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Abstract

This note is concerned with the automatic assignment of keyphrases to
(short) documents, for instance abstracts. The assumption is that there
is a standardized list of keyphrases that can be used. The emphasis is on
implementation issues.

1 Introduction

The basic premiss behind this note is that it is important to be able to assign
keyphrases to documents, and to do that more or less automatically. Also that
the key phrases should come from a controlled (= standardized) list. The second
author has argued this point extensively, see the references.

Let it be noted again that full text search, including approximate string
matching, is but a poor beginning when looking for information. One is almost
certain to find something, which may give the illusion that things are going
well; what one finds is, however, almost surely contaminated, distorted, etc;
also seriously incomplete. This is not the place to argue this point further,
but see [4, 5]. Here we are mostly concerned with the matter of automatic key
phrase assignment to documents, given a good large set of documents and an
adequate list of keyphrases for a given field of enquiry. For all of mathematics,
according to several independent calculations, that means something like 200000
keyhrases. And compiling such a list, plus the additional data needed to make
good use of them raises other problems which are beyond the scope of this note.

Here we are mostly concerned with the matter of the implementation of an
automatic keyphrase assigner given that all the necessary data are in place.

2 The idea of Identification Clouds

Basically the "identification cloud” of an item from a controlled list of standard-
ized key phrases is a list of words and possibly other phrases that are more or
less likely to be found near that key phrase in a scientific text treating of the
topic described by the key phrase under consideration. For instance the key



phrase
Darboux transformation
could have as part of its identification cloud the list

soliton

dressing transformation
completely integrable
Hamiltonian system
inverse spectral transform
Béacklund transformation
KdV equation

KP equation

Toda lattice
conservation law

inverse spectral method
exactly solvable

37J35, 37K (the two MSC2000 classification codes for this area of mathe-
matics)

Of course the definition as given here is still pretty vague: both the terms 'more

or less likely’ and 'near’ need to be made more precise. Before saying something

to that point let us look at a concrete example.

Consider the following record that the second author saw some five years ago:
” ... using the Darboux process the complete structure of the solutions of

the equation can be obtained.”.

At first sight it looks like there is here a natural key phrase, viz. ”Darboux
process”, to be extracted. Presumably, some sort of stochastic process like
”Cox process”, ” Dirichlet process”, or ”Poisson process” is meant. The context
made that rather doubtful; the surrounding sentences did not have in them the
kind of words one expects in a paper on stochastic matters. The proper name
”Darboux” is also not sufficient to identify what is meant; there are two many
terms with ”Darboux” in them: ”Darboux surface”, ”Darboux Baire 1 func-
tion”, ”Darboux property”, ”"Darboux function”, ”Darboux transformation”,
”Darboux theorem”, ” Darboux equation”,....(these all come from the indexes of
6]).

The various words and phrases occurring in the surrounding sentences settled
the matter. These included such words as ’soliton’ and others from the example
above and are typical typical for the surrounding words of the term ”Darboux
transformation” and typical for the area classified by 37K (and 37J35) (one of
the classifications-indeed the main one-of " Darboux transformation”). Thus the
"identification cloud’ of the term ” Darboux transformation” made it possible to



extract the right term. What the authors meant is that repeated use of the
process “apply a Darboux transformation’ should give all solutions.

A human mathematician, more or less expert in the area of completely inte-
grable systems of differential equations, would have no difficulty in recognizing
the phrase ”Darboux process”. Thus what identification clouds do is to add
some human expertise to the thesaurus (list of key phrases) used by an auto-
matic system.

The idea of an identification cloud is part of the concept of an enriched weak
thesaurus as defined and discussed in [1], [2] and [3]. This will not be discussed
further here. Let us just remark that the idea can be extended: for instance
there can be identification clouds of formulas and of MSCS2000 nodes. Indeed
an identification cloud of a MSCS node gives that node content and meaning
far beyond the terse descriptions in the MSCS2000 itself.

3 The TRIAL-SOLUTION project

The basic idea of the TRIAL SOLUTION project (IST-1999-11397: Febr. 2000-
May 2003) is the reuse and individual retayloring of textbooks in the following
way. Take a number of textbooks, slice them into suitable chunks, called slices,
and fit together a collection of slices to obtain a text individually taylored to
the job or individual at hand.

Besides the basic text of a slice many more data are needed to make this
possible. One of these is a set of metadata in the form of key phrases. Within
the project therefore there was needed an automatic key phrase assignment
software package that works on the idea of identification clouds. As is indicated
in the example above one cannot rely on ’(approximate) string recognition’ to
find all relevant standardized key phrases.

One thing that came out of the project was that the idea of identification
clouds needs further refinements; for instance weights and even negative weights
(to rule out spurious key phrases). For details on this see [4] and [5]

3.1 Components of the TRIAL-SOLUTION project

The software package for the TRIAL-SOLUTION project consists of the follow-
ing components:

1. Splitter. The Splitter decomposes a documents (e.g. mathematical text-
books) into semantical units called slices, stores each slice in a separate
file and produces an XML formatted file (called “imsmanifest.xml”) that
contains a complete description of the original text: in which chapters
and paragraph slices of text occur, how the relate to each other, and in
which file a slice is stored. A slice can be as small as a single line (e.g. a
mathematical definition) or it may span over several pages (e.g. a complex
mathematical proof).



2. Automatic Keyphrase Assigner (AKA). The AKA takes a sliced document
and assigns keyphrases to relevant slices by adding these as extra infor-
mation (meta-data) to the “imsmanifest.xml” produced by the Splitter.
It doesn’t modify the original text.

3. Meta-data Server. The Meta-data Server maintains a database called
“thesaurus” containing all keyphrases used within the entire project and
checks the keyphrases for consistency, dependencies, uniqueness etc.

4. Authoring Tool. The Authoring Tool can be seen as a human interface
to manage the other components of the project, e.g. manually adapt the
structure generated by the Splitter, revise meta-data assigned by the AKA,
edit content of slices. It is intended to be used for small modifications in
the thesaurus and the enriched texts by expert users.

5. Delivery Tool. The Delivery Tool is the human interface for the end-
user (e.g. college-students). A query about a subject is matched with
a database with many sliced and annotated books and those slices from
many sources are then formatted and presented to the end-user.

All components exchange information in a standardized way, by means of
XML encoded files with Data Type Definitions (DTD’s) or XMLSchema’s.

4 Automatic key phrase assignment software.

The ” Automatic Key Phrase Assigner” deliverable of the TRIAL SOLUTION
project is a piece of software that pictorially can be depicted as in Fig. 1.
Thus, there are two inputs:

e a’sliced text’. That means a scientific text, say an undergraduate textbook
on analysis (such as were actually used during the project), sliced, that
means cut-up in chunks that are small enough to be coherent and reuseable
and large enough to have internal meaning. The sliced text comes in
a special packaged format that is universal for all TRIAL SOLUTION
components.

e a list of key phrases together with for each key phrase its identification
cloud. This concept will be described in more detail below in section
2. But, roughly the identification cloud of a standard key phrase is a
list of words (and maybe very short other key phrases) that one expects
(often) to find in the neighbourhood of the key phrase concept that is
being discussed.

There are also two outputs

e the same sliced text, packaged in the same way, enriched with key phrases
that have been assigned to each slice.
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Figure 1: Automatic Key Phrase Assigner

e a .html file for human use that is to be used for expert validation of the the
automatic key phrase assignment. This one, when displayed, highlights
the key phrases that have been found and also gives the ’evidence’ for
assigning them in terms of the items from the identification cloud that
were found and the percentage (weight) of the identification cloud that
was found.

Most of the remainder of this note is about the internal structure of this piece
of software as designed by the first author.



4.1 Keyphrase Recognition

Let us illustrate how the software works by an example Consider the following
keyphrase definition (simplified, in German language):

<KEYPHRASE>
<NAME THRESHOLD="7" LANG="de"> Universelle Algebra </NAME>
<WORD  WEIGHT="3" LANG="de"> universel </WORD>
<WORD  WEIGHT="3" LANG="de"> Algebra </WORD>
<WORD WEIGHT="1" LANG="de"> Gruppe </WORD>
<WORD  WEIGHT="1" LANG="de"> Ring </WORD>
<WORD  WEIGHT="1" LANG="de"> Datentyp </WORD>
<WORD  WEIGHT="1" LANG="de"> Omega-Algebra </WORD>
<WORD  WEIGHT="1" LANG="de"> Omega </WORD>
<WORD WEIGHT="1" LANG="de"> Kongruenzrelation </WORD>
<WORD  WEIGHT="1" LANG="de"> Faktoralgebra </WORD>
<WORD  WEIGHT="1" LANG="de"> Homomorphismus </WORD>
<WORD WEIGHT="1" LANG="de"> Homomorphiesatz </WORD>
<WORD  WEIGHT="1" LANG="de"> Termalgebra </WORD>

</KEYPHRASE>

The idea is that when in a slice of text some of these WORDs can be found,
and the sum of their associated WEIGHTs match or exceed the THRESHOLD
specified, then this keyphrase can be associated with the slice.

The program, written in ’C’, starts by reading all keyphrases and store that
information into 2 tables: keywords and keyphrases. An entry in keyphrases
contains only references to entries in keywords. All keywords are normalized to
lower case, UTF-8 encoding.

During this process an n-ary (multibranched) tree is build were each node
represents a letter of a keyword, as depicted in Fig. 2. Each node contains
besides a value (the letter), a (possibly empty) list of next nodes and a (possibly
empty) information pointer field. In the last node of each keyword, this pointer
is filled with, a reference to additional information concerning this keyword.

Next the text for which keyphrases are to be assigned is read, were the set of
characters that was used in the nodes of the Keyword Tree (and the character
sequences '—’ and '\—’) determines the word boundaries. These input words
are normalized in the same way as the keywords.

All input words are looked up in the Keyword Tree. Each next letter (or
more precise byte in a multibyte UTF-8 sequence) is readily found in a set of
next nodes that is associated with a particular node using a hashing scheme.
The root node of the tree contains a "\0’ byte which does not participate in
matching, A partial match occurs when a node is encountered that has a non-
empty information pointer. When this node matches the last byte in a word,
it is a full match. Then, from the information pointer, a list of keyphrases is
obtained were this keyword was used, possibly with different weights.
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Figure 2: Keyword Tree for keywords “algebra” and algorithm”

In a “matchlist”, all potential matching keyphrases are stored together with,
for each keyphrase, the keywords found in the text.

Finally, when the whole input text (a slice) has been examined, for each
keyphrase in the matchlist the sum of weights is computed and compared against
the threshold to determine whether or not the keyphrase can be associated with
the slice.

This process is to be executed for every slice. A textbook typically con-
tains several thousands of such slices, and a keyphrase definition file for a field
such as undergraduate mathematics will contain several thousands of keyphrase
definitions.

This matching software can also work with suffix lists by storing the suffixes
in the tree starting at the last character backwards to strip of suffixes from a
stem.

5 XMlLparser

Extensible Markup Language (XML) is a W3C standard for document structure
definition. For the parsing of the various XML formatted files in this project,
such as the “imsmanifest.xml” file describing the sliced document and the list of
keyphrases “keyphrases.xml” as well as several other control files, a parser was
written in ’C’ called “XMLparser”. This parser is based on the“expat” XML
parser library written by James Clark, who was one of the original inventors of
XML.

XMLparser is able to parse any well-formed XML document into a parse tree,
and repeatedly walk over this tree (visit all nodes). A node in this parse tree
represents an XML entity. Associated with each entity (node) are its name, at-
tribute list, content, etc. When visiting a node, an application defined function



can be called by XMLparser giving the application access to all information asso-
ciated with a particular XML entity in the parsed file. These application defined
function are to be stored in dynamical loadable function libraries, which XML-
parser loads prior to parsing a particular file.. For example, before XMLparser
parses “keyphrases.xml”, it must first load the function library “keyphrases.so”
containing functions able to handle entities with the names “KEYPHRASE”,
“WORD?”, etc. as in the example above.

All these dynamically loaded functions have access to a shared data space,
that is not touched by XMLparser.

In the example, this is where the Keyword Tree, the keyphrase lists, etc. is
stored.

Next, before parsing the file “imsmanifest.xml” describing a sliced mathe-
matical textbook, another library is loaded with functions specialized in han-
dling the XML entities to be found in that file. For example,

<title>Definition 1.13</title>
<metadata>
<record>
<sourcereference>6</sourcereference>
<navtitle>Definition 1.13</navtitle>
<types>
<type>Definition</type>
</types>
<start href="slib/1/1/0/3/6/start.tex" type="latex"/>
<main href="slib/1/1/0/3/6/math.tex" type="latex"/>
<end/>
</record>
</metadata>

is a fragment of an “imsmanifest.xml” file. It contains quite different entities
such as “metadata”, “record” etc. than the ones that occur in “keyphrases.xml”.
In particular, the value of the “href” attribute in the “main” contains the file-
name containing the LaTeX formatted slice to be examined by the Automatic
Keyphrase Recognizer program described in section 4.1.

Actually this program is embedded in these libraries, so that the text of each
slice can be immediately matched against the keyphrase list stored previously.

At the end, when all slices have been processed, a new “imsmanifest.xml”
is produced which is the original one, with “keyph” entities added to those
“record” nodes that specify slices of text for which keyphrases were found. These
“keyph” entities describe the keyphrases, and the reason why they were added:
the keywords found and their weights.

An example of the .html output from the Automatic Keyphrase Recognizer
mentioned in section 4 is shown in Fig. 3. Here a slice of German text is shown in
LateX format, together with a keyphrase found, the keywords found and their



weights, and the keywords not found but defined for this keyphrase, without
weights.

6 Tests and Results

The idea of identification clouds and the implementation was tested. The results
are satisfactory in the sense that relevant key phrases were picked up nicely.
However, what also happened is that a number of irrelevant (spurious) key
phrases appeared. for examples of how this might occur see [5]. The idea of
identification clouds needs further refinements, in particular the idea of negative
weights, see loc. cit.

7 Future Work

Obviously it is a non feasible task to compile by hand a standard keyphrase
list of some 200 000 keyphrases complete with identification clouds, weights
etc. Ideas to automate this task are outlined in [4, 5]. But so far there are no
implementations.
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\Definition 2.10. (i) F\"ur nichtnegative ganze Zahlen $n$
setzen wir $0!=1!=1$ und $n!=(n-1)\.n$ f\"ur $n=2,\dotts$ Mit
anderen Worten, f\"ur

$n\in\N'$ haben wir $n!=1\.2\cdots n$.

\tsindexa{$n!$}

Wir lesen $n!$ als “‘$n$ Fakult\"at.”’

\tsindexa{Fakult\"at}

|imaginéire

(ii) F\"ur jede nat\"urliche Zahl $k$ und jede komplexe Zahl $n\in\C$ setzen wir
$${n\choose k}

={n(n-1)\cdots(n-k+1)\over k!}

={n\overl }\.{n-1\over2 }\.{n-2\over3 }\cdots{n-k+1\over k},\leqno(6)$$
\tsindexa{ {n\choose k}}

und setzen ${n\choose 0}=18.

Wir lesen ${n\choose k}$ als ‘‘$n$ \"uber $k$’’ und nennen diese Zahlen
\tsindexb{ Binomialkoeffizienten }

\qed

1

Figure 3: Example of .html output from AKA
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