
C e n t r u m v o o r W i s k u n d e e n I n f o r m a t i c a

Software ENgineering

Landscape maps for enterprise architectures

L.W.N. van der Torre, M.M. Lankhorst, H. ter Doest,
J. Campschroer, F. Arbab

REPORT SEN-E0514 NOVEMBER 2005

SEN
Software Engineering

CWI is the National Research Institute for Mathematics and Computer Science. It is sponsored by the
Netherlands Organization for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2005, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-369X

Landscape maps for enterprise architectures

ABSTRACT
Landscape maps are a technique for visualizing enterprise architectures. They present
architectural elements in the form of an easy to understand 2D 'map'. A landscape map view on
architectures provides non-technical stakeholders, such as managers, with a high-level
overview, without burdening them with technicalities of architectural drawings. In this paper we
discuss the use of and techniques for landscape maps. A formal model for landscape maps is
introduced as the basis of visualization and interaction techniques. Moreover, we show how a
landscape map can be generated from its underlying model. Finally we show several interaction
techniques, for example to build a landscape map from scratch, independently of an underlying
model, or to change a landscape map together with its underlying model.

2000 Mathematics Subject Classification: 68U35 Information systems
Keywords and Phrases: Landscape map, viewpoint, enterprise architecture

Landscape Maps for Enterprise Architectures

L. van der Torre1, M.M. Lankhorst2, H. ter Doest2, J. Campschroer3, F. Arbab1
1 CWI, Amsterdam, the Netherlands

2 Telematica Instituut, Enschede, the Netherlands
3 Ordina, the Netherlands

Abstract
Landscape maps are a technique for visualizing
enterprise architectures. They present architectural
elements in the form of an easy to understand 2D 'map'. A
landscape map view on architectures provides non-
technical stakeholders, such as managers, with a high-
level overview, without burdening them with technicalities
of architectural drawings. In this paper we discuss the
use of and techniques for landscape maps. A formal
model for landscape maps is introduced as the basis of
visualization and interaction techniques. Moreover, we
show how a landscape map can be generated from its
underlying model. Finally we show several interaction
techniques, for example to build a landscape map from
scratch, independently of an underlying model, or to
change a landscape map together with its underlying
model.

1. Introduction to landscape maps
The IEEE 1471-2000 standard [4] promotes the use of
viewpoints for architectural description, and it presents as
examples the structural, behavioural, physical connect,
and the link bit error rate viewpoint. Moreover, to relate
to other standards, it includes discussions on the
decomposition and allocation, enterprise, information,
computational, engineering, and technology viewpoint.
Many other viewpoints have been proposed. Also others,
such as Nuseibeh et al. [10] and Finkelstein et al. [3],
have advocated the use of viewpoints for describing
architectures.

In this paper we discuss so-called landscape map
viewpoints used in decision support of, e.g., information
planning. Decision support viewpoints help managers in
decision making by offering insight into cross-domain
architectural relations. Typically, this is accomplished
through projections and intersections of underlying
models, but analytical techniques also play a role in
construction of landscape maps. Such manipulations of
architectural models typically result in lists, tables,
matrices and reports. As such, decision support

viewpoints create high-level, coherent overviews of
enterprise architectures, providing the ‘big picture’
required by decision makers.

Landscape map viewpoints are used for example to
publish an overview for managers and process or system
owners, or they are employed by architects as a
convenient tool for the analysis of changes or to find
patterns in the allocation of resources. A landscape map,
as defined by Van der Sanden and Sturm [11], is a matrix
that depicts a three-dimensional coordinate system
representing architectural relations. Figure 1 is an
example of a landscape map that shows which
information systems support the operations of an
insurance company. The vertical axis represents the
company’s business functions; the horizontal axis shows
its insurance products. An application rectangle covering
one or more cells means that this particular
function/product pair is supported by the application, e.g.,
contracting of a legal aid insurance is supported by the
legal aid backoffice system.

Customer
Relations
& Sales

Claims
Processing

Contracting

Liability
Insurance

Car
Insurance

Legal Aid
Insurance

Web portal

Customer relationship
management system

Home & Away
Policy

administration Legal Aid
backoffice

system

Legal Aid
CRM

Home & Away
Financial

application

Business
Functions

Products

Car insurance
application

Figure 1. Example of a landscape map.

The dimensions of the landscape maps can be freely
chosen from the architecture that is being modeled. In
practice, dimensions are often chosen from different
architectural domains, for instance business functions,
products and applications, etc. In most cases, the vertical
axis represents behavior like business processes or
functions; the horizontal axis represents “cases” for which

 1

 2

those functions or processes must be executed. These
“cases” can be different products, services, market
segments, or scenarios. The third dimension represented
by the cells of the matrix is used for assigning resources
like information systems, infrastructure, or human
resources. The value of cells can be visualized by means
of colored rectangles with text labels.

1.1 Research question and approach
We are interested in the further development of landscape
maps for enterprise architectures. For example, thus far
landscape maps have been used as standalone views, and
tools do not check on conflicts between landscape maps
and the description of their underlying models. Moreover,
tools support neither the automatic generation of
landscape maps from an underlying model, nor the
manipulation of underlying models via a landscape map.
More advanced visualization and interaction techniques
enable the use of landscape maps for navigating their
underlying models, or analyzing them.

To define visualization and interaction techniques, we
must be more precise about what we mean by landscape
maps. How can we define a formal model of landscape
maps that can be used to describe existing landscape
maps, and which can be used to develop new kinds of
landscape maps? As they are used in practice, several
different varieties are called landscape maps. The first
contribution of this paper is a formal underpinning for
landscape maps.

To visualize landscape maps, we must develop
techniques to extract landscape maps from an underlying
model. We discuss guidelines for choosing the axes and
the order of the items on the axes, and we discuss rules
for building landscape maps as the one in Figure 1. For
example, the top right corner of this map indicates that the
customer relation and sales of legal aid insurance are
supported by web portal, customer relationship
management system, and a legal aid CRM, but why are
these three systems visualized in this way?

To interact with landscape maps, we propose to add
interactivity to landscape maps. We distinguish between
interactions that change only the visualization but keep
the underlying model intact, such as changing the order of
the rows and columns, and interactions that also change
the underlying model of a landscape map. We introduce a
particular kind of landscape map actions as the basis of
interaction.

We study these questions based on the view and
viewpoint notions of IEEE 1471-2000 standard. We
extend these notions with a separation of concerns
between the conceptualization of the architecture – the
content of a view - and its visualization. Moreover, we
formally define the signature of a landscape map as three

sets of concepts and a ternary relation defined on these
sets. We also define the signature of the underlying model
(concepts and relations), such that the landscape map
viewpoint contains a partial mapping from the latter
signature to the former one, together with a visualisation.

We motivate and illustrate our approach by a running
example, which is also being realized in a prototype.

1.2 Scope of the paper
Our formal model and its associated techniques to
visualize and interact with landscape maps are based on
existing ideas and tools, but we do not give a full survey
of all kinds of landscape maps found in the literature and
in available tools. We are primarily interested in
developing foundations for future generations of
landscape map tools.

We propose to use landscape maps as a presentation
format (modality) of enterprise architecture models
expressed in the ArchiMate language [5,6]. However, our
approach is not restricted to this particular modeling
language. In this paper we illustrate how ArchiMate
models can be mapped to landscape maps, and how
landscape maps can be used as an interactive medium for
architecture design. For instance, the landscape map in
Figure 1 relates business functions (customer relation and
sales, etc.) and products (liability insurance, etc.) to
systems (web portal, etc.). The relation between business
functions and products is directly supported by the
assignment relation. The relation between products and
systems is indirectly supported: products are assigned to
processes (or functions), which in turn use systems.

The study of the effectiveness of existing landscape
maps, and the development of useful and effective new
ones, is based on two complementary issues. First there
are technical issues, for example the generation of
landscape maps from underlying models, or the
development and use of interaction mechanisms to utilize
landscape maps. Second, there are psychological aspects,
such as the interpretation of landscape maps by humans,
or the reasons why some landscape maps help to convey
new insights in architecture whereas other landscape
maps only confuse the stakeholders. This paper is
concerned with technical issues only.

The layout of this paper is as follows. In Section 2 we
introduce our running example, in Section 3 we give our
formal model of landscape maps. In Section 4 we discuss
the visual aspects of landscape maps, and we show how a
landscape map can be constructed from an underlying
model. In Section 5 we discuss interaction with landscape
maps, where we distinguish between editing a landscape
map from scratch, without reference to an underlying
model, and changing the landscape map while
simultaneously changing its underlying model as well.

2. Running example
To illustrate the concept of landscape maps, we introduce
an example to be used in the remainder of this paper. Our
example involves ArchiSurance, an imaginary (though
reasonably realistic) insurance company. ArchiSurance,
originally in the business of home and travel insurance,
has merged with PRO-FIT (car insurance) and
LegallyYours (legal aid). As a result of this merger, the
company’s main products are now in home, travel, car,
liability, and legal aid insurance.

To create high-level insight in ArchiSurance’s primary
operations, the company is described in terms of its main
business functions: Customer Relations & Sales,
Contracting, Premium Collection, Claims Processing, and
Document Processing.

 3

-

-

-

Post-merger integration is in full swing. The first step
in the integration process has been the creation of a single
department for Customer Relations and Sales. However,
behind this front office are still three separate back
offices:

Home & Away: this department was the original pre-
merger ArchiSurance, responsible for home and travel
insurance.
Car: this department is the core of the old PRO-FIT
and handles car insurance, including some legal aid.
Legal Aid: this is the old LegallyYours, except for the
part that has now moved to the Customer Relations &
Sales department.

H om e
&

A w a y
C a r Leg a l

A id

C u sto m er R e la tion s & S a le s

D o cu m en t P rocess in g S S C

H R M P rod uct
D e ve lo pm en t

A sse t
M a nag em e n t

A rch iS u ra nce

Figure 2. Actor diagram showing ArchiSurance

departments.

As in many recently merged companies, IT integration is
a problem. ArchiSurance wants to move to a single CRM
system, separate back-office systems for policy
administration and finance, and a single document
management system. However, Home & Away still has

separate systems for claims handling, premium collection,
and payment, and uses the central CRM system and call
center. The Car department has its own monolithic
system, but uses the central CRM system and call center.
The Legal Aid department has its own back- and front
office systems (Figure 3).

Home
&

Away

Car

Legal
Aid

Customer Relations & Sales

Document Processing SSC

Home & Away
Policy

administration

Home & Away
Financial

application

Car
Insurance
application

Legal Aid
backoffice

system

Web
portal

Call center
application

CRM system Legal Aid
CRM

Document
management

system
Figure 3. Applications used by departments.

An important prerequisite for the changes in
ArchiSurance’s IT is that the IT integration should be
“invisible” to ArchiSurance’s clients: products and
services remain the same. However, this is not a
straightforward requirement. To illustrate the complex
relationships among organization, products, business
processes and IT support, Figure 4 shows the relations
among the Damage Claiming process, its IT support, and
the organization. Note that this figure shows these
relations for only a single business process.

 Damage claiming process

Registration PaymentValuationAcceptance

Home & away
Policy

administration

CRM
system

Home & away
Financial

application

Home
&

Away

Customer
information

service

Claim
information

service

Customer
administration

service

Claims
administration

service

Payment
service

Claim
registration

service

Customer
information

service

Claims
payment
service

Printing
service

Scanning
service

Document
management

system

Document
Processing SSC

Customer
Relations &

Sales
Figure 4. Relations among Damage Claiming
process, its IT support, and the organization.

In general, many business processes within the back
office link the external products and services with the
internal systems. As an example, Figure 5 shows the

‘travel insurance’ product, comprised of a number of
services realized by different business processes.

Travel Insurance

Claim
registration

service

Customer
information

service

Claims
payment
service

Insurance policy

Insurance
application

service

Premium
payment
service

Customer
data mutation

service

Customer

Figure 5. The 'travel insurance’ product.

This web of relations creates a major problem if we want
to create insight in the IT support of ArchiSurance. Many
systems used by many processes realizing various
products and services comprise too much detail to display
in a single figure. This is a typical example of where
landscape maps can help. As shown in Figure 6, a
landscape map of ArchiSurance’s IT applications in
relation to its business functions and products provides a
high-level overview of the entire IT landscape of the
company.

Customer
Relations
& Sales

Claims
Processing

Contracting

Document
Processing

Liability
Insurance

Car
Insurance

Travel
Insurance

Home
Insurance

Legal Aid
Insurance

Web portal

Call center application

Customer relationship management system

Home & Away
Policy administration

Legal Aid
backoffice

system

Legal Aid
CRM

Document management system

Home & Away
Financial application

Business
Functions

Products

Premium
Collection

Car insurance
application

Figure 6. Landscape map of ArchiSurance.

From this figure, it is apparent that there is an overlap in
ArchiSurance’s IT support, both in the Car insurance
application and in the Legal Aid CRM system. This
insight is difficult to obtain from the previous figures. It
requires the composition of relations such as ‘product
contains business service’, ‘business service is realised by
business process’, ‘business process is part of business
function’, ‘business process uses application service’, and
‘application service is realised by application’.

3. Definition of landscape maps
In this section we give a formal definition of landscape
maps, which is used to facilitate the construction of
landscape maps from underlying architectural models, the
interaction between the visual part of a landscape map
and its underlying model, and the analysis of landscape
maps. So far landscape maps have been used as a notation
without formal underpinnings. Though visualization and
interaction techniques can also be developed without a
formal model in the background, we believe that the
uniform and abstract view on landscape maps given by
our formal definition facilitates their design and
realization.

The formal definition of a landscape map is based on a
well-defined relation to an underlying architectural model
and on our notion of the signature of a landscape map,
which in turn is loosely based on the notions of
architectural description informally defined in the IEEE
1471-2000 standard document [4]. In the subsection
below we explain what we mean by a signature of a
landscape map. Next, we distinguish symbolic and
semantic models, based on this signature. Finally, we
discuss landscape map viewpoints, and the distinction
between views and visualizations. This terminology is
borrowed from formal methods [8], and the use of this
terminology in enterprise architecture is discussed in
more detail in [2].

3.1 The signature of a landscape map
Intuitively, architectural descriptions such as landscape
maps visualize a set of generic concepts and relations. A
concept is interpreted as a set, and elements of this set are
called concept instances. Of course, in many cases
concepts like function and application in our running
example are interpreted as objects, not as sets. In such
cases we have to add the constraint that the set is a
singleton set. Representing concepts by sets is the most
general approach, and applied in most modelling
languages.

There is a set of concepts on the X-axis (categories,
e.g., products), a set of concepts on the Y-axis (functions,
e.g., business functions), and one or more sets of concepts
displayed on the matrix (e.g., applications). Moreover,
there is a ternary relation that represents a landscape map.
Thus, the ArchiSurance example contains the following
concepts and one relation. Note that the set of concepts
does not make explicit which concepts occur on the X-
axis, the Y-axis or on the plane.

C = C ∪C ∪C ∪CA X Y Z
CA = {product, function, application}
CX = {home_ins, travel_ins, …}

 4

 5

CY = {customer_rel, claim_processing, …}
CZ = {web_portal, call_center, …}
R = {use}

Furthermore, we assume an implicit “is-a” or subset
relation on the concepts, since each element of CX is a
product, each element of CY is a function, and each
element of CZ is an application.

home_ins ⊆ product
travel_ins ⊆ product
…

Finally, the relevant information in the landscape map in
Figure 6, e.g., that web portal is used by customer
relations & sales, but not contracting, can be represented
in two ways. First, we may say that the relation is defined
on the set of concepts, i.e., use ⊆ C × C × C. We have
product on the X-axis and function on the Y-axis, i.e. use
⊆ CX × CY × CZ. Under this interpretation of the relation,
the landscape map in Figure 6 can be represented by the
following relation.

use ={ 〈home_ins, customer_rel, web_portal〉,
 〈home_ins, customer_rel, call_center〉,
 〈home_ins, customer_rel, crm〉,
 〈travel_ins, customer_rel, web_portal〉,
 …

Alternatively, inspired by the notion of signature in
formal methods [8,2], we can interpret relations on
concept instances use ⊆ product × function × application.
More precisely, the relation can be interpreted as follows.

use ⊆ home_ins × customer_rel × web_portal
 ∪ home_ins × customer_rel × call_center
 ∪ home_ins × customer_rel × crms
 ∪ travel_ins × customer_rel × web_portal
 …

In this paper we use the latter option, which is analogous
to the notion of typing information in signatures of formal
languages [8]. For the techniques developed in this paper
both options could be used, but for other techniques such
as analysis and simulation of enterprise architectures, the
latter option is preferred [2]. The difference is that in the
second case, the relation is not defined on the concepts,
but on the concept instances. Consequently, the relation
between concepts may be called typing information of the
landscape map. This is explained in more detail in the
following section, when we discuss the interpretation of a

signature, and semantic models. A further discussion can
also be found in [2].

The combination of a set of concepts together with the
pre-defined is-a relation, and the relation together with
typing information, is called the signature of a landscape
map.

3.2 Semantic and symbolic models
The notion of an architectural model is notoriously
ambiguous. The ambiguity becomes clear when we use
our formal machinery. First, we have to distinguish
between semantic and symbolic (syntactic) models of an
architecture. The former are an abstract description of the
structure and ‘meaning’ of the architecture itself; the
latter are its denotation, i.e., part of the architectural
description. This distinction between the architecture and
its description is also made in the IEEE 1471 standard.

A semantic model consists of a domain and an
interpretation function. In such a model, each concept is
interpreted as a set from a domain, which represents that
concepts are generic. The ternary landscape map relation
is defined on the concepts instances, not on the concepts
themselves. For example, the following describes a
simple model. Assume that all concepts that are not
mentioned are empty sets.

home_ins = {h1,h2,h3}
customer_rel = {c1,c2,c3}
web_portal = {w1,w2,w3)
use = {〈h1,c1,w1〉, 〈h1,c2,w3〉}

In this example, use is defined on instances of concepts
like h1 and c1.

Second, the notion of architectural model in the IEEE
1471 standard corresponds to what we call symbolic
models, which are logical theories based on a signature.
Symbolic models are part of the architectural description,
and thus they can describe elements of an architecture. In
our formal model, an architectural description is more
than just a signature that can be visualized in a view: it
also contains constraints and actions which play an
important role in analysis and interaction.

Landscape map constraints are logical expressions
expressed in terms of the landscape map signature. They
further describe the architectures (the semantic models)
that fit the signature of the landscape map. For example,
there may be constraints that each concept is non-empty,
or that concepts are singleton sets. Examples of such
constraint languages are OCL for UML [9] and
description logics for first-order models [1].

 6

Landscape map actions are descriptions of how a view
can be modified, for example due to interaction with the
user or as triggered through another view. An action
specifies both the interaction dialogue with the user
(which kind of information must be obtained from the
user when he clicks a button), as well as the consequence
of the interaction (e.g., whether and how the underlying
model must be modified after interaction with the user).

3.3 Viewpoints, views and vizualizations
In the IEEE-1471 standard [4] a view is a representation
of a whole system from the perspective of a related set of
concerns, that may consist of one or more architectural
(i.e., symbolic) models. A viewpoint is a specification of
the conventions for constructing and using a view.

In our formal model of landscape maps we abstract
away from stakeholders and their concerns, because they
are notoriously hard to formalize. Moreover, we
distinguish between a view and its visualization. A
landscape map viewpoint contains a partial mapping from
the signature of the architecture to the landscape map
signature, and a landscape map view is the result of
applying this mapping to an underlying model. Moreover,
the landscape map viewpoint contains a mapping from the
view to visual structures.

The visual structure can be formalized in many ways,
for example by a signature that expresses in a
mathematical way that there is an X-axis, a Y-axis, a
plane and rectangles in this plane. Under this
formalization, the landscape map viewpoint contains a
partial bijective mapping between the signature of the
landscape map and the signature of the vizualization.
Such a mapping is partial because some elements of the
architecture will not be visualized and some elements of
the visualization (e.g., colors) may have a meaning
outside of the model. However, visual structures can also
be formalized in other ways, and we do not constrain
ourselves to this particular formalization.

Summarizing, in our model we see a landscape map as
a composition of a symbolic model and a visual structure,
together with a partial bijective mapping of the model on
the visual structure. This is less ambiguous than the
informal IEEE standard.

4. Visual aspects of landscape maps
The goal of a landscape map is to give an overview of and
insight into some architectural relations. In general, a
landscape map represents two relations in one map: on the
one hand the relation between the entities along the
vertical axis and the entities in the plane, and on the other
hand the relation between the entities along the horizontal

axis and again the entities in the plane. Through the
entities in the plane, an indirect relation is established
between the two dimensions of the axes. For instance, if
an application supports some business function in relation
to a certain product, then the business function can be said
to support that product.

4.1 The axes
An intuitive and easy to understand choice for the axes is
essential for landscape maps to be useful. In the
infrastructural approach of Ordina [12], the axes are
chosen as follows. The vertical axis represents business
functions, i.e., business behavior categorized with regard
to results and independent of resource or deployment
choices. The horizontal axis represents cases, which still
can be specialized to different types of entities. For
instance, products or services can be considered as cases
business functions add value.

To be useful for managing and designing for change, it
is important that the choice of axes is stable, i.e., that the
same axes can be used for different usages of the map,
and for representing different situations over time.
Another requirement is that the choice of axes results in a
useful decomposition of the domain. The map is useless if
all entries are assigned the same value, or if the matrix
becomes sparse in all situations.

The axes themselves allow some freedom in how
columns (or rows) are ordered. Sometimes this freedom
can be used for arranging columns such that the plane
consists of nice rectangular regions like in Figure 6. In
other cases, there are semantic constraints, like ordering
of business functions in time or an ordering according to
priority.

Finally, it is possible to add a hierarchical structure to
an axis. For business functions or processes this is an
obvious approach to allow more detail in a landscape
map.

4.2 The cells
The cells of a landscape map, which are the third
dimension of the landscape map, depend on the purpose
of the landscape map. If the map is to be used for
enterprise application integration, the cells will represent
applications or systems; see, for instance, the landscape
map in Figure 6. If the purpose is to give insight into the
use of data elements, the cells will hold references to data
types.

The landscape map in Figure 6 is a view on an
underlying model, with its own signature. For example, it
may be based on the same sets of concepts, but with two
other relations:

 7

-
-
-
-

-
-
-
-
-
-
-

C = CA∪CX ∪CY∪CZ
CA={product, function, application}
CX = {home_ins, travel_ins, …}
CY = {customer_rel, claim_processing, …}
CZ = {web_portal, call_center, …}
R = {support, realize}

Figure 3 illustrates how an application supports a business
process that spans a number of business functions, and
assumes, moreover, that the underlying model specifies
how an application realizes a product. Now we have:

support ⊆ CY × CZ

realize ⊆ CZ × CX

In this particular case, we can directly find the use
relation as the product of support and realize. To be
precise, combining support and realize leads to a relation
CY × CZ × CX, so we still have to reshuffle the order of the
parameters to find the use relation. Moreover, as
explained in Section 3.1, support, realize and use are
defined on concept instances, not on concepts themselves.

use = support × realize

Note that in this case, because the ternary use relation of
the landscape map is constructed as a cross product of
two binary relations, its components can always be
visualized as a rectangle. That is, if there is an application
say z, for (x1,z,y1), and (x2,z,y2), then there are also
components for (x1,z,y2) and (x2,z,y1).

At the first sight, it may seem that the visualization in
Figure 6 of the three dimensional use relation is
straightforward. However, a closer inspection reveals that
several choices must still be made. First, the three
dimensional relation does not specify in which order the
items on the axes are presented.

Second, the three dimensional relation does not specify
how applications are ordered within a cell of the matrix.
Consider for example the top right cell, which visualizes
the applications used for Customer Relations & Sales, and
Legal Aid Insurance. There are four application
components in this cell: Web portal, Call center
application, Customer relationship management system,
and Legal Aid CRM. However, the relation does not
specify that the web portal must be on top, that it is bigger
than the two others below, etc. This is what we call visual
information, which must be deduced and/or produced by a
layout algorithm.

4.3 Automatic layout of landscape maps
An important condition for landscape maps to be effective
for problem identification is that the visualization must be
intuitive and easy to understand. To a large extent, the
choice of the axes and the ordering of the rows and
columns determine the layout of a landscape map. If
adjacent cells in the plane have the same value assigned,
they can be merged to form a single shape. If there are no
other criteria for ordering the axes such as time or
priority, the ordering can be applied to optimize the
layout of shapes the plane, and also to limit their number.

Creating the layout of a landscape map can be seen as
a search process. We must define the search space, what it
means to have a ‘good’ or ‘nice’ layout, and we must find
smart ways to search.

For the search space, a cell that has multiple values
assigned can be visualised by multiple combinations of
overlaps and ways to split the cell. The input for an
automatic layout algorithm is an empty matrix with a per-
cell list of values. A cell that has multiple values assigned
may be visualised by using overlaps and/or cell splitting.
For instance, the top right cell of Figure 6 has 4 values
assigned and is visualised by splitting the cell in three
rows of which the bottom one is overlapped by the fourth
value. A layout algorithm should be able to derive such a
visualisation (semi-)automatically. Examples of rules that
can be used to evaluate possible layouts are:

Minimize the number of objects on the plane.
Minimize the number of corners on the objects.
Maximize the convexity of the objects.
Make the smallest object as large as possible.

We must define also the precedence of the rules in cases
of conflict.

For the order of searching the search space, we must
find some good heuristics because the search space is
huge, already for a simple example as in Figure 6. For
instance, assume that a cell has four values assigned, i.e.,
four applications are used by a particular combination of a
product and a business function. The basic layout of this
cell can be chosen from 168 possible options:

4 overlaps, no cell splitting 4*3*2 (top bottom order!)
4 subcells, no overlaps 4*3*2 = 24
2 subcells with 2x2 overlaps 4*3*2 = 24
2 subcells, one with 3 overlaps 4*3*2 = 24
3 subcells, one with 2 overlaps 4*3*2 = 24
3 subcells, one overlapping two 24
3 subcells, one overlapping three 24

Clearly, the total number of possible visualizations for a
landscape map grows exponentionally. Therefore, the
search space must be constrained by rules. Some rules to
guide the search process are:

 8

-

-

-

-
-
-

-

-

-

-

Consider only applications that are allowed by the
model.
For subcells at the border of a cell, choose applications
that also occur in neighboring cells.
Start with borders, then go for corners, and finally
choose centers of cells.

A particular kind of search process works as follows. We
first try to find a good initial layout and thereafter we try
to improve this initial layout.

In this case, it is important to find a good initial layout,
since improvement is slow. Here we can use variants of
the search heuristics mentioned above. The landscape
map of Figure 6 has been generated using the following
set of rules:

Choose applications for borders.
Choose applications for corners.
For applications that occur only in one cell, put the
application in the center of the cell (e.g., top right
corner).
Fill rows and columns (e.g., top three rows of
applications).
Fill neighbors in a “smart” way.

In the particular case of Figure 6, these construction rules
directly yield the presented landscape map without the
need for any improvement rules. However, in general
there will be room for improvement. Examples of
improvement rules are:

Enlarge one application in a cell, as long as it does not
exclude another application from the cell.
Swap two subcells in a cell.

The improvements are again measured by the same kind
of rules as in the previous case. Now, the additional
possibility is not to search the whole search space in an
exhaustive way, but to randomly apply the improvement
rules, as in evolutionary learning techniques.

5. Interaction with landscape maps
So far, landscape maps have been used as a static one-
way presentation format, and landscape map tools contain
only editors that allow architects to create landscape
maps, with no provisions to relate them to more formal
underlying architectural models. We use landscape maps
as an interactive medium. Landscape maps are used as a
starting point for more detailed models and specifications
and they can be used for entering relations between the
chosen dimensions. Changes in the landscape map can
also be analyzed for impact on other elements of the map.

We have developed new techniques to define
interactive landscape maps. In this section we discuss the
notion of landscape map action, which has already been
defined in Section 3.2 as a description of how a view can

be modified, for example due to interaction with the user
or as triggered through another view.

We say that landscape map actions create new views
and visualizations from existing ones, and can therefore
be formally described as mappings between views and
their vizualizations. At this abstract level, they have
something in common with our notion of viewpoint.
However, intuitively they are clearly different in
important ways, and this is reflected also in our formal
definition.

First, when we change the landscape map view we
may also have to change the underlying model, and vice
versa. For example, consider a stakeholder that works
with multiple views at the same time, or multiple
stakeholders with multiple viewpoints. In such cases, we
visualize the changes directly in all views (with the
problem of calculating new visual attributes). On the
contrary, when we create a new view from a viewpoint,
then existing views do not change. Actions that change
the underlying model necessarily have a strict semantics,
whereas actions that change only the visualization of a
model in a view can be used to make a landscape map
more ‘suggestive’, e.g., by using colors and sizes of
objects to signify their relative importance. Although
important in practice, we do not discuss visual and
psychological aspects of landscape maps here.

Second, actions may be interpreted in different ways,
depending on the stakeholder and its viewpoint. For
example, some stakeholders may change the underlying
model, while others may not. For this reason, we
represent actions explicitly in views, in the sense that
viewpoints or landscape map actions can also modify the
landscape map actions. In this, we use an extended notion
of ‘view’ compared to the IEEE 1471 standard, in which
views only relate to the architecture itself.

Third, actions typically require some interaction with
the user, before they can be executed. We therefore
extend the notion of action by associating an interaction
protocol with it. Thus, an action specifies both the
interaction dialogue with the user (which kind of
information must be obtained from the user when he
clicks a button), as well as the consequence of the
interaction (e.g., whether and how the underlying model
must be modified after interaction with the user).

In this section we discuss two kinds of interactions. In
Section 5.1 we describe the creating and navigating a
landscape map. In Section 5.2 we discuss the more
complex case in which the underlying model can be
changed by editing the landscape map. This tends towards
impact analysis. Section 5.4 describes how these
interactions may be realised by embedding corresponding
actions explicitly in the landscape map view.

5.1 Creating and navigating a landscape map
The first contours of a landscape map are usually drawn
on a white-board, flip-over or piece of paper. Together
with the stakeholders the architect tries to address their
concerns. The map should be such that it concentrates on
the choices that must be made. The drawing must also be
such that consequences are visible. In this interaction the
architect chooses the concepts on the axes and on the
plane, the level of detail, leaving out the facts that are less
important. For the sake of readability, understandability,
and acceptance the architect juggles a little bit with the
(unwritten) rules of the landscape map. With pen and
paper this can obviously be done.

 9

Back at the desk and using the tool we envisage, the
landscape map must be constructed in a more formal way.
First, the architect needs to select the type of concepts
used on the X-axis, on the Y-axis, and on the plane (see
Figure 7). In our ArchiSurance example, the X-axis
contains products, the Y-axis signifies business functions,
and the plane holds applications.

Next, the objects on these axes must be chosen (the X1,
…, Xm and Y1, …, Yn in the figure). If a landscape map is
used to define a new architecture, these objects can be
freely chosen (of course conforming to the type of the
axes). Alternatively, if an existing architecture model is
visualized they may be selected from this model. By
choosing the concepts for the axes the field of play is
defined.

Y1

Yn

Yj

X1 Xi Xm
Y-axis

X-axis

Zk
R2

R1

Figure 7. Elements of a landscape map.

After this, the architect must choose the type of assertions
that are made by putting an object Zk somewhere on the
plane, i.e., the relations R1 and R2. In our example, he
chooses business functions on the vertical axis, products
on the horizontal axis and applications on the plane. The
most obvious, intuitive assertion is that an application is
used by activities required within the business function in
realizing the product, giving us R1 = support and R2 =

realize. For every object the architect places on the plane,
these relations between Xi, Yj, and Zk are instantiated.

Furthermore, if the rectangle of the application Zk is
not exactly aligned within a row and/or column, then the
relations with the X and Y elements are in a sense
‘incomplete’. For example, an application may deliver
only some of the functionality needed to support a
business function.

In a similar fashion, an existing landscape map can be
used as a starting point for navigation. In this case,
relevant interactions include:
-

-
-

-

Open a rectangle: detailed specifications or detailed
models are shown in a separate window.
Close detailed specification or detailed models.
Change granularity of an axis; for instance, business
processes can be changed to business activities.
Link two rectangles by a relation supported by the
underlying concept. For instance, if rectangles
represent systems, use or composition can be used.

We are currently developing a prototype interaction
engine for landscape maps based on these ideas.

5.2 Changing a landscape map
If an architect or stakeholder wishes to change an existing
landscape map, the effects of this change on the
underlying architecture model need to be assessed. Some
changes may be purely ‘cosmetic’ in nature, e.g.,
changing the color of an object. Other changes need to be
propagated to the underlying model, e.g., if an object is
added or deleted.

Mapping a seemingly simple change to the map onto
the necessary modifications of the model may become
quite complicated. Since a landscape map abstracts from
many aspects of the underlying model, such a mapping
might be ambiguous: many different modifications to the
model might correspond to the same change of the
landscape map. Human intervention is required to solve
this, but a landscape map tool might suggest where the
impact of the change is located.

In the example of Figure 6, the architect may, for
instance, want to remove the seemingly redundant Legal
aid CRM system by invoking a ‘remove overlap’
operation on this object. This operation influences both
the visualization and the architectural model. Figure 8
illustrates the effects of the operation on the underlying
model.

First, the architect selects the object to be removed, in
this case the Legal Aid CRM system. The envisaged tool
colors this object and maps it back onto the underlying
object in the architecture model (an element of the set CZ
as defined in Section 3.1).

ArchiSurance

Home
&

Away

Car

Legal
Aid

Customer Relations & Sales

Home & Away
Policy

administration

Home & Away
Financial

application

Car
Insurance
application

Legal Aid
backoffice

system

Web
portal

Call center
application

CRM system Legal Aid
CRM

ArchiSurance

Home
&

Away

Car

Legal
Aid

Customer Relations & Sales

Home & Away
Policy

administration

Home & Away
Financial

application

Car
Insurance
application

Legal Aid
backoffice

system

Web
portal

Call center
application

CRM system Legal Aid
CRM

Customer
Relations
& Sales

Claims
Processing

Contracting

Document
Processing

Liability
Insurance

Car
Insurance

Travel
Insurance

Home
Insurance

Legal Aid
Insurance

Web portal

Call center application

Customer relationship management system

Home & Away
Policy administration

Legal aid
backoffice

system

Legal aid
CRM

Document management system

Home & Away
Financial application

Business
Functions

Products

Premium
Collection

Car insurance
application

Customer
Relations
& Sales

Claims
Processing

Contracting

Document
Processing

Liability
Insurance

Car
Insurance

Travel
Insurance

Home
Insurance

Legal Aid
Insurance

Web portal

Call center application

Customer relationship management system

Home & Away
Policy administration

Legal aid
backoffice

system

Legal aid
CRM

Document management system

Home & Away
Financial application

Business
Functions

Products

Premium
Collection

Car insurance
application

Figure 8. Editing a landscape map.

Next, the relations connecting this object to its
environment are computed (the second part of Figure 8).
Here, this concerns the relations of Legal Aid CRM with
the Web portal and the Legal Aid backoffice system.
These relations will have to be connected to one or more
objects that replace the objects that are to be removed.
Since we have chosen a ‘remove overlap’ operation, the

landscape tool computes with which other objects Legal
Aid CRM overlaps, in this case the CRM system. The
relations formerly connecting Legal Aid CRM are then
moved to the other CRM system, unless these already
exist (e.g., the relation with the Web portal).

Naturally, this scenario presents an ideal situation with
minimal user intervention. In reality, a tool cannot always
decide how a proposed change is to be mapped back onto
the model, and may only present the user with a number
of options. For example, if the functionality of the Legal
Aid CRM system would overlap with more than one other
system, remapping its relations requires knowledge about
the correspondence between these relations and the
functions realized by these other systems.

5.3 Impact analysis
The use of viewpoints may play an important role in
architecture-level impact analysis (see, e.g., [12]). The
type of editing illustrated above tends toward this type of
analysis. By propagating changes to the landscape map
through the architectural model, a high-level impression
of the effects of a change can be obtained. Several visual
techniques such as colors, line styles, and fonts can be
used to highlight these effects within the landscape map.

Landscape maps can also be used to visualise the
results of other types of analysis. For example, a cost or
performance analysis may yield quantitative results that
can be shown by, e.g., colouring objects in a landscape
map according to these values. Suppose we would analyse
the maintenance cost of the applications of ArchiSurance
and plot this in a landscape map as illustrated in Figure 9.

Customer
Relations
& Sales

Claims
Processing

Contracting

Document
Processing

Liability
Insurance

Car
Insurance

Travel
Insurance

Home
Insurance

Legal Aid
Insurance

Web portal

Call center application

Customer relationship management system

Home & Away
Policy administration

Legal Aid
backoffice

system

Legal Aid
CRM

Document management system

Home & Away
Financial application

Business
Functions

Products

Premium
Collection

Car insurance
application

Maintenance cost HighLow
Figure 9. Maintance cost of applications.

 10

This figure gives a rapid overview of, e.g., legacy systems
that are in need of replacement and products whose
application support is too costly. Combined with the
information the landscape map gives on the overlap
between applications, this yields a valuable instrument in
deciding about the migration to a future application
architecture.

In analysis, the view itself does not change, but a new
view is created to visualize the analysis results (possibly
including a visualization of constraints). This view has a
larger underlying model and a richer visual construct then
the original one, i.e., the original is a subset of the view
showing the results of the analysis.

5.4 Actions embedded in views

 11

-

-

-
-

The landscape map editor in Section 5.1 can be described
in terms of a number of basic actions that can be
performed on the map. The initial state of the landscape
map editor is an empty canvas. However, the landscape
map view is not empty. It contains actions for selecting
the type of concepts on the X-axis, on the Y-axis, and on
the plane. Once these have been selected, a new view is
created which contains actions that allow the user to
select and draw the applications, such as the following.

Draw a rectangle (rubber band) covering one or more
cells of the map. A user may choose the color and
assign an object (instance of a concept) to the
rectangle.
Extend an existing rectangle with another rectangle
that overlaps with the original. Color and label are
inherited.
Modify a rectangle: e.g., its coverage, color, and value.
Delete a rectangle.

The landscape map actions thus work in this way as a
kind of bootstrapping mechanism for the landscape map
editor. All interaction mechanisms are defined in the
actions, not in the editor itself. In other words, the editor
is generic, and can be used for any other task as well.

A crucial mechanism underlying the landscape map
actions is the interaction protocol for interaction
dialogues. For example, assume that the editor visualizes
the landscape map actions as a set of buttons, and that
pressing a button triggers the associated interaction
protocol. If the user presses the button for adding an
object on the X-axis, the system responds with a question
for the name of the object, and asks the user where the
new column must be added. Clearly, there are also
interactions that are not visualized by buttons. For
example, the action `change columns’ is typically
triggered by a user clicking on the column to be moved. If
we look at the interaction of the user with the landscape

map editor in more detail, we can distinguish the trigger,
the atomic steps and the protocol.
1. Typically the dialogues start with a trigger from the

user, such as pressing a button on the screen.
2. The dialogue may contain several atomic

interactions. For example, when an item is added to
an architecture, there are atomic interactions of
selecting the kind of item, typing in the name of the
item, pointing a place on the canvas where the item
should appear, etc.

3. The protocol tells in which order the atomic
interactions should be done. We assume that the
protocol consists of a complete ordering of atomic
interactions, such that each new atomic interaction
can be done only when the previous one has been
finished.

If the user presses an add- or delete button, then a
dialogue is initiated in which the systems asks for the
parameters to execute the action. For example, when a
user presses a delete button, the editor asks the user which
object is to be deleted.

R3(a,b,c)

User Landscape view

press delete

ask object

Figure 10. Interaction with landscape view.

The same mechanisms of landscape map actions and
dialogue protocols is also used in the more complicated
interactions in Section 5.2, in which also the underlying
model is affected by the edit operations.

An example of interaction with landscape map views
that is concerned with two views is represented in the
sequence diagram of Figure 11.

rebuild
del realize(b,c)

realize(b,c)

ask subrel
use(a,b,c)

press delete
ask object

Model User Landscape view

Figure 11. More complex interaction with

landscape view and underlying model.

 12

The user presses the delete button, and the landscape view
asks which application should be deleted. The user clicks
on an application, which we abstractly describe by
use(a,b,c). Now for the system to delete this relation from
the model, it can due to the construction of our relation
use from support and realize, it can either delete
support(a,b) or realize(b,c). When the user has selected
realize(b,c), the action del in the model is called, and
finally the landscape map is rebuilt.

Moreover, actions may be interpreted in different
ways, depending on the stakeholder and its viewpoint.
The stakeholder assumed in Figure 10 is allowed to
change the underlying model. However, we can block this
permission by updating the action in the view such that
the del-realize(b,c) is not triggered by the delete action.
Since the actions are specified in the view, and not in the
landscape map tool, this blocking can be realized by
another landscape map action.

Summarizing, if we consider landscape maps as an
interactive medium, which contain interactions involving
changes to the underlying model, then the flexibility of
landscape map actions becomes very useful.

6. Conclusions and Future Work
In this paper we introduce landscape maps for enterprise
architectures, which is an instrument that has proven its
value in the architecture and consultancy practice of
Ordina. The landscape map is an easy-to-read
informative format that provides overview of and insight
into architecture relations between different domains. We
define a formal semantics for landscape maps based on a
mapping to and from the ArchiMate language. We show
how landscape maps can be automatically derived from
enterprise architectural models and explain how they can
be automatically visualised. Finally, we explain how
interaction with landscape maps is realised by
propagating changes back to the underlying model by
means of actions.

The development of landscape maps in this paper
carefully balances formalization and informal discussion.
Enterprise architectures are often informal, because they
must not constrain the architect. However, to provide the
architect with useful tools, some formal definitions are
necessary. In this paper we only adopt a minimal
formalization in terms of the signature of a landscape
map, but we do not constrain for example the visual
structures, or the landscape map actions. The minimal
formalization has been sufficient to define the
visualization and interaction techniques.

Based on the formalization of landscape maps
presented in this paper, we are developing a prototype
that will illustrate the added value of the formal semantics
of landscape maps and the benefits of interactive

landscape maps (based on actions). The prototype will
serve as a proof of concept of the formalization of,
automatic layout of, and interaction with landscape maps.
Furthermore, it will be used to show to members of the
ArchiMate Tool Vendor Forum the tool support that we
envisage for enterprise architecture. The Tool Vendor
Forum consists of tool vendors associated with the
ArchiMate project with the purpose of realizing
commercial tool support for ArchiMate research products.

References
[1] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P.

F. Patel-Schneider, editors. Description Logic Handbook:
Theory, Implementation and Applications. Cambridge
University Press, 2002.

[2] M. Bonsangue, F. de Boer, J. Jacob, A. Stam, and L. van
der Torre (2004), A logical viewpoint on architectures,
Submitted.

[3] A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein, and
M. Goedicke, (1992), Viewpoints: A Framework for
Multiple Perspectives in System Development,
International Journal of Software Engineering and
Knowledge Engineering, Special issue on 'Trends and
Future Research Directions in SEE', World Scientific
Publishing Company Ltd., 2(1): 31-57, March 1992.

[4] IEEE Computer Society (2000), IEEE Std 1472-2000:
IEEE Recommended Practice for Architectural Description
of Software-Intensive Systems, Oct. 9, 2000.

[5] H. Jonkers et al. (2003). A Language for Coherent
Enterprise Architecture Descriptions. Proceedings of the
7th IEEE International Enterprise Distributed Object
Computing Conference (EDOC'03), 2003. IEEE Computer
Society Press.

[6] H. Jonkers, M.M. Lankhorst R. van Buuren, S.
Hoppenbrouwers, M. Bonsangue, and L. van der Torre
(2004), Concepts for Modelling Enterprise Architectures,
International Journal of Cooperative Information Systems,
special issue on Architecture in IT (forthcoming).

[7] Lassing, N., Rijsenbrij, D., Vliet, H. van (2001),
Viewpoints on modifiability, International Journal of
Software Engineering and Knowledge Engineering, Vol.
11, no. 4 (2001), pp. 453-478.

[8] J. van Leeuwen, Ed., Handbook of Theoretical Computer
Science, vol. B: Formal Methods and Semantics, North-
Holland, Amsterdam.

[9] A. Kleppe and J. Warmer, The Object Constraint Language
and its application in the UML metamodel, in Proceedings
UML'98 Beyond the Notation, Mullhouse, France, June
1998.

[10] B. Nuseibeh, S. Easterbrook, and A. Russo, (2001),
Making Inconsistency Respectable in Software
Development, Journal of Systems and Software, 56(11),
November 2001, Elsevier Science Publishers.

[11] W.A.M. van der Sanden en B.J.A.M. Sturm (2000),
Informatiearchitectuur, de infrastructurele benadering (in
Dutch), Panfox.

[12] W.A.M. van der Sanden, P. Bergman, J.C.Campschroer en
H.R. de Reus (1999), Realisatie van flexibele
informatievoorziening (in Dutch), Informatie nr. 41,
January 1999, pp. 58-65.

	Abstract
	1. Introduction to landscape maps
	1.1 Research question and approach
	1.2 Scope of the paper

	2. Running example
	3. Definition of landscape maps
	3.1 The signature of a landscape map
	3.2 Semantic and symbolic models
	3.3 Viewpoints, views and vizualizations

	4. Visual aspects of landscape maps
	4.1 The axes
	4.2 The cells
	4.3 Automatic layout of landscape maps

	5. Interaction with landscape maps
	5.1 Creating and navigating a landscape map
	5.2 Changing a landscape map
	5.3 Impact analysis
	5.4 Actions embedded in views

	6. Conclusions and Future Work
	References

