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Abstract

We present the series expansion and the moving average represen-
tation of the isotropic Gaussian random field with homogeneous incre-
ments, making use of concepts of the theory of vibrating strings. We
illustrate our results using the example of Lévy’s fractional Brownian
motion on RN .

1 Introduction

Let Xt, t ∈ RN be the zero mean, mean-square continuous Gaussian random
field with homogenous increments, starting from the origin so that Xt −Xs
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and Xt−s have the same finite dimensional distributions. Moreover, we
assume that this field is isotropic, i.e. for any A from the group of orthogonal
matrices on RN it holds that random fields XAt and Xt have the same
finite dimensional distributions. According to [33], section 25, the covariance
function of this field has the following spectral representation

EXtXs =
∫

RN

(
ei〈v,t〉 − 1

)(
e−i〈v,s〉 − 1

)
d%(v) (1.1)

where 〈· , ·〉 is the usual inner product in L2(RN ). The spectral measure %
satisfies the condition

∫

RN

‖v‖2

1 + ‖v‖2
d%(v) < ∞. (1.2)

In this paper we obtain the series expansion of a general isotropic random
field with homogenous increments. This work is inspired by the recent paper
by Malyarenko [21] and intends to extend the results contained in two pa-
pers of Dzhaparidze and van Zanten [6], [8] where only the one-dimensional
fractional Brownian motion (Bt)t∈[0,1] has been treated and the following
series expansion has been obtained:

Bt =
∞∑

n=1

sinxnt

xn
Xn +

∞∑

n=1

1− cos ynt

yn
Yn

where X1, X2, ... and Y1, Y2, ... are independent, zero mean Gaussian random
variables with certain variances and the numbers xn and yn are positive real
zeros of two Bessel function of the first kind of certain order. The expansion
in the multivariate case is much more complicated. As is shown in [21],
instead of two sums we will encounter countable number of terms, each
having the form of series of products of certain deterministic functions and
independent Gaussian random variables (see the representation (7.16) below
and compare with that of Theorem 2 in [21]). As in [21], the series expansion
of the isotropic fractional Brownian field is derived as a special case of the
general expansion (5.3) but unlike [21], Theorem 1, we require only some
mild conditions on the spectral measure. This is achieved by evoking the
powerful spectral theory of vibrating strings. Even though Krein’s seminal
papers come from 1950’s it seems these methods never has been applied in
the present context until the recent paper of Dzhaparidze, van Zanten and
Zareba [9]. The theory is based on the one-to-one relation between spectral
measure and a differential operator associated with the vibrating string. The
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latter brings about the notions gathered in section 2 that are of fundamental
importance for analyzing the random processes and, as we will see below, of
isotropic fields as well.

Another subject of this paper is a moving average representation of a
general homogenous isotropic random field. The idea behind such repre-
sentation is to express the random field that in general is of complicated
structure, in terms of certain basic processes, like in our moving average
representation (6.2) that involves a counting number of elementary integrals
with respect to mutually independent martingales. This result is obtained
by the straightforward generalization of the method used in [9]. Like in [21],
special attention is devoted to the applications to the fractional Brownian
motion.

The paper is organized as follows. In section 2 we give a short intro-
duction to the theory of vibrating strings. Section 3 explains the concepts
of spherical harmonics and spherical Bessel functions which later occur in
our series and moving average representations. Section 4 provides represen-
tation of the covariance function which is used in section 5 to obtain series
expansion and in section 6 to derive moving average representation. In sec-
tion 7 we apply the theory to particular examples of Lévy’s ordinary and
fractional Brownian motion. Section 8 comments on the present results and
discusses the possibilities for further developments.

2 Introduction to theory of strings

In this section we present a short account of the spectral theory of vibrating
strings. This theory is initiated by Krein in a series of papers from 1950’s,
however it took the present shape in the fundamental work by Dym and
McKean [5] (see also [17]; the proofs of all statements in the present section
can be found in these works). We only mention strictly necessary facts to
afford direct understanding of our arguments.

2.1 The vibrating string

A string is described by the pair lm. The number l ∈ (0,∞] is called the
length of the string and the nonnegative, right-continuous, nondecreasing
function m = m(x) defined on the interval [0, l] is called the mass of the
string. Values x∈ [0, l] are interpreted as a locations on the string between
left endpoint x = 0 and the right endpoint x = l, value of the function m(x)
is thought of as a total mass of the [0, x]-part of the string. The jump of
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m at the point x is denoted by ∆m(x) = m(x)−m(x−). We assume that
∆m(0) = m(0).

It is said that the string is long if l+m(l−) = ∞ and short if l+m(l−) <
∞. In the case of a short string we need another constant in order to describe
the string, that is the so-called tying constant k∈ [0,∞]. We define also the
Hilbert space L2(m) = L2([0, l], dm).

With the general string (not necessarily smooth) we can associate the
differential operator

G f :=
df+

dm
,

where f+(f−) denotes the right(left)-hand side derivative of the function f .
It can be proved (cf. [5], [9]) that in both cases of long and short string there
exists a dense subset D(G ) of L2(m) such that every f ∈ D(G ) has left and
right derivatives, satisfies f−(0) = 0 (and f(l) + kf+(l) = 0 in case of short
string) and the operator G : D(G ) → L2(m) is well defined, self-adjoint
and negative definite. Let us just remark that the domain D(G ) consists of
functions defined on the real line and satisfying f(x) = f(0) + xf−(0) for
x ≤ 0, f(x) = f(l) + (x− l)f+(l) for x ≥ l if l < ∞ and

f(x) = f(0) + f−(0)x +
∫ x

0

(∫

[0,y]
G f(z) dm(z)

)
dy

for 0 ≤ x < l.
We consider the differential equation G A = −λ2A. Since the spectrum

of the operator G is a subset of a half-line (−∞, 0] (self-adjoint and negative
definite) this equation cannot have a solution in D(G ) if λ2 is not real,
nonnegative number. However, this equation has solutions for any complex
λ2. We define the function x 7→ A(x, λ) as a solution of

G A(·, λ) = −λ2A(·, λ), A(0, λ) = 1, A−(0, λ) = 0.

The function A can be represented (cf. [5], p. 162, 171; [17], p. 29) as
follows

A(x, λ) =
∞∑

n=0

(−1)nλ2npn(x), (2.1)

where pn’s are defined recurrently according to pn(x) =
∫ x
0

∫ y
0 pn−1(z)dm(z)dy

and p0(x) = 1. Thus the function A(x, λ) (and A+(x, λ)) for any fixed
x∈ [0, l] is an entire function of variable λ taking real values for real λ.
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If λ2 is not a positive real number we can construct a complementary
solution D(x, λ) of

G D(·, λ) = −λ2D(·, λ), D−(0, λ) = −1,

by putting

D(x, λ) = A(x, λ)
∫ l+k

x

1
A2(y, λ)

dy.

Yet another function which will appear in the reminder of this paper is the
function

B(x, λ) = − 1
λ

A+(x, λ).

2.2 Spectral measure of the string

We define the so-called resolvent kernel

rλ(x, y) =

{
A(x, λ)D(y, λ), if x ≤ y,

A(y, λ)D(x, λ), if x ≥ y.

This term comes from the fact that for any λ2 outside [0,∞) we can define
the resolvent Rλ := (−λ2I − G )−1 which can be represented as the integral

Rλf(x) =
∫

[0,l]
rλ(x, y)f(y) dm(y).

Having at hand all required notions, we can now formulate the funda-
mental theorem.

Theorem 2.1. For every given string, there exists a unique symmetric mea-
sure µ on R such that

rλ(x, y) =
1
π

∫

R

A(x, ω)A(y, ω)
ω2 − λ2

µ(dω) (2.2)

holds. We call such a measure the principal spectral function. Conversely,
given a symmetric measure µ on R such that

∫

R

µ(dλ)
1 + λ2

< ∞, (2.3)

there exists a unique string for which (2.2) holds true.
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To make this assertion less abstract, we will now give the reader some
idea of the construction of the principal spectral measure. In case of the
short string the spectrum of the operator G is {−ω2

n : n = 1, 2, ...} where
ωn’s are nonnegative roots of the equation

kA+(l, λ) + A(l, λ) = 0

(or A+(l, λ) = 0 if k = ∞). Since G A(·, λ) = −λ2A(·, λ) for every λ, the
corresponding eigenfunctions are A(·, ωn). Now, we define the symmetric
measure µ on the real line which jumps by the amount

π

2‖A(·, ωn)‖2
L2(m)

at the points ±ωn. It is not difficult to show that such a measure, indeed,
satisfy (2.2) (we use the fact that eigenvalues of the operator G coincide
with eigenvalues of Rλ which is compact operator on L2(m), hence A(·, ωn)
form a complete system in which we can expand the resolvent kernel).

If the string is long we first cut it to make it short. Then construct the
measure for the short string according to the procedure described above and
let the cutting point tend to infinity.

2.3 The transforms

In this section we will introduce the key concept of odd and even transform.
Let µ be the principal spectral function of the string m and let A and B be
the functions associated with m. If we denote L2

even(µ) and L2
odd(µ) as the

spaces of all even, respectively, odd functions in L2(µ) we have the following

Theorem 2.2. The map ∧ : L2(m) → L2
even(µ) defined by

∧ : f −→ f̂even(λ) =
∫

[0,l]
A(x, λ)f(x) dm(x)

is one to one and onto. Its inverse is given by

∨ : ψ −→ ψ̌even(x) =
1
π

∫

R
A(x, λ)ψ(λ) µ(dλ).

It holds that ‖f̂even‖2
L2(µ) = π‖f‖2

L2(m).

Before introducing the odd analogue of the above, we need to define the
space X , which will be the subspace of L2([0, l + k], dx) of all functions
which are constant on a mass-free intervals. Note that k = 0 if the string is
long. If k = ∞ we require also that the functions vanish on [l,∞].
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Theorem 2.3. The map ∧ : X → L2
odd(µ) defined by

∧ : f −→ f̂odd(λ) =
∫ l+k

0
B(x, λ)f(x) dx

is one to one and onto. Its inverse is given by

∨ : ψ −→ ψ̌odd(x) =
1
π

∫

R
B(x, λ)ψ(λ) µ(dλ).

It holds that ‖f̂odd‖2
L2(µ) = π‖f‖2

L2(R).

Define

T (x) =
∫ x

0

√
m′(y)dy

where m′ is the derivative of the absolute continuous part of m. Let x(T+)
and x(T−) denote the biggest and the smallest root x ∈ [0, l] of

T =
∫ x

0

√
m′(y)dy.

Now we will describe the concept of the Krein space. If x ∈ (0, l) is a
growth point of the string m then we define the class Kx of all functions
f ∈ L2(µ) that satisfy

f̌even(y) = f̌odd(y) = 0 for y > x.

Let us introduce one more notion. The entire function f(z) is said to be
of exponential type τ if

lim sup
R→∞

R−1 max
|z|=R

log |f(z)| = τ

(cf. [2], [5]).
Denoting by IT the set of all entire functions f ∈ L2(µ) of finite expo-

nential type less or equal T , we can formulate the following identification
theorem for this set.

Theorem 2.4. Either T < T (l) and IT coincides with the Krein space
Kx(T+) or else T ≥ T (l) and IT spans L2(µ).

In other words, this theorem states that if the function is of a finite
exponential type its inverse transforms are supported on the finite interval.
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2.4 The orthogonal basis

Let us deal for awhile with the short sting, assuming l + m(l−) < ∞ with
the tying constant k = 0. Consider the family of functions

x 7→ A(x, ωn), n = 1, 2, . . . (2.4)

where ωn’s are positive, real zeros of A(l, ·) (we skip the dependence of ωn’s
on l, but the reader should keep it in mind).

Using definition of A and integration by parts we have the following

−ω2

∫ l

0
A(x, λ)A(x, ω)dm(x) =

∫ l

0
A(x, λ)dA+(x, ω)

=
[
A(x, λ)A+(x, ω)

]l
0
−

∫ l

0
A+(x, ω)A+(x, λ)dx.

Reversing the roles of ω and λ gives

−λ2

∫ l

0
A(x, λ)A(x, ω)dm(x)=

[
A(x, ω)A+(x, λ)

]l
0
−
∫ l

0
A+(x, λ)A+(x, ω)dx.

Taking the difference of two above equalities results in
∫ l

0
A(x, λ)A(x, ω)dm(x) =

A(l, ω)A+(l, λ)−A(l, λ)A+(l, ω)
ω2 − λ2

(2.5)

which is a special case of so-called Lagrange identity ([17], Lemma 1.1; see
also [5], p. 189, Exercise 3). Now we easily see that

∫ l

0
A(x, ωn)A(x, ωk)dm(x) = ‖A(·, ωn)‖2

dmδkn , k, n = 1, 2, . . .

It is also true that the family (2.4) spans the function space L2(m). To
show that, let us suppose that there exists f ∈L2(m) such this for all n ∈ N
we have f⊥A(·, ωn). It means that

f̂even(ωn) = 〈f,A(·, ωn)〉dm = 0, n = 1, 2, . . .

Recall that the principal spectral measure of the short string has atoms only
at the points ±ωn so that

∫

R

∣∣∣f̂even(λ)
∣∣∣
2
µ(dλ) =

∑

n∈Z

∣∣∣f̂odd(ωn)
∣∣∣
2
µ({ωn}) = 0.

According to Theorem 2.2, ‖f‖2
dm = 1/π‖f̂even‖2

L2(µ) = 0. Hence, f = 0 in
L2(m). So, we have proved
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Lemma 2.5. If l + m(l−) < ∞, k = 0 and ωn’s (n = 1, 2, . . .) are all
positive, real zeros of A(l, ·) then the family of functions

ϕn(x) :=
A(x, ωn)

‖A(·, ωn)‖dm
, x ∈ [0, l], n = 1, 2, . . . (2.6)

form an orthonormal basis of the function space L2(m).

It is easy to guess that we also would like to have the basis of the corre-
sponding space X . To achieve this goal we will use the Christoffel-Darboux
type relation (cf. [5], Section 6.3, p. 234)

∫ l

0
A(x, ω)A(x, λ)dm(x) +

∫ l

0
B(x, ω)B(x, λ)dx (2.7)

=
A(l, ω)B(l, λ)−B(l, ω)A(l, λ)

λ− ω
.

Combined with (2.5), it yields the corresponding relation for B, i.e.
∫ l

0
B(x, λ)B(x, ω)dx =

ωA(l, ω)B(l, λ)− λA(l, λ)B(l, ω)
λ2 − ω2

. (2.8)

Now, we can prove the following

Lemma 2.6. If l + m(l−) < ∞, k = 0 and ωn’s (n = 1, 2, . . .) are all
positive, real zeros of A(l, ·), then the family of functions

ψn(x) :=
B(x, ωn)

‖B(·, ωn)‖dx
, x ∈ [0, l], n = 1, 2, . . . (2.9)

form an orthonormal basis of the function space X .

Proof. The orthonormality is self-evident by virtue of (2.8). The com-
pleteness is shown in the same manner as for (2.4) by using odd transform
instead of even one. ¤

As we will see further on, the norms occurred in the basis functions (2.6)
and (2.9) will also occur in the series expansions. Therefore we will derive
a simpler representation of these norms.

Lemma 2.7. If l + m(l−) < ∞, k = 0 and ω1 < ω2 < ω3 < . . . are positive
real zeros of A(l, ·), then the norms of the functions A(·, ωn) and B(·, ωn) in
the spaces L2([0, l], dm) and L2([0, l], dx), respectively, simplify to

‖A(·, ωn)‖2
dm = ‖B(·, ωn)‖2

dx = −1
2
B(l, ωn)

∂A(l, ω)
∂ω

∣∣∣∣
ω=ωn

.
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Proof. We begin with showing the continuity of the function A(·, λ) in
the space L2([0, l], dm) in case of short string, i.e. l + m(l−) < ∞. In other
words, we have to prove that A(·, λ) → A(·, ω) in L2(dm), as λ → ω. The
mean value theorem ensures existence of such γ0 between λ and ω that

∫ l

0
|A(x, λ)−A(x, ω)|2 dm(x) ≤ |λ− ω|2

∫ l

0

∣∣∣∣∣
∂A(x, γ)

∂γ

∣∣∣∣
γ=γ0

∣∣∣∣∣
2

dm(x).

Using the representation (2.1) of A(x, λ) we can establish the upper bound

∫ l

0

∣∣∣∣∣
∂A(x, γ)

∂γ

∣∣∣∣
γ=γ0

∣∣∣∣∣
2

dm(x) ≤ 4
∑

n,k≥1

nkγ
2(n+k)−2
0

∫ l

0
pn(x)pk(x)dm(x).

In view of the property pn(x) ≤ (n!)−2[xm(x)]n (see [5], p. 162), we can
bound the above integral using

∑

n,k≥1

nk

(n!k!)2
γ

2(n+k)−2
0

∫ l

0
xn+km(x)n+kdm(x)

≤
∑

n,k≥1

nk

(n!k!)2
γ

2(n+k)−2
0 (lm(l))n+k+1 < ∞,

since lm(l) < ∞ by assumption. Hence, we have proved that with some
positive finite constant c

∫ l

0
|A(x, λ)−A(x, ω)|2 dm(x) ≤ c |λ− ω|2 .

The same property holds for the function B(·, λ). Now, according to formu-
las (2.5) and (2.8) we can write

‖A(·, ω)‖2
dm = lim

λ→ω

ωA(l, λ)B(l, ω)− λA(l, ω)B(l, λ)
ω2 − λ2

,

‖B(·, ω)‖2
dx = lim

λ→ω

ωA(l, ω)B(l, λ)− λA(l, λ)B(l, ω)
λ2 − ω2

.

Since both limits are 0
0 , application of the l’Hospital’s rule (knowing from

(2.1) that involved functions are smooth enough) gives us, for ω 6= 0,

‖A(·, ω)‖2
dm =

ω
[
A(l, ω) ∂

∂ωB(l, ω)−B(l, ω) ∂
∂ωA(l, ω)

]
+ A(l, ω)B(l, ω)

2ω

‖B(·, ω)‖2
dx =

ω
[
A(l, ω) ∂

∂ωB(l, ω)−B(l, ω) ∂
∂ωA(l, ω)

]−A(l, ω)B(l, ω)
2ω
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Recall A(l, ωn) = 0 to complete the proof. ¤
So, we have not only found simple expression for the norms (simple

derivative instead of an integral) but also showed that they are, in fact, the
same numbers for A and B.

3 Spherical harmonics and spherical Bessel func-
tions

This section provides the link between the spectral theory of random fields
(as developed in [19], [31], [32] and [33]) and the central topic of mathe-
matical physics (see e.g. [1], [10], [11], [16], [24], [29], [30]) treating the
propagation of sound in a homogeneous medium in RN . It is described by
the hyperbolic equation

∂2p

∂t2
= ∆p t ∈ R, x ∈ RN (3.1)

where p(t, x) is the induced pressure and ∆ =
∑N

i=1(∂
2/∂x2

j ) denotes the
Laplace operator. Separate the time and space variables t and x by consid-
ering p(t, x) = Θ(t)Ξ(x) and using the separation constant λ2. As a result
we obtain the equation in time

Θ′′(t) = λ2Θ(t),

that is easily solved, and the equations in space

∆Ξ(x) = λ2Ξ(x), (3.2)

the so-called Helmholtz equation, whose solutions are convenient to describe
in terms of the spherical coordinates (r, θ1, θ2, . . . , θN−2, φ) defined for N ≥ 2
as

x1 = r cos θ1

x2 = r sin θ1 cos θ2

. . . . . . (3.3)
xN−1 = r sin θ1 sin θ2 · · · sin θN−2 cosφ

xN = r sin θ1 sin θ2 · · · sin θN−2 sinφ

where r = ‖x‖. In this setup the Laplace operator takes the form

∆ =
∂2

∂r2
+

N − 1
r

∂

∂r
+

1
r2

∆0 ,
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where ∆0 is the Laplace–Beltrami operator on the sphere:

∆0 =
N−2∑

j=1

1
qj sinN−j−1 θj

∂

∂θj

(
sinN−j−1 θj

∂

∂θj

)
+

1
qN−1

∂

∂φ

(
∂

∂φ

)
,

q1 = 1, qj = (sin θ1 sin θ2 · · · sin θj−1)2, j ≥ 2.

The eigenvalues of the Laplace–Beltrami operator are −l(l + N − 2), l =
0, 1, . . ., and to each eigenvalue −l(l + N − 2) there corresponds the set of
eigenfunctions {Sm

l ; m = 1, . . . , h(l, N)} of multiplicity

h(l, N) =
(2l + N − 2)(l + N − 3)!

(N − 2)!l!
.

The whole system of these eigenfunctions presents a complete orthonormal
basis in the space of square integrable functions on the unit sphere. The
functions Sm

l are called spherical harmonics. Thus, being the eigenfunc-
tions of the Laplace–Beltrami operator, these spherical harmonics satisfy
the characteristic equation

∆0S
m
l = −l(l + N − 2)Sm

l (3.4)

and possess the orthonormal property

〈Sm
l (·), Sm′

l′ (·)〉L2(sN−1) = δl′
l δm′

m . (3.5)

The explicit expressions of the spherical harmonics for arbitrary N are
rather complicated, see e.g. [11], [29], but the special cases N = 1, 2, 3 of
obvious physical meaning are simply described.

If N = 1, then the unit sphere degenerates to the set s0 = {−1, 1} and
the only spherical harmonics are S1

0(x) = 1/
√

2 and S1
1(x) = x/

√
2.

If N = 2, the angular part of the Laplace operator reduces to ∆0 = ∂2

∂φ2 .
Hence, as a solution of

∂2U

∂φ2
= −l2U

we obtain h(l, 2) = 2 real orthonormal spherical harmonics

S1
l (φ) =

cos(lφ)√
2π

, S2
l (φ) =

sin(lφ)√
2π

.
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If N = 3, the characteristic equation ∆0U = −l(l + 1)U with U(θ, φ) =
Θ(θ)Φ(φ) takes the form

sin θ

Θ
d

dθ

(
sin θ

d2Θ
dθ2

)
+ l(l + 1) sin2 θ =

1
Φ

d2Φ
dφ2

. (3.6)

We separate the variables again, with separation constant −m2. The equa-
tion for Φ is then

d2Φ
dφ2

−m2Φ = 0

and has an orthonormal set of solutions Φm(φ) = 1√
2π

eimφ. The equation
for Θ is the so-called Legendre equation

1
sin θ

d

dθ

(
sin θ

d2Θ
dθ2

)
+

[
l(l + 1)− m2

sin2 θ

]
Θ = 0.

The latter equation has solutions Θ(θ) = Pm
l (cos θ) (m = −l, . . . , l) where

Pm
l is a Legendre polynomial defined by

Pm
l (x) =

1
2ll!

(1− x2)m/2

(
d

dx

)l+m

(x2 − 1)l.

Hence, the set of the orthonormal solutions of the characteristic equation
(3.6), consists of 2l + 1 = h(l, 3) real functions given by

A0P
0
l (cos θ), AmPm

l (cos θ) cos mφ, AmPm
l (cos θ) sinmφ,

with the normalizing constant Am =
√

(l−m)!(2l+1)
2π(l+m)! , m = 1, . . . , 2l.

Let us turn back to the problem of solving the equation (3.2), and let us
separate the radial and angular coordinates r and (θ1, . . . , θN−1, φ) by sub-
stituting Ξ(x) = u(r)U(θ1, . . . , θN−1, φ) and choosing particular separation
constant k2 = l(l + N − 2). The reason for this choice is the following. The
separation results in two equations: ∆0U + k2U = 0 and

r3−N (rN−2u′)′ +
(
λ2r2 − k2

)
= 0. (3.7)

In the first one we recognize equation (3.4), the characteristic equation for
the Laplace–Beltrami operator with the eigenvalues −l(l + N − 2) and the
corresponding eigenfunctions Sm

l ,m = 1, . . . , h(l, m) of multiplicity h(l, m).
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Since the second equation (3.7) can be reduced to the Bessel differential
equation, the function

gl(u) := 2(N−2)/2Γ(N/2)
Jl+(N−2)/2(u)

u(N−2)/2
, l ≥ 0 (3.8)

satisfies (3.7) with initial condition gl(0) = δl
0. Here Jν denotes the Bessel

function of the first kind of order ν. Hence, according to (3.2), the eigen-
functions of the Laplace operator corresponding to eigenvalue λ2 are given
by

Ξ(x) = 2(N−2)/2Γ(N/2)
Jl+(N−2)/2(λ‖x‖)

(λ‖x‖)(N−2)/2
Sm

l

(
x

‖x‖
)

for l ≥ 0, m = 1, . . . , h(l, N).
In the forthcoming sections we will make use of the following notation

Gl(r, λ) :=
gl(0)− gl(rλ)

λ
(3.9)

where gl is given by (3.8). We conclude this section by indicating some
useful properties of this auxiliary function (3.9).

Using the well-known property of the Bessel function

d

dz

[
z−νJν(z)

]
= −z−νJν+1(z),

one can easily verify the following recurrence relation for all l ≥ 0

Gl+1(r, λ) = l
Gl(r, λ)

rλ
− 1

λ

∂

∂r
Gl(r, λ). (3.10)

By applying the integral representation of the Bessel function, so-called Pois-
son formula (see 8.411.8 in [14]), we arrive at the following representation

G0(r, λ) =
2

B(1
2 , N−1

2 )

∫ r

0

(
1− u2

r2

)N−3
2 1− cos(uλ)

rλ
du. (3.11)

This shows that G0 is odd as a function of λ. Furthermore, according to
the recurrence relation (3.10), Gl is alternately odd (l = 0, 2, . . .) and even
(l = 1, 3, . . .) function of λ. Along with the integral representation of G0 we
also have for l > 0

il−1Gl(r, λ) =
2N−1Γ(l)Γ2(N/2)

πΓ(N+l−1)

∫ r

0

(
1−u2

r2

)N−1
2

C
N/2
l−1

(u

r

)
eiλudu, (3.12)
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where Cγ
l is the Gegenbauer polynomial

Cγ
l (x) =

(−1)l(l+2γ−1)(l+2γ−2) · · · (2γ)
l!(γ+l−1

2)(γ+l−3
2) · · · (γ + 1

2)
(1−x2)

1
2
−γ

(
d

dx

)l

(1−x2)l+γ− 1
2

(cf. [29], Section XI.3, formula (7) or [14], formula 7.321).
Taking real and imaginary parts of the equation (3.12) we see by virtue of

the Paley–Wiener theorem (cf. [3], [5]) that all functions Gl(r, ·), l = 1, 2, . . .
are of exponential type at most r. The same argument holds for G0 if we
use (3.11). We will summarize the above in the following lemma.

Lemma 3.1. For each r ∈ R+, the function Gl(r, λ) of λ ∈ R is an odd
function for l = 0, 2, . . . and an even function for l = 1, 3, . . . . Moreover, it
is an analytic function of finite exponential type less or equal r.

4 Representation of the covariance

As was mentioned in the introduction, the increments of our random field
are translation free in the sense that Xt − Xs and Xt−s have the same
finite dimensional distributions, i.e. Xt −Xs

d= Xt−s. So the corresponding
variances are equal E |Xt −Xs|2 = E |Xt−s|2 and therefore

EXtXs =
1
2

(
E |Xt|2 + E |Xs|2 − E |Xt−s|2

)
.

Since, in addition, our field is isotropic, the variance E |Xt|2 is a function only
of a length of t. Denoting this function (called by Yaglom [33] the structure
function) by D we thus write D(‖t‖) = E |Xt|2. With this notation the
covariance can be rewritten as

EXtXs =
1
2

(D(‖t‖) + D(‖s‖)−D(‖t− s‖)) . (4.1)

By putting t = s in (1.1), we get the following spectral representation for
the structure function

D(‖t‖) = 2
∫

RN

(
1− ei〈v,t〉

)
%(dv) = 2

∫

RN

(1− cos〈v, t〉) %(dv) (4.2)

(the imaginary part vanishes, since our field X is real, cf. [33], p. 435).
It will be useful to associate with the spectral measure % a bounded non-
decreasing function (cf. [19], [31], [33])

Φ(y) =
∫

‖v‖≤y
d%(dv), y ∈ R+.
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In fact dΦ(y) = Φ(y + dy) − Φ(y) may be viewed as a %-measure of the
spherical shell y ≤ ‖v‖ ≤ y + dy. Clearly,

∫ ∞

0
dΦ(y) = %(RN ) < ∞.

By rewriting the variable v = (v1, . . . , vn) in the polar coordinates (3.3) with
radius λ = ‖v‖, we get

%(dv) =
dσN (v)dΦ(λ)
|sN−1(λ)|

where

dσN (v) = λN−1 sinN−2 θ1 · · · sin θN−2dθ1 · · · dθN−2dφ

is the surface area element of the sphere sN−1(λ) in RN and

∣∣sN−1(λ)
∣∣ =

2πN/2

Γ(N/2)
λN−1

is its surface area. Note that condition (1.2) implies
∫ ∞

0

λ2

1 + λ2
dΦ(λ) < ∞. (4.3)

Recall the well-known formula∫

sN−1(λ)
ei〈v,t〉dσN (v) =

∣∣sN−1(λ)
∣∣ g0(λ‖t‖) (4.4)

(cf. [31], Chapter I or [29], Section XI.3, formula (4)). Due to this formula,
the representation (4.2) rewritten in polar coordinates can be given the form

D(r) = 2
∫ ∞

0
(1− g0(rλ)) dΦ(λ)

and the formula (4.1) for the covariance function becomes

EXtXs =
∫ ∞

0
[1− g0(λ‖t‖)− g0(λ‖s‖) + g0(λ‖t− s‖)] dΦ(λ). (4.5)

Theorem 4.1. The covariance function of the isotropic Gaussian random
field X with homogeneous increments can be represented as follows

EXtXs =
2πN/2

Γ(N/2)

∞∑

l=0

h(l,N)∑

m=1

Sm
l

(
t
‖t‖

)
Sm

l

(
s
‖s‖

)

×
∫ ∞

0
Gl(‖t‖, λ)Gl(‖s‖, λ)λ2dΦ(λ). (4.6)
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Proof. Note that h(0, N) = 1, S1
0(·) is a constant function for every N

and in view of (3.5) this constant is given by S1
0(·) ≡ 1/

√
|sN−1(1)|. Hence,

(4.6) is equivalent to

EXtXs −
∫ ∞

0
(1− g0(λ‖t‖))(1− g0(λ‖s‖))dΦ(λ) (4.7)

=
2πN/2

Γ(N/2)

∞∑

l=1

h(l,N)∑

m=1

Sm
l

(
t
‖t‖

)
Sm

l

(
s
‖s‖

)∫ ∞

0
gl(λ‖t‖)gl(λ‖s‖)dΦ(λ)

which we are now going to prove. Recall the addition formula for Bessel
functions, as is given on p. 370 of Yaglom [33]

g0(λ‖t− s‖) =
2πN/2

Γ(N/2)

∞∑

l=0

h(l,N)∑

m=1

Sm
l

(
t
‖t‖

)
Sm

l

(
s
‖s‖

)
gl(λ‖t‖)gl(λ‖s‖).

It implies that

g0(λ‖t− s‖)− g0(λ‖t‖)g0(λ‖s‖)

=
2πN/2

Γ(N/2)

∞∑

l=1

h(l,N)∑

m=1

Sm
l

(
t
‖t‖

)
Sm

l

(
s
‖s‖

)
gl(λ‖t‖)gl(λ‖s‖).

Taking the integral with respect to dΦ(λ) from the both sides we see that
the expression on the right in (4.7) equals to the integral

∫ ∞

0
[g0(λ‖t− s‖)− g0(λ‖t‖)g0(λ‖s‖)] dΦ(λ).

But in view of (4.5) we see that also the left hand side of (4.7) equals to the
latter integral. Thus (4.7) holds true. ¤

We want now to specify the spectral measure µ by

µ(dλ) =
Γ(N/2)
2πN/2

λ2dΦ(λ) (4.8)

and to apply Theorem 2.1. Its condition (2.3) is ensured due to (4.3). So we
can associate with the measure µ a unique string and derive the following
corollary to Theorem 4.1.
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Corollary 4.2. The covariance function of the isotropic Gaussian random
field X with homogeneous increments can be represented as follows

EXtXs (4.9)

=
4πN+1

Γ2(N/2)

∑

l=0,2,...

h(l,N)∑

m=1

Sm
l

(
t
‖t‖

)
Sm

l

(
s
‖s‖

) ∫ l+k

0
Ǧl(‖t‖, x)Ǧl(‖s‖, x)dx

+
4πN+1

Γ2(N/2)

∑

l=1,3,...

h(l,N)∑

m=1

Sm
l

(
t
‖t‖

)
Sm

l

(
s
‖s‖

)∫ l

0
Ǧl(‖t‖, x)Ǧl(‖s‖, x)dm(x),

where

Ǧl(r, x) :=
1
π

∫

R
Gl(r, λ)A(x, λ)dµ(λ), l = 1, 3, . . . (4.10)

Ǧl(r, x) :=
1
π

∫

R
Gl(r, λ)B(x, λ)dµ(λ), l = 0, 2, . . . (4.11)

and the functions A(x, λ) and B(x, λ) are the eigenfunctions associated with
the mass function m whose principal spectral measure µ(dλ) is given by
(4.8).

Proof. Condition (2.3) ensures that the measure µ satisfies assumptions
of Theorem 2.1. By virtue of this theorem there exists an unique associated
string with mass m(x) and length l ≤ ∞. Note that the function Ǧl(r, x)
is defined as the even or odd (for appropriate l’s) inverse transform of the
function Gl(r, λ). Since transforms are isometries, we have

〈Gl(r1, ·), Gl(r2, ·)〉L2(µ) = π〈Ǧl(r1, ·), Ǧl(r2, ·)〉L2(m), l = 1, 3, . . .

〈Gl(r1, ·), Gl(r2, ·)〉L2(µ) = π〈Ǧl(r1, ·), Ǧl(r2, ·)〉L2(dx), l = 0, 2, . . .

The proof is completed by applying this to representation (4.6). ¤

Remark 4.3. Recall the assertion of Lemma 3.1 that function Gl(r, ·) is of
finite exponential type at most r. Combined with Theorem 2.4, this implies
that such functions are supported on the finite interval [0, x(r+)] and that
the representation (4.9) is in fact of the form

EXtXs (4.12)

=
4πN+1

Γ2(N/2)

∑

l=0,2,...

h(l,N)∑

m=1

Sm
l

(
t
‖t‖

)
Sm

l

(
s
‖s‖

)∫ n(s,t)

0
Ǧl(‖t‖, y)Ǧl(‖s‖, y)dy

+
4πN+1

Γ2(N/2)

∑

l=1,3,...

h(l,N)∑

m=1

Sm
l

(
t
‖t‖

)
Sm

l

(
s
‖s‖

) ∫ n(s,t)

0
Ǧl(‖t‖, y)Ǧl(‖s‖, y)dm(y)
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with n(s, t) := x(‖t‖+)∧x(‖s‖+). This immediately allows us to write down
the following moving average-type representation of the random field X:

Xt =
4πN+1

Γ2(N/2)

∞∑

l=0

h(l,N)∑

m=1

Sm
l

(
t
‖t‖

)∫ x(‖t‖+)

0
Ǧl(‖t‖, y)dMm

l (y) (4.13)

where {Mm
l } is a set of independent Gaussian processes with independent

increments and the variances

E |Mm
l (y)|2 =

{
y l = 0, 2, . . .
m(y) l = 1, 3, . . .

In section 6 we will return to this subject.

5 Series expansion

In this section we restrict our considerations to the parameter t taking values
from the ball of radius T , i.e.

t ∈ BT :=
{
u ∈ RN : ‖u‖ ≤ T

}
. (5.1)

We consider a string with the same mass function m (associated via Theorem
2.1 with µ defined by (4.8)) but we cut it at the point l := x(T+) (which
we assume to be finite) with tying constant k = 0 and m(l−) < ∞.

Let us concentrate for a moment on the odd l’s. Since Ǧl(‖t‖, ·) belongs
then to the space L2(m), we can expand it in basis (2.6) so that

Ǧl(‖t‖, x) =
∞∑

n=0

〈Ǧl(‖t‖, ·), ϕn〉dmϕn(x).

Having this, we can write
∫ l

0
Ǧl(‖t‖, x)Ǧl(‖s‖, x)dm(x)

=
∞∑

n=0

(∫ l

0
Ǧl(‖t‖, x)ϕn(x)dm(x)

)(∫ l

0
Ǧl(‖s‖, x)ϕn(x)dm(x)

)
,

which is same as
∫ l

0
Ǧl(‖t‖, x)Ǧl(‖s‖, x)dm(x) =

∞∑

n=0

Gl(‖t‖, ωn)Gl(‖s‖, ωn)
‖A(·, ωn)‖2

dm
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since ∫ l

0
Ǧl(‖t‖, x)ϕn(x)dm(x) =

Gl(‖t‖, ωn)
‖A(·, ωn)‖dm

.

Exactly the same argument for even l’s results in corresponding formula

∫ l

0
Ǧl(‖t‖, x)Ǧl(‖s‖, x)dx =

∞∑

n=0

Gl(‖t‖, ωn)Gl(‖s‖, ωn)
‖B(·, ωn)‖2

dx

.

Then, keeping in mind Lemma 2.7, we can rewrite representation (4.9) as
follows

EXtXs=
4πN+1

Γ2(N/2)

∞∑

l=0

h(l,N)∑

m=1

Sm
l

(
t
‖t‖

)
Sm

l

(
s
‖s‖

) ∞∑

n=0

Gl(‖t‖, ωn)Gl(‖s‖, ωn)
‖A(·, ωn)‖2

dm

.

(5.2)

Now we can prove the following

Theorem 5.1. Let X be a centered mean square continuous Gaussian isotropic
random field with homogenous increments on RN . If the mass function as-
sociated with µ (cf. (4.8)) is such that x(T+) + m(x(T+)−) < ∞ for some
T > 0, then we have the following representation on the ball BT of radius T
(cf. (5.1)):

Xt =
∞∑

n=0

∞∑

l=0

h(l,N)∑

m=1

Sm
l

(
t
‖t‖

)
Gl(‖t‖, ωn)ξm

l,n (5.3)

where ξm
l,n are independent mean zero Gaussian random variables with vari-

ances

σ2
n =

−8πN+1

Γ2(N/2) B(x(T+), ωn) ∂
∂ω A(x(T+), ω)

∣∣
ω=ωn

(5.4)

and ωn’s are zeros of A(x(T+), · ). This series converges in mean square
sense for any fixed t from the closed ball BT . Moreover, if the process
(Xt)‖t‖<T is continuous, it converges with probability one in the space of
continuous functions C(BT ) endowed with the supremum norm.

Proof. Consider the partial sum of the series by

XM
t =

M∑

n,l=0

h(l,N)∑

m=1

Sm
l

(
t
‖t‖

)
Gl(‖t‖, ωn)ξm

l,n.
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The covariance representation (5.2) ensures mean square convergence of XM
t

to the process Xt, for every t ∈ BT , which implies weak convergence of the
finite dimensional distributions. It is assumed that X is continuous, so
if we manage to prove the asymptotic tightness of (XM

t )‖t‖<T we would
be able to use Theorem 1.5.4 of [28] which states that weak convergence
of finite dimensional distributions combined with asymptotic tightness is
sufficient for the sequence to converge weakly in C(BT ). By virtue of the
Itô-Nisio theorem (see for instance [28]) it is equivalent to convergence with
probability one in C(BT ). Now we will prove the asymptotic tightness of
XM

t in the space C(BT ).
Asymptotic tightness is equivalent (see for instance Theorem 1.5.7 of

[28]) to the following two conditions

• XM
t is asymptotically tight in R for every fixed t ∈ BT ;

• there exists semi-metric d on BT such that (BT , d) is totally bounded
and (XM

t )‖t‖<T is asymptotically uniformly d-equicontinuous in prob-
ability, i.e. ∀ ε, η > 0, ∃ δ > 0 such that

lim sup
M→∞

P

(
sup

d(s,t)<δ

∣∣XM
t −XM

s

∣∣ > ε

)
< η.

The first condition is automatically satisfied by virtue of the weak con-
vergence of the partial sums for every t. It suffices to prove the second one.
Let us first define the sequence of semi-metrics on BT

d2
M (s, t) := E

∣∣XM
t −XM

s

∣∣2 ≤ E |Xt −Xs|2 =: d2(s, t).

It can be proved that (see for instance [28], p.446) for any M , any Borel
probability measure ν on (BT , dM ) and every δ, η > 0 it holds that

E sup
dM (s,t)<δ

∣∣XM
t −XM

s

∣∣ . sup
t

∫ η

0

√
log

1
ν (Bε(t, dM ))

dε + δ
√

N(η,BT , dM ),

(5.5)

where Bε(t, d) denotes the ball of radius ε around point t in metric d and
N(η,Y, d) is so-called η-covering number, i.e. the minimal number of balls
of radius η needed to cover Y. Since dM (s, t) ≤ d(s, t) we have

E sup
d(s,t)<δ

∣∣XM
t −XM

s

∣∣ ≤ E sup
dM (s,t)<δ

∣∣XM
t −XM

s

∣∣ . (5.6)
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Proposition A.2.17 of [28] applied to the process X itself (uniform conti-
nuity and boundness with respect to standard deviation semi-metric d(s, t)
is equivalent to the continuity of almost all sample paths with respect to
Euclidean distance and continuity of the map t → E |Xt|2 (cf. [28], Lemma
1.5.9), the latter being satisfied by virtue of the mean square continuity)
yields that there exists some Borel probability measure ν∗ on (BT , d) such
that

sup
t∈BT

∫ η

0

√
log

1
ν∗ (Bε(t, d))

dε
η↘0−→ 0. (5.7)

From relation dM ≤ d we can easily see that dM -open sets are also d-open
sets. It implies that σ-algebras of Borel sets satisfy B(BT , dM ) ⊂ B(BT , d).
Hence, the measure ν∗ is also a Borel measure on (BT , dM ). Choosing the
measure ν∗ in (5.5) and combining it with (5.6) gives

E sup
d(s,t)<δ

∣∣XM
t −XM

s

∣∣

. sup
t∈BT

∫ η

0

√
log

1
ν∗ (Bε(t, dM ))

dε + δ
√

N(η,BT , dM )

≤ sup
t∈BT

∫ η

0

√
log

1
ν∗ (Bε(t, d))

dε + δ
√

N(η,BT , d);

the last inequality being justified by the fact that if greater the metric,
smaller the balls. The first term on the right hand side can be made arbi-
trarily small by (5.7). It is not difficult to see that condition (5.7) is sufficient
for the space (BT , d) to be totally bounded (see for instance [28], p. 446).
Hence, the number N(η,BT , d) is finite and also the second term on the right
hand side can be arbitrarily small. This proves the desired equicontinuity
of (XM

t )‖t‖<T . ¤
Remark 5.2. Notice that our expansion (5.3) is of different form than the
one derived in Malyarenko [21], Theorem 1. Conditions of this theorem are
difficult to verify, except perhaps in the case of Lévy’s fractional Brownian
motion. Moreover, the series (5.3) converges with probability one in the
space of continuous functions on the unit RN -ball while the series in Theorem
1 of [21] is proved to converge only in the mean square sense for any fixed
point of the ball.
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6 Moving average for smooth strings

In this section we will show how the representation (4.13) does simplify when
the random field has a smooth mass function of the associated string, and
we will obtain the integral representation in the time domain, which can be
viewed as a multivariate moving average representation.

To this end, we have to invert function t(x) =
∫ x
0

√
m′(y)dy defined

in section 2. Therefore we need require the mass function that is contin-
uously differentiable with a positive derivative. This admits the following
representation of the covariance function in the time domain.

Theorem 6.1. If the mass function m of a Gaussian isotropic random field
X with homogeneous increments is continuously differentiable and m′ > 0,
then for every s, t ∈ RN we have

EXtXs =
8πN+2

Γ2(N/2)

∞∑

l=0

h(l,N)∑

m=1

Sm
l

(
t
‖t‖

)
Sm

l

(
s
‖s‖

)

×
∫ ‖s‖∧‖t‖

0
kl(‖t‖, u)kl(‖s‖, u)dV (2u) (6.1)

where V (2u) := π−1m(x(u)) and for u ≤ ‖t‖ the kernels are given by

kl(‖t‖, u) = Ǧl(‖t‖, x(u))x′(u), l = 0, 2, . . . , (6.2)
kl(‖t‖, u) = Ǧl(‖t‖, x(u)), l = 1, 3, . . . . (6.3)

Proof. Let us first derive some useful relations between functions m, x

and V . Differentiating t =
∫ x(t)
0

√
m′(y)dy we obtain

x′(t) = 1/
√

m′(x(t)). (6.4)

Since m′(x(t)) = 2π V ′(2t)/x′(t), from (6.4) we get

2π V ′(2t) x′(t) = 1. (6.5)

To prove the representation (6.1) we apply the change of variable y =
x(u) to both terms on the right side of (4.12). Due to (6.5), the measure dy
in the integral of the first term becomes

x′(u)du = 2πx′(u)2dV (2u).
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Hence,

∫ n(s,t)

0
Ǧl(‖t‖, y)Ǧl(‖s‖, y)dy (6.6)

= 2π

∫ ‖s‖∧‖t‖

0
Ǧl(‖t‖, x(u))x′(u)Ǧl(‖s‖, x(u))x′(u)dV (2u) .

The same change of variable allows us to write in the following manner the
measure dm(y) = m′(y)dy in the integral of the second term in (4.12):

m′(x(u))x′(u)du = 2πV ′(2u)/x′(u)x′(u)du = 2πdV (2u).

Thus
∫ n(s,t)

0
Ǧl(‖t‖, y)Ǧl(‖s‖, y)dm(y) (6.7)

= 2π
∫ ‖s‖∧‖t‖

0
Ǧl(‖t‖, x(u))Ǧl(‖s‖, x(u))dV (2u) .

Due to (6.6) and (6.7) the representation (4.12) turns into (6.1). ¤

Corollary 6.2. Under assumptions of Theorem 6.1 for every s, t ∈ RN we
have

Xt =
2
√

2πN/2+1

Γ(N/2)

∞∑

l=0

h(l,N)∑

m=1

Sm
l

(
t
‖t‖

)∫ ‖t‖

0
kl(‖t‖, u)dMm

l (u) (6.8)

where {Mm
l (u)} denotes a family of independent Gaussian martingales, each

with zero mean and variance function

E|Mm
l (u)|2 = V (2u).

Remark 6.3. The representation (6.1) may be compared with similar result
by A. Malyarenko [21], that is derived under a number of conditions on the
spectral measure, listed in his Theorem 1.

7 Examples

This section is devoted to applications of our general results first to Lévy’s
Brownian motion and then to Lévy’s fractional Brownian motion of arbitrary
Hurst index.
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7.1 Lévy’s Brownian motion

Paul Lévy [20] defined the Brownian motion on RN as a centered Gaussian
random field with a covariance structure

EXtXs =
1
2

(‖t‖+ ‖s‖ − ‖t− s‖) .

Properties of this field were investigated by several authors, see for instance
Chentsov [4], McKean [22], Molchan [23] or Samorodnitsky and Taqqu [27].
In this case we have (cf. [23], [32])

dΦ(λ) = c2
N

2πN/2

Γ(N/2)
dλ

λ2
, c2

N =
Γ((N + 1)/2)

2π(N+1)/2
.

Hence µ(dλ) = c2
Ndλ. It is well known (cf. [5], [9]) that the mass function

of the string associated with the Lebesgue measure is the identity. Further-
more, according to ”rule 1” of [5], p. 265, the measure multiplied by constant
c corresponds to the mass function c−1m(c−1x) and functions A(c−1x, λ),
c−1B(c−1x, λ). Hence the mass function associated with Lévy’s Brownian
motion is

m(x) = c−4
N x

and the solutions of the eigenvalue problem are

A(x, λ) = cos(c−2
N λx), B(x, λ) = c−2

N sin(c−2
N λx).

Since x(t) = c2
N t, in this case we have

A(x(t), λ) = cos(λt), B(x(t), λ)x′(t) = sin(λt). (7.1)

7.1.1 Moving average representation

In order to obtain the moving average representation for this particular
field we will use Theorem 6.1, according to which we need compute inverse
transform of the function Gl with respect to the measure µ(dλ) = c2

Ndλ. In
view of (4.11), (6.2) and (7.1), the kernel kl for l = 2, 4, 6, . . . is given by the
sine transform of 2

π c2
NGl(r, λ), i.e.

kl(r, u) = −c2
N

2N/2Γ(N/2)

πr
N−2

2

∫ ∞

0
Jl+(N−2)/2 (rλ) sin (λu)

dλ

λN/2
.
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By virtue of formula 2.12(10) of [12] the integral can be taken and we get

kl(r, u) = c2
N

(−1)l/22N−1(l−1)!Γ2(N/2)
πΓ(N+l−1)

(
1−u2

r2

)N−1
2
C

N/2
l−1

(
u
r

)
1(0,r)(u). (7.2)

For odd l’s we need compute the cosine transform with the help of formula
1.12(10) of [12]. We obtain

kl(r, u) = c2
N

(−1)
l+1
2 2N−1(l−1)!Γ2(N/2)

πΓ(N+l−1)

(
1−u2

r2

)N−1
2
C

N/2
l−1

(
u
r

)
1(0,r)(u) (7.3)

(note that formula (3.12) provides for inverses of these sine and cosine trans-
forms).

To compute k0 integrate (3.11) with respect to π−1sin(λu)dλ over R.
Since

∫ ∞

0
(1− cos(λw)) sin(λu)

dλ

λ
=

π

2
1(u,r)(w) (7.4)

(see [14], formulas 3.721.1 and 3.741.2) we obtain

k0(r, u) =
2 c2

N

B(1
2 , N−1

2 )

∫ 1

u/r

(
1− y2

)N−3
2 dy. (7.5)

Alternative representations for the kernels are obtained via formulas
8.932.2-3 of [14] that express Gegenbauer’s polynomials in (7.2) and (7.3) in
terms of the hypergeometric function

F (α, β; γ; z)=1+
∞∑

n=1

α(α+1) · · · (α+(n−1))β(β+1) · · · (β+(n−1))
n!γ(γ+1) · · · (γ+(n−1))

zn.

Applying, in addition, formula 9.131.1 of [14], we arrive at the expressions
(7.6) and (7.7) below. Corollary 6.2 yields the following

Theorem 7.1. Let X be Lévy’s Brownian motion on RN . It can be repre-
sented as

Xt =
2
√

2πN/2+1

Γ(N/2)

∞∑

l=0

h(l,N)∑

m=1

Sm
l

(
t
‖t‖

)∫ ‖t‖

0
kl(‖t‖, u)dMm

l (u)

where k0 is given by (7.5),

kl(r, u) = −2c2
N

π

Γ(N/2)Γ((l + 1)/2)
Γ( l+N−1

2 )
u

r
F

(
l + 1

2
,
3− l −N

2
;
3
2
;
u2

r2

)
(7.6)
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for l = 2, 4, . . . and

kl(r, u) = −c2
N

π

Γ(N/2)Γ(l/2)
Γ( l+N

2 )
F

(
l

2
,
2− l −N

2
;
1
2
;
u2

r2

)
(7.7)

for l = 1, 3, 5, . . . Here {Mm
l } is a family of independent Gaussian martin-

gales, each with mean zero and the variance function

E|Mm
l (u)|2 =

4πN

Γ2((N + 1)/2)
u.

7.1.2 Series expansion

In the case of Lévy’s Brownian motion Theorem 5.1 implies

Theorem 7.2. If X is the Lévy’s Brownian motion on RN then it can be
represented on the ball BT of radius T (cf. (5.1)) as follows

Xt =
∞∑

n=0

∞∑

l=0

h(l,N)∑

m=1

Sm
l

(
t
‖t‖

)
Gl(‖t‖, ωn)ξm

l,n (7.8)

where

ωn =
(2n + 1)π

2T

and ξm
l,n are independent mean zero Gaussian random variables with vari-

ances

σ2
n =

4π(N+1)/2Γ((N + 1)/2)
TΓ2(N/2)

.

This series converges in mean square for any fixed t from the closed ball BT

and with probability one in the space of continuous functions C(BT ) endowed
with the supremum norm.

Remark 7.3. Note that if N = 1 we obtain a series representation of standard
Brownian motion on [0, 1]

Wt =
√

2
∞∑

n=0

1− cos(t(n + 1
2)π)

(n + 1
2)π

ξ0
n −

√
2
∞∑

n=0

sin(t(n + 1
2)π)

(n + 1
2)π

ξ1
n

where {ξ0
n} and {ξ1

n} are independent sequences of standard Gaussian in-
dependent random variables, so that (7.8) can be viewed as a multivariate
version of the classical Paley–Wiener expansion.
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7.2 The Lévy’s fractional Brownian motion

Lévy’s fractional Brownian motion is defined on RN as a centered Gaussian
random field with covariance function

EXtXs =
1
2

(‖t‖2H + ‖s‖2H − ‖t− s‖2H
)

where H ∈ (0, 1) is called the Hurst index. Observe that for H = 1/2 it
reduces to Lévy’s Brownian motion considered in the preceding section. Let
us recall few well known facts about this process. In this case we have (cf.
[21], [32])

dΦ(λ) = c2
HN

2πN/2

Γ(N/2)
dλ

λ1+2H

and

µ(dλ) = c2
HNλ1−2Hdλ (7.9)

where
c2
HN = π−(N+2)/222H−1Γ(H + N/2)Γ(H + 1) sin(πH).

We have to associate with this measure µ the mass function and the eigen-
functions A and B. But we already know from [9] that the mass function of
the string associated with the measure µ0(dλ) = c2

H1λ
1−2Hdλ is of the form

m0(x) =
κ

1/H
H

4H(1−H)
x

1−H
H , κH =

2π3/2

Γ(1−H)Γ(1/2 + H)
.

The corresponding eigenfunctions are

A0(x, λ) = Γ(1−H)
(λ

2

)H√
κHxJ−H

(
λ(κHx)

1
2H

)

and

B0(x, λ) =
κHΓ(1−H)

2H

(λ

2

)H
(κHx)

1−H
2H J1−H

(
λ(κHx)

1
2H

)
.

So, evoking ”rule 1” of [5], p. 265, we easily write down the mass function
m and eigenfunctions A and B associated with the present µ:

m(x) =
κ

1/H
HN

4H(1−H)
x

1−H
H ,

A(x, λ) = Γ(1−H)
(λ

2

)H√
κHNxJ−H

(
λ(κHNx)

1
2H

)
,

B(x, λ) =
κHNΓ(1−H)

2H

(λ

2

)H
(κHNx)

1−H
2H J1−H

(
λ(κHNx)

1
2H

)
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where

κHN =
2π(N+2)/2

Γ(H + N/2)Γ(1−H)
.

In this case x(t) = t2H/κHN , hence

A(x(t), λ) = Γ(1−H)
(λt

2

)H
J−H(λt), (7.10)

B(x(t), λ)x′(t) = Γ(1−H)
(λt

2

)H
J1−H(λt). (7.11)

7.2.1 Moving average representation

In this section we extend the results of section 7.1.1 to the case of arbitrary
Hurst index. We need the inverse transforms of function Gl with respect to
the measure (7.9) obtained by using the eigenfunctions (7.10) and (7.11).
First fix an odd positive l. Then the kernel kl is given by

kl(r, u) = −c2
HN

π
Γ(N/2)Γ(1−H)

2N/2

r(N−2)/2

(u

2

)H

×
∫ ∞

0
Jl+(N−2)/2(rλ)J−H (uλ)

dλ

λH+N−2
2

.

The integral is taken by the help of formula 6.574.1 of [14] which yields

kl(r, u) = −c2
HN

π

Γ(N
2 )Γ

(
1−2H+l

2

)

Γ
(

2H−1+l+N
2

)
(r

2

)2H−1
(7.12)

× F

(
1− 2H + l

2
,
3− 2H − l −N

2
; 1−H;

u2

r2

)
.

For even l > 0, the same formula yields

kl(r, u) = −c2
HN

π

Γ(N
2 )Γ

(
2−2H+l

2

)

(1−H)Γ
(

2H−2+l+N
2

)
(r

2

)2H−1
(7.13)

× u

r
F

(
2− 2H + l

2
,
4− 2H − l −N

2
; 2−H;

u2

r2

)
.

Finally, we will show that

k0(r, u) =
2c2

HNΓ(N
2 )Γ(1−H)

πΓ(H + N−2
2 )

(u

2

)2H−1
(7.14)

×
∫ 1

u/r
y1−2H(1− y2)H−1+N−2

2 dy.
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Indeed, this kernel k0 is computed as the sum of (7.13) with l = 0 and

c2
HNΓ(1−H)

(u

2

)H 2
π

∫ ∞

0
J1−H (uλ)

dλ

λH
.

The latter integral is taken by means of formulas 6.561.14 and 8.391 of [14]
and we get

k0(r, u)=
c2
HN Γ2(1−H)

π

(u

2

)2H−1
[
1− Bu2/r2(1−H, H + N−2

2 )

B(1−H, H + N−2
2 )

]

where

Bx(α, β) =
∫ x

0
yα−1(1− y)β−1dy

is the incomplete beta function. Thus (7.14) is confirmed.
We have proved the following result

Theorem 7.4. Let X be Lévy’s fractional Brownian motion on RN with
Hurst index H ∈ (0, 1). Then it is represented as follows

Xt =
2
√

2πN/2+1

Γ(N/2)

∞∑

l=0

h(l,N)∑

m=1

Sm
l

(
t
‖t‖

)∫ ‖t‖

0
kl(‖t‖, u)dMm

l (u) (7.15)

where kl is given by (7.12)–(7.14) and {Mm
l } is the family of independent

Gaussian martingales, each with mean zero and the variance function

E|Mm
l (u)|2 =

πN/2

2HΓ(2−H)Γ(H + N/2)
u2−2H .

Remark 7.5. Note that in the scalar case N = 1 the representation (7.15)
takes the form

Xt = 2πdH

∑

l∈{0,1}

∫ t

0
kl(t, u)u1/2−HdWl(u), d2

H =
πN/2(1−H)

HΓ(2−H)Γ(H+N
2 )

,

where W0 and W1 are independent standard Brownian motions. It is not
hard to verify that the latter representation does coincide with that of Dzha-
paridze and van Zanten [6]:

Xt =
√

2cH1

∫ t

0
ke

t (u)dW0(u)−
√

2cH1

∫ t

0
ko

t (u)dW1(u)
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where

ko
t (u) =

∫ ∞

0

sinλt

λH+1/2
J−H(λu)

√
λudλ,

ke
t (u) =

∫ ∞

0

1− cosλt

λH+1/2
J1−H(λu)

√
λudλ.

7.2.2 Series expansion

Theorem 7.6. Let ω0 < ω1 < ω2 < · · · be the non-negative real-valued
zeros of the Bessel function J−H . Then Lévy’s fractional Brownian motion
X with Hurst index H restricted to the ball BT of radius T (cf. (5.1)) can
be represented as follows

Xt =
∞∑

l=0

h(l,N)∑

m=1

∞∑

n=0

Sm
l

(
t
‖t‖

)
Gl

(
‖t‖, ωn

T

)
ξm
l,n (7.16)

where ξm
l,n are independent mean zero Gaussian random variables with vari-

ances

σ2
n =

22H+3HπN/2Γ(H + N/2)
T 2−2HΓ(1−H)Γ2(N/2)

ω−2H
n J−2

1−H(ωn).

This series converges with probability 1 in the space of continuous functions
on BT .

Proof. By (7.10) we have A(x(t), λ) = 0 if and only if λ = ωn/T and

∂

∂ω
A(x(T ), ω)

∣∣∣∣
ω=ωn/T

= −Γ(1−H)T
(ωn

2

)H
J1−H(ωn).

By (7.11)

B(x(T ), ωn) =
Γ(1−H)

(
ωn
2

)H
J1−H(ωn)κHN

2HT 2H−1
.

The required expression for σ2
n is now verified via (5.4) and the assertion of

the present theorem follows from Theorem 5.1. ¤
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8 Concluding remarks

The examples of the preceding section were meant, at first instance, to
illustrate our general statements in the sections 4–6. But they also bring
about some ideas for further development that we want to discuss.

The method of vibrating strings have determined the form of the moving
average representations (4.13) and (6.8), as well as of the series expansion
(5.3). For, the kernels in (4.13) and (6.8) are obtained by means of the
even and odd transforms with respect to the eigenfunctions A and B of the
related string, and (5.3) does involve the zero’s of A. However, on studding
Lévy’s Brownian motion, H. McKean [22] has pointed out that our kernels
(7.2)–(7.3) are in fact singular in the sense that nontrivial square integrable
function can be found that are orthogonal to kl when l > 2. For instance

∫ r

0
upC

N/2
l

(u

r

)(
1− u2

r2

)N−1
2

du = 0

if l > 2 and 0 < p < l. Therefore, McKean proposed to work with the
different kernels kl(r, u) = dl(u/r) where

dl(x) =

{
B(N−1

2 , 1
2)−1

∫ 1
x (1− z2)

N−3
2 dz l = 0,

1
2B(N−1

2 , 1
2)−1xl−1

(
1− x2

)N−1
2 l > 0,

that are more appropriate for most purposes, being nonsingular. To see this,
represent the function Gl, l > 0 given by (3.9) in an alternative way, not as
the Fourier transform (3.12) but as the Hankel transform

Gl(r, λ) =
Γ(N

2 )√
2Γ(N+1

2 )

∫ r

0

(u

r

)l−1
(

1−u2

r2

)N−1
2

Jl−3/2(λu)
√

λu du

(see formula (33) on p. 26 of [13], that is invertible due to formula (7)
on p. 48 of [13]), which can actually be written as a fractional integral of
Erdélyi–Kober type, namely up to a constant c

Gl(r, λ) = c I
N+1

2

0+;2, l−2
2

(
Jl−3/2(λ·)

√
λ·

)
(r) (8.1)

(see Samko at al. [26], p. 322). Hence the operators with McKean’s new
kernels transforming Jl−3/2(λ·)

√
λ· into Gl(·, λ), are non-singular for every

l > 0. Note that in the case of odd dimensions, say N = 2n + 1, we have
just n−fold repeated integrals and the inversion is carried out by the n−fold
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differentiation. By the way, due to this fact McKean [22] confirmed Lévy’s
conjecture that the Brownian motion possesses Markov property in odd di-
mensional spaces, but not in even dimensional spaces since the corresponding
inverse differential operators are fractional.

Nonsingular kernels in the case of Lévy’s fractional Brownian motion can
be found in Malyarenko [21]. They are of the form r

1
2
−H kl(r, u) = dl(u/r)

with

dl(x) =

{
c0x

H− 1
2

∫ 1
x z1−2H(1− z2)H−1+N−2

2 dz l = 0,

clx
l−H− 1

2

(
1− x2

)H+N−2
2 , l > 0,

where cl are some constants. Note that in this case we have the similar to

(8.1) relation but with the fractional integral I
H+N

2

0+;2, l−1
2
−H

.

Being aware of the advantages caused by the non-singularity of these
new kernels, we intend in our forthcoming work to extend our methods of
vibrating strings so as to obtain non-singular modifications to the general
results of the sections 4–6, and to provide aforementioned applications to
the ordinary and fractional Brownian motions as special cases.

References

[1] Andrews, G. E., Askey, R. and Roy, R. (1999) Special Functions. Cam-
bridge University Press.

[2] Boas, R. P. (1954) Entire Functions. Academic Press, New York.

[3] De Branges, L. (1968) Hilbert Spaces of Entire Functions. Prentice-Hall,
Engelwood Cliffs, N.J.

[4] Chentsov, N. N. (1957) Brownian motion for several parameters and
generalized white noise. Theory Prob. Appl. 2, 265–266.

[5] Dym, H. and McKean, H. P. (1976) Gaussian Processes, Function The-
ory, and the Inverse Spectral Problem. Academic Press, New York.

[6] Dzhaparidze, K. and van Zanten, H. (2004) A series expansion of frac-
tional Brownian motion. Prob. Theory Relat. Fields 130, 39–55.

[7] Dzhaparidze, K. and van Zanten, H. (2005) Krein’s spectral theory
and the Paley–Wiener expansion for fractional Brownian motion. Ann.
Probab. 33, 620–644.

33



[8] Dzhaparidze, K. and van Zanten, H. (2005) Optimality of an explicit
series expansion of fractional Brownian sheet. Statist. Prob. Lett. 71,
295–301.

[9] Dzhaparidze, K., van Zanten and H. and Zareba, P. (2005) Representa-
tions of fractional Brownian motion using vibrating strings. Stochastic
Processes and their Applications 115, 1928–1953.

[10] Egorov, Yu. V. and Shubin, M. A. (1998) Foundations of the Classical
Theory of Partial Differential Equations. Springer-Verlag, New-York.

[11] Erdelyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F. G. (1953)
Higher Transcendential Functions Vol. II, McGraw-Hill, New York.

[12] Erdelyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F. G. (1954)
Tables of Integral Transforms Vol. I, McGraw-Hill, New York.

[13] Erdelyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F. G. (1954)
Tables of Integral Transforms Vol. II, McGraw-Hill, New York.

[14] Gradshteyn, I. S. and Ryzhik, I. M. (1980) Tables of Integrals, Series
and Products. Academic Press, New York.

[15] Helgason, S. (1981) Topics in Harmonic Analysis on Homogeneous
Spaces. Birkhäuser, Boston.
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