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of work. The latter qualitative behavior is quite common in practical situations, such as
production systems. The admission of work into the system is controlled by a policy for
accepting or rejecting jobs, depending on the state of the system. We seek an admission control
policy that maximizes the long-run throughput. Under certain conditions, we show that a
threshold policy is optimal, and derive a criterion for determining the optimal threshold value.
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Abstract

‘We consider a queueing system with a workload-dependent service rate. We specif-
ically assume that the service rate is first increasing and then decreasing as a function
of the amount of work. The latter qualitative behavior is quite common in practical
situations, such as production systems. The admission of work into the system is
controlled by a policy for accepting or rejecting jobs, depending on the state of the
system. We seek an admission control policy that maximizes the long-run through-
put. Under certain conditions, we show that a threshold policy is optimal, and derive
a criterion for determining the optimal threshold value.

1 Introduction

Queueing systems with state-dependent rates occur in many practical situations. A specific
example concerns production systems where the productivity of the shop floor personnel
depends on the level of work-in-process (workload). In particular, the productivity, i.e.,
the speed of the server, first increases when the workload is low until a certain optimum
is attained and then decreases when the system reaches overload (caused by, e.g., stress
factors), see for instance [3, 10]. The latter qualitative behavior is quite characteristic of
efficiency patterns observed in many practical scenarios.

In this paper, we consider an M/G/1 queue with a service rate that is first increasing and
then decreasing as a function of the workload. We assume that the speed of the server
is intrinsically determined by the workload and the system characteristics and can thus
not be directly controlled. However, there is an admission policy to control the amount
of work present. Depending on the state of the system, arriving customers may be either
accepted or rejected, or, equivalently, the facility may be either open or closed for potential
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customers. The aim of this paper is to find the admission policy that maximizes the long-
run throughput. In particular, under some assumption, we show that a threshold policy
is optimal and give an intuitively appealing expression for the optimal threshold value.
The above-described M/G/1 queue with admission control may be modeled as a semi-
Markov Decision Process (MDP). Most of the theory on MDP’s concerns models with
finite or countable state spaces. Because in the present queueing model both the admis-
sion policy and the service speed depend on the workload, we are dealing with an MDP
with uncountable state space [0,00). See for instance [11, 12, 14] for some general MDP’s
with infinite state spaces. To derive structural properties of the optimal policy, a com-
monly used approach in MDP’s is the construction of value functions that possess certain
concavity properties. Because the value functions in our model typically do not exhibit
such behavior, we apply sample-path techniques to compare different policies.

An interesting study showing several similarities with our model is [7]. In [7], the author
considers an M/G/1 queueing system with continuous-time arrival control and a fixed
reward rate R when the server is busy and holding cost rate cx when the workload is .
Hence, such an M/G/1 queue can also be modeled as an MDP with the admission control
depending on the system state, while the state space is infinite [0, c0). Using sample-path
arguments and general theory on continuous-time MDP’s developed in [6], the author
proves the average-cost optimality of threshold policies.

Another branch of single-server queues with uncountable state spaces concerns M/G/1
queues with service control. Specifically, the service speed may be continuously adapted
based on the residual amount of work. In [5], the service speed equals 71 when the workload
is less than some fixed level K and r2 when the workload exceeds K. Under some fairly
general cost functions, the author determines the optimal switching level K. In [8, 15|, the
server works at constant speed, but can be switched on and off. The cost function includes
holding cost and switching cost for turning the server on. The average-cost optimality of
D-policies is shown in [8, 15]. In D-policies, the server is turned off only when the system
becomes empty (and the server is on) and the server is turned on only when the workload
exceeds level D (and the server is off).

This paper is organized as follows: A detailed model description and several representa-
tions of the throughput are given in Section 2. In Section 3, the optimality of threshold
policies under Assumption 2.1 (see Section 2) is shown. A criterion for the optimal thresh-
old value is derived in Section 4. Several examples of (combinations of) service speed
functions and service requirement distributions satisfying Assumption 2.1 are presented
in Section 5. The optimal threshold value with corresponding throughput are explicitly
determined in Section 6 for some special cases.

2 Model description

We consider an M/G/1 queue with a workload-dependent service rate. The customers
(or jobs) arrive according to a Poisson process of rate A\. The service requirement of
the n-th customer is B,, n = 1,2,..., where the B, are assumed to be independent,
identically distributed copies of a random variable B with distribution B(-) and mean 3.
We also assume that the sequences of interarrival intervals and service requirements are
independent.

The server works at a rate that depends on the amount of work in the system as described
by some function r(-), i.e., the service rate is r(z) when the amount of work is z. As in



[1, 2, 9], we assume that 7(0) = 0 and that r(-) is strictly positive, left-continuous, and has
a right limit on (0, 00). In addition, we specifically focus on the case that r(-) is increasing
on (0, 7max| and decreasing on (7max, 00) for some rpay > 0.

The admission of work into the system is governed by a control policy which prescribes
whether arriving customers are accepted or rejected, depending on the state of the system.
We assume that the service requirement of a customer only becomes known after the
acceptance decision, see Section 7 for a further discussion. Thus, the admission control
policy may equivalently be interpreted as a rule for closing or opening access to the system.
We seek an admission control policy that maximizes the long-run throughput. The long-
run throughput under policy = is defined as

™
TH™ := lim M,
t—o00 t
assuming the limit to exist. Here B™(0,¢) denotes the amount of work completed during
[0,¢] under policy 7. A policy 7* is said to be (strictly) optimal if TH™ > TH™ (TH™ >
THT™) for all policies m # 7*.
For now, we restrict the attention to the class of stationary and deterministic policies that
base their actions on the current amount of work in the system only. For a given policy ,
we use m(z) = 1 to denote that it accepts a customer that arrives when the workload
equals z and write 7(z) = 0 otherwise. Later we will show that the found optimal policy
is in fact optimal within a broader class that includes non-stationary and randomized
policies as well.
Let V™ be the workload at time ¢ and let W, be the workload just before the n-th arrival
epoch. Denote by V™ and W7 the random variables with the corresponding steady-state
distributions, if they exist, and let v™(-) be the density of V.
We first consider the case A3 < 7o, With 7o = lim,; ,o 7(x). In that case, the system
remains stable under the greedy policy that always accepts customers. Thus, the through-
put achieved under the latter policy equals A3, which is optimal, since the maximum
achievable long-run throughput is bounded by the offered traffic load.
In the remainder of the paper we focus on the case A5 > 7. (The boundary case A\ = roo
is rather delicate, and a full analysis is beyond the scope of the present paper.) In that case,
the system is unstable under the greedy policy that always accepts customers. Henceforth,
we restrict the attention to policies 7 such that m(z) = 0 for all z > M for some large M,
which ensures the existence of the steady-state workload distribution. Even though the
policy that always accepts customers may continue to be optimal, the maximum achievable
throughput can be approached arbitrarily close for sufficiently large M.
Since the steady-state workload distribution exists, the throughput TH™ under policy 7
as defined above may in fact be expressed in several alternative ways. Observing that
B7(0,t) = fot r(V.7)du, the throughput may be equivalently written as
1 1 0o
TH™ = lim + [ r(V7)du = Bfr(V™)] = / r(2)0" (2)da.
0

Invoking the further identity relation (with A™(0,t) denoting the amount of work accepted
during [0, t] under policy )

B™(0,t) =Vy + A™(0,t) — V[,



and noting that V;/t — 0 as t — oo, we observe that the throughput may also be

expressed as
N™(0,t
TH™ — 8 tim 21,
t—o0 t
where N™(0,¢) denotes the number of accepted customers during [0,¢] under policy .

Using the PASTA property, the above expression may be further rewritten as
TH™ = \fP(n(V™) =1) = A3 (7T(O)IP’(V7r =0) +/ ﬂ(m)u“(ﬂn)d:z:) . (1)
0
Finally, we introduce some additional notation. Define

x
R(z) := /0 %dy, 0<z< o0,
representing the time required for the system to empty in the absence of any arrivals,
starting from workload z. In order to avoid technicalities, we assume that R(z) < oo for
all z > 0, as in [9]. Moreover, we assume that E[R(z + B+ J) — R(x+ B)] — 0, as 6 — 0.
The latter condition only rules out cases where the workload process is being absorbed
in some positive workload level and is satisfied if, for instance, ro, > 0 or if B has finite
support. Further define

@[ [ Laabe) - [ - Be) @

Za:::// —ddey:/ ——(1 — B(z2))dz, 2
0 T T(z) T T(Z)

representing the expected time required for the system to return to workload z after a

customer has been accepted, in the absence of any further arrivals. In the remainder of

the paper, we make the following assumption with regard to Z(z).

Assumption 2.1. There exists some zmin > 0 such that Z(x) is decreasing on [0, Zmin]
and increasing on [Zmin, 00).

The above assumption is satisfied for a wide class of M/G/1-type models with workload-
dependent service rates. We give several illustrative examples in Section 5.

To provide some intuition, suppose that the system operates according to the Last-Come
First-Served Preemptive-Resume (LCFS-PR) discipline, which does not affect the work-
load process in any way. With that view in mind, Z(z) may be thought of as the expected
service time of a customer that arrives when the workload equals z, and 2, represents
the workload level at which arriving customers have the minimum expected service time.
Thus, from the LCFS-PR perspective, the direct reward of accepting customers is first in-
creasing (on (0, zmin]) and then decreasing (on (zmin, 00)). However, the decision to either
accept or reject also affects future rewards (service times). In Section 3, insights from the
LCFS-PR discipline are applied to show that the optimal policy has a threshold stucture
when Assumption 2.1 is satisfied.

3 Optimality of threshold policies

In the first part of this section, we only consider stationary deterministic policies. Since
the actions of the admission control policy then only depend on the workload level x, we
will also for brevity refer to the value of x as the state of the system. An excursion from
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state x is then a period that starts with the acceptance of a customer in state z and ends
with the first subsequent return to state x. For conciseness, we will frequently write that
a policy accepts/rejects in an interval [v, w] when it accepts/rejects customers that arrive
when the workload is in the interval [v,w]. In the second part of this section, we show
that the found optimal policy is in fact optimal within a broader class that also includes
non-stationary and randomized policies.

Define N™(z) and T™(z) as follows:

N™(z) = expected number of accepted customers during an excursion from state = under
policy .

T™(z) = expected duration of an excursion from state z under policy .

It may be verified that N™(z) and 77 (x) are continuous, see also the proof of Lemma 3.2.
Consider an arbitrary policy 7 that rejects in [z, z + J]. Let ' be a modified policy, which
does the same as 7 except that it accepts in [z, z 4 §]. Let G™(y) be the expected number
of excursions during a busy cycle that start from a workload level below y under policy ,
which are not part of an excursion starting from a level z € [z,y], y > =.

Lemma 3.1. For some y € (0,1), we have

JE BN (1)dG™ (y) _
JEH T (4)dG™ (y)

Proof. By [13, Theorem 1], the throughput under policy 7 may be equivalently expressed
as TH™ = ER"/ET™, where R" is the reward (i.e., amount of work served) during a
busy cycle and T™ is the cycle length under policy 7. Consider a busy cycle and take
an arbitrary sample path of the workload process {Vt”',t > 0} under policy 7. We
construct a stochastic process V; by deleting the excursions from level y € [z,z + §] and
pasting together the remaining parts. First note that the residual interarrival time at a
downcrossing of y is still exponential (see, e.g., [2]). Now, it may be readily checked that
V; and V/" have the same statistical properties. Thus, for the expected number of accepted
customers during a busy cycle under policy @', EN™ , we have

TH™ = (1—~)TH™ +~

z+d
EN™ — ENT 4+ / N™ (1)dG™ (),

and, equivalently, for the expected duration of a busy cycle

' w+5 ! !
ET™ — ET™ + / T (4)dG™ (y).

T

Using Wald’s theorem, we derive

ER™ _ BENT _ B(ENT + [ N" (4)dC" )
I EIT BT [JRTT ()46 ()
ER™  [**BN™(y)dG™ (y)

o +’Y z+4 ’ ' ’
ET J20 T (y)dG (y)

= (1-1)

[T (4)dG (y)
ET™+ [2 0 7' (4)dG™ (y)
ing between z and z + ¢. This completes the proof. O

where v = represents the fraction of time spent on excursions start-

Let m* denote an optimal policy, with corresponding throughput TH* = E[r(V™")].



Lemma 3.2. (Optimality properties)

(i) it is strictly optimal to reject in [v,w] = s é\:: (g) < TH*, for almost every

z € [v,w].

(i) it is optimal to accept in [v,w] = ﬂ;},’: (S) >TH*, Vzé€ [v,w].

Note that the inequality in (¢) may hold with equality for some z € [v, w].

Proof. We first prove that

77 NT (9)dGT(y) | N™(a)
[T (y)agT y) - Tr(@)

as ¢/ 0. (3)

For some small § > 0 and y € [z, z + 4], we have

T™ (y) — T™(z + 6) < (R(z +68) — R(y))(1 + A <m?,X+JT”I (u)) =0, as 6,0,
Yysusc
where R(x + &) — R(y) is the time required to go from x + ¢ to y in the absence of any
arrivals. Similarly, as 6 | 0, T™ (y) — T™ (z + &) can be bounded from below by

“E[R(z + B +8) — R(y + B)](1 + X ()T (u)) — 0.

max
y+B<u<z+B+§

Applying similar arguments to N™ (y) then yields (3). (Another way to see that (3) holds,
is to observe that the density dG™(-) is well-defined.)

The remainder of the proof is by contradiction. For part (i), assume that the strictly
optimal policy 7* rejects in [v, w], but there is some interval (u,u+4) C [v,w], with § > 0,
such that BN™ (z)/T™ (z) > TH* for z € (u,u + §). Consider a modified policy 7 which
accepts in [u, u+d] and follows 7* otherwise. First using Lemma 3.1 and then letting § | 0
(and using (3)), it follows that E[r(V™)] > T H*, contradicting the strict optimality of 7*.
For part (ii), assume that the optimal policy 7* accepts in [v, w] but, for some z € [v, w],
BN™ (z)/T™ (z) < TH*. Using (3), it follows that there is some interval U := (u — 6, u +
) C [v,w] such that BN™ (z)/T™ (x) < TH* for every x € U. Consider the modified
policy 7 that rejects in U and follows 7* otherwise. Using Lemma 3.1 (with 7’ = 7*), it
is easily seen that E[r(V™)] > TH*, contradicting the optimality of 7*. O

Lemma 3.3. It is optimal to accept in [0, Zmin)-

Proof. 1t is obvious that it is optimal to accept in an empty system. Now, assume that it
is not optimal to accept in [0, zmin]. Then there is some policy 7, such that w(z) = 1 for
z € [0,u*], but w(z) =0 for z € (u*,u* + ¢], with ©* 4+ § < zmin and 6 > 0, that is strictly
optimal.

Take some arbitrary 0 < y < 4. In the proof, we compare N™(u*) and T7"(u*) with
N™(u*+y) and T™(u*+y). Using stochastic coupling, we show that SN™(u*+y)/T™ (u*+y)
may be written as a combination of SN”(u*)/T™ (u*) and possibly contributions from some
additional excursions. Since 7 is assumed to be optimal, both terms provide an average



u*+B

u*+y +B
u*+B

#(1) s (2 77(3) Tt

Figure 1: The sample paths of two excursions of V;™; one excursion from state u* and one excursion
from state u* + y. In this example N =2 and M = 3.

reward of at least TH* by Lemma 3.2(ii). By Lemma 3.2(i), this contradicts the strict
optimality of rejecting in (u*,u* + §], because the coupling holds for any y € (0, §).

For the first part in the stochastic coupling, i.e., the part of the excursion from u*+y related
to BN™(u*)/T™(u*), observe that it follows from Assumption 2.1 that Z(u*) > Z(u* +y),
implying that the direct reward of accepting customers at level u* 4 y is at least as high
as the direct reward of accepting at level u*. For the second part, we use the fact that we
only make additional excursions if they are advantageous.

First consider the expected duration of an excursion from level u* under policy =, and
the expected number of accepted customers during such an excursion (i.e., N™(u*) and
T™(u*)). Let the first jump, initiating an excursion, occur at time 0 and observe that the
workload level right after the first jump equals u* + B, ie., Vi = u* + B. Note that
the workload process attains local minima just before arrival instants at which customers
are going to be accepted. Using terminology of random walks, define a stopping time
7 :=inf{t > 0: V" < u*}, an equivalent notion measured in the number of arrivals 7" :=
inf{k > 0 : W < u*}, and a sequence of descending ladder epochs 7(1) < --- < 7™(N) <
7" with corresponding descending ladder heights u* + B > WT, > > Wr, Ny > u*,
as follows: 77(1) :=inf{0 < k < 7™ : (W) =1}, and forn =2,...,N (if 7" (1) < 7™)

T(n+ 1) = inf{r"(n) <k <77 W§ < Wi, n(WF) = 1}.

Note that W[ ) > u* + 9, since m(z) =0 for z € [u*,u* + §]. A typical sample path in



case N = 2 is depicted in the first part of Figure 1. Using the above, we may write
N
N™(u®) = 1+ZN”(W$(”))7 (4)

() - +ZT“ LA )

Now consider N™(u* + y) and T™(u* + y). In this case, at time 0 the workload jumps
to u* +y+ B, ie., Vj} = u* +y+ B. As defined above, we have a stopping time 7
a discrete-time equlvalent 77, and a sequence of descending ladder epochs 0 < 77(1) <
- < 77(M) < 7™ with corresponding descending ladder heights u* +y + B > WZ; 1 >
> W (M) > u* +y (see the second part of Figure 1 for a typical realization). Observe
that the residual interarrival time at a downcrossing of u* + B is still exponential. Hence,
using stochastic coupling and the fact that W', (N) > u*+ 9, the descending ladder epochs

may be divided into two sets: (i) 77(1), .. ~”(M N) with u*+y+ B > W7, 7,(1) > >
Wi m-ny > u*+ B; and (ii) %”(M—N-i—l), ..., 7"(M) such that Wi -y = Twr, ()

forn=1,..., N. This coupling is illustrated in Flgure 1 (with N =2 and M = 3). In this
figure, the sample paths in the range of the solid arrow (that is between [0, s] and [s', 77|
respectively) are identical. Using the arguments above, we have

M-N N
N +9) = 14 3 NTWE) + 3N (W) (6)
T +y) = Z@u +y)+ Z ™(W, ”(n))+ZT Wi m))- (7)
Since W%,r(n), =1,...,M — N, are the workloads just before an arriving customer is
accepted and 7 is the supposed optimal policy, Lemma 3.2 yields
B "o NNTI' W:"n NT W‘r n
ZM N ( ())25 min MZTH*- (8)
SN TR WE ) =L M-N TH (Wi )

Moreover, using (4) and (5) in addition to Assumption 2.1, we obtain

BU+ L N Wrw))  _ BNT(u)
Z(u* "‘y)"‘ZN (W, r( ))_ Tm(u*)

>TH*, 9)

where the second inequality relies on the fact that it is optimal to accept at level u*.
Combining (6)-(9) yields
BN™ (u* +y)
T (uw* +y)
> min M N - ~ -
Z TW(WT‘"’(n)) Z(U +y)+ Z T”(WTw(n))
> TH*.

By Lemma 3.2 it can thus not be strictly optimal to reject at level u* +y, 0 <y < 4. 0O



Theorem 3.1. There exists a threshold policy that is optimal among the class of stationary
deterministic policies.

Proof. 1t follows from Lemma 3.3 that it is optimal to accept when the workload is in
[0, Zmin]- Suppose that a threshold policy is not optimal, i.e., there exists some policy 7
that is strictly better than any threshold policy. Let n™ := [;° max(r(z") — 7 (), 0)dx be
the number of “gaps” of policy 7, i.e., the number of times 7(-) switches from 0 to 1. Let
7 be an optimal policy, which is strictly better than any threshold policy, with the least
number of gaps, that is, 7 = arg min,c+ n™, with II* the class of optimal policies. This
implies that there is some u* > zmin and d2 > §1 > 0 such that 7(z) = 0 on (u*,u* + 1)
and m(z) = 1 on (u* 4+ d1,u* + J2). We note that gaps consisting of singular points can be
removed.

Take some arbitrary 0 < y < é;. In the proof, we consider N™(u* + y) and T™(u* + y).
Using the fact that it is optimal to accept in (u* + d1,u* + d2), we show that SN”(u* +
y)/T™(u* +y) > TH* (contradicting the fact that 7 contains the least number of gaps
among policies in IT*). This follows from the fact that the direct reward of accepting at
level u* + y exceeds the reward of accepting at any level z > u* 4+ y. Moreover, additional
excursions are only made when they are advantageous.

Suppose that at time 0 an arriving customer with service requirement B is accepted when
the workload equals u* +y, i.e., Vi = u*+y+ B. As in the proof of Lemma 3.3 (see also
the first part of Figure 1, with §; = §), we may define “stopping times” 77 and 7™ and
a sequence of descending ladder epochs 77(1) < --- < 7™(N) < 7™ with corresponding
descending ladder heights u* +y + B > W:,,(l) > > W:W(N) > u* +y. Note that
Wieny > v + b1 (if N > 0), since w(z) = 0 for z € [u*,u* + 61]. Applying this
construction yields

N
NT(w*+y) = 1+ Y N (W),
n=1
N
T"(w* +y) = ZW +y)+ > T (W)
n=1

By Lemma 3.2, BZle N”(W",r(n))/ Zgzl T"(Wf,r(n)) > TH* since 7 is assumed to be

;
an optimal policy. Moreover, using a similar ladder height construction, it may be easily

checked (in general) that
NT™(z) 1
——= < —. 1
To(z) = X 70 (10)

Hence, invoking Assumption 2.1 yields

B B «
20 +9) - 2 o) -

Combining the above, we obtain SN™(u* + y)/T"(u* +y) > TH* for any y € (0,61).
By Lemma 3.2, this contradicts the fact that policy m has the minimum number of gaps
among the class of optimal policies IT*. O

The ladder height construction in the proof of Theorem 3.1 allows us to generalize Relation
(10):



Proposition 3.1. For the throughput during an excursion from level x, we have the
following bounds,
. 1 N™(x) < 1
min max .
v>ziw(v)=1 Z(U) B T"(ac) T v>zw(v)=1 Z(’U)

These bounds are especially natural from the perspective of the LCFS-PR discipline. In
that view, the proposition simply states that the throughput during an excursion from
level z is at least the minimum (and at most the maximum) of one over the mean service
time of accepting at any level above z if policy 7 is applied.

Remark 3.1. The proof of Theorem 8.1 crucially depends on the fact that Z(-) has only
one local minimum, i.e., Assumption 2.1. Suppose for the moment that Z(-) has L local
minima. Thus, Z(-) is decreasing on [k,  2F. ) and increasing on [2F. ,zEt1) &k =
1,...,L, where z. .. = 0 and zﬁlj,} = 00. Similar to the proof of Lemma 3.3, we deduce
that if m(z) = 1 for some x € [2X, ., 2F. ), then 7r(y) =1 for ally € [z,25. ) (note that
m(0) = 1 and accepting is thus optimal in [0, 2,..)). Also, it follows from the proof of
Theorem 3.1 that if m(z) = 1 for some z € [zk,,,00), then w(y) =1 for all y € [2L,,, 2).

However, the intervals [2F; ,2kt1) k= 1,...,L — 1, are not covered by the proof. In

particular, the trade-off between direct and future rewards remains undecided there.

Y mln

Theorem 3.1 shows that the threshold policy is optimal among the class of stationary and
deterministic policies. To prove that a (stationary and deterministic) threshold policy is
also optimal within the broader class of policies considered in [13], we use insights from this
section to construct an appropriate (value) function satisfying [13, Theorem 2]. The class
of policies in [13] consists of all measurable decision rules, and includes non-stationary and
non-deterministic policies.

Theorem 3.2. There exists a threshold policy that is optimal within the class of policies
considered in [13].

Proof. Let w be a threshold policy with threshold value z* that is optimal within the class
of stationary and deterministic policies. Now, define n™(z) and t"(x) as follows:
n”(z) = expected amount of work served in a period starting with workload level z until
the end of the busy cycle under policy 7.
t™(z) = expected length of a period starting with workload level z until the end of the
busy cycle under policy 7.
Similar to [7], let

f(z) :=n"(z) - TH™t" ().
Consider E[f(z + B)] and divide the busy cycle in two parts; first we have an excursion

from state = followed by the remaining part of the cycle starting with a downcrossing of
level z. Hence (see also [7, Lemma 6.3]),

E[f(z + B)] = §(N"(z) = 1) = TH"T" (z) + f(z), (11)

where the N™(z) — 1 stems from the fact that the arrival in state z is not counted in
E[f(z + B)].
Define, for z > 0,

B +E[f(x+ B)], for0<z<a*
f(z), for x > x*,

fa)={ (12)
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where z is the state of the system just before a decision epoch. By conditioning on the
first arrival, we also obtain the following relationship between f(-) and f(-):

f() = /0 T HR(R() — 9)))he My — (13)

A bl

with R~1(-) the inverse function of R(-), see e.g. [l, 2, 9] for details. Because 7 is
assumed to be an optimal stationary deterministic policy, Lemma 3.2 yields that SN™ (z)—
TH™TT™(x) is positive for z € [0,z*), and non-positive for z € [z*, 00). Using the above in
addition to (11) and (12), we obtain

f(z) = max{BN™(z) — TH™T"(z),0} + f(z). (14)

Combining (11) with (13), we may rewrite (14) into

flz) = max{ﬂ + /0°° /Ooo FRTH(R(z + 2) — y) ")) Ae ¥ dydB(2),

THT™
A

/0 R (R() - y)+>)Ae—*ydy} -

Thus the function f(-) satisfies the optimality equation for the average-cost criterion, i.e.
Equation (3) in [13]. The theorem now follows directly from [13, Theorem 2]. O

4 Criterion for the optimal threshold

In Section 3 we showed that, if Assumption 2.1 is satisfied, a threshold policy is opti-
mal. The derivation of that result also suggested the following criterion for the optimal
threshold:

B

Z(@)’ (15)

where 7z denotes a threshold policy with parameter . The above criterion is intuitively
appealing when we consider marginal arguments. Informally speaking, the optimal thresh-
old will be chosen such that the throughput just equals the expected reward of customers
accepted in state Z (which has reward 3/Z(7)).

Moreover, the above criterion allows us to deduce some properties of the optimal threshold
value. Using a similar construction as in (some of) the proofs of Section 3, it may be shown
that TH™ is increasing as a function of A\. (To see this, we note that a higher A yields
additional arrivals which are only accepted if the resulting excursions are advantageous.)
Because $/Z(Z) is independent of A\ we can directly conclude from (15) that the optimal
threshold value is decreasing in A. It may also easily be checked that the optimal threshold
approaches zmi, as A — oco. This behavior of the optimal threshold reveals the typical
trade-off between direct and future rewards; the upper bound for the throughput is at-
tained by accepting customers in state zmin, but the optimal policy anticipates decreasing
arrival rates by starting to accept customers at increasing workload levels to compensate
for the increased probability of reaching an empty system (where the server is idle).

TH™ =

In the remainder of this section, we use another method to derive a criterion for the
optimal threshold value and give some properties of TH™ as a function of Z. Moreover,

11



when Z(-) does not satisfy Assumption 2.1, we show that a similar criterion as (15) holds
for the optimal threshold value, which provides the optimal policy within the class of
threshold policies. (Note that a threshold strategy may then not be optimal among the
class of stationary and deterministic policies). However, we start with the general form of
the throughput under a threshold strategy with some fixed threshold z.

Observe that, for fixed z, the workload under policy 7z has the same dynamics as an
M/G/1 queue with a general service rate and impatience of customers depending on the
amount of work found upon arrival. Under policy 7z the model is in fact a special case of
the finite-buffer queue in [2], with

[ B = 0K (@,0), 0<r<s,
(z) { BV = 0) [K(2,0) + 7 K(z.y)K*(1.0dy], 2>z,

where P(V™ = 0) follows from normalization:

P(V™ =0) = [1-1—/ K*a:Odac-i—/ K(z,0)dx

/ /ny y,O)dydw] - (16)

Here, the (iterated) kernels are defined as in [2, 9]. That is, for 0 < y < z < o0,

K(z,y) = A1 - B(z — y))/r(2),
Kan(o,y) = [ K(o,2)Ka(z ) (17)

and K*(z,0) := > -2, Kn(x,0). Using the representation in (1) for the throughput, we
obtain

TH™ — AGB(V™ = 0) (1 + /0 ’ K*(:c,O)d:z:) . (18)

Note that Z(z) and TH™ are continuous and differentiable functions of Z. In order
to determine the optimal threshold, it is useful to consider the derivative of TH™ with
respect to T.

Lemma 4.1. For the derivative of TH™ , we have
d
dz

Proof. The proof is deferred to Appendix A. O

TH™ = A\GP(V™ = 0)K*(z,0) [1 — TH™ Z(z) /8] .

Before we further discuss the optimal threshold criterion, we first derive some properties
of TH™ as a function of Z. As in Lemma 3.1, consider a policy 7 that does not accept
in [a,b] and a modified policy 7', which does the same as 7 except that n'(z) = 1 for
x € [a,b]. Then, the throughput under policy 7’ may be written as a convex combination
of the throughput under policy 7 and the throughput due to excursions starting from levels
in [a,b] (see Lemma 3.1). This relation is particularly useful in studying the relationship
between TH™ and Z(-).

12



Lemma 4.2. Suppose that (i) dZ(z)/dz < 0, for z € [a,b], and (i) TH™ < B/Z(a).
Then,
B

= Z(a)’
If either (i) (for some z € [a,b]) or (ii) holds with strict inequality, then (19) holds with

strict inequality. Moreover, if the (strict) inequalities in (i) and (ii) are reversed, then the
(strict) inequality in (19) is reversed.

TH™ < for all z € [a,b. (19)

Proof. Fix an arbitrary = € (a,b]. Lemma 3.1 yields that, for v € (0,1),

Ju BN™ (y)dG™ (y)
JS Tm=(y)dG™=(y)

From (i) and Proposition 3.1, we obtain SN™ (y)/T™ (y) < /Z(z) for every y € [a,z].
Invoking (ii), it trivially follows that

TH™ =(1—~)TH™ 4+~

p B

T S 075+ 76 < 2y

(20)

where the last step is due to (i) again. Now, if (i) holds with strict inequality for some
x € [a, b] then the second inequality of (20) is strict, while the first one is strict if (ii) holds
with strict inequality. The proof for the reversed signs is similar (use the lower bound in
Proposition 3.1). O

We now derive a criterion for the optimal threshold. Let 7}, denote the optimal threshold
strategy. Define the set A := {x > 0: TH™ = $/Z(z)}. Note that, in general, A is a
collection of N disjoint closed intervals A4;, i = 1,..., N, where each interval may be a
singleton. However, if A; is not a singleton, then it follows directly from Lemma 4.2 that
Z(-) is constant on A;.

Proposition 4.1. If A is the empty set, then the greedy policy is optimal and TH™th = .
If A is non-empty,

TH™" = max {roo,maxﬁ/Z(w)} ,
zeA

where the greedy policy is optimal when TH™th = ro, and the optimal (finite) threshold is
given by any T € argmaxyc4 3/Z(z) otherwise.

Proof. For the threshold at 0 we have

B p
Z0)+r S Z(0)

If A is the empty set, then we have from the continuity of Z(-) and TH™ that TH™ <
B/Z(z) for all z. Applying Lemma 4.1, we obtain that d(TH™)/dz > 0 for all z and the
greedy policy is thus optimal.

If N > 0, then it follows from Lemma 4.1 that A contains all points satisfying dTH™ /dx =
0. Hence, A contains at least all extreme points. From (21) and Lemma 4.1 it follows that
0 is a local minimum. Moreover, TH™ — r, as * — oo. Because TTH™# is continuous,
finding the global maximum of TH™* reduces to finding the maximum of §/Z(z), z € A,
and comparing it with 7. O

TH™ —

(21)
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Using Lemma 4.2 , some additional properties of TH™ as a function of £ may be derived.
For instance, it may be shown that if Z(-) has m local maxima, then N < 2m — 1. In
particular, if Assumption 2.1 is satisfied, then IV < 1. This case is of special interest
because a threshold policy is then optimal. Moreover, if in that case N = 1, then AN
[0, Zmin) is empty and each value in A (possibly a singleton) is a global maximum of TH™=.
These arguments are summarized in the following corollary.

Corollary 4.1. Suppose that Assumption 2.1 is satisfied. If A is the empty set, then
the greedy policy is optimal. Otherwise, N = 1 and x € A is an optimal threshold with
corresponding throughput

TH* = 3/Z(x).

Finally, if 7(z) is constant for z > L (and Assumption 2.1 holds), there is an easy way to
determine directly whether the greedy policy is optimal or not. From Lemma 4.2 we then
deduce the following:

Corollary 4.2. Suppose Assumption 2.1 is satisfied and r(x) = ro for all x > L for some
L > 0. Then, the greedy policy is optimal if and only if

B
TH™ < - = p,..
7@ "

5 Assumption on Z(z)

Although Assumption 2.1 is quite natural, it involves the service-rate function as well
as the distribution of the service requirement. Below, we give some examples satisfying
this assumption, assuming that r(-) is increasing on (0, "max] and decreasing on (rmax, 00)
for some rmax > 0 (as described in Section 2). We consider both cases with general
service requirement distributions and cases with a wide class of service-rate functions.
In addition, we provide a natural example that does not have the desired properties.
This case reveals the strong dependence on both the service-rate function and the service
requirement distribution.

To show that Assumption 2.1 is satisfied, we frequently use the derivative of Z(-). Inter-
changing derivative and sum in addition to some rewriting, yields

2@ = [ R+ - RE@)IBO)

_ [ 1 [Fre)—r(z+b)
- /0 B0 /0 dB(b).

z +b) r(z) - r(z + b)r(z)
For Assumption 2.1 to be satisfied, it remains to be shown that

r(z) — Eg[r(z + B)]

0, S [0, zmin],
r(z) — Eg[r(z + B)] 0

<
> ) HAS [zmina OO)

Example 5.1. Suppose that ryax = 0, that is, 7(-) is decreasing on the positive halfline.
By definition, 7(y) > r(z), for y > z, and it is readily seen that Assumption 2.1 is satisfied.
Also, zpin = 0 in this case.
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Example 5.2. Suppose that B(z) = I(z > f3), i.e., the service requirement is determinis-
tic 8. Observe that Eg[r(z+B)] is just the shifted r(-) function. Thus, r(z) < Eg[r(z+B)]
if £ € [0, (rmax — B) "] and r(z) > Eg[r(z+ B)] if € [rmax, o0). Moreover, r(z) is increas-
ing on [(Tmax — B)", Tmax), While Eg[r(z + B)] is decreasing on the same interval. This
directly yields the required property.

Example 5.3. Suppose that B(z) = 1 — e #*, meaning that the service requirement is
exponentially distributed. Observe that r(z) — Eg[r(z + B)] > 0 for £ > ryax. Now take
some arbitrary z and y, with 0 < £ < y < rpax. Conditioning on the service requirement
in case a customer arrives at level  and using the memoryless property of the exponential
distribution, we have

Eg[r(z + B)] = /y r(z)ue M) dz + e VP Egr(y + B)]

y
> / r(z)pe "D dz + e PUDEL[r(y + B)),
and thus,
r(z) — Eg[r(z + B)] < e P 2)p(z) — e PO Eg[r(y + B)).

]
Note that if r(y) — Eg[r(y + B)] < 0, then r(z) — Eg[r(z + B)] < 0 (since r(y) > r(z)).
Similarly, if 7(z) — Eg[r(x + B)] > 0, then r(y) — Eg[r(y + B)] > 0. This directly gives
the desired property, where zmin = arginf{h : r(h) > Eg[r(h + B)]}.

Example 5.4. Suppose that r(-) is defined as follows:

1, 0<z<a,
r(x) = { increasing and concave, a < & < Imax,
decreasing, T > Tmax-

In addition, assume that 7o, > 71. From the properties of r(-), it is obvious that r(z) —
Eglr(zx + B)] < 0 as z € (0,a] and r(z) — Eg[r(x + B)] > 0 as £ > Tmax. Hence,
a < Zmin < Tmax- Now take arbitrary z,y, with a < z < y < rmax- First, consider the
following:

Eg[r(y + B) —r(z + B)]

_ /0 T (g +b) — (@ + b)) dB(b) + / C (w4 b) — (e + 5)ABW)

max —Z

IN

[ 00~ r)aBe) +0 = (1)~ @) Blrmee —2),

where we used that r(-) is concave on [a, rmax] and decreasing on [rmax, 00) in the second
step. Using the above, we obtain

r(z) — Ep[r(z + B)]
= r(y) = Eglr(y + B)| +r(z) —r(y) + Ep[r(y + B)] - Ep[r(z + B)]
< r(y) = Eg[r(y + B)] + (r(z) = r(y))(1 = B(rmax — z))-
As in Example 5.3, note that if 7(y) — Eg[r(y + B)] < 0, then r(z) — Eg[r(z + B)] <0

(since r(y) > r(x)). Similarly, if r(z) — Eg[r(z + B)] > 0, then r(y) — Eg[r(y + B)] > 0.
Hence, Assumption 2.1 is satisfied, with zmin = arginf{h : r(h) > Eg[r(h + B)]}.
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Finally, note that Example 5.1 is just a special case (take a = rmax = 0). However, we
believe that Example 5.1 is a natural special case, which admits an easy verification of
Assumption 2.1.

Example 5.5. Here we provide an example for which Assumption 2.1 is not satisfied. For
simplicity, we choose specific values for some model parameters. A slightly more general
model could be constructed by leaving some parameters unspecified, while leaving the
structure unaltered.

Consider the following service rate function:

1, 0<z<a,
(z—a)e+ry, a<z<rpax,
(iz—x)c—{—rl, Tmax<$§b7
o < T1, z > b,

r(z) =

with & = 2rmax — a, implying that T(ﬁ) = r1. Also, suppose that B = a/3 with probability

~

1/2 and B = h — a/3 with probability 1/2, and take ¢ > 3(r1 — r2)/a. After some
calculations, we derive that dZ(z)/dz is strictly positive on (0,%) and (3¢ + 172,48 —
M="2) and strictly negative on (§, %" + M272) and (%" — 272 00). Clearly, Z(-) has two

local minima and Assumption 2.1 is not satisfied in this case.

6 Some examples

In general, Expression (18) is suitable for a numerical calculation of the optimal threshold.
Also, the characteristics of TH™ described in Section 4 suggest another numerical calcu-
lation of this optimal value, for instance, using a bisection method. In this section, we
give some examples in which we obtain an analytically more tractable expression for the
optimal throughput with corresponding optimal threshold value. In Subsection 6.1, we
consider a two-level service rate: The service rate at time ¢ is r; when V;" < aqand re <11
when V™ > a (see for instance [5]). In Subsection 6.2, we generalize the service rate to
an arbitrary step function, but we restrict ourselves to exponential service requirements
there.

In any case, if the greedy policy is not optimal, the optimal threshold value must satisfy
Relation (15), see Proposition 4.1. Define

2(z) = [P(V™ =0)"' - W(z)A\Z(z)] (22)

where W(z) := 1+ [ K*(y,0)dy represents a non-normalized workload distribution.
Using (18) and some straightforward manipulations, we may rewrite (15) into

P(V™ =0) _
Note that both P(V™ = 0) > 0 and Z(Z) > 0 and finite. Finding the extremes of TH™=
thus reduces to solving z(z) = 0.
6.1 Two-level service rate
Suppose that the service rate is specified as

r(z) = ry, for0<z<a,
ro, for xz > a,
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where 0 < 79 < r1. Define p; := A3/r;, i = 1,2. Because the service-rate function is
decreasing, we obtain from Example 5.1 that Assumption 2.1 is satisfied and a threshold
policy is thus optimal. To determine the optimal threshold z, we derive from Corollary 4.2
that we only need to consider z < a.

Fix some Z € [0,a]. Using results of [2, 9], the stationary workload distribution may be
easily reduced to a more tractable expression. Let

)= gt /0 "(1- B(y)dy (23)

be the stationary residual service requirement distribution with density h(-). For = < a,
K(z,y) = prh(z —y) and it is well-known that K*(z,y) = > > | pihn(z —y), where hy(-)
is the density of the n-fold convolution H,(-) (see, e.g., [2, 9]).

Now we determine the three elements on the right-hand side of (22) separately, after which
we combine them to determine z(Z). First consider AZ(Z). Using the definitions of Z(-)
and H(-), respectively (2) and (23), yields

\2(F) = Aﬂ:%ﬂ—B@—EWM+A/W£5L<Mx—@Mx
= p2+(p1—p2)H(a—1T). (24)

Second, consider the non-normalized workload distribution W (-). Interchanging integral
and sum in addition to the results above, we immediately obtain for each z € [0, Z],

W) =1+ [ bty = 3 o1 Ho(a). (25)
n=1 n=0

Remark 6.1. Note that W(-)/W(a) is the steady-state workload distribution in a finite
dam with speed r1 and buffer size a. In case p1 < 1, it is an easy exercise to see that the
Laplace- Stieltjes transform of W (-) provides the well-known Pollaczek-Khinchine formula.
Ifp1 > 1, fo x)dz is still finite and a steady-state workload distribution ezists (see e.qg.
[9]). However, Cohen [4, 5] describes a more elegant way to determine W (-) in that case.

Finally, the first term of (22), that is the inverse of the normalizing constant P(V™ = 0),
is the most complicated one. Using the expression for the steady-state workload density
in addition to the results above, we derive for z < z < a,

Ve (z) = v”<f>+P<V’ff=o>[ [ erhtwyay

//plh —u Zp?hn dudy]
=1

_ p™ —o) [W@) + p1(H(z) - H(@))

+m£?H@—@—H@—@MW@ﬁ

z

= P(V™ =0) [W(i‘) + ,01/ (H(x —u)— H(Z — u))dW(U)] )
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where we used W(0) = 1 in the final step. Note that, for z > a, K(z,y) = p2h(z — y).
Using similar arguments, we obtain for = > a,

T

Veiz) = V”z(a>+ﬂ»<v“=o>[/ pah(y)dy

+ / /0 Lph(y—w) ) p’fhn(U)dudy]
a n=1

— PV —0) [W(z) + o / (H(a —u) — H(Z — u))dW (u)

+p2 / ’ (H(z —u) — H(a — u))dW(u)] .

By (25), we have p; foj H(z —u)dW(u) = W(z) — 1. Letting £ — oo and some rewriting
then yields

P(V™ =0)"! = poW(Z) + (p1 — p2) /Oi H(a —u)dW(u) + 1. (26)
It is now easy to get z(Z). Substituting (24)—(26) into (22) gives
2(Z) =1+ (p2 — p1) [W(:E)H(a —I) — ’ H(a—u)dW(u)]| . (27)

0-

Summarizing, Corollary 4.2 implies that the greedy policy is optimal if and only if
p2 — (p2 — p1)W(a) > 0.

Otherwise, TH* = p/(p2 + (p1 — p2)H(a — z*)), with p := A3 and z* is a solution to
z(z*) =0.

In general, the convolution in (27) can only be determined numerically. However, if the
service requirement follows a phase-type distribution, explicit expressions can be obtained.
For instance, if B(z) = 1 — e #* (see also Subsection 6.2), then after quite lengthy but
standard calculations, it follows that, for p; # 1,

2(z) =1+ P2~ PL—pa (e‘“_” — e“pli) . (28)
p1—1
In case p; = 1, we obtain

(a—2)

2(z) =1~ (p2 — Dpuze 7%,

6.2 Exponential service requirements

Suppose that the service requirements are exponentially distributed with mean 1/u, i.e.,
1 — B(z) = e #®. Then, for fixed Z, the steady-state workload density is given in [2,

Corollary 7.1]: )
o™ (3) = W exp{—pz + AR(z A )}, (29)

where P(V™ = 0) follows from normalization. In this subsection, we also assume that
the service rate is a step function. More specifically, let r(z) = r; for z € [a;_1,0a;),
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i=1,...,N (where ag = 0), and let r(z) = rn41 < rn for z > an. Denote p; = A/ (ur;),
i=1,...,N +1 and assume for simplicity that p; # 1.

Example 5.3 shows that Assumption 2.1 is satisfied and a threshold policy is thus optimal.
By Corollary 4.2, either the greedy policy is optimal, or the optimal threshold z* is
less than ay. Let Z € [an,an+1) for some n < N — 1. Next, we consider each of the
three elements of z(Z) separately, after which we combine them into an expression for z*
satisfying (15). However, for later use, we first define the following three constants. (In
the sequel we follow the convention that empty sums are equal to 0.)

LIS\ A
e = e {3 (2-2)al,
=1 Tk Tk+1

1 - Pk Pk+1 ) 1
C, = + ( - A_re PRk
" 1—p1 ; pe—1  prp1—1
N
Dn = ) (pr41—pr)eH
k=n+1

First, consider AZ(z). Using (2) and rewriting the integral, we obtain

An+1 N-1 Q41
\2(E) = / A gy Y / A o) gy
T Tn+1 k=n+1" % Tk+1
o0 A _
-l-/ e HE=Bdg
ay TN+1
N—-1
= ppr1(1— e*#(an+1*i)) + Z pk+1(e*#(ak*i) _ e*#(ak+1*i))
k=n+1
_+_pN+1e_#(aN—5)
= pnt+1+ Dpet®. (30)

Second, consider W (), i.e., the workload distribution ‘without normalization’. It is easily
checked that the time to empty the system starting from a;, 2 = 1, ..., n, in the absence of
any arrivals (i.e., R(a;)) equals a;/r; + 34— (1/7 — 1/7k1)ax. Hence, for z € [a;,a;11),
we may deduce that

exp {AR(z)} = exp {M + )\R(ai)} — iexp { AT } . (31)

Tit1 Tit1

19



Now, for ¢ =1,...,n, using (29) and (31), we obtain after some standard algebra, that

V7 (a;) /B(V™ = 0)
i—1

= 14> / A weaR) g
k=0 Y % Tk+1
i—1
= 1+ Pk+1 Vi (e—u(l—Pk+1)ak+1 _ e_#(l_Pk+1)ak)
o PRr1 =1
1 i—1 i—1
- + Z ﬂ%ﬂe—ﬂ(l—f’kﬂ)%ﬂ _ Z Mfyke_ﬂ(l_l’k-k—l)ak
l=p = ok — 1 = Per1— 1
1 7 i—1
= + Z Pk Yo e HAmPr)ak _ ﬂ’ykile_#(l_l’k)ak
l—p = -1 — pry1—1

= Ci1+ P yi_ge HL-pi)ai
i — 1 ’
where we used ygetPr+1% =~ eMPe% in the fourth equality. Thus, combining (29) and
(31) with the above, we obtain, after similar manipulations,

DY

VT(3) = V™(a) + P(V™ = 0) / A e tAR() gy (32)
an Tn+1

= V™ (an) + (V™ = 0)—LH oy, (emnmme)  gmuli=prian )
Pnt+1—1

= P(V™ =0) [Cn SRR . yne—““—f’nﬂ)f] : (33)
Pnt1— 1

which completes the calculation of W (-) (since W(Z)P(V™ = 0) = V™ (z)).

For the first term on the right-hand side of (22), i.e., P(V™ = 0)~! we use similar

arguments as for the previous one. We first consider V7#(z) with £ > a,y1 and let

i = arg max{a; : a; < z} be the largest a; smaller than z. Using (29) and applying (31)

to determine AR(Z), we obtain after similar algebra as above, that

_ an+1 A
Vi) = V(@) b ueenpy —o)| [T Ay
i—1 ak+1 ) z )
+ Z / —e_“ydy+/ e_“ydy]
k=n-+1 ag 7'k+1 a; 7ﬂi—|—1

2
= P(VWE - 0) |:Cn + M/yne*ﬂ(lfpn_i_l)j
pnt1—1

1
Ay elPnt1® Z (pri1 — p)e Mok — ’ynpi+1e_“z+”p"+1”],
k=n+1

Thus, letting £ — oo, we obtain the normalizing constant:

2
PV™ =0y~ = C, + ; Pn+1 1,_Yne—p,(1—pn+1)i + Yy DpelPnti®, (34)
n+1 —
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The function z(Z) can now easily be rewritten into a more appealing expression. In partic-
ular, substituting (30), (34), and W (Z) resulting from (33) into (22) and some reordering
of terms, yields

z(:?:) = (1 - pn+1)Cn + Dn')’ne#pn-i-lj

—D,el® (Cn + Prtl 1fyne—#(1—pn+1)i>
Pn+1 —

D _
= (]‘ - pn+1)Cn — CpDpet® — 7 eHPn 1t
prt1—1

Solving z(Z) = 0 is thus remarkably simple in this case, since the variable Z only appears
in two of the exponents. Summarizing, we conclude that the optimal policy is of the
threshold type where the optimal threshold value is given by the solution of z(z) = 0.
Moreover TH* = [3/Z(Z), where AZ(Z) is given in (30).

Remark 6.2. It is easily checked that, in case N = 1, the formula for z(Z) indeed reduces
to (28).

7 Concluding remarks and further research

In the present paper, we considered the problem of optimal admission control in a system
with a workload-dependent service rate. We assumed that the service requirement only
becomes known right after the decision of accepting or rejecting jobs. OQur objective was
to find a policy that maximizes the long-run throughput. Under some assumptions (in
particular Assumption 2.1), we showed that a threshold policy for accepting jobs is optimal
and derived a criterion for the optimal threshold value.

We note that our main assumption, i.e. Assumption 2.1, involves sufficient conditions for
optimality of threshold policies. An interesting subject for further research is to examine
the structure of the optimal policy when Assumption 2.1 is not satisfied.

Moreover, there are various interesting model variations. For instance, the analysis is
significantly changed if information about the service requirement is available. In that
case, the decision will not only depend on the workload level, but also on the size of the
job, yielding a two-dimensional state space. A characterization of the optimal policy in
that model might be a subject of further study. We note that a threshold policy will not
be optimal in general. However, in some special cases, as for, e.g., deterministic service
requirements or decreasing service rate functions, the optimal policy continues to be of
the threshold type.

Other model variations are systems where jobs can be partly accepted (or rejected). The
simplest version concerns a model where an infinite amount of work becomes available at
Poisson instants and the policy prescribes the amount of work to accept. In some sense,
this model is related to the case A — oo in the model of the present paper, which may
be interpreted as an infinite supply of jobs and the policy prescribes the time to accept a
new job. More interesting are systems where the supply of work is bounded by the service
requirements of arriving jobs and the decision is the amount of work to accept. In that
case, the state space is two-dimensional and the action space is continuous. The structure
of the optimal policy in the latter model is also left for future investigation.
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A Proof of Lemma 4.1

Lemma 4.1 For the derivative of TH™ , we have

;—ETH”E = ABB(V™ = 0)K*(,0)[1 — TH™ Z(%)/f].

Proof. We first consider P(V™* = 0). Observe that the double integration in (16) may be

equivalently expressed as follows: [°_ f;:o = ffzo f:iy e ;:0. Using the definition

of K*, interchanging integral and sum and finally applying (17), we may write
z ®©
| Kewrwody = 3 [" K@K .0
n=1

o0
= Y Kot (5,0) - Ki(3,0)
n=0
= K*(z,0) — K(z,0). (35)
Taking the derivative of P(V™ = () with respect to Z, we obtain from (16) and the
reordering of integration that

d
—P(V"™ =
Ll 0)

= —P(V™ =0)> (K*(:v,O) — K(%,0)

+ [ K@orE - [ " Kz 0K, o>dy)
= —P(V™ =0)’K*(z,0) /: K(z,%)dz,

where we used (35) in the second step. Now, invoking (18) and taking the derivative of
TH™ with respect to = yields

rmm — ABRV™ = 0)K*(3,0) + M-V —0) (1 + / K*(z,0)dz
dz dz 0

— BBV — 0)K* (3, 0) _
« [1 ) / ~ K(z,7)ds <1 + /0 ) K*(:c,O)d:c)]
— APV — 0)K*(3,0)[1 — TH™ 2(3)/8],

where the final step follows from (18) and the fact that AZ(z) = [° K(z,Z)dz. This
completes the proof. ]
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