SRPT discipline, we have (i) if ρ0 < ΠL

i=1(1−ρi), then there exists an ε̄ such that Q0 is stable
in the ε-system for every ε < ε̄.
(ii) Conversely, if ρ0 > ΠL

i=1(1 − ρi), then there exists an ε̄ such that Q0 is unstable in the
ε-system for every ε < ε̄.

Proof For (i), observe that ρ0+
∑L

i=1(ρi−ρ
(ε)
i (
√

ε)) < P(I
√

ε
1 , . . . , I

√
ε

L ) is a sufficient condition
for Q0 to be stable, since at least one of the nodes works at full rate whenever the system
is non-empty. Since ρ

(ε)
i (
√

ε) → ρi, for i = 1, . . . , L, Proposition 4.6 implies that for any
ρ0 < ΠL

i=1(1 − ρi) there exists an ε̄ such that Q0 is stable in the ε-system for every ε < ε̄.
Conversely, for (ii), for any ρ0 > ΠL

i=1(1−ρi) there exists an ε̄ such that ρ0 > P(I
√

ε
1 , . . . , I

√
ε

L ),
for all ε ≤ ε̄. To complete the proof, note that P(I

√
ε

1 , . . . , I
√

ε
L ) ≥ P(I1, . . . , IL) and that

ρ0 > P(I1, . . . , IL) implies that Q0 is unstable. �

4.2 Small class-0 users

We now turn the attention to the case where class 0 has smaller service requirements than
all classes i, i.e., M0 < mi, for i = 1, . . . , L.

4.2.1 Stability of Q0

In contrast to Corollary 4.7, the minimal condition ρ0 < 1 can in this case already be sufficient
for stability of Q0. Moreover, for strict SRPT it is the exact stability condition for Q0.

Observation 4.8 When the service discipline is strict SRPT and M0 < mi for all i =
1, . . . , L, then the condition for stability of Q0 is ρ0 < 1.
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This may be deduced as follows. The fact that M0 < mi implies that class 0 receives
preemptive priority over class i, and will be entitled to service, unless a class-i user, for
some i = 1, . . . , L, has a smaller remaining service requirement than all class-0 users (so at
most M0). Class 0 has to wait until those users with remaining service requirement smaller
than all class-0 users have left the network. Since it is strict SRPT, no new class-1, . . . , L
users are taken into service. Thus, as long as Q0 remains non-empty after the arrival of a new
class-0 user, it will be prevented from service for at most a period M0. From this it follows
that the number of class-0 users behaves as in an isolated queue with class 0 only and random
service interruptions whose total duration during each busy period is bounded by M0. By
Lemma 4.4, such a queue is stable for any ρ0 < 1.

Under weak SRPT, ρ0 < 1 is not necessarily sufficient for stability of Q0. However, first we
will illustrate a situation in which it is a sufficient condition. For that purpose we consider
deterministic service requirements and L = 2 nodes.

Proposition 4.9 Assume class i has a deterministic service requirement di, i = 1, 2, with
d1 6= d2 and d0 < d1, d2, or d1 = d2 > 2d0. For the network under consideration with the
weak SRPT discipline, Q0 is stable if and only if ρ0 < 1.

Proof The fact that d0 < di implies that class 0 receives preemptive priority over class i,
and will be entitled to service, unless a class-i user, for some i = 1, . . . , L, has a smaller
remaining service requirement than d0. Although class-1, . . . , L users may continue to be
served for a while, the delay incurred by a newly arrived class-0 user is bounded as will be
shown below. Thus, as long as Q0 remains non-empty after the arrival of a new class-0 user,
it will be prevented from service for at most a bounded period. Now it follows that the
number of class-0 users behaves as in an isolated queue with class 0 only and random service
interruptions whose total duration during each busy period is bounded. By Lemma 4.4, such
a queue is stable for any ρ0 < 1.
It remains to be shown that the delay incurred by a newly arrived class-0 user is bounded.
Suppose that class 0 could be prevented from entering service indefinitely. Then at a certain
point in time we have for example a class-1 user with a remaining service requirement r1 < d0

as well as class-0 and class-2 users of which none have received any service. Because of weak
SRPT, the class-1 and class-2 users are served. When the class-1 user leaves the system, the
class-2 user has remaining service requirement of r2 = d2 − r1. When r2 is smaller than d0,
this class-2 user is served and because of weak SRPT, a class-1 user also receives service. In
order for this to repeat indefinitely, it is necessary that

r1 < d0, 0 < d2 − r1 < d0, 0 < d1 − d2 + r1 < d0,

2d2 − d1 − r1 < d0, 0 < 2d1 − 2d2 + r1 < d0, . . .

or equivalently

k(d1 − d2) + r1 < d0 and k(d2 − d1) + d2 − r1 < d0, ∀ k ≥ 0. (4)

When d1 6= d2, we can choose a K, such that for all r1 < d0 there exists a k = k(r1) < K
for which (4) is not satisfied. When d1 = d2 > 2d0, we may choose K = 1. We can conclude
that at some point in time all class-1 and class-2 users have remaining service requirements
greater than d0, so a class-0 user can enter service. The delay for class 0 is therefore bounded
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by (K + 1)d0, independent of r1. �

In general, ρ0 < 1 is not a sufficient condition for stability of Q0 under weak SRPT, as may be
illustrated again with deterministic service requirements and L = 2 nodes. Take d1 = d2 = d
with d0 < d < 2d0 and assume that Q1 and Q2 are both unstable. In that case, the staggered
service pattern of class-1 and class-2 users described in the proof of the above proposition
may in fact replicate itself ad infinitum and class 0 can never return to service. Hence, Q0

may also become unstable with non-zero probability. If Q1 or Q2 is stable, which is the case if
ρ0 + ρ1 < 1 or ρ0 + ρ2 < 1, then with probability 1 the above cycle cannot repeat indefinitely,
and it may in fact be checked that Q0 is stable.

4.2.2 Stability of Qi, for i = 1, . . . , L

We will now investigate the conditions for stability of Qi.
Under weak SRPT, it follows from Property 2.1 that ρ0 + ρi < 1 is a sufficient condition for
stability of Qi.
Under strict SRPT, ρ0+ρi < 1 will in general not be sufficient for stability of Qi, i = 1, . . . , L.
We will show this by considering again deterministic service requirements and L = 2 nodes.
As noted earlier, if ρ0 + ρi + wi < 1, then node i, and hence Qi, is stable. Here the long-term
average wasted service rate, wi, is precisely the fraction of time that there are no class-i users
with remaining service requirement smaller than d0 and there are new class-0 users in the
system which cannot be served because of the presence of a class-j user with a remaining
service requirement smaller than d0, j 6= 0, i. During this time no class-0 or class-i users can
be served. Observe that wi > 0 since there is a non-zero probability that an arriving class-0
user finds Q0 empty and a class-j user in service with a remaining service requirement smaller
than d0, j 6= 0, i. An explicit expression for wi appears hard to find.

5 LAS scheduling

In this section we consider the Least Attained Service first (LAS) discipline. For the expo-
sition, the assumption below will sometimes be convenient. With appropriate modifications,
the results extend to distributions with atoms.

Assumption 5.1 The service requirements of all classes have general continuous distribu-
tions.

As with SRPT, we again distinguish two variants of LAS. In each node, the users with the
least attained service are granted the right to an equal share of the capacity at that node.
Class-0 users only receive the minimum of the granted shares at the nodes. This may leave
some capacity unused at the nodes with the larger relative proportion of class-0 users. With
weak LAS, the unused capacity is re-allocated to the other class at that node (if there are
users of that class). In case of strict LAS, the unused capacity is simply lost.
The subsequent analysis is facilitated by a particular property of LAS: the users with a total
service requirement x are not influenced by users that have received more than x in service.
It will be convenient to define the following quantities, which we refer to as truncated loads:

ρ̃i(x) := λi

∫ x−

y=0ydBi(y) + λixP(Bi ≥ x) = ρi(x) + λixP(Bi ≥ x),
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where ρi(x) was previously defined in (1). Thus, ρ̃i(x) represents the load due to class-i users
truncated at size x (users larger than or equal to x contribute an amount x, rather than
zero as in ρi(x)). We call the system obtained by truncating the sizes of class-i users at xi,
i = 0, . . . , L, the (x0, . . . , xL)-truncated system. If x0 = . . . = xL = x we simply refer to the
“x-truncated” system. The ∞-truncated system corresponds to the original one.

Property 5.2 From the perspective of users of size x, the system dynamics are identical to
those of the x-truncated system. In addition, if P(B0 ≤ x̄0) = 1, then from the perspective
of class-j users of size xj > x̄0 for an j = 1, . . . , L, the system behaves identically to the
(∞, x̄0, . . . , x̄0, xj , x̄0, . . . , x̄0)-truncated system, with xj in the j-th component.

While the first claim is immediate from the arguments above, the second statement deserves
some elaboration. The influence of class i, with i 6= 0, j, on class j is through class-0 users. If
no class-0 user is larger than x̄0, then class-i users larger than x̄0 have no effect on the class-0
users, and therefore no influence on the class-j users either.

By choosing x small enough, we can ensure that
∑L

i=0 ρ̃i(x) < 1, i.e., there exists a stable x-
truncated system. It follows from Property 5.2 that class-i users of size at most x experience
a stable system if and only if Qi is stable in the x-truncated system, for i = 0, . . . , L and that
stability is monotone with respect to truncation: if (x0, . . . , xL) ≥ (y0, . . . , yL) component-
wise and Qi is stable in the (x0, . . . , xL)-truncated system, then so is Qi in the (y0, . . . , yL)-
truncated system. Under Assumption 5.1 we can therefore define

x∗i := sup{x : Qi is stable in the x−truncated system},

i.e., all class-i users of size smaller than x∗i complete service in the original system. In the
long run, class-i users of size larger than x∗i only receive an amount of service equal to x∗i .
Note that Qi is stable in the original system if P(Bi ≤ x∗i ) = 1.

Proposition 5.3 Suppose that Assumption 5.1 is satisfied and that all service requirement
distributions have infinite supports, i.e. P(Bi > x) > 0 for all x. For weak LAS, x∗0 ≤ x∗i , for
i = 1, . . . , L and for strict LAS, x∗0 = x∗i , for i = 1, . . . , L.

Proof The idea of the proof is similar to that of Proposition 4.2 and may be described as
follows. Under LAS, class-0 users of a given size x cannot complete service until all class-i
users of original size smaller than or equal to x have been cleared from the system. Thus, if
the class-0 users of a given size eventually leave the system, then class-i users must do so as
well, which implies x∗0 ≤ x∗i . Moreover, for strict LAS the reverse implication also holds.
In order to formalize the above arguments, suppose x∗0 > x∗i , for some i = 1, . . . , L. For both
weak and strict LAS, we can reach a contradiction as follows. By definition of x∗i , in the long
run, when a class-i user arrives of size si, x∗i < si < x∗0, it will never leave the system. Now
suppose that subsequently a class-0 user arrives of size s0, si < s0 < x∗0. Because of LAS, this
user cannot complete service until the class-i user does. Since the latter never happens, the
class-0 user never leaves the system either, which contradicts the assumption s0 < x∗0 and the
definition of x∗0. Thus, for both weak and strict LAS, x∗0 ≤ x∗i .
For strict LAS, it may be shown using similar arguments that x∗0 < x∗i leads to a contradiction.
Thus, for strict LAS we in fact have x∗0 = x∗i . �
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5.1 Small class-0 users

In this section we consider class-0 users with small service requirements, compared to the
service requirements of class-i users, i = 1, . . . , L. As before, we study a sequence of systems
indexed by ε and let ε ↓ 0. In the ε-system, class-0 users arrive according to a Poisson process
of rate λ

(ε)
0 := λ0/ε and the sizes are distributed as εB0. The next proposition shows that the

standard conditions can be arbitrarily close to sufficient for stability. We will consider the
ε-system with B

(ε)
0 truncated at h(ε), with limε↓0 h(ε) = 0.

Proposition 5.4 Suppose the service discipline is weak or strict LAS and assume limε↓0 h(ε) =
0. If for some i = 1, . . . , L, ρ0 + ρi < 1, then there exists an ε̄ such that for all 0 < ε < ε̄,
node i is stable in the ε-system with B

(ε)
0 truncated at h(ε).

Hence, if ρ0 + ρi < 1 for all i = 1, . . . , L, then there exists an ε̃ such that the ε-system with
B

(ε)
0 truncated at h(ε) is stable for all 0 < ε < ε̃.

Proof Assume ρ0 + ρi < 1, for an i = 1, . . . , L. We have limε↓0 h(ε) = 0, so there is an ε̄ such
that

ρ0 + ρi +
L∑

j=1,j 6=i

ρ̃j(h(ε)) < 1, for all ε < ε̄. (5)

From this it follows that ρ̃
(ε)
0 (h(ε)) +

∑L
j=1 ρ̃j(h(ε)) < 1, for all ε < ε̄, which, according to

Property 2.1, is a sufficient condition for stability of the h(ε)-truncated system. The service
requirements of class 0 in the ε-system are bounded by h(ε). According to Property 5.2, Q0

is stable, since Q0 is stable in the h(ε)-truncated system.
For class i, Property 5.2 implies that Qi is stable in the (h(ε),∞, . . . ,∞)-truncated system if
and only if Qi is stable in the (h(ε), . . . , h(ε),∞, h(ε), . . . , h(ε))-truncated system, with ∞ in
the i-th component. Because of Property 2.1, for the latter it is sufficient to have (5), which
holds for ε < ε̄. �

Remark 5.5 The fact that we can choose h(ε) such that limε↓0 h(ε)/ε = ∞, and thus P(B(ε)
0 ≤

h(ε)) → 1, as ε ↓ 0, suggests that the non-truncated ε-system can be arbitrarily closely approx-
imated by the truncated one. However, the proof of Proposition 5.4 relies on the truncation of
B

(ε)
0 . In the particular case that B0 is bounded from above by a constant M , Proposition 5.4

does imply that the condition ρ0 + ρi < 1 is sufficient for stability of node i in the ε-system
for ε small enough (take h(ε) = εM).

In the next proposition we compute the limit of x∗i (ε), for i = 1, . . . , L, in the ε-system as
ε ↓ 0, in the case that the distribution of B0 has bounded support. Note that Proposition 5.3
does not apply because the distribution of B0 does not have infinite support. That is why we
do not have x∗i = x∗j .

Proposition 5.6 Let Assumption 5.1 be satisfied, ρ0 < 1 and B0 be bounded by a constant
M . For weak and strict LAS

lim
ε↓0

x∗i (ε) = x∗i (0) := sup{xi : ρ0 + ρ̃i(xi) < 1}, i = 1, . . . , L.
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Proof Class 0 in the ε-system does not notice a truncation at a constant level x for ε small
enough, because B

(ε)
0 is bounded by εM which approaches 0 as ε ↓ 0. So for ε small enough,

we have ρ̃
(ε)
0 (x) = ρ0.

Take an xi < x∗i (0), so ρ0 + ρ̃i(xi) < 1. From Remark 5.5 it follows that there is an ε̄ such
that for ε < ε̄ the xi-truncated system is stable, or equivalently xi < x∗i (ε) (by definition of
x∗i (ε)). So for every xi < x∗i (0), there is an ε̄ such that xi < x∗i (ε) for all ε < ε̄. We also have
x∗i (ε) ≤ x∗i (0). Together this implies that limε↓0 x∗i (ε) = x∗i (0). �

5.2 Large class-0 users

We now show that the standard conditions ρ0 + ρi < 1, i = 1, . . . , L, are in general not
sufficient for stability under LAS scheduling. Loosely speaking, we show that if class 0 has
extremely large service requirements compared to all other classes, then it is necessary that
ρ0 ≤

∏L
i=1(1 − ρi). We consider an ε-system, in which class-0 users arrive according to a

Poisson process of rate λ
(ε)
0 := ελ0 and sizes are distributed as B0/ε. The proof of the next

proposition uses that, in the limit as ε ↓ 0, all classes i 6= 0 behave as if there is no class-0
traffic.

Proposition 5.7 Assume the service discipline is either weak or strict LAS. If there exists an
ε̄ such that Q0 is stable in the ε-system, for all 0 < ε < ε̄, then it must be that ρ0 ≤

∏L
i=1(1−ρi).

Proof Let us focus on the ε-system. If Q0 is stable, there must be sufficient capacity to serve
all its traffic. In particular, this must be true for traffic due to class-0 users of total size larger
than h. Once these users have received an amount of service equal to h, they can only be
served when no users are present with attained service less than h. Therefore

ρ0 − ρ̃
(ε)
0 (h) ≤ P(N (ε,h)

1 = N
(ε,h)
2 = · · · = N

(ε,h)
L = 0),

where N
(ε,h)
i denotes the number of class-i users with attained service less than h.

Choose h = h(ε) = 1/
√

ε. Since ρ̃
(ε)
0 (h(ε)) → 0 and ρ̃i(h(ε)) → ρi as ε ↓ 0, it is sufficient to

show that P(N (ε,h)
1 = N

(ε,h)
2 = · · · = N

(ε,h)
L = 0) ≤

∏L
i=1(1 − ρ̃i(h)) for all ε > 0 and h > 0.

We will show this by comparing the backlogs of classes i = 1, . . . , L, with those in the same
system without class 0. The backlog is the sum of the remaining service requirements of all
users. Since ε will remain fixed in the remainder of the proof, we suppress the dependence on
ε for notational convenience. Let us denote the backlog of class i in the h-truncated system at
time t by V h

i (t), and that in the h-truncated reference system by V̂ h
i (t). We further represent

– both for the original and the reference system – the amount of traffic of class i = 1, . . . , L,
truncated at h that arrives in the time interval (s, t) by Ah

i (s, t). In the original system we
also define the amount of service given to class-0 users in (s, t) in the h-truncated system by
Bh

0 (s, t) and the capacity wasted in (s, t) at node i while there is at least one class-i user that
has received at most h in service by W h

i (s, t). Assume both systems are empty at time 0.
Then for i = 1, . . . , L,

V h
i (t) = sup

s∈[0,t]
{Ah

i (s, t) + Bh
0 (s, t) + W h

i (s, t)− (t− s)} ≥ sup
s∈[0,t]

{Ah
i (s, t)− (t− s)} = V̂ h

i (t),
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so that

P(Nh
1 = Nh

2 = · · · = Nh
L = 0) = lim

t→∞
P(V h

1 (t) = V h
2 (t) = · · · = V h

L (t) = 0)

≤ lim
t→∞

P(V̂ h
1 (t) = V̂ h

2 (t) = · · · = V̂ h
L (t) = 0)

=
L∏

i=1

(1− ρ̃i(h)),

where the last equality follows from the independence of the various classes in the reference
system. �
For weak LAS, we can even proof that in the limiting regime considered here, ρ0 < ΠL

i=1(1−ρi)
is also a sufficient condition for stability of the ε-system.

Proposition 5.8 Assume the service discipline is weak LAS and the class-0 users are large
compared to classes i = 1, . . . , L. If ρ0 < ΠL

i=1(1 − ρi), then for ε small enough the ε-system
is stable.

Proof We will use the same notation as in the proof of Proposition 5.7. Nh
i > 0 implies

that 1 − sh
0(u) − sh

i (u) = 0, because the unused capacity is re-allocated to class-i users with
attained service less than h, when the service discipline is weak LAS. W h

i (0, t) can be written
as

∫ t
0 (1− sh

0(u)− sh
i (u))I{Nh

i (u)>0}du, so for weak LAS, W h
i (0, t) is equal to 0.

Again focus on the ε-system. We can conclude that

V
h(ε)
i (t) = sup

s∈[0,t]
{Ah(ε)

i (s, t) + B
h(ε)
0 (s, t)− (t− s)}

≤ sup
s∈[0,t]

{Ah(ε)
i (s, t)− (1− g(ε))(t− s)}

+ sup
s∈[0,t]

{Bh(ε)
0 (s, t)− g(ε)(t− s)}. (6)

Choose h(ε) = 1√
ε
, so that ρ̃

(ε)
0 (h(ε)) → 0 and ρ̃i(h(ε)) → ρi, for i = 1, . . . , L. In addition, let

g(ε) be such that limε↓0 g(ε) = 0 and limε↓0 ρ̃
(ε)
0 (h(ε))/g(ε) = 0. By (6) we have

P(Nh(ε)
1 (t) = . . . = N

h(ε)
L (t) = 0)

= P(V h(ε)
1 (t) = . . . = V

h(ε)
L (t) = 0)

≥ P( sup
s∈[0,t]

{Ah(ε)
i (s, t)− (1− g(ε))(t− s)} = 0, ∀i = 1, . . . , L;

sup
s∈[0,t]

{Bh(ε)
0 (s, t)− g(ε)(t− s)} = 0)

≥ P( sup
s∈[0,t]

{Ah(ε)
i (s, t)− (1− g(ε))(t− s)} = 0, ∀i = 1, . . . , L) (7)

−P( sup
s∈[0,t]

{Bh(ε)
0 (s, t)− g(ε)(t− s)} > 0).

For ε small enough, the limit of (7) in the time-average sense, as t →∞, is ΠL
i=1(1−

ρ̃i(h(ε))
1−g(ε) ),

using the independence of the arrival processes. Interpreting sups∈[0,t]{B
h(ε)
0 (s, t)−g(ε)(t−s)}
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as the workload in a queue with input process B
h(ε)
0 (s, t) and constant service rate g(ε), we

have that the time-average limit of P(sups∈[0,t]{B
h(ε)
0 (s, t)− g(ε)(t− s)} > 0) can not be more

than lim supt→∞
B

h(ε)
0 (0,t)
g(ε)t ≤ limt→∞

A
h(ε)
0 (0,t)
g(ε)t = ρ̃

(ε)
0 (h(ε))/g(ε), where the latter limit holds

with probability 1. Therefore

P(Nh(ε)
1 = . . . = N

h(ε)
L = 0) ≥ ΠL

i=1(1−
ρ̃i(h(ε))
1− g(ε)

)− ρ̃
(ε)
0 (h(ε))
g(ε)

.

By choice of h(ε) and g(ε), the quantity on the right-hand side tends to ΠL
i=1(1−ρi), as ε ↓ 0.

The capacity available in the ε-system to serve class-i users with attained service greater than
h(ε), i = 1, . . . , L, and for work of class 0, is not less than P(Nh(ε)

1 = . . . = N
h(ε)
L = 0). By

Property 2.1 it is therefore sufficient for stability to have

ρ0 +
∑L

i=1(ρi − ρ̃i(h(ε))) < P(Nh(ε)
1 = . . . = N

h(ε)
L = 0),

which is true for ε small enough. �

6 Conclusion

We have explored the fundamental stability properties of size-based scheduling strategies in
resource-sharing networks with simultaneous resource possession. In particular, we estab-
lished the exact stability conditions for the SRPT and LAS disciplines in various limiting
regimes. The results indicate that size-based scheduling strategies may fail to use the avail-
able resources efficiently, and in fact cause instability effects, even at arbitrarily low traffic
loads. The qualitative findings specifically confirm the tendency for users with long routes
and large service requirements to experience severe performance degradation.
The results imply that the prototypical size-based scheduling strategies will certainly not yield
optimal delay performance in resource-sharing networks. Instead, proper tuning of the para-
meters of so-called (weighted) α-fair bandwidth-sharing policies as introduced in [26] might
provide a more promising approach for improving the delay performance. As is proved in [9],
the usual necessary conditions are in fact sufficient for these policies to achieve stability. It is
noteworthy that in single-link scenarios α-fair policies essentially reduce to DPS disciplines,
which are known to cover the entire achievable mean-delay region in that case [17].
Because of scalability issues in the core and the fact that congestion tends to occur at the
edge, implementation of size-based scheduling strategies would be particularly appropriate in
edge routers. A further interesting thread would thus be the study of size-based scheduling
in so-called star topologies, which provide a natural paradigm for modeling networks with a
high-capacity transparent core.
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[20] Key, P.B., Massoulié, L., Wang, B. (2004). Emulating low-priority transport at the ap-
plication layer: a background transfer service. In: Proc. ACM Sigmetrics & Performance
2004 Conf., New York NY, USA, 118–129.

[21] Kleinrock, L. (1967). Time-shared systems: a theoretical treatment. J. ACM 14, 242–
261.

[22] Kleinrock, L. (1976). Queueing Systems, Vol. II: Computer Applications. Wiley, New
York.

[23] Kuzmanovic, A., Knightly, E.W. (2003). TCP-LP: a distributed algorithm for low-
priority data transfer. In: Proc. IEEE Infocom 2003, San Francisco CA, USA.

[24] Lu, S.H., Kumar, P.R. (1991). Distributed scheduling based on due dates and buffer
priorities. IEEE Trans. Aut. Control 36, 1406–1416.
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