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The unified coordination language UnCL

ABSTRACT
In this paper we show how to use a (subset) of UML as an Unified Coordination Language
(UnCL) that is based on a separation of concerns between coordination and computation. As
such UnCL provides a general language for the coordination of, in particular, object-oriented
applications. The basic idea of UnCL is to use UML as a formalism to specify the `glue code' in
terms of state-machines which are added to the classes of the underlying applications. These
state-machines describe the coordination of the objects of the underlying applications in terms
of sending and receiving events. We introduce a formal semantics of UnCL and discuss its
implementation using a new tool for the transformation of XML data which is based on a new
Rule Markup Language (RML). Finally, we discuss the incorporation of a more high-level
coordination mechanism called MoCha, an exogenous coordination framework for (distributed)
communication and collaboration using mobile channels as its medium.
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Abstract. In this paper we show how to use a (subset) of UML as an
Unified Coordination Language (UnCL) that is based on a separation of
concerns between coordination and computation. As such UnCL provides
a general language for the coordination of, in particular, object-oriented
applications. The basic idea of UnCL is to use UML as a formalism to
specify the ‘glue code’ in terms of state-machines which are added to
the classes of the underlying applications. These state-machines describe
the coordination of the objects of the underlying applications in terms
of sending and receiving events.
We introduce a formal semantics of UnCL and discuss its implementa-
tion using a new tool for the transformation of XML data which is based
on a new Rule Markup Language (RML). Finally, we discuss the incor-
poration of a more high-level coordination mechanism called MoCha, an
exogenous coordination framework for (distributed) communication and
collaboration using mobile channels as its medium.

1 Introduction

In this paper we introduce a subset of UML called the Unified Coordination
Language (UnCL) as an unified model for exogenous coordination. The main
purpose of UnCL is to provide a separation of concerns between coordination
and computation. In Fig. 1 we give an overview of our coordination model. UnCL
provides a special class for every UML class (or group of UML classes) that is
relevant for the coordination. This UnCL class imports operations (methods) of
the application’s class(es). It contains only attributes with references to objects
within UnCL or to objects of the application.

In UnCL the additional coordination behavior is specified by associating
state-machines with its classes. Such a state-machine in UnCL consists of tran-
sitions that involve two kinds of operations. The first kind are the application
operations (app-ops) that are implemented (and executed) by the coordinated
application. The second kind are coordination operations (co-ops). Objects in
UnCL coordinate their interaction by means of these operations which are com-
municated via an event-queue system. Every UnCL object is associated with a
queue which stores the messages involving its co-ops and that are sent to it.
? Part of this research was funded by the IST project OMEGA IST-2001-33522, spon-

sored by the European Commission



UML

State−Machine UnCL Object Diagram

UnCL Class Diagram

has instance

UnCL

Event−Queue System

Class Diagram

Object Diagram

Application

Modeling

Implementation

Coordination

App−ops

Co−ops

Subset
corresponds to

Smalltalk

Python
Java
Eiffel
C#
C++

instance

Fig. 1. UnCL.

There are three dynamic aspects to UML models: (1)app-op semantics, (2)
co-op semantics, and (3) scheduling; namely, which transition is to be fired at
a precise moment. The computations inside an application involve (1), and the
coordination involves aspects (2) and (3). In this paper we abstract away from
the scheduling because we want to provide a separation of concerns between (2)
and (3). This gives us the possibility to choose different scheduling algorithms
for the same UnCL model. Thus, the scheduling semantics becomes a parameter
of the model itself.
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Fig. 2. UnCL Tool Architecture.

In this paper we introduce a precise semantics of the coordination behavior
of an UnCL model and its formalization in a new extension of XML [6] called
the Rule Markup Language (RML). RML is designed for the specification and
execution of general transformations of XML data and is therefore very well
suited for the specification and execution of the semantics of UML models. The



application of RML to UnCL allows for both simulation within UML as well as
the coordination of external applications at run-time.

In figure 2a we give the tool architecture for the simulation. The UnCL
classes, state-machines, objects, and coordination mechanism are fully specified
and given in XML. For every co-op a transformation rule in RML is given that
describes how the UnCL XML specification of the input object-diagram changes
by performing the operation. However, for executing an app-op the simulation
needs a UML simulation tool that reads the relevant parts of the object-diagram,
performs the operation, and changes the object diagram accordingly. The ad-
vantage of this architecture is that both the execution steps and the state of the
UML application are fully given in XML, making it easy to see step-by-step how
the state of the application evolves.

Using the same UnCL specification we can also coordinate run-time appli-
cation(s). Such an application then basically serves as a kind of library whose
objects are driven and coordinated by the UnCL model. Fig. 2b shows the cor-
responding coordination architecture. The attributes of UnCL classes now in-
directly refer to run-time objects of the underlying application instead of UML
objects specified by XML. The state of the application is hidden in the appli-
cation itself and not part anymore of the XML specification. App-ops are now
being performed by the run-time objects of the application. This means that we
need an interface that binds the UnCL object references in XML to the run-
time object references of the application. The interface maintains a table which
relates these two different name spaces.

Plan of the paper: after describing UnCL in this section, we continue with
the presentation of a precise semantics of UnCL. Then we discuss the execu-
tion platform and its main component RML. We finish with related work and
conclusions.

2 Semantics of UnCL

In UnCL objects are coordinated by means of state machines. These state ma-
chines are associated with classes and consist of transitions of the form

l
[g]t/a−→ l′

where l is the entry location and l′ is the exit location of the transition. Further-
more, g denotes its boolean guard, t its trigger, and a its action.

More specifically, given a set of attributes, with typical element A, defined
by the associated UnCL class the boolean guard g of a transition involves a call

A.op(A1, . . . , An)

to a boolean app-op op of the object denoted by A which is provided by the
underlying application. We require that the execution of such a boolean app-op
does not affect the values of the attributes defined by the UnCL diagram.



A trigger t is of the form

op(A1, . . . , An)

which specifies a co-op op defined by the UnCL class itself and a corresponding
parameter list A1, . . . , An of attributes.

Finally, an action involves a call

A.op(A1, . . . , An)

where op is either a co-op defined by the UnCL class of the object denoted by
A or op is a app-op provided by its class of the underlying application.

We model object creation by means of a call C.NEW (A) of an app-op NEW
provided by the underlying application. This operation has a value/result param-
eter so the above call with actual parameter A will assign to A the identity of a
new object in class C. In general we model assignments by means of value/result
parameters, i.e., an assignment B = A.op(A1, . . . , An) involving an operation-
call is modeled by a call A.op(B, A1, . . . , An) with value/result parameter B.

In order to formally define the operational semantics of state machines in
UnCL we assume for each class c of a given UnCL class diagram a set Oc of
references to objects in class c. In case class c extends c′ (according to the UnCL
diagram) we have that Oc is a subset of Oc′ . (For classes which are not related
by the inheritance hierarchy these sets are assumed to be disjoint.)

Definition 1. An object diagram of a given UnCL class diagram with classes
c1, . . . , cn can be specified mathematically by functions σc, for c ∈ {c1, . . . , cn},
which specify for each object in class c existing in the object diagram the values
of its attributes, i.e., σc(o.A) denotes the value of attribute A of the object o, i.e.,
it denotes an object reference in Oc′ , where c′ is the (static) type of the attribute
A (defined in the class c in the UnCL diagram).

Often we omit the information about the class and write simply σ(o.A).
Control information of each object o in an object-diagram is given by σ(o.L),
assuming for each class an attribute L which is used to refer to the current
location of the state machine of o. Furthermore, the event-queue of each object
is given by the attribute E.

Given an UnCL class diagram consisting of a finite set of classes c1, . . . , cn and
associated state machines, we define its behavior in terms of a transition relation
on object diagrams. Object diagrams correspond to states in our semantic model.
This transition relation is defined parametric in the semantics of the application
operations and the way messages are stored and removed from the event-queue.
More specifically, we assume for each action a = A.op(A1, . . . , An) involving an
app-op op a labeled transition relation

σ
o.a−→ σ′

which specifies σ′ as a possible result of the execution of the call a by the caller
object o in σ. Such a labeled transition describes the observable effect on the



UnCL object diagram of the execution of the corresponding call by the underly-
ing application. As a special case we assume for each guard g = A.op(A1, . . . , An)
involving a boolean app-op op a labeled transition relation

σ
o.g−→ b

where b denotes a boolean value which indicates the result of the operation
(note that we assume that boolean operations does not affect the attributes of
the UnCL diagram).

Furthermore, for each trigger op(A1, . . . , An) we assume the semantic func-
tion

pop− op(A1, . . . , An))

which, given an input object diagram σ and an executing object o, returns the
object diagram σ′ that results from removing a message op(o1, . . . , on) from the
event-queue σ(o.E) of o in σ and assigning the object references oi to σ(o.Ai),
i = 1, . . . , n, i.e., σ′(o.Ai) = oi. In case there does not exist such a message this
function is undefined.

On the other hand, given an input object diagram σ and a caller object o,
the semantic function

push− op(A,A1, . . . , An)

returns the object diagram σ′ that results from adding the message op(o1, . . . , on)
involving the co-op op sent by o to the event-queue σ(o′.E) of the callee o′ =
σ(o.A), where oi = σ(o.Ai), for i = 1, . . . , n.

Definition 2. Formally, given an UnCL class-diagram and the semantic inter-
pretations of the app-op’s, we have a transition σ → σ′ from the object-diagram
σ to the object-diagram σ′ if the following holds: there exists an object o and a
transition

l
[g]t/a−→ l′

in its state machine such that

Location σ(o.L) = l and σ′(o.L) = l′;
Guard σ

o.g−→ true;
Trigger pop−op(A1, . . . , An)(σ, o) = σ′′, in case of a trigger t = op(A1, . . . , An);
Action We distinguish between the following two cases:

– in case of a call a = B.op(B1, . . . , Bk) involving a co-op op we have

push− op(B, B1, . . . , Bk)(σ′′, o) = σ′

– in case of a call a involving an app-op we have

σ′′ o.a−→ σ′.

The first clause above describes the flow of control. The second clause states
that the guard evaluates to true (without side-effects). The third clause describes
the execution of the trigger by the executing object o in the initial object diagram



σ in terms of the corresponding pop-op function. Note that the evaluation of the
guard and the execution of the trigger are strictly sequentialized. This implies
that the guard cannot refer to the new values of the actual parameters of the
trigger which are stored in the event-queue. However, a slight modification would
suffice to allow for this. For technical convenience only we restricted to a simpler
semantic model. Finally, the execution of the action distinguishes between a co-
op and an app-op. In both cases, the input diagram is the diagram resulting
from the execution of the trigger and the diagram resulting from the execution
of the action is the final result of the transition. A call to a co-op op is described
in terms of the corresponding push-op which consists of pushing the message on
the event-queue of the callee. Note that a call to a co-op is asynchronous and
does not involve a rendez-vous with the callee. However such a synchronization
can be modeled easily. Finally, a call to an app-op is described in terms of a
corresponding labeled transition which models the execution of the call by the
underlying application.

Note that the execution of a transition of a state-machine is atomic. However,
more fine-grained modes of execution can be introduced in a straightforward
manner.

3 The UnCL Execution Platform

The kernel of the UnCL tool consists of an algorithm for taking transitions in
the state-machine, scheduling the transitions, calling the coordinated application
and managing a user interface. The part of the algorithm that concerns the
coordination, i.e., the processing of the co-op’s, is defined using RML rules.

RML tools

ID:ref
table

RML

rules

Coordinated
application

Table manager
UnCL dispatcher

OBJID
TRANSID

User or UnCL scheduler

UnCLXML

co−op

app−op

OBJID

OBJID

Fig. 3. RML in UnCL



Fig. 3 shows how the RML tools are combined with the UnCL tool, the
XML for UnCL models in a new XML vocabulary called UnCLXML, and the
coordinated application. A RelaxNG schema for UnCLXML is available at [15].
What is not displayed is a scheduler that decides what transitions to take at
a specific moment, this scheduler can be implemented independently, useful for
real-time applications, or the scheduler can be a human being using a UnCL
system as the web-application at [15]. In the Figure we see a document icon for
the UnCLXML document that is publicly visible. We see two other document
icons for the RML rules, visible only to the RML tools part of UnCL, and the
table relating object references in XML to the run-time object references of the
application, visible only to the UnCL table manager that has to be implemented
in the same language as the coordinated application. Both the table manager
and the RML tools can modify the UnCLXML document, so the document
has to be protected by a locking mechanism. The UnCL dispatcher receives an
object identifier (OBJID) and a transition identifier (TRANSID) in the case of
more than one possible transition for the object, and the dispatcher sends the
necessary information to the RML tools in the case of a co-op and to the Table
manager in the case of an app-op.

In the following we will show how state-machines and their semantics as
defined in Sect. 2 can be encoded in the Rule Markup Language (RML) which
is a new extension of XML for specifying and executing XML data. RML can be
combined with an XMLvoc in order to define transformations of corresponding
XML data using the XMLvoc itself. In the case of UnCL we combine RML with
UnCLXML. With RML we can now define also the semantics of UML models
in XML. Furthermore, using the RML tool we can execute these models. UnCL
users do not have to learn RML, but just write state machines in UnCLXML.

The rules defined with RML consist of an antecedent (the input) and a conse-
quence (the output). The antecedent and the consequence consist of XML+RML,
where XML is the problem domain vocabulary and RML is used to specify RML-
variables in the XML. The antecedent of a rule will be matched with input XML,
resulting in a binding for all the RML variables to corresponding XML constructs
in the input XML. These constructs can be XML element names, XML attribute
names, XML attribute values, whole XML elements including their children, or
sequences of XML elements with their children. If a match of the input XML
with the antecedent of a rule is possible then there will be a specific XML el-
ement in the input XML that matches the antecedent, and this XML element
will be replaced with the consequence of the rule. The consequence of a rule
also contains XML+RML. The RML-variable names will be replaced with the
corresponding contents of the RML variables in the output.

The table in Fig. 4 sums up all current RML elements with a short description
of their usage. Due to a lack of space we have to refer to the RML tutorial at [14]
for a longer description of all the RML elements. It is easy to think of many more
useful elements in RML than appear in the table. Not everything imaginable is
implemented because a design goal of RML is to keep it as concise and elegant



as possible. Only constructs that have proven themselves useful in practice are
added.

Elements that designate rules

div class="rule"

div class="antecedent" context="yes"

div class="consequence"

element attribute A C meaning

Elements that match elements or lists of elements

rml-tree name="X" * Bind 1 element (and children) at this position to RML
variable X.

rml-list name="X" * Bind a sequence of elements (and their children) to
X.

rml-use name="X" * Output the contents of the RML variable X at this
position.

Matching element names or attribute values

rml-X ... * Bind element name to RML variable X.
rml-X ... * Use variable X as element name.
... ...="rml-X" * Bind attribute value to X.
... ...="rml-X" * Use X as attribute value.
... rml-others="X" * Bind all attributes that are not already bound to X.
... rml-others="X" * Use X to output attributes.
... rml-type="or" * If this element does not match, try the next element

in the antecedent if that also has rml-type=”or”.

Elements that add constraints

rml-if child="X" * Match if X is already bound to 1 element, and occurs
somewhere in the current sequence of elements.

rml-if nochild="X" * Match if X does not occur in the current sequence.
rml-if last="true" * Match if the younger sibling of this element is the last

in the current sequence.

A * in the A column means the construct can appear in a rule an-
tecedent. A * in the C column is for the consequence.

Fig. 4. All the RML constructs

Variable binding of RML-variables during the matching of the antecedent of
a rule is attempted in the order of the elements in the input XML tree. If an
input XML tree contains more than one match for a variable then only the first
match is used for a transformation. If you want to transform all matches then
you will have to repeat applying the rule on the input.

Binding of RML-variables can also be done before a rule is applied if the RML-
variables are supposed to contain string values; in that case the matching will
only succeed if the supplied string values appear in the input XML in the position



where the RML variable appears. An example of this pre-binding of variables in
the UnCL tool is when the user supplies an object ID (variable IDOBJ in the
examples that follow later) when the user wants that object to take a transition.
To pre-bind a value of id002 to RML variable IDOBJ, the user can supply an
extra argument for the RML tools: IDOBJ=id002. Such pre-binding can also be
done when using the RML libraries instead of the command-line tools.

The RML tutorial at [14] also describes a concise XML vocabulary for defin-
ing RML recipes, called Recipe RML (RRML). RRML is used to define sequences
of, possibly iterated, transformations and has proven itself useful in alleviating
the need for writing shell scripts or functions in a programming language con-
taining sequences of calls to the RML tools. The idea is to avoid programming
and to define as much as possible in XML in a data driven design.

Figure 5 shows a simple example RML rule. This is a rule that is used after
a transition has been taken successfully by an object modeled with UnCL. With
this rule the location attribute of the object is assigned the value of the target
attribute. An example of the effect of the rule would be that

...
<obj id="id538" location="state_3" target="state_5" ... >

<queue>
...

</queue>
</obj>
...

is changed into
...
<obj id="id538" location="state_5" target="None" ... >

<queue>
...

</queue>
</obj>
...

for an object with identifier id538.

<div class="rule" name="set location">
<div class="antecedent">
<obj id="rml-IDOBJ" location="rml-L" target="rml-T"

rml-others="rml-O" >
<rml-list name="ObjChildren"/>

</obj>
</div>
<div class="consequence">
<obj id="rml-IDOBJ" location="rml-T" target="None"

rml-others="rml-O">
<rml-use name="ObjChildren"/>

</obj>
</div>

</div>

Fig. 5. The example RML rule

When applying this rule, the RML transformation tool first searches for an
obj element in the input, corresponding with the obj element in the antecedent



of the rule. These obj elements match if the obj in the input has an id attribute
with the value bound to the RML IDOBJ variable mentioned in the antecedent,
in the example this value is id538 and it is bound to the RML variable IDOBJ
before the rule is applied. This pre-binding of some of the variables is how UnCL
can manage and schedule the execution of the RML transformation rules. If the
obj elements match, then the other RML variables (L, T, O and ObjChildren )
are filled with variables from the input obj. The L, T and O variables are bound
to strings, the ObjChildren variable is bound to the children of the obj element:
a list of elements and all their children. The consequence of the rule creates a
new obj element, using the values bound to the RML variables, and replaces the
obj element in the input with this new obj element.

Due to lack of space we restrict the description of the formalization in RML of
the processing of the co-op’s to the removal of a message from the event-queue,
as shown in Fig. 6. The figure contains some lines with ... in places where
rml-list and rml-use constructs are used to preserve input context in the
output. Here we see that in RML a pattern can be matched that is distributed
over remote parts in the XML, the remoteness of the parts is why the rule has so
many lines. In short, this rule looks for the name of the trigger that indicates the
message that has to be removed from the event-queue, and then simply copies
the event-queue without that event. But to find that name of the trigger, a search
through the whole UnCLXML model has to take place, involving the following
steps.

During application of this rule, the matching algorithm first tries to match
the input with the antecedent of the rule, where IDOBJ and IDTRANS are pre-
bound RML variables. With these pre-bound variables it can find the correct
obj, then it finds the ClassName for that object. With the ClassName the class
of the object can be found in the classdiagram in UnCLXML. When the class
of the object is found, the transition in that class with id TRANSID can be found
and in that transition element in the input we can finally find the desired
TriggerName. The algorithm then looks for a message with name TriggerName
in the event-queue of the obj, and binds all other events in the event-queue to
RML variables PreEvents and PostEvents. In the consequence of the rule then,
all these bound RML variables are available to produce a copy of the input, with
the exception that the correct event is removed.

4 UnCL and Mobile Channels

In UnCL state machines model communication between objects in terms of the
coordination operations which involve a simple event-queue mechanism. This
provides a separation of concerns between the computational part specified by
the application and the coordination part specified by UnCL. Due to this sepa-
ration of concerns it is possible to replace the event-queue mechanism with any
other coordination mechanism. Preferably, with one that preserves the separation
of concerns and is easy to implement in concurrent and distributed systems. An
example of such coordination mechanisms are shared data spaces like Linda [4]



<div class="rule"> <div class="consequence">

<div class="antecedent"> <UnCL>

<UnCL> <classdiagram>

<classdiagram> ...

... <class name="rml-ClassName">

<class name="rml-ClassName"> ...

... <statemachine>

<statemachine> ...

... <transition id="rml-IDTRANS">

<transition id="rml-IDTRANS"> ...

... <trigger>

<trigger> <op name="rml-TriggerName">

<op name="rml-TriggerName"> <rml-use name="Params"/>

<rml-list name="Params"/> </op>

</op> </trigger>

</trigger> ...

... </transition>

</transition> ...

... </statemachine>

</statemachine> </class>

</class> ...

... </classdiagram>

</classdiagram> <objectdiagram>

<objectdiagram> ...

... <obj class="rml-ClassName"

<obj class="rml-ClassName" id="rml-IDOBJ"

id="rml-IDOBJ" rml-others="rml-OtherObjAttrs">

rml-others="rml-OtherObjAttrs"> ...

... <queue>

<queue> <rml-use name="PreEvents"/>

<rml-list name="PreEvents"/> <rml-use name="PostEvents"/>

<op name="rml-TriggerName"/> </queue>

<rml-list name="PostEvents"/> </obj>

</queue> ...

</obj> </objectdiagram>

... </UnCL>

</objectdiagram> </div>

</UnCL> </div>

</div>

Fig. 6. RML rule for removing an event from the event-queue

and JavaSpaces [7]. In this section we discuss the replacement of the event-queue
by another coordination mechanism called MoCha [8, 9]. MoCha is an exogenous
coordination framework for (distributed) communication and collaboration using
mobile channels as its medium.

4.1 MoCha’s Mobile Channels

SinkSource B
Writes Reads

Channel

A

Object Object

Fig. 7. General View of a Channel.

A channel in MoCha, see figure 7, consists of two distinct ends: usually
(source, sink) for most common channel-types, but also (source, source) and
(sink, sink) for special types. These channel-ends are available to the objects of
an application. Objects can write by inserting values to the source-end, and read
by removing values from the sink-end of a channel; the data-flow is locally one
way: from an object into a channel or from a channel into an object.



Channels are point-to-point, they provide a directed virtual path between
the (remote) objects involved in the connection. Therefore, using channels to
express the communication carried out within an application is architecturally
very expressive, because it is easy to see which objects (potentially) exchange
data with each other. This makes it easier to apply tools for dependencies and
data-flow analysis of an application.

Channels provide anonymous connections. This enables objects to exchange
messages with other objects without having to know where in the network those
other objects reside, who produces and consumes the exchanged messages, and
when a particular message was produced or will be consumed. Since the objects
do not know each other, it is easy to update or exchange any one of them without
the knowledge of the object at the other side of the channel. This provides objects
that are loosely coupled in space and time.

The ends of a channel are mobile. We introduce here two definitions of mo-
bility: logical and physical. The first is defined as the property of passing on
channel-end identities through channels themselves to other objects in the ap-
plication; spreading the knowledge of channel-ends references by means of chan-
nels. The second is defined as physically moving a channel-end from one location
to another location in a distributed system, where location is a logical address
space where objects execute. Both kinds of mobility are supported by MoCha.

Because the communication via channels is also anonymous, when a channel-
end moves, the object at the other side of the channel is not aware nor affected by
this movement. Mobility allows dynamic reconfiguration of channel connections
among the objects in an application, a property that is very useful and even
crucial in systems where objects are mobile. An object is called mobile when, in
a distributed system, it can move from one location (where its code is executing)
to another.

Channels provide transparent exogenous coordination. Channels allow several
different types of connections among objects without them knowing which chan-
nel types they are dealing with. Only the creator of the connection knows the
type of the channel, which is either synchronous or asynchronous. This makes it
possible to coordinate objects from the ’outside’ (exogenous), and, thus, change
the application’s behavior without having to change the code of it’s classes.

4.2 Channel Types

MoCha supports eleven types of channels. All with the same interface, but with
different behavior. We give a short description of three major channel types. For
more details and the remaining channel types we refer to the MoCha middleware
manual [9].

– Synchronous channel. The I/O operations on the two ends are synchronized.
A write on the source-end can succeed only when a take operation also atom-
ically succeeds on the sink-end, and vice-versa. A take operation is the de-
structive version of the read operation.



– Lossy synchronous channel. If there is no I/O operation performed on the
sink channel-end while writing a value to the source-end, then the write
operation always succeeds but the value gets lost. In all other cases, the
channel behaves like a normal synchronous type.

– Asynchronous unbounded FIFO channel. The I/O operations performed on
the two channel-ends succeeds asynchronously. Values written into the source
channel-end are stored in the channel in a FIFO distributed buffer until taken
from the sink-end.

4.3 Implementation

The MoCha framework is implemented in the Java language using the Remote
Method Invocation package (RMI). This MoCha middleware can be used for
both distributed and non-distributed applications. The middleware has a clear
and easy high-level application programming interface (API). Full API details
can be found in [9].

4.4 UnCL and MoCha

Replacing the event-queues by MoCha channels requires the introduction of
channel-ends in UnCL and the definition of their coordination operations in
the state-machine semantics. Since channel-ends are also UML classes, we ac-
complish the first, by allowing the UnCL class attributes to also refer to these
channel-end objects. The state-machine coordination operations are defined as:

- T.new(L, E1, E2) creates a new channel, where {E1, E2} are attributes stor-
ing the created channel-ends. T is an attribute that refers to the type of the
channel, and L is an attribute that refers to a particular location. In the
MoCha middleware such a creation is translated into the expression chan =
new MobileChannel(L,T), where chan.E1 and chan.E2 are the attributes
that refer to the ends of the new created channel.

- E.write(V ) writes the reference value of attribute V to the source channel-
end E.

- E.take(V ) takes a reference from the sink channel-end E and stores it in
attribute V .

- E.read(V ) reads a reference from the sink channel-end E and stores it in
attribute V . (read is the non-destructive version of take).

- E.move(L) moves a channel-end E to location L.

Observe that, in cases where we are not concerned with modeling locations
we can take the same first four operations and remove the location attribute L.

Using MoCha in UnCL has four major advantages. First, since the MoCha
framework is implemented in the Java language, there is a straightforward imple-
mentation for every UnCL model. Straightforward in the sense that the MoCha
middleware implements the same operations and channels as the ones of the



UnCL + MoCha model, providing a one-to-one relation between a UnCL chan-
nel and a MoCha middleware channel. Second, since MoCha supports distributed
environments, every UnCL model automatically does as well. Third, the UnCL
model now provides the means for more high-level exogenous coordination. In
addition of changing the state-machines, with MoCha we can also change the
application’s behavior by simple choosing a different type of channel between
objects. And finally four, MoCha enhances the, already present, separation of
concerns between the computational part and the coordination part of an appli-
cation.

5 Conclusions and Related Work

In this paper we presented an Unified Coordination Language (UnCL) that is
based on a separation of concerns between coordination and computation. UnCL
provides a general language for coordination given in UML that can be used both
for simulation and coordination of an application at run-time. We discussed a
precise semantics of UnCL state machines, the UnCL execution platform, and
how to use an executable extension of XML specifications within this platform.
Finally, we discussed the possibility of incorporating MoCha into UnCL.

UnCL relates to other coordination languages like Linda [4], JavaSpaces [7],
and MANIFOLD [1]. For the majority of these models UML interfaces are made.
However, as far as we know, UnCL is the first coordination language that fully
integrates with UML. Besides modeling coordination a UnCL UML-specification
can also coordinate an application in runtime. UnCL + MoCha relates to Reo[2],
an exogenous coordination language where complex channel connections are
compositionally build out of simpler ones.

Other related work on coordination modeling are SOCCA [5] and CSP-
OZ [12]. SOCCA is an object-oriented specification language supporting the arbi-
trarily fine-grained synchronization of processes. Despite the fact that SOCCA
is related to UML it is a separate language and not an extension like UnCL.
CSP-OZ is an integrated formal method combining the process algebra CSP
with the specification language Object-Z. It provides the means for putting spe-
cial information (tags) in UML class diagrams. The full CSP-OZ specification is
obtained after compiling these class diagrams, unlike UnCL where the specifi-
cation is fully given in UML. Both CSP-OZ and UnCL + MoCha use channels
as the coordination mechanisms. However, CSP-OZ channels are static while
UnCL + MoCha channels are dynamic. This enables UnCL to specify dynamic
reconfigurable coordination patterns.

In our approach we abstract away from a particular scheduling algorithm.
This gives us the advantage to make such an algorithm a parameter of an UnCL
model. This is different from other work like [3], [10], and [11] where scheduling
is already integrated into the semantics, making it more difficult to change the
already present scheduling algorithm (if desired).

Instead of using RML for the UnCL transformation rules we could have used
other tools for XML transformations, like XSLT [13]. We chose RML because



it was developed with more complex matching patterns in mind: The XML
wild-cards defined with RML can be distributed over several places in the input.
Such a distributed matching pattern is hard to define with XSLT, because XSLT
templates are path oriented instead of pattern oriented.

We have successfully used the UnCL architecture in project OMEGA IST-
2001-33522, sponsored by the European Commission, where we formalized the
OMEGA subset of UML and will apply it to industrial case studies. A first test
case is demonstrated on-line at [15].
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