
C e n t r u m v o o r W i s k u n d e e n I n f o r m a t i c a

Software ENgineering

Specification of e-business process model for PayPal
online payment process using Reo

Min Xie

REPORT SEN-E0510 SEPTEMBER 2005

SEN
Software Engineering

CWI is the National Research Institute for Mathematics and Computer Science. It is sponsored by the
Netherlands Organization for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2005, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-369X

Specification of e-business process model for PayPal
online payment process using Reo

ABSTRACT
E-business process modeling allows business analysts to better understand and analyze the
business processes, and eventually to use software systems to automate (parts of) these
business processes to achieve higher profit. To support e-business process modeling, many
business process modeling languages have been used as tools. However, many existing
business process modeling languages lack (a) formal semantics, (b) formal computational
model, and (c) an integrated view of the business process being modeled. In this paper, we
assess the effectiveness of the Reo coordination language as a business process modeling
language. We present a specification of PayPal online payment business process model using
Reo and evaluate Reo according to the criteria of e-business process modeling with respect to
(a) language expressiveness, (b) visual notation and language semantics, (c) analysis and
reasoning, (d) simulation and execution.

1998 ACM Computing Classification System: J.4, J.1, D.1.7, D.2.1
Keywords and Phrases: Reo, coordination languages, business process modeling, online payment
Note: The author carried out this work at CWI as an assignment for a Masters degree in ICT in Business from Leiden
University.

 1

SPECIFICATION OF E-BUSINESS
PROCESS MODEL FOR PAYPAL

ONLINE PAYMENT PROCESS USING
REO

by

Min Xie

A thesis submitted in partial fulfilment of the
requirements for the degree of

Master of Science in ICT in Business

Leiden University

2005

Approved by ___
Chairman of Supervisory Committee

Programme Authorised
to Offer Degree __

Date __

 2

Abstract

E-business process modeling allows business analysts to better understand and

analyze the business processes, and eventually to use software systems to automate

(parts of) these business processes to achieve higher profit. To support e-business

process modeling, many business process modeling languages have been used as tools.

However, many existing business process modeling languages lack (a) formal

semantics, (b) formal computational model, and (c) an integrated view of the business

process being modeled. In this paper, we assess the effectiveness of the Reo

coordination language as a business process modeling language. We present a

specification of PayPal’s online payment business process model using Reo and

evaluate Reo according to the criteria of e-business process modeling with respect to

(a) language expressiveness, (b) visual notation and language semantics, (c) analysis

and reasoning, (d) simulation and execution.

 3

Acknowledgements

First of all I would like to thank my parents for making all this possible for me.

Thanks to my supervisor Prof. Farhad Arbab for giving me the opportunity to work on

this topic.

Special thanks to my supervisor Dr. Nikolay Diakov for the advice and support for

my thesis. I am very grateful for the comments and time given by him, which have

greatly improved and clarified this work.

Finally, but not least, thanks to my classmate Yongzhi Li for the discussion of Reo

which helps clarify my ideas.

 4

Contents

CHAPTER 1 INTRODUCTION...6

1.1 BACKGROUND ...6
1.2 PROBLEM STATEMENT ..6
1.3 REO ...7
1.4 GOAL ...7
1.5 APPROACH ..8
1.6 STRUCTURE...8

CHAPTER 2 CONCEPTS AND TERMINOLOGY ...9

2.1 E-BUSINESS PROCESS MODELING ..9
2.1.1 What is business process?..9
2.1.2 Business process modeling...9

2.2 THE REO COORDINATION LANGUAGE ...10
2.2.1 Component instance...11
2.2.2 Connector...11
2.2.3 Node...13
2.2.4 Reo operations ...13
2.2.3 Component encapsulation..14

CHAPTER 3 CASE STUDY: PAYPAL’S ONLINE PAYMENT PROCESS MODELING.........15

3.1 OVERVIEW ...15
3.2 BUSINESS PROTOCOL ...16

3.2.1 Roles...16
3.2.2 Business protocol ...16

3.3 ANALYSIS...18
3.3.1 Use case diagram...18
3.3.2 High-level Structure...20

3.4 CONSTRUCTION ..21
3.4.1 Basic components...21
3.4.2 Encapsulated connectors ...22
3.4.3 Designed components ..23
3.4.4 Online payment circuit...47

CHAPTER 4 ANALYSIS OF REO AS A BUSINESS PROCESS MODELING LANGUAGE 49

4.1 REQUIREMENTS OF A BUSINESS PROCESS MODELING LANGUAGE ..49
4.1.1 Language expressiveness ...49
4.1.2 Visual notation and language semantics..50
4.1.3 Analysis and reasoning ..52
4.1.4 Simulation and execution ...52

4.2 EVALUATING REO..52

 5

4.2.1 Language expressiveness ...52
4.2.2 Visual notation and language semantics..54
4.2.3 Analysis and reasoning ..56
4.2.4 Simulation and execution ...56

4.3 SUMMARY ..57

CHAPTER 5 CONCLUSIONS ...58

5.1 SUMMARY OF FINDINGS...58
5.2 EXPECTATIONS FOR FUTURE WORK ...59
5.3 PERSONAL EXPERIENCE ...59

REFERENCES ...61

APPENDIX ...64

LIST OF FIGURES ...64
LIST OF TABLES ...65

 6

Chapter 1

Introduction

1.1 Background

E-business process modeling aims to capture the features and the underlying structure

of the business processes in an organization or among organizations. It allows

business analysts to better understand and analyze the business processes, and

eventually to use software systems to automate (parts of) these business processes to

achieve higher profit.

To support e-business process modeling, new business process modeling languages

have been developed, such as Business Process Modeling Notation (BPMN) [2].

Traditional software development modeling languages, such as the Unified Modeling

Language (UML), have also been pushed into e-business process modeling chores [2],

mainly because of their extensive tool support. They are applied to model an

e-business process by specifying an e-business system in the context of the business

process. In this way, the logic and the rules of the business process is reflected in that

system, so that the system (or parts of it) can be implemented using a software

solution.

1.2 Problem statement

Existing business process modeling languages have several problems:

• Lack of formal semantics, which leads to the ambiguity in a business process

model. [25][26][27]

• Lack of a formal computational model so that it is difficult to simulate or run the

business process model.[28][29]

 7

• Software modeling languages used as business process modeling languages often

lack an integrated view, in which all diagrams fit together, and thus leads to

traceability problem. [4][17][18]

In this thesis work, we will focus on accessing Reo as a suitable business process

modeling language for addressing these problems.

1.3 Reo

Reo is a connector-oriented coordination language. It allows the compositional

construction of coordinators called “connectors” that can coordinate complex process,

especially for concurrent processes through their composition, cooperation and

communication. Reo offers the following:

1. A comprehensive visual notation;

2. Formal computational model that defines the rules for implementing or simulating

Reo connectors [5].

3. Formal semantics based on a coinductive calculus of flow[6][7][8] and

(alternatively) on constraint automata[8];

4. A serialization of its visual notation in XML validated by XML Schema, for

interoperability among design and analysis tools.

1.4 Goal

In this thesis work, our goal is to investigate the effectiveness of Reo in e-business

process modeling.

 8

1.5 Approach

Step1: We start with a literature study on business process modeling in order to

acquire knowledge about business process concepts and business process

modeling.

Step2: To assess the effectiveness of Reo as a business modeling language, we first

study requirements for business modeling language from various research

articles [24][25][26][27].

Step 3: We model an on-line payment process to gain hands-on experience of using

Reo as a business modeling language.

Step 4: Based on the requirements from step 2 and the case study, we analyze the

effectiveness of Reo in e-business process modeling.

1.6 Structure

The rest of the thesis is organized as follows. Chapter 2 provides an overview of

relevant business process concepts, e-business process modeling, and the Reo

language. In chapter 3, we use the Reo coordination language to model an online

payment process as a case study. In chapter 4, we summarize requirements for a

business process modeling language. Then based on the case study, we use these

requirements to evaluate the Reo coordination language as a business process

modeling language. In chapter 5, we present our conclusions.

 9

Chapter 2

Concepts and Terminology

In this chapter, we look at the concepts of business process and business process

modeling. Then we introduce Reo language that we will use to model e-business

process.

2.1 E-business process modeling

2.1.1 What is business process?

Business process is defined in different contexts. Bill Curtis defined a process as a

partially ordered set of tasks or steps undertaken towards a specific goal [9]. Glossary

[11] defines business process as “the collection of related, structured activities--a

chain of events--that produce a specific service or product for a particular customer or

customers”.

When analyzing these definitions, we notice the following reoccurring themes: 1) a

business process has separate parts, as so-called steps, activities or tasks; 2) there are

relationships between these parts and these parts are connected through certain order,

structure, or coordinating mechanism.

2.1.2 Business process modeling

Business process modeling is a means of capturing a business process, including the

activities, their connections, coordinating mechanisms and the underlying structure of

the business process. “A business process model enables a business to document,

 10

share, implement, measure the success, and continually improve a business process”.

[1]

With the advent of E-business, business process and information technology become

closely inter-related. “On the one hand, the choice of a particular way of conducting

business in an organization will influence the design and structure of the information

systems to support this process. On the other hand, advances in information technology

can generate completely new opportunities for organizations and thus influence the

design of specific business process layouts.”[24] In this context, the term business

process modeling, or e-business process modeling, has been used to “incorporate all

business process properties relating to the transformation of knowledge about

information systems into models that describe the processes performed by

organizations”[30]. It is useful in the following aspects [12]:

1) Describing a process: to make the process understandable for various target

audiences (humans and machines).

2) Analyzing a process: to make it easy to see the structure, properties of the process

and facilitate identifying problems, such as process redundancy, and contributes to the

business process reengineering, improvement and optimization.

3) Enacting a process: either for simulation purposes or to provide some level of

support for process execution.

2.2 The Reo coordination language

Reo is a connector-based coordination language. From the point of view of Reo, a

system consists of a set of component instances, communicating through connectors

that coordinate their activities. Connectors are built compositionally out of simpler

ones, where channels constitute the atomic connectors. In this section, we introduce

the main and concepts of Reo: component instance, connector, node, Reo operations

and component encapsulation.

 11

2.2.1 Component instance

A component instance is a non-empty set of active entities (e.g., processes, agents,

threads, actors, etc.) whose only means of communication with the entities outside of

this set is through input and output operations that these entities perform on connected

channel ends [23]. Reo completely abstracts away from the details of the

communication within a component instance and focuses only on

inter-component-instance communication.

2.2.2 Connector

A channel has precisely two directed channel ends: source and sink. A source end

accepts data into its channel; a sink end dispenses data out of its channel. Each

channel has predefined semantics. Figure 2.1 shows the channels that we use in our

modeling work.

Fig. 2.1 Examples of Reo channels

1. Sync

Sync channel has a source and a sink. The pair of I/O operations on its two ends can

succeed only simultaneously.

2. SyncDrain

SyncDrain has two source ends. The pair of input operations on its two source ends

can succeed only simultaneously. All data items written to this channel are lost.

 12

3. Filter (pat)

Filter channel has a source and a sink. It behaves as a Sync channel except that it will

lose all the data that doesn’t match the pattern pat.

4. FIFO1

FIFO1 has a source end and sink end, and contains buffer of size one. Writing a

message to FIFO1 succeeds on the source end only when its buffer is empty.

Channels can be composed into complex connectors. A connector is modeled as a

graph of nodes and edges, where 1) every channel end coincides on exactly one node;

2) zero or more channel ends coincide on every node; 3) an edge exists between two

nodes if and only if there is a channel whose ends coincide on those nodes. Through

composition of channels, various coordination mechanisms can be realized.

Fig. 2.2 Examples of Reo connectors

Figure 2.2 shows two examples of Reo connectors composed out of Reo channels.

The first one allows an input from the node “a” to “d” only when there is also an input

from the node “f” at the same time; the second one allows an input form the node “a”

to “d” only when there is an input from the node “g” to “j” simultaneously.

Fig. 2.3 Sequencer

Figure 2.3 shows an example of a more complex connector, called “sequencer”,

which allows a series of inputs following the sequence of a, b, c, d.

 13

2.2.3 Node

Reo has three types of nodes: source node, sink node and mixed node. A source node

contains only source channel ends. A sink node contains only sink channel ends. A

mixed node contains both source and sink channel ends.[22][32]

Source node & Sink node
A component can only be connected to a (set of) source channel ends through a

source node, or to a (set of) sink channels ends through a sink node. If a component

writes a data item to a source node, the node replicates the data item to all of its

source channel ends only when all of them can accept the data item. When a

component tries to take a data item from a sink node, the node non-deterministically

selects a data item available at one of its sink channel ends.

Mixed node
Source channel end(s) and sink channel end(s) can coincide on a mixed node. The

node non-deterministically selects a data item available at one of its sink channel ends

and replicates the data item to all of its source channel ends only when all of them can

accept the data item.

2.2.4 Reo operations

A component instance can perform operations on a channel end. Reo defines two

types of operations [32][22]:

1) topological operations that allow manipulation of connector topology;

2) I/O operations that allow data input and output.

Here we only introduce those operations that will be used in our modeling work

(Table 2.1).

 14

Topological Operation Description

Join
Join two nodes identified by two channel ends,

coincident with the nodes respectively

Split

Split a node into two nodes by specifying the channel

ends that the performer requires to coincide on the new

nodes

I/O Operation Description

Read read a data item from a sink without removing the data

Take read and remove a data item from a sink

Write write a data item to a source

Table 2.1 Reo operations

2.2.3 Component encapsulation

In analogy with electrical circuits, a design is called a “circuit” in Reo[22]. When

designing large circuits, we can abstract away the details of the circuit of a particular

connector and encapsulate it into a new component, in order to instantiate it and reuse

it. In a visual notation, the encapsulated component is represented as a box. On its

border, a set of nodes are positioned as the component’s ports, which its internal

circuit exposes to the outside. The internal behavior is entirely defined by Reo.[22]

Inhibitor
A B

I

A B

I

Fig. 2.4 Inhibitor

Figure 2.4 shows an example that how we define the Inhibitor [34] and how we depict

an instance of it.

 15

Chapter 3

Case Study:

PayPal’s Online Payment Process Modeling

In this chapter, we use Reo to model the online payment business process of the

PayPal system. First we give an overview of the PayPal’ online payment process.

Then we describe the business protocol which defines the online payment process.

After that, we model the online payment process by analyzing and implementing the

business protocol.

3.1 Overview

An online payment process is achieved through connectivity over the internet between

online customers, merchants, buyers, sellers, and the financial networks that move

money between them. The PayPal system provides a novel process which has

effective mechanisms to guarantee a business transaction. Its process has gained more

than 10 million dollars and continuously growing community of customers. Now

PayPal transactions constitute over 10% of all Internet traffic in the financial services

category, more than Citibank, Wells Fargo and Bank of America combined [33]. For

that reason, we choose to model PayPal in our case study.

 16

3.2 Business protocol

To model the PayPal’s online payment business process, we define its business
protocol and related roles:

3.2.1 Roles

• A user. We distinguish two kinds of users:
1. Sender – the party that places a money transfer order;

2. Receiver – the party that acts as the recipient of money as

described in a money transfer order;

• The Server – the PayPal system that makes possible money

transfers from a sender to a receiver over the Internet.

3.2.2 Business protocol

We summarize the protocol as described in [36].

1. Before using the PayPal system, both the sender and the receiver must

authenticate themselves to the system. Both the sender and the receiver can do this

by registering an account and then logging in the PayPal system.

2. After authentication, the sender can place a money transfer order in the PayPal

system by providing needed information such as the shipping address, the

receiver’s e-mail address, amount and the way of payment, either by using an

existing PayPal account or valid credit card. The PayPal system sends an email to

the receiver’s email address to notify him about pending money transfer orders. If

the PayPal system already contains an account with email address equal to the

receiver’s e-mail address from the money transfer order, the PayPal system

transfers the money to the receiver’s account in “pending” status and waits for the

receiver’s confirmation. Otherwise, the PayPal system waits for the receiver to

register an account and claim the pending money transfer order.

 17

3. After a receiver logs in the PayPal system, he/she can accept or reject a money

transfer order from the “pending” money transfer orders. Accepting a money

transfer order resets the “pending” status of the transfer and completes a

transaction between the sender, the receiver and the PayPal system; Rejecting a

money transfer order causes PayPal system to return the money to the sender’s

account;

4. The Paypal system removes any money transfer orders that a receiver has not

claimed within 30 days from their date of placing in the system;

5. A sender can cancel a pending money transfer order;

6. The sender can claim a money transfer back within 30 days from the date of the

completion of the transaction, if and only if the sender has used the money

transfer order to pay for a physical product that the receiver must ship (with the

information of valid shipping address) to the sender and the receiver accepted the

money transfer order, under the conditions that:

i. The sender didn’t claim money on this transaction before;

ii. The sender has filed less than two claims in current calendar year;

iii. The date of the claim is within 30 days from the date that the receiver

accepted the money;

iv. The PayPal legal authority has approved the sender’s claim as legal.

If the transaction is no more than $500, the system transfers the money from

receiver’s PayPal account to the sender’s PayPal account. If the receiver’s PayPal

account has insufficient funds, the sender still gets the refund in his/her PayPal

account, and the PayPal system blocks the receiver’s account until the receiver

pays the proper amount to PayPal.

 18

If the transaction is for more than $500, the sender only gets $500 in his/her

PayPal account immediately. The PayPal system then blocks the receiver’s

account until he/she settles the claim.

7. A receiver can play the role of a sender to return the money he owes to a sender of

a transaction that the sender has claimed back.

3.3 Analysis

We use a top-down approach to analyze this protocol. At the top level, we make a use
case diagram to capture the functionality of the PayPal system (Fig. 3.1).

3.3.1 Use case diagram

Register Paypal
account

Authenticate
Paypal account

Sender Receiver

Send money

Transfer moneyPay for a
product

Cancel the
transaction

claim the
payment back

Accept money

Reject money

Accept the
payment

Return money

<<include>>

<<
inc

lud
e>

>

<<include>>

<<include>>

<<include>>
<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

Fig. 3.1Use Case Diagram

The system offers interface to the sender actor and the receiver actor. In the use case

diagram, each use case identifies an activity that actors want to perform.

 19

The sender can register a PayPal account, “send money” and “pay for a product”,

which are the two specified cases of the use case “transfer money”. The sender can

also “cancel the transaction” and “claim the payment back”. All these use cases can

happen after authentication (“authenticate PayPal account”), as the system requires

the sender to be registered.

For the receiver’s use cases, the “register PayPal account” and “authenticate PayPal

account” are the same as the sender’s activities. The receiver can also “accept money”

or “accept the payment”, “reject money” and “return money” (owed to the sender of a

claimed transaction).

The time dependencies are also shown on the use case diagram. The receiver’s

acceptance and rejection can happen only when there is some transfer from a sender.

The sender can claim only after he has sent a payment and the payment has been

accepted by a receiver. Dependencies in the use case diagram are also the guidance

when implementing the PayPal’s online payment protocol in Reo.

 20

3.3.2 High-level Structure

Receiver's email address

User

Regist ry::Email address (id)

Regis try ::pas sword

Regis try ::o ther info .

A uthentication::Email addres s

Authent ication::pas sword

receiver's email
(us ing paypal
account)

<CCnumber, amount>

amount

claim reason

"failure"

transaction id

receiver's email

(us ing paypal
account) amount

shipping address

transact ion id

transact ion id

"accept money"

"Reject money"

transact ion id

"accept payment "

"reject payment "

<CCnumber, amount>

logout

Transaction id

Transaction id

transact ion id
Paypal account payment

amount
<CCnumber, amount>

"success"

pending transaction id lis t

pending transact ion id

Email
System

Subject

Body

Credit Card
System

CC number

amount

uer's o ther information

Sever

user id

Inclus ive Router2

Sender

User
administration

Receiver

"P"

Fig. 3.2 High level structure

The high level structure of the specification (Fig. 3.2) contains two primary parts, as

the first level components, the “User” and the “Server”. In addition, there are two

external systems interacting with “Server”: the “Email system” and “credit card

system”. In the “User” component, there are three sub-components:1) the “user

administration” sub-component deals with user registration and authentication; 2) the

“sender” sub-component deals with functions and operations of the user when acting

as sender, and 3) the “receiver” sub-component concerns the functions of a receiver’s

role. The “Server” component deals with data checking and processing. Many

“Users” can attach to the “Server” through the nodes and exclusive routers designated

in the “P” region.

 21

3.4 Construction

Using the high level model, we construct the specification of the online payment
process protocol. For the understanding purpose, we first introduce the basic
components and encapsulated connectors that we use in the modeling; then we present
our designed components; finally we present the overall online payment process
specification in Reo circuit.

3.4.1 Basic components

In addition to Reo primitive channels, thirteen basic components are used for
operating data passing through channel, shown in Fig.3.3.

a<b

a

b
a>b

a

b

a==b

a

b

L<a,b>

a+b

a

b

Fi<a,b,c,d e,f> S<a,b,c,d e,f> T<a,b ,c,d e,f>

Fo<a,b ,c,d e,f> L<a,b,c,d e,f>Five<a,b,c,d e,f>

R<a,b>

1) 2) 3) 4) 5)

6) 7)

8) 9) 10)

11) 12)

Package2
<a,b>

"a"
"b"

<a,b>

13)

Fig. 3.3 Basic components

 The first component has two source nodes for inputs, labeled by “a” and “b”, and a
sink node for output. When two messages “a” and “b” representing two integers are
input through the two source nodes, if a<b the output on its sink node will be true and
otherwise false. The second component is the same as the first one except that when
a>b the output on its sink node will be true and otherwise false. The third one is the
same kind of the first one and the second one except that when a==b the output on its
sink node will be true and otherwise false. The forth one is a little different. Its output
on the sink node gives the sum of “a” and “b”. The fifth one, a “packager 2”, takes
two inputs and generates a package <a, b>. The “package 2” can be parameterized to
“package N”.

 22

The sixth component has one source node on the left and one sink node on the right.
The input from its source is a pair of data in the form of < a, b >. The component
outputs the first element of the input pair on its sink node; in this case “a” is outputted.
The seventh component outputs the last element of the input pair on its sink node, in
case “b”. Similar to the sixth and seventh component, each of the rest components
receives a tuple of data elements on its source node, and outputs the first, second,
third, forth, fifth and last of the element in the tuple on its sink respectively.

One can define the behavior of these components algebraically [7].

3.4.2 Encapsulated connectors

We also use a set of encapsulated connectors, shown in Fig.3.4.

Inclusive
Route r2 IOV ICV Variable

Exclusive Router2

Fig. 3.4 Encapsultated connectors

1. Inclusive Router
The Inclusive Router has one input node and two or more output nodes. It can route
synchronously its input to less than or equal to its total outputs.

2. Exclusive Router
The Exclusive Router has one input node and two or more output nodes. It routes
synchronously its input to precisely one of its outputs. In our specification, we use a
hollow circle to present it for the convenience.

3. Valves
There are two kinds of valves regulating the flow of data, initially opened valve (IOV)
and initially closed valve (ICV). The IOV initiate allows data to flow and the ICV
doesn’t. Both valves offer a node through which one can toggle a valve’s state from
“opened” to “closed” or the other way around.
4. Variable

 23

The Variable offers a source node and a sink node. It always accepts a message
written on its source and the last message written represents the value of the variable.
The variable always offers a message containing its value to anyone that makes a take
operation on its sink [35].

One can find the definitions of these connectors in [34].

3.4.3 Designed components

1. User administration component

User administration component (Fig.3.5) constitutes two sub-components: the

Registration component and the Authentication component. The Registration

component has the responsibility to allow valid registering in the system. The

Authentication component lets only registered users to login to the system. When a

user successfully logs in the system, the user administration component outputs the

data of the user’s “email address” and “login” signal for sender component and

receiver component to use. When a user logs out the system, the “logout” signal is

outputted to disable the work of the sender and the receiver components.

User administration

va
ri

ab
le

Regist ration

Authentication

Email address(id)"login""log out"

Regis try ::Email address (id)
Regis try::password

Regis try::o ther info.

Authentication::password

logout

Authent ication::Email address Authent ication::Email address

Authentication::password

Regist ry ::Email address (id)

Regist ry ::password

Regis try::other info.

id

Fig. 3.5 User administration component

 24

1) Registration Component

Regist ry::Email address (id)

Regist ry::password

Regis try::other info.

Fig. 3.6 Registration component

Registration component (Fig.3.6) has three input nodes and three output nodes. It

requires three synchronous input messages. The three “write” operations

corresponding to these messages on the three input nodes to succeed only when three

“take” operations succeed at the same time on the outputs.

2). Authentication Component

Authent ication::Email address

Authentication::password

id

IOV

IOV

ICVlogout

Fig. 3.7 Authentication component

Authentication component (Fig.3.7) has three input nodes. We use “IOVs” to allow

the message writing on the input nodes only once. Meanwhile, the “ICV” is opened to

allow an input for user logout. When there is an input from “logout” input node, the

signal will be passed to disable any operation of the other components and open again

the upper two “IOVs” for receiving new authentication information.

 25

2. Sender component

Sender component (Fig.3.8) constitutes six sub-components: “Send money”

component, “Send payment” component, “Information for senders” component,

“Cancel sending” component, “Claim payment” component and “ID tester”

component.

Claim Payment

Information for senders
ID tes ter

Send Money

Cancel Sending

Send Payment

transact ion id

transact ion id

reason

Inclus ive Router

ID t est er

ID tes ter

ID t est er

ID t est er

Sender

receiver's email

(us ing paypal
account)

<CCnumber, amount>

amount

Transaction id

"logout" "login" "id"

receiver's email

(us ing paypal
account) amount

shipping address

<CCnumber, amount>

Transaction id

pending t ransaction id lis t

transact ion id

claim reason

"failure"

transaction id

"success"

Sending information

Sending information

pending transaction id

<a,b>

<a,b>

<a,b>

<a,b>

<a,b>

Fig. 3.8 Sender component

 26

1) “Send money” Component

ICV

ICV

ICV

Time generator

receiver's email

PayPal account payment
 amount

CC payment
<CCnumber, amount>

login User id

User id

time

receiver's email

shipping address

PayPal account payment
 amount

CC payment
<CCnumber, amount>

Cons tant W riter
shipping address='no '

Transaction id
Transact ion id

logout

Packager
<a,b,c,d ,e,f>

"a"

"b"

"d"

"c"

"e"

"f"

Sending information

Fig. 3.9 “Send money” component

“Send money” component (Fig.3.9) allows the sender to send money to the receivers

when he/she is authenticated. The “login” signal opens the left three “ICVs” to enable

three input nodes, from which the component receives the input of receiver’s email

address and the payment information (either PayPal account payment or Credit Card

payment). The “logout” signal turns off the “ICVs” and disables the left three input

nodes. The “Time generator” automatically generates a time stamp. The “Constant

Writer” writes the value “no” to the shipping address, to indicate transfer of money

without shipping anything.

If the current transaction is successful, the input node on the right receives the

“transaction id” of this transaction in the meanwhile，and “transaction id” is passed

to the left output node to the user, to allow the user to use the id in further interaction

with the system.

 27

2) “Send payment” component

“Send payment” component (Fig.3.10) allows the sender to send payment to receivers

when he/she is authenticated.

ICV

ICV

ICV

ICV

Time generator

receiver's email

PayPal account payment
 amount

CC payment
<CCnumber, amount>

shipping address

login User id

User id

t ime

receiver's email

shipping address

PayPal account payment
 amount

CC payment
<CCnumber, amount >

Transaction id Transact ion id

logout

Package
<a,b,c,d,e,f>

"a"

"b"

"c"

"d"

"e"

"f"

payment information

 Fig. 3.10 “Send payment” component

“Send payment” component works the same as the “Send money” component, except

that there is one additional input of “shipping address” instead of the “Constant

Writer” in the “send payment” component, because in this case, the sender sends

money to pay for a product and therefore the shipping address is required.

3) “Information for senders”

logout login user id

ICV pending transaction idpending transaction id

Fig. 3.11 “Information for senders” component

“Information for senders” component (Fig.3.11) allows a sender to get the transaction

id list of his or her pending transactions (the money or payment sent by the sender but

not yet accepted by the receiver) from the “Server” component.

 28

4) “Cancel sending” Component

transaction id ICV transact ion id

logout login

Fig. 3.12 “Cancel sending” component

“Cancel sending” component (Fig.3.12) allows the user to input the “transaction id” to

cancel the pending transactions. The “transaction id” is forwarded to the “Server”

component.

5) “Claim payment” Component

Cons tant W rit er
"failure"

transaction id

reasonclaim "reason"

"failure"

"false"

t ransaction id ICV

ICV

loginlogout

Constant Writer
"success""success"

"sucess"s ignal

Fig. 3.13 “Claim payment” component

“Claim payment” component (Fig.3.13) allows a sender to ask for returning the

payment of unsatisfied transactions. This component has the input of “transaction id”

and the “reason” why the sender claims. The two output nodes on the left pass the

data to the “Server” component. If the claim is legal, “Claim payment” component

will receive a “success” signal from the input node on the right. Otherwise it receives

 29

a “false” signal. When there is a “success” or “false” input, the two “Constant writer”

accordingly writes the “success” or “failure” value and pass it to the left output node.

6) “ID tester” component

User id

<"user id", b>F<a,b>
a==b

a

b
/\/ \/\ /

L<a,b>

true

"b"

Fig. 3.14 “ID tester”Component

“ID tester” component (Fig.3.14) judges whether the information sent from the

“server” is for the current “user” (either a sender or receiver). The component

compares the current “user id” received from user administration component and the

“user id” in the received pair of data elements from “Server” component. If they are

equal, the second element, “b”, is outputted through the left output node.

3. Receiver component

Receiver component (Fig.3.15) constitutes five sub-components: “Information for

receivers” component, “Response to the received money” component, “Response to

the received payment” component, “Return payment” component and “ID tester”

component.

 30

Return payment

ID test er

Response to the
received Money

Response to the
received Payment

Information for receivers

Inclusive Router2
Receiver

transaction id

"Reject money"

t ransaction id

"reject payment"

transaction id
Paypal account payment

amount
<CCnumber, amount>

pending transaction id

"logout"

"login"
"User id"

"User id"

<a,b>

"accept money"

"accept payment"

transaction id

"Reject money"

"accept money"

transact ion id

"reject payment"

"accept payment"

transaction id
Paypal account payment
amount
<CCnumber, amount>

Fig. 3.15 Receiver component

1) “Information for receivers” component

logout login user id

ICV pending transaction idpending transaction id

Fig. 3.16 “Information for receivers” component

This component (Fig.3.16) is a reuse of the “Information for senders” component.

Here it receives the “transaction id” of the all the received money and payments that

the receiver hasn’t accepted yet.

 31

2) “Response to the received money” Component

transaction id

ICV

ICV

Time
generator

t ransaction id

"accept "

"reject"

response("accept " or "reject")

time

logout login

Fig. 3.17 “Response to the received money/payment” component

“Response to the received money” component (Fig.3.17) allows a receiver to accept

or reject the received money from sender(s). This component receives data of

“transaction id” and a response, either “accept” or “reject”, from the receiver. When

there are input messages, the “time generator” automatically generates the current

time. All information is passed to the output nodes on the right.

3) “Response to the received payment” component

“Response to the received payment” component allows a receiver to accept or reject

the received money from sender(s). It is a reuse of the “Response to the received

money component”.

 32

4) “Return payment” Component

t ransaction id

Paypal account payment
"amount"

Credit Card payment
<CCnumber, amount>

transation id

Paypal account payment
"amount"

Credit Card payment
<CCnumber, amount>

ICV

ICV

ICV

loginlogout

Fig. 3.18 “Return payment” component

“Return to payment” component (Fig.3.18) allows the receiver to return the payment

that is owed to sender in a claimed transaction. (Because when a sender files a legal

claim, the receiver may not has enough money in his/her account or the transaction

amount is over $500 and the system only transfer $500, the receiver will owe the

money to the sender.) The component receives the input of “transaction id” and the

payment, either through PayPal account or credit card, from a receiver. This

information is then outputted to the “Sever” component.

5) “ID tester” component

“ID tester” component here has the same responsibility as introduced before.

 33

4. Server component

Server component (Fig.3.19) constitutes a “user DB” sub-component, an “E-mail

generator” sub-component, a “transaction DB” sub-component and six “check

validity” sub-component.

Del ete transacti on data
by key

Retreive transaction data
by key

Check
validity1

Edit transation data
by key

Edit transaction data
by key

Retreive transaction data
by key

Edit transaction data
by key

Retreive transaction data
by key

Retreive transation data
by k ey

Edit transation data
by key

variable

Retreive transaction data
by key

Retreive transaction data
by key

Retreive transaction data
by keyCheck

validity4

Check
validity4

Sever

User DB E-mail
generator

Sender's email

other info.
se

nd
er

's
em

ai
l

re
ce

iv
er

's
em

ai
l

CC
 n

um
be

r

am
ou

nt

o ther info.

transaction id

Check validity3

us
er

 a
cc

ou
nt

 a
m

ou
nt

.

Check validity5

Transaction DB

Check
validity2

user id

transaction id

ch
ec

k
m

em
be

rs
hi

p

variable

1

2

3

1

4

5

2

5

3

6

2

re
su

lt
"t

ru
e"

 o
r

"f
al

se
"

Registry::Email address (id)
Registry::password
Registry::other info.

Authentication::Email address
Authentication::password

Receiver's email address
Subject
Body

CC number

amount

uer's other information

Transaction DB

<sender's email(id), time,
receiver's email,
shipping address,

amount(Paypal account payment),
<CCnumber, amount>>

<user id,Transaction id>

Transaction id

transaction id

reason

<user id,"false">

<user id,"success"signal>

receiver id
pending transaction id for

 the transaction received

transaction id
response("accept" or "reject")

time

transaction id
response("accept" or "reject")

time

transaction id
Paypal account payment

amount
<CCnumber, amount>

Fig. 3.19 Server component

 34

1) “User DB” Component

“User DB” component (Fig.3.20) deals with user information checking and

processing.

Regist ry

Authenticate

Ret rieve User
information

id

other information

id

password

other info .

id

password
Retrieve User

Account
amount

Membership
tes ter

email address iduser's
account
amount

"true" or "false"
result

Fig. 3.20 “User DB” component

“User DB” constitutes five sub-components. One is “Registry”. It takes the data that

passes from the “registration” component and stores the data successfully only when

the information is valid and “id” (Email address) is unique. The second is the

“Authenticate”. It takes the data passing from the “Authenticate” component and

succeeds only when the “id” and “password” exist and match. The third is the

“Retrieve User information” which takes the input of user id, and passes other user

information to the output node. The “Retrieve user account amount” component

receives the “user id” and sends out the account amount of the user. The “membership

tester” component receives “email address” and searches for the member registered

with this email address. If it finds such members, it sends out the value “true” and

otherwise “false”.

2) “Email generator” component

When a sender sends money or payment to a receiver, the “Email generator”

component (Fig.3.21) has the responsibility of generating an email to the receiver to

notify him/her about this transaction.

 35

E-mail
generator

Sender's email

Sender's o ther info.
Receiver's email address

Subject

Body

sender's email receiver's email

Fig. 3.21 “Email generator” component

The “Email generator” receives the data of the “Sender’ email address” and

“receiver’s email address” from the two input nodes at the bottom, and outputs the

“Sender’s email address” through the left output node to the “User DB” component. It

receives the “Sender’s other information” from the “User DB” and outputs the

“receiver’s email address”, the “subject” and the “body” of the email through its three

output nodes on the right to the external Email system, which sends an email to notify

the receiver about the money transaction.

3) “Check validity1” Component

“Check validity1” component (Fig.3.22) has the responsibility to check whether the

money or payment sent by a sender meets the requirements of the protocol for doing

payments.

“Check validity1” component has one input nodes on the left, which receives the tuple

of data from the output nodes of “Send money” component or “Send payment”

component. “Check validity1” component checks the receiver’s status: 1) whether the

receiver is a member of the system. It sends out the “receiver’s email address” to the

“check membership” input node of “User DB” component, and receives the value

“true” if the receiver is a member of the system, otherwise “false”. 2) The validity of

the payment method which is done through the “check validity” sub-component”: If

the sender uses PayPal account to pay, the “check validity” sub-component (Fig.3.23)

checks whether his/her account has enough money by comparing the “user’s account

amount” and the “amount” that the user wants to send to a receiver.

 36

Fi<a,b,c,d ,e,f>

check valid ity sub-component

t ransaction id
generator

Constant W rit er
"pending"

Inclus ive
Rout er3

se
nd

er
's

em
ai

l

re
ce

iv
er

's
em

ai
l

CC
 n

um
be

r

am
ou

nt

sender's email(id)

time

receiver's email

shipping address

Paypal account payment
 amount

<CCnumber, amount>

transaction id

"pending"

sender id

time

receiver's email

receiver's st atus

shipping address

amount

<user id ,Transact ion id>

us
er

 a
cc

ou
nt

 a
m

ou
nt

.

L<a,b ,c,d,e,f>

Five<a,b ,c,d,e,f>

Fo<a,b,c,d ,e,f>

T<a,b ,c,d,e,f>

S<a,b ,c,d,e,f>

P
<a,b>

C
he

ck
 m

em
be

rs
hi

p

"t
ru

e"
 o

r "
fa

ls
e"

Fig. 3.22 “Check validity1” component

Paypal account payment
amount

<CCnumber, amount>

amount

CCnumber

amount

user account amount

/\ /\/ \/
false

R<a,b>

L<a,b>

a<b
a

b

Fig. 3.23 “Check validity” sub-component

If the sender uses credit card to pay, the credit card information (CCnumber and

amount) is sent out with the other two data: sender’s email address and receiver’s

email address for the use of: 1) Email generating, which is introduced in the “E-mail

generator” component; and 2) Credit Card validation: If a sender pays by a credit card,

 37

the sender’s email address is sent to the “User DB” component to retrieve the

“sender’s other information”. “Sender’s other information” and the credit card

information (CCnumber, amount”) are sent together to the external Credit Card

system to be validated.

a+b

Constant
Writer

initial value =1

FIFO1

in itial value = 0

 a

 b

transaction id

Fig. 3.24 “Transaction id generator” component

The “Transaction id generator” component (Fig.3.24) automatically generates the

transaction id of the current transaction.

 “Check validity1” component’s eight output nodes on the right successfully pass the

data to the “transaction DB” component when all synchronous channels succeed and

meanwhile, the “P <a,b>” transforms the “user id” and “transaction id” of this

transaction to a pair of data elements. The pair of data elements is sent to the sender

component.

4). “Check validity2” component

“Check validity2” component (Fig.3.25) checks whether a sender can cancel the

current transaction with the inputted “transaction id”.

 38

/\/ \/\ /
pending

get st atus

s tatus

Transaction id

delete transaction

Fig. 3.25 “Check validity2” component

“Check validity2” component receives “transaction id” from “cancel sending”

component and sends it out to the “transaction DB” component to retrieve the status

of this transaction. A filter tests whether the status is “pending”. If it is a pending

transaction, the “transaction id” is output to the “transaction DB” component.

5) “Check validity3” Component

“Check validity3” component (Fig.3.26) has the responsibility of checking the

validity of a sender’s claim payment order. It constitutes two sub-components: “check

transaction data” component and “justify” component.

“Check validity3” component receives data from the “Claim payment” component.

“Transaction id” is sent out through the upper output node to the “transaction DB”

component to retrieve the data of “receiver’s account amount”, “the sender’s email

address (sender’s id) and “transaction information”. The data of “receiver’s account

amount” and “the sender’s email address” is passed to the two “FIFO1s”. The data of

“transaction information” is passed to the “check transaction data” sub-component to

verify whether this transaction data is validated.

 39

transaction id

s t at us "claimed"

jus t ify

FIFO1

FIFO1

re
ce

iv
er

's
ac

co
un

t a
m

ou
nt

a

b
a<b

Constent
Writer 500

/\/\/False

/\/\/
True

Cons tent
W riter 500

Cons tant
W rit er

"limited"

amount to be t rans ferred

a

b
a>b

true

Constant Writer
"claimed"

/\/\/
True

false/\/\/

transaction amount

reason

"false"

tr
an

sa
ct

io
n

id
t ransaction id

amount

au thority

\/\/ \

check
transact ion

data

tr
an

sa
ct

io
n

in
fo

.

" success" s ignal

se
nd

er
's

em
ai

l a
dd

re
ss

(i
d)

FI
FO

1

P
<a,b>

P
<a,b>

<user id ,"false">

<user id ,"success"s ignal>

FI
FO

1

 Fig. 3.26 “Check validity3” component

 “Check transaction data” component

The “check transaction data” component (Fig 3.27) receives the information from the

node on the upper side. The four boxes retrieve the first, second, third and the last

element from the tuple of five data elements respectively. The transaction “amount”,

retrieved by the fifth box, is passed to the outside “justify” component if 1) the status

of the payment is “accepted”; 2) the shipping address is “legal”; 3) the reception time

is within 30 days ahead of now, which is done by the “conditioner1” sub-component

(Fig.3.28); and 4) the number of existing claim time is less than 2, which is done by

the “conditioner2” sub-component (Fig.3.29).

 40

<s tatus , shipping address ,
reception t ime, amount ,
number of exis ting claim time>

Fi
<a

,b
,c

,d
,e

>
/\/

\/\
/

"accepted"

S<
a,

b,
c,

d,
e>

/\/\/\/

le
ga

l s
hi

pp
in

g
ad

dr
es

s

T
<a

,b
,c

,d
,e

>

conditioner
1

L
<a

,b
,c

,d
,e

>

conditioner
2

Fo
<a

,b
,c

,d
,e

>

transacion amount

Fig. 3.27 “Check transaction data” component

"reception t ime"

Time
generator

a

b
a<b

a

b
a+b Const ant

writ er 30

/\ /\/ \/

"t rue"

t rue

Fig. 3.28 “Conditioner1” component

a<b
a

b
Const ant
writer 2

t rue

number of exis ing claim t ime

"true"

/\ /\/ \/

Fig. 3.29 “Conditioner2” component

 41

 “Justify” component

Jus tifytransaction id
reason

trasaction amount
"ture"/"false"

Fig. 3.30 “Justify” component

The “justify” component (Fig.3.30) receives data of “transaction id”, “claim reason”

and “transaction amount” and justifies whether the claim is legal. Actually, there may

be human work involved. When the user files a claim, it takes some time to decide

whether it is legal or not, and the user will be notified afterwards. If the “justify”

component judges this claim to be illegal, the value “false” is outputted, otherwise the

value “true” is outputted.

If the “justify” component outputs the value “true”, the “check validity3” component

checks whether the amount of the transaction is over $500. If it is over $500, “the

amount to be transferred” (from receiver’s account to the sender’s account) is $500.

The receiver’s authority is “limited” (With the value “limited”, PayPal system blocks

the receiver’s account until the receiver pays back the rest of money to the receiver).

If the amount of the transaction is no more than $500, the data of the “receiver

account amount” of this transaction in the “FIFO1” is passed to the “a>b” component

to be compared with the “amount” of this transaction. If the “amount” of this

transaction is larger than the “receiver’s account amount”, the amount to be

transferred is the “amount” of the transaction, and the receiver’s authority is “limited”

(PayPal system blocks the receiver’s account until the receiver pays the proper

amount to PayPal).Otherwise, “check validity3” does the same except that the

receiver’s authority will not be limited.

The four output nodes output the information of a legal claimed transaction to the

“transaction DB” component.

 42

If the claim is successfully filed, a “success” signal is passed with the “sender’s id”

together to a “P <a, b>” to be transformed to a pair of data elements, which is sent out

to the “claim payment” component. Otherwise, a pair of elements of “false” value and

“sender’s id” is sent out to the “claim payment” component.

6) “Check validity4” component

“Check validity4” component (Fig.3.31) checks the validity of the receiver’s response

(accept or reject) to the received money or payment.

transaction id

s tatus/ \/\/ \/
pending

condit ioner1

transact ion id t ransaction id

response("accept " or "reject")

time

t ime when transat ion is placed

response("accept" or "reject")

time

 Fig. 3.31 “Check validity4” component

“Check validity4” receives data from “response to the received money/payment”

component. It sends “transaction id” to the “transaction DB” component and retrieves

the “status” and the “time when transaction is placed” of the current transaction. If the

status of this transaction is “pending”, and the time when the transaction is placed is

within 30 days ahead of the time when the activities done by the users (which is done

by the “conditioner1”), the data of “transaction id”, response (“accept” or “reject”)

and the time when the activities done by the users is sent out to the “transaction DB”

component.

 43

7) “Check validity5” Component

“Check validity5” component (Fig.3.32) checks validity of a receiver’s returned

payment.

“Check validity5” component receives the data from the “return payment” component

and checks the validity of the payment. This is similar to the validity checking when

the user sends money or payment. The “transaction id” is passed out to the

“transaction DB” and “User DB” component, and the data of the “sender’s id” and

“user account information” of this transaction is retrieved and sent to the “check

validity sub-component”, which is introduced before. If the payment is validated, the

data of “transaction id” and “amount of the payment” is outputted to the “transaction

DB” component.

check validity sub-component

transaction id

Paypal account payment
amount

<CCnumber, amount>

tr
an

sa
ct

io
n

id

us
er

 a
cc

ou
nt

 a
m

ou
nt

.

C
C

nu
m

be
r

am
ou

nt

transact ion id

amount

Fig. 3.32 “Check validity5” component

16. “Transaction DB” Component

“Transaction DB” component (Fig.3.33) deals with all transaction data.

“Transaction DB” component has some sub-components, “retrieve transaction data by

key” component, “store transaction data by key” component, “delete transaction data

by key” component and “edit transaction data by key” component. Each component

has one or more component instances. We mark them each with a figure.

 44

“Store transaction data by key” component instance receives data from “Check

validity1” component and stores transaction data to the database with the key

“transaction id”.

“Retrieve transaction data by key1” component instance receives the key of “sender

id” (email address), and retrieves the pending “transaction id” of the all sent

transactions by the sender. The pending “transaction id” is passed through “ID tester”

component to the “information for senders” component.

“Retrieve transaction data by key2” component instance receives the key of

“transaction id” from the “check validity2” component and retrieves the “status” of

the current transaction.

“Delete transaction data by key” component instance receives data from “cancel

sending” component and delete the data of pending transaction by the key of

“transaction id”.

“Retrieve transaction data by key3” component instance receives key of “transaction

id” and retrieves the data of the sender’s email address (sender id) of this transaction,

the amount of this transaction’s receiver’s account and the other information of this

transaction. This data is passed to the “check validity3” component.

“Edit data by key1” component instance receives the data from “check validity3”

component and edit the database with the key “transaction id”.

“Retrieve transaction data by key4” component instance receives the key of “receiver

id” and retrieves data of the pending “transaction id” of all received transactions by

the receiver. The pending “transaction id” is passed through “ID tester” component to

the “information for receivers” component.

 45

“Retrieve transaction data by key5” component instance receives the key of

“transaction id”, and retrieves the data of the “status” and the “time when transaction

is placed”. The retrieved data is passed to the “check validity4” component.

“Edit transaction data by key2” component instance receives the data outputted from

“check validity 4” component, and edit the transaction data with the key of

“transaction id”.

“Retrieve transaction data by key6” component instance receives the “transaction id”

from “check validity5” component and retrieves the “sender’s id” and “receiver’s id”

of the transaction with the key “transaction id”.

“Edit transaction data by key3” component instance receives the data of “payback

amount” from “check validity5” component, and edit the transaction data with the key

of “transaction id”.

 46

Store transaction data
by key

transaction id

"pending"

sender id
time

receiver's email

receiver s tatus
shipping address

amount

Retreive transaction data
by key

k ey

sender id

<s tatus , shipping address,
reception time, amount,

number of exist ing claim t ime>

Delete transaction data
by key

transaction id

Edit transaction data
by key

t ransaction id

s tatus

amount

aut hority

key

Retreive transaction data
by key

t ransaction id

receiver's account amount

pending transact ion id for
 the transaction sent

Retreive transaction data
by key

1

3

5

1

Edit transation data
by key

transact ion id

s tatus

t ime

2

Retreive transation data
by k ey

6transact ion id

sender's id

receiver's id.

Edit transation data
by key

3transact ion id

payback amount

Retreive transaction data
by key

transaction id

s tatus

sender's email address

Retreive transaction data
by key

receiver id

pending transact ion id for
 the transaction received

transaction id
s tatus

time when t ransaction is p laced

Retreive transaction data
by key

5

Edit transation data
by key

transact ion id

s tatus

t ime

2

transaction id
s tatus

time when t ransaction is p laced

2

4

Fig. 3.33 “Transaction DB” component

 47

3.4.4 Online payment circuit

Claim Payment

Return payment

User administration

ID tester

Information for senders

Receiver's email address

ID t est er

User

Regis try::Email address (id)

Regis try::password

Regis try::other info.

Authentication::Email add ress

Authent ication::password

va
ria

bl
e

Send Money

receiver's email

(using paypal
account)

<CCnumber, amount>

amount

Cancel Sending

claim reason

"failure"

transaction id

Registration

Authentication

Send Payment

receiver's email

(using paypal
account)amount

shipping address

transaction id

t ransaction id

transaction id

reason

Response to the
received Money

Response to the
received Payment

transaction id

"accept money"

"Reject money"

t ransaction id

"accept payment"

"reject payment"

<CCnumber, amount>

logout

Transaction id

Transaction id

transaction id
Paypal account payment

amount
<CCnumber, amount>

Inclusive Router

"success"

pending t ransaction id lis t

Information for receiverspending transact ion id

ID tes ter

ID t est er

ID tes ter

ID tes ter

Delete trans action data
by key

Retreive transaction data
by key

Check validity1

Edit transation data
by key

Edit transaction data
by key

Retreive transaction data
by key

Edit transaction data
by key

Store transaction data
by key

Retreive transaction data
by key

Retreive transation data
by key

Edit transation data
by key

variable

Retreive transaction data
by key

Retreive trans action data
by key

Retreive trans action data
by key

Email SystemSubject

Body

Credit Card System
CC number

amount

uer's other information

Check validity4

Check validity4

Sever

User DB
E-mail

generator

Sender's email

other info.

se
nd

er
's

em
ai

l
re

ce
iv

er
's

em
ai

l
C

C
 n

um
be

r
am

ou
nt

o ther info.

transact ion id

Check validity3

us
er

 a
cc

ou
nt

 a
m

ou
nt

.

Check validity5

Transaction DB

Check validity2

user id

t ransaction id

user id

ch
ec

k
m

em
be

rs
hi

p

variable

1

2

3

1

4

5

2

5

3

6

2

user id

r e
su

lt
 "

tr
ue

"
or

 "
fa

ls
e"

Inclusive Router2

Sender

Inclus ive Router2

Receiver

"P"

Fig. 3.34 Online payment circuit

Figure 3.28 shows the integrated Reo circuit of the online payment process

specification. A user can use the input nodes of the “User” component to authenticate

him/her, send money or payment, and receive the money or payment. The User

Authentication, Sender and Receiver sub-components take the corresponding

responsibilities to these three user’s main activities. Within each sub-component,

 48

there are a series of sub-sub-components to perform responsibilities corresponding to

the business activities identified in the use case diagram, e.g. “send money” and “send

payment” components. The “Server” component contains a set of sub-components,

which deal with detailed data checking and processing and make the money transfer

possible.

This specification supports multiple “Users” dynamically entering the “Server”.

Multiple “Users” can attach to the “Server” through the nodes and exclusive routers

designated in the “P” region. Through the five “Exclusive Routers” on the “Server”

interface, the “Server” can send messages to multiple “Users”.

In this online payment circuit, all the implement components are represented in white

blocks. For the dark ones, such as the database components and Email generator

components, we only define their functions and interfaces.

 49

Chapter 4
Analysis of Reo as A Business Process
Modeling Language

In this chapter, we analyze the effectiveness of Reo in modeling e-business process.

To make such analysis, the first section gives the requirements identified in

[24][25][26][27] for a business process modeling language, with respect to the

problems of existing business process modeling languages summarized in chapter 1.

According to these requirements, in the second section we evaluate Reo based on the

case study. In the third section, we use a table to summarize our evaluation of Reo.

4.1 Requirements of A Business Process Modeling

Language

To effectively model a business process, we consider four categories of requirements

for a business process modeling language:

1) Language expressiveness

2) Visual notation and language semantics

3) Analysis and reasoning

4) Simulation and execution

4.1.1 Language expressiveness

Language expressiveness refers to the requirements what the language can model.

Using a business process modeling language to model a business process, the business

process model must be capable of providing various information elements to its users.

Such elements include, for example, what activities constitute the process, who

performs these activities, when and where the activities are performed, how and why

they are executed, and what data elements they manipulate[24]. To provide such

 50

information, a business process modeling language should be capable of representing

one or more of the following “process perspectives” [25]:

1. The functional perspective represents what process elements (activities) are being

performed.

2. The behavioral perspective represents when activities are performed (for example,

sequencing) as well as aspects of how they are performed through feedback loops,

iteration, decision-making conditions, entry and exit criteria, and so on.

3. The organizational perspective represents where and by whom activities are

performed, the physical communication mechanisms used to transfer entities, and the

physical media and locations used to store entities.

4. The informational perspective represents the informational entities (data) produced

or manipulated by a process and their interrelationships.

A business process modeling language may have a set of concepts with their

properties and relationships to express information in each process perspective. The

integration of four process perspectives points toward the need of incorporating all

business process elements into the requirements of e-business system[24]: “functional

modeling to document the detail of individual tasks, behavioral modeling to identify

how individual tasks interact with each other to produce the whole process,

organizational modeling to examine user roles within the process, and informational

modeling to document the details of information systems that support process

execution”.

4.1.2 Visual notation and language semantics

Visual notation and language semantics refer to requirements how the language can

represent the business process being modeled.

Visual notation provides visual shortcuts about the constructs of the language so that

designers can work easily; Semantics support the expressiveness (the meaning) of the

 51

visual notation. Only a language with formal semantics defines unambiguously what a

model expresses in this language means. Therefore [26] :

1) Visual notations should be supported by formal semantics.

2) Visual notation discrimination should be easy. It should be easy to distinguish

which of the notation in a model any graphical mark is part of;

3) The use of visual notations should be uniform; i.e. a visual notation should not

represent one concept in one context and another one in a different context; neither

should different visual notations be used for the same concept in different contexts if

there is no good reason for this;

4) Visual notations composition should be made in an easy and aesthetically pleasing

way.

Furthermore, representation depends on the granularity of a business process model.

Granularity represents the level of decomposition of the modeler’s vision. Using a

business process modeling language, the granularity can be considered via the number

of necessary diagrams which address different perspectives of a business process to

reflect a complete vision of the business process [24]. Therefore,

5) the consistency of different diagrams should be ensured.

“Granularity can also be reflected by the levels of description of a business process

diagram.”[24] For instance, an abstract diagram can be progressively detailed in more

operational ones according to the modeling need. In this way, a business process is

specified in a hierarchical structure with each level properly abstracted. The higher

level diagrams are the means to get rapid and general idea of the functions of the

business process. The detailed one permits the reflection of all crucial details about

how the business process is working, e.g., within the context of involved organization.

In this case, 6) the integration of the business process model should be guaranteed. It

should be easy to identify the relations between the low level description and the high

level description, and allows tracking between abstract description and more detailed

description [24].

 52

4.1.3 Analysis and reasoning

Analysis and reasoning refer to the requirement that techniques and theories for

analysis of and reasoning about models expressed in a language allow formal

verification of models so that [28]:

1. The process of making a (more) formal model may reveal errors and ambiguities at

an early stage.

2. Formal proofs may be available.

3. The remaining (or unprovable) rules may be translated into executable constraints

in some language.

4.1.4 Simulation and execution

Simulation allows for testing of a business process model by executing it in a

simulator (toy environment). Execution allows for using (a part of) a model to

automate (a parts of) a business process in the computing environment of an

organization. Therefore, to achieve business process simulation and execution, a

language should be supported by:

1. Simulation tool(s);

2. Automation tool(s).

4.2 Evaluating Reo

In chapter 3, we model an online payment process as our case study. Using the

requirements as criteria, we evaluate how Reo language performs in this case study.

4.2.1 Language expressiveness

Reo is a connector-oriented language. Component and connector are the basic

concepts that we use to model the PayPal’s online payment process, where connectors

represent encapsulated Reo circuits:

 53

 The high level components are used to represent the user roles in the business

protocol.

 The low level components are mapped from the business activities (identified in

the use case diagram) performed by user roles.

 The connectors are used to represent the relations of the user roles and business

activities through their coordination among components on different levels of

abstraction.

 The data carried by a connector reflects the information flow throughout the

business process.

We observe that:

1. The functional perspective is mainly reflected by the low level components. The

name of a component hints what the activity is. For example, the component

named “send money” responds to the activity that a sender sends money to a

receiver for non-purchase purpose; the component named “send payment”

responds to another activity that a sender sends money to a receiver to buy some

product(s); and a series of “check validity” components are corresponding to the

checking activities in the online payment process. However, we think the

functional perspective supported by Reo is at a low level. Reo lacks high level

support to directly capture the functionality of the business process, for which we

use the use case diagram of UML.

2. The behavioral perspective is well supported through the Reo connectors among

components. This support lies in the rich expressiveness of Reo connectors.

Through primitive channels and their dynamical composition, various kinds of the

relationships among business activities can be modeled. For example, in our

modeling, the “authentication” component’s output “login” is transferred by

connectors to one of the necessary inputs of some other components, such as

“send money” and “send payment” component etc.. This way, the working of

“authentication” component is the prerequisite of other components: only when

 54

authenticate activity is performed can other activities (e.g. send money, send

payment) be done. One can refer to [34] to find complex connectors, such as

“Sequencer”, “Or selector”, to model more complex rules in a business process.

3. As we focus on the automated part of the online payment process, the process is

executed by e-business system., In this case, we do not bring in organizational

issues in our modeling, such as different department participants, physical places

where business activities happen etc.. Reo can not represent organizational

perspective. We use the component naming convention to provide connectors for

the different stake holders in the PayPal process.

4. The informational perspective is poorly supported by the initial set of primitives in

Reo. To support more elaborate data processing we needed to introduce basic

components, e.g., Sum(+) and Less(<). In the online payment circuit, every

component has its inputs and outputs, so that one can observe the data entities

consumed and produced in the process. The connectors transfer the data from

outputs of one or more component into the inputs of some other component(s).

The relationships of data flows are clearly represented.

Using components and connectors, a Reo circuit represents all information elements

of the business process being modeled in one diagram. The integration of functional,

behavioral and informational perspectives as well as the user roles of the process

enhances the transformation from business process modeling to the e-business system

implementation.

4.2.2 Visual notation and language semantics

With respect to the visual notation and language semantics of the business process

model, we make the following observations:

 55

 Reo offers visual notation for components, connector encapsulation, channels,

and nodes, connecting the nodes. Channels and nodes have clear formal

semantics, which reduces the ambiguity of the process model. The visual

notations for component and connector encapsulation that Reo provides facilitate

top-down decomposition and refinement.

 Notation discrimination is clear. Using connector encapsulation properly, a

designer can reduce the size of the circuit specification.

 Notation composition in Reo is easy and clear. Rules for channel composition to

all channels and component instances in the circuit are based on Reo’s formal

algebraic semantics.

 Using Reo’s connector encapsulation, the granularity of the process model is

achieved by the levels of abstraction in a top-down design manner. The high level

structure specifies user roles and their relations identified in the business protocol

through high level components and connectors, such as the user (send and

receiver) and server. The low level description specifies detailed activities

performed by each user role and their relations through low level components and

connectors. From high level structure to the low level specification, information

is progressively conveyed in detail.

 The consistency between different levels of the specification is ensured through

the directly mapping from high level components to their sub-components on the

lower level. This also attributes to Reo’s formal semantics and component

encapsulation, which reduce ambiguity in defining components and their

decomposition. This way, the relations among different levels of components are

identifiable. The relationships among different levels of specification are clear

and traceable.

 56

This kind of granularity enabled by Reo leads to the following observations:

1. The functional, behavioral and informational process perspectives as well as user

roles are integrated in one diagram. This allows a business process modeler to

have an integrated view of the business process, which overcomes the traceability

and inconsistency problems among separate diagrams, brought by some software

modeling languages when used to model business process, such as UML. As such

Reo favors integrated views than separate ones.

2. From high level modeling to the low level specification with more crucial

operational details conveyed, we can follow a top-down approach to implement

the business protocol using Reo. This is further facilitated by the exogenous

coordination of Reo connectors, which makes the single component

implementation independent from each other.

4.2.3 Analysis and reasoning

1 Reo has formal semantics for the business process modeling. This allows for

formal verification of Reo designs.

2 In the sense of reliability of the business process model, using the synchronous

primitives of the Reo language, designers can enforce an explicit business

scenario without the need to design additional fortification code. This way, any

intermediate and incomplete results are avoided [29].

4.2.4 Simulation and execution

1. To achieve business process model simulation, Reo is supported by a simulator

tool that can implement Reo operational semantics to run and test protocol

prototypes locally. [22] The simulator is currently in its final stage of

development.

 57

2. To achieve business process model execution Reo is supported by:

 A distributed coordination middleware (under development), which can

implement full Reo operational semantics to run Reo circuit in the distributed

environment.

 A model checker tool (under development) can check the properties of the

designed system.

4.3 Summary

Table 4.1 shows the summary of our evaluation of Reo. We use zero to 3 stars to

score how Reo meets the requirements in each category. No stars means Reo does not

meet the requirement, 3 stars mean Reo completely meets the requirement.

Category Language Expressiveness

Requirements
Functional
perspective

Behavioral
perspective

Organizational
perspective

Informational
perspective

Score ★★ ★★★ ★

Category Visual notation and Language semantics

Granularity
Requirements

Formal
semantics

Notation
discrimination

Uniform
use of

Notation

Notation
composition Diagrams

consistency
Views

integration

Score ★★★ ★★★ ★★★ ★★★ ★★★ ★★

Category Analysis and Reasoning Simulation and Execution

Requirements
Techniques and Theories allow

formal verification of model
Simulation tool(s) Execution tool(s)

Score ★★★ ★★ ★

Table 4.1 Summary of evalution

 58

Chapter 5
Conclusions

5.1 Summary of findings

In this thesis, we assess the fitness of the Reo coordiantion language as a business

process modeling language. We presented a specification of PayPal’s online payment

business process model using Reo as a case study. We use the requirements for a

business process modeling language identified in [24][25][26][27] as evaluation

criteria in the context of the case study. According to these criteria, we conclude that:

1. Reo is good at representing the behavior perspective of a business process.

However, it lacks language expressiveness to represent the other three process

perspectives: The functional perspective is supported at a low level. Reo lacks

high level support to directly capture the functionality of the business process; The

organizational perspective is not supported by Reo; The informational perspective

is poorly supported by the initial set of primitives in Reo which only work with

data elements with simple structure;

2. Reo’s visual notation, backed by a correspondence to its formal semantics,

recduces ambiguity in modeing business processes. Reo’s strict compositionality,

also presenting its visual notation, helps to provide an integrated view for large

business process models. This overcomes exsiting problems of views seperation

and inconsistency among separate diagrams in e-business process modeling;

3. Reo offers techiniques and theories to make formal verification of business

process models;

4. Reo has the ability to support business process model simulation and execution.

Simulation and execution tools are under development.

 59

5.2 Expectations for future work

Based on our modeling experience and evaluation of Reo, in its future development,

we expect Reo to have an extension that can provide high level support of different

process perspectives, which allows representing functional, behavioral, organizational

and informational elements of a business process in a more intuitive way. More

vocabularies are needed to represent such information, especially the organizational

and informational elements, and to facilitate the levels of abstraction in a business

process model. In addition, we expect an efficient modeling tool to be developed that

can facilitate generic drawing, diagram editing and to guide the modelers through the

design and implementation of automation systems for business processes.

Furthermore, we expect Reo’s simulation and execution tools to be put into practice,

so that an e-business process model can be tested using simulation, and automated

using a middleware that can directly run Reo models in a distributed environment.

5.3 Personal experience

In this thesis work, one difficultiy was making the requirement analysis, which

includes the business protocol definition and use case diagram making. To presicely

grasp the rules of the business process, I iterated over the original description of the

business protocol to achieve an accurate and useful description (for modeling) in plain

English. I then spent a lot of time to learn how to make use case diagram to capture

the functionalities of the business protocol for the guidance of the design work. This

experience also taught me the importance of a clear requirement analysis in a practical

project.

Another difficulty was the design of a high level structure of the process model. On

the one hand, the high level structure should be cosistent with the user requirements.

On the other hand, it should facilitate the low level design and implementation of the

 60

process model. To meet these needs, the high level structure was adjusted to the

current “User-Server” design: the “user” component fulfills the high level user

requirements and the “server” component reacts to the “user” component to perform

operations of data checking and processing to effectively support and implement all

individual user scenarios. This taught me a lesson on how to design a proper

specification model.

Finally, the process of writing this thesis taught me a lot of the techinical writing, in

which every word should be accurate in its meaning and picked carefully to enhance

the understanding of the audience.

 61

References

[1]. Rosemarie Graham, Development Meets Business Process Modeling. March,

2005

[2]. John Moore This year's model: Business process, April 19, 2004

[3]. Hafedh Mili, Guitta Bou Jaoude, Éric Lefebvre, Guy Tremblay, Alex Petrenko

Laboratoire de Recherche sur les Technologies du Commerce Électronique,

Business Process Modeling Languages: Sorting Through the Alphabet Soup

[4]. B. Hnatkowska, Z. Huzar, J. Magott, "Consistency Checking in UML Models,"

www.fit.vutbr.cz/events/ism/2001/pdf/hnatkowska.pdf

[5]. Dave Clarke, David Costa, Farhad Arbab, Connector Colouring I:Synchronization

and Context Depending, FOCLaSA, August 5th.

[6]. Arbab, F., Abstract Behavior Types: A Foundation Model for Components and

Their Composition, In: Proceedings of the First International Symposium on

Formal Methods for Components and Objects (FMCO 2002), LNCS 2852, 2003,

pp.33-70.

[7]. Arbab, F., Rutten, J.J.M.M, A Coinductive Calculus of Component Connectors, In:

Proceedings of 16th International Workshop on Algebraic Development

Techniques (WADT 2002), Lecture Notes in Computer Science 2755, Springer,

2003, pp. 35-56.

[8]. Rutten, J.J.M.M., Kwiatkowska, M., Gethin, N., Parker., D., Chapter 5:

Component Connectors, In Mathematical Techniques for analysing concurrent

and probabilistic systems, CRM Monograph series Volume 23, American

Mathematical Society, 2004, p. 215.

[9]. Arbab, F., Baier, C., Rutten, J., Sirjani, M., Modeling Component Connectors in

Reo by Constraint Automata, Electronic Notes in Theoretical Computer Science,

vol. 97, No. 22, July, 2004, pp. 25-46.

[10]. Curtis, B., Kellner, M.I. and Over, J.: “Process modeling”, Communications

ACM, 35, (9), pp. 75- 90, 1992

 62

[11]. Glossary of IT Investment Terms,

http://www.gao.gov/policy/itguide/glossary.htm

[12]. M.A. Ould, Business Processes: Modelling and Analysis for Re-engineering and

Improvement, 1995, John Wiley & Sons.

[13]. Len Bass, Paul Clements, Rick Kazman, Software Architecture in Practice,

Second Edition

[14]. Philippe Kruchten, Architectural Blueprints—The “4+1” View Model of

Software Architecture

[15]. Valhie Issarny, Titos Saridakis, Apostolos Zarras, Multi-View Description of

Software Architectures

[16]. Meyer Tanuan, Software Architecture in the Business Software Domain: The

Descartes Experience

[17]. Carmichael I, Txerpos, V., and Holt, R.C., Design Maintenance: Unexpected

Architectural Interactions, Proc. International Conference on Software

Maintenance, ICSM 95.

[18]. Murphy, G.C, Notkin, D., and Sullivan, K., Software Reflexion Models:

Bridging the Gap between Source and High-Level Models, Proceedings of the

Third ACM Symposium on the Foundations of Software Engineering (FSE 95)

[19]. Alexander Ran, Architectural Structures and Views

[20]. Business Process Modeling Language, Business Process Management Institute,

January 24, 2003, 96 pages

[21]. Tony Andrews, Francisco Curbera, Hitesh Dholakia, Yaron Goland, Johannes

Klein, Frank Leymann, Kevin Liu, Dieter Roller, Doug Smith, Satish Thatte,

Aivana Trickovic, Sanjiva Weerawarana, Business Process Execution Language

for Web Services (BPEL4WS) version 1.1 , 5 May 2003

[22]. Zlatko Zlatev, Nikolay Diakov, Stanislav Pokraev, Construction of Negotiation

Protocols for E-Commerce Applications

[23]. Farhad Arbab and Farhad Mavaddat, Coordination through Channel

Composition, page 3

 63

[24]. Georgem.Giaglis, A Taxonomy of Business Process Modeling and Information

Systems Modeling Techniques

[25]. Curtis, W., Kellner, M. I., and Over, J., “Process Modeling,” Communications of

the ACM, Vol. 35, No. 9, pp. 75–90 (1992).

[26]. John Krogstie, Evaluating UML: A Practical Application of a Framework for

the Understanding of Quality in Requirements Specifications and Conceptual

Modeling

[27]. Feriel Daoudi, Selmin Nurcan, A framework to evaluate methods’ capacity to

design flexible business processes

[28]. Wieringa, R. (1998), A Survey of Structured and Object-Oriented Software

Specification Methods and Techniques. ACM Computing Surveys 30 (4)

December, 459-527.

[29]. Nikolay Diakov and Farhad Arbab, Adaptation of Software Entities for

Synchronous Exogenous Coordination: An Initial Approach

[30]. Scholz-Reiter, B. and Stickel, E., (eds.), Business Process Modelling.

Springer-Verlag, Berlin (1996).

[31]. Davenport, T. H. and Short, J. E., “The New Industrial Engineering: Information

Technology and Business Process Redesign,” Sloan Management Review, Vol. 31,

No. 4 (Summer 1990), pp. 11–27.

[32]. Farhad Arbab, Reo: A Channel-based Coordination Model for Component

Composition, Mathematical Structures in Computer Science, Cambridge

University Press, Vol.14, No.3, pp. 329-366.

[33]. http://www.sungoldsoap.com/paypal.html

[34]. Dave Clarke and David Costa, A Compendium of Reo Circuits, work in

progress, CWI, 2005

[35]. N.K. Diakov, Z.V. Zlatev, S.V. Pokraev, Composition of negotiation protocols

for E-commerce applications, January,2005

[36]. Dave Burchell, David Nielsen, Shannon Sofield, PayPal Hacks, Publisher:

O’Reilly, September, 2004

 64

Appendix

List of Figures

FIG. 2.1 EXAMPLES OF REO CHANNELS ...11
FIG. 2.2 EXAMPLES OF REO CONNECTORS ...12
FIG. 2.3 SEQUENCER..12
FIG. 2.4 INHIBITOR ..14
FIG. 3.1USE CASE DIAGRAM ...18
FIG. 3.2 HIGH LEVEL STRUCTURE ..20
FIG. 3.3 BASIC COMPONENTS...21
FIG. 3.4 ENCAPSULTATED CONNECTORS ...22
FIG. 3.5 USER ADMINISTRATION COMPONENT ...23
FIG. 3.6 REGISTRATION COMPONENT...24
FIG. 3.7 AUTHENTICATION COMPONENT..24
FIG. 3.8 SENDER COMPONENT ...25
FIG. 3.9 “SEND MONEY” COMPONENT ...26
FIG. 3.10 “SEND PAYMENT” COMPONENT..27
FIG. 3.11 “INFORMATION FOR SENDERS” COMPONENT ..27
FIG. 3.12 “CANCEL SENDING” COMPONENT...28
FIG. 3.13 “CLAIM PAYMENT” COMPONENT..28
FIG. 3.14 “ID TESTER”COMPONENT ..29
FIG. 3.15 RECEIVER COMPONENT ..30
FIG. 3.16 “INFORMATION FOR RECEIVERS” COMPONENT ...30
FIG. 3.17 “RESPONSE TO THE RECEIVED MONEY/PAYMENT” COMPONENT...31
FIG. 3.18 “RETURN PAYMENT” COMPONENT ...32
FIG. 3.19 SERVER COMPONENT..33
FIG. 3.20 “USER DB” COMPONENT..34
FIG. 3.21 “EMAIL GENERATOR” COMPONENT ..35
FIG. 3.23 “CHECK VALIDITY” SUB-COMPONENT..36
FIG. 3.24 “TRANSACTION ID GENERATOR” COMPONENT..37
FIG. 3.25 “CHECK VALIDITY2” COMPONENT ...38
FIG. 3.26 “CHECK VALIDITY3” COMPONENT ...39
FIG. 3.27 “CHECK TRANSACTION DATA” COMPONENT...40
FIG. 3.28 “CONDITIONER1” COMPONENT ..40
FIG. 3.29 “CONDITIONER2” COMPONENT ..40
FIG. 3.30 “JUSTIFY” COMPONENT ..41
FIG. 3.31 “CHECK VALIDITY4” COMPONENT ...42
FIG. 3.32 “CHECK VALIDITY5” COMPONENT ...43
FIG. 3.33 “TRANSACTION DB” COMPONENT ...46
FIG. 3.34 ONLINE PAYMENT CIRCUIT...47

 65

List of Tables

TABLE 2.1 REO OPERATIONS ...14
TABLE 4.1 SUMMARY OF EVALUTION..57

	thesis1_Min.pdf
	thesis2_Min.pdf
	thesis3_Min.pdf

