
C e n t r u m v o o r W i s k u n d e e n I n f o r m a t i c a

 INformation Systems

Ontologies in information integration within multimedia
presentation generation

J. Salas Enrech

REPORT INS-E0515 OCTOBER 2005

INS
Information Systems

CWI is the National Research Institute for Mathematics and Computer Science. It is sponsored by the
Netherlands Organization for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2005, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-3681

Ontologies in information integration within
multimedia presentation generation

ABSTRACT
Nowadays an enormous quantity of heterogeneous and distributed information is stored in the
current World Wide Web. Sharing of different information sources is needed. Recently the word
Semantic Web has become very popular. The Semantic Web provides a common framework
that allows data to be shared and re-used through ontologies. Ontologies make information
explicit and can be used in the integration information task. The relation of an ontology with
information sources or other ontologies plays an essential role in information integration and
multimedia presentation. Multimedia presentation generators use a set of media items. The
challenge is to combine these items in a coherent presentation to the user. For this, a large
amount of information about these media items and their relations is needed. The collection and
maintenance of information is a time-consuming costly effort that leads to the requirement for
using existing information whenever possible to re-use the input metadata from the databases.
In this document, we study the different approaches for combining information and propose an
ontology construction method for developing shared ontologies. This document further
illustrates the example integration of two art-media ontologies applying this process.

1998 ACM Computing Classification System: I.2.4, H.5.1
Keywords and Phrases: ontology mapping, semantic web, multimedia
Note: Master's thesis

Ontologies in Information Integration within
Multimedia Presentation Generation

Thesis by J. Salas Enrech

Facultat d’Informàtica de Barcelona
Enginyeria Informàtica

Supervisors:
Dr. Jacco van Ossenbruggen

Prof. Dr. Lynda Hardman

October-May 2004/2005

October 5, 2005

Contents

1 Introduction 1
1.1 Objectives . 2
1.2 Structure of the thesis . 2

2 Basic ontology concepts 4
2.1 The Semantic Web . 4
2.2 The role of ontologies . 5
2.3 Standards and ontology languages 6

2.3.1 Semantic-oriented languages 6
2.3.2 Database and query languages 8

2.4 Existing ontologies . 8

3 Ontologies in information integration 11
3.1 Introduction . 11
3.2 Single ontology approach . 11
3.3 Multiple ontology approach . 12
3.4 Hybrid ontology approach . 13

4 Mismatches 14
4.1 Introduction . 14
4.2 Language level mismatches . 14
4.3 Ontology level mismatches . 15

4.3.1 Conceptualization mismatch 15
4.3.2 Explication mismatch . 16

4.4 Practical problems . 18
4.5 Approaches and techniques to solve mismatches 18

4.5.1 Solving language mismatches 18
4.6 Semantic Integration . 19

4.6.1 Mappings . 19
4.7 Conclusion . 20

I

5 Aria and Chime integration 22
5.1 Introduction . 22
5.2 The ontology construction method 22

5.2.1 Building the shared vocabulary 23
5.2.2 Building semantic mappings 25

5.3 Aria and Chime integration . 26
5.3.1 Topia project . 26
5.3.2 Chime project . 26

5.4 Applying the ontology construction method 28
5.5 Conclusion . 39

6 Conclusion 40
6.1 Summary . 40
6.2 Conclusion . 40
6.3 Evaluation . 41
6.4 Future work . 42

A Shared vocabulary in RDF(S) 43

B Aria Semantic Mappings in RDF(S) 47

C Chime Semantic Mappings in RDF(S) 49

D Sesame construct queries 52

II

List of Figures

2.1 A layered approach to the Semantic Web from [5] 5
2.2 Modeling components of RDF Schema from [40] 7

3.1 Three possible ways for using ontologies for content explication, from
[41] . 12

3.2 Advantages and drawbacks of the different ontology integration ap-
proaches, from [41] . 13

4.1 Framework of issues on ontology integration 16
4.2 Semantic mismatches that are analyzed in this document 19

5.1 Ontology Construction Method . 23
5.2 Framework to solve ontology level mismatches 25
5.3 Aria’s implementation design from [27] 27
5.4 SampLe topic selection phase and the overall view on the interface

from [16] . 27
5.5 SampLe architecture from [16] . 28
5.6 Hybrid approach: semantic mappings and query structure 29
5.7 Aria Classes . 30
5.8 Chime Art Subject . 31
5.9 Chime Media and Text . 32
5.10 Term ’Artwork’ and its properties in Aria and Chime 33
5.11 Term ’Artist’ and its properties in Aria and Chime 34
5.12 Synonym mismatches between Aria and Chime 35
5.13 Concept description mismatches between Aria and Chime 36
5.14 Shared Vocabulary Structure . 37

III

Acknowledgements

Many people have contributed in one way or the other to the development of this
thesis. I would like to specially thank a few.

First of all, my supervisor Jacco van Ossenbruggen, without his help I could not
have done this thesis. Thank you for showing me your knowledge about Semantic
Web and giving me total freedom for developing my thesis. Also thanks for all your
comments and reviews about this document.

I want to thank Lynda Hardman for giving me the opportunity to work at CWI and
for making me feel at home and welcome. Your comments about my masters thesis
and your English corrections are greatly appreciated. Also thanks for all this wonderful
chocolate from all the world that I have tasted.

I would like to thank everyone of the INS-2 Group. Lloyd, for his useful comments
and for showing me the power of the Sesame construct queries. Joost, for helping me
with all my technical problems. Katya for her useful comments about Chime. Katha-
rina, my office mate for the first months, for helping me with good LATEX tricks and
advice.

I want to thank all my colleagues Frank, Stefano, Yulia, Lynda, Jacco, Joost, Katya
and Katherina for the great time I have had at CWI. For letting me be part of your
group and for all your input during my research.

Thanks also to Georgina Ramı́rez who give me very good advice and has always
tried to help me. Thanks for these coffee breaks, for making me feel at home and for
improving my Spanish.

Special thanks to my parents who always encouraged me to study. Thanks to my
mum for showing me the pleasure of reading from when I was very young. I would
also like to thank my sister, Isabel and my brother-in-law, Pepe, for providing me home
during five years in Barcelona.

I also would like to thank to my Erasmus colleagues Fernando and Marina. Thanks
for satisfying me in my free time with laughter and good vibes. I will always remember
these travels around Netherlands and the party in Weesperstraat.

My final thanks but not least to Javier Vizcaı́no, who has always been encouraging
me during this thesis and for visiting me. Thanks for bearing all my simulations of the
presentations and for your computer advice. Therefore, now I must help you with your
thesis.

Javier Salas Enrech

V

VI

Amsterdam, May 2005

Abstract

Nowadays an enormous quantity of heterogeneous and distributed information is
stored in the current World Wide Web. Sharing of different information sources is
needed. Recently the word Semantic Web has become very popular. The Semantic
Web provides a common framework that allows data to be shared and re-used through
ontologies. Ontologies make information explicit and can be used in the integration
information task. The relation of an ontology with information sources or other on-
tologies plays an essential role in information integration and multimedia presenta-
tion. Multimedia presentation generators use a set of media items. The challenge is to
combine these items in a coherent presentation to the user. For this, a large amount of
information about these media items and their relations is needed. The collection and
maintenance of information is a time-consuming costly effort that leads to the require-
ment for using existing information whenever possible to re-use the input metadata
from the databases. In this document, we study the different approaches for combi-
ning information and propose an ontology construction method for developing shared
ontologies. This document further illustrates the example integration of two art-media
ontologies applying this process.

Chapter 1

Introduction

In recent years, there have been great advances in the development of techniques
related to the Semantic Web. This is the next step to achieve in the World Wide Web:
that computers partly understand the information. Nowadays, the majority of the infor-
mation stored on Internet is in human readable format only. The main aim of Semantic
Web techniques is to make the information on the Web machine-readable [6]. These
new Semantic Web techniques often need to use ontologies to represent the seman-
tics. Ontologies are an important factor for enabling interoperability in the Semantic
Web. These ontologies allows users to organize information into, e.g., taxonomies of
concepts [22].

The collection and maintenance of information is a time-consuming and costly
effort that leads to the requirement for using existing information whenever possible.
Furthermore, the reuse of these ontologies may be very attractive and useful. However,
there are various problems when we try to integrate or adapt two or more ontologies
for new purposes.

Semantic integration is an interest area in several fields, such as databases,
information-integration and ontologies. One of the main bottlenecks in semantic in-
tegration is mapping discovery. Most researchers agree that semantic integration is
one of the most serious challenges for the Semantic Web today [25]. For this, firstly
we need a framework about the different semantic problems that we can find in the
integration process. Secondly, an approach to carry out the integration task is needed.

Multimedia presentation generators use a set of media items. The challenge is to
combine these items in a coherent presentation to the user. For this, a large amount of
information about these media items and their relations is needed. The collection and
maintenance of information is a time-consuming costly task that leads to the require-
ment for using existing information whenever possible to re-use the input metadata
from the databases. If we try to combine information belonging to different sources
for carrying out a presentation we find different heterogeneity problems.

Multimedia presentations need knowledge about the domain to be able to convey
the essential semantic relations in the presentations. It requires knowledge about how
to order, group and prioritize this information effectively. For instance, organizing the

1

2 1.1. Objectives

information in a coherent storyline with a clear introduction, main body and conclu-
sion. It requires knowledge about media design. First, we need to be able to select
the most appropriate medium, and second, we need to understand the characteristics
of that medium to achieve the communication goal. However, this is not an easy task
because it exists a great variety of data sources and semantic relations [21]. Therefore,
information integration is important in multimedia presentation generation. For ins-
tance, we can be interested in the generation of a presentation about artworks placed
in different museums.

1.1 Objectives
The main aim of this thesis is showing the integration of two or more ontologies for

sharing information. To achieve this purpose we have to decompose it into intermediate
goals.

• introduce a framework which can be used to solve the semantic problems that
we can find when we try to integrate ontologies for new purposes,

• propose an ontology construction method for developing shared ontologies
which can be used to define terms from different vocabularies and to automati-
cally translate them from one vocabulary to another,

• apply this process to a real case: the integration of two ontologies within the
broad field of art presentation for the construction of multimedia presentations.

1.2 Structure of the thesis
The first four chapters are based on literature search and give us an introduction to

our research.

• In chapter 2, we give the background for our research. We discuss languages
for representing models of information semantics. We introduce some basic con-
cepts about ontologies in order to provide basic common concepts and under-
standing.

• In chapter 3, we provide general information about ontology-based integration
approaches and address the types of possible conflicts.

• In chapter 4, we analyze the problem of ontology heterogeneity which is cha-
racterized by different kinds of mismatches. Mismatches are the problems which
can appear when we try to integrate two or more ontologies. We study these mis-
matches at different levels and the way to resolve them.

1. Introduction 3

• In chapter 5, we describe the different categories of mappings between ontolo-
gies.

The following chapters are the main contributions. A framework to solve the in-
tegration mismatches and an ontology construction method for developing shared on-
tologies are introduced.

• In chapter 6, we explain a set of concepts from the field of shared ontologies.
We describe our method or process of exchanging meaning between different
sources and how to build a shared vocabulary to combine and integrate infor-
mation belonging to different sources. We also investigate and analyze the real
case about the integration of two different art ontologies: Aria and Chime. These
ontologies contain pictures and description of works of art in the Rijksmuseum
in Amsterdam.

• In chapter 7 we conclude the thesis with a summary of the main goals and
present an outline of future work.

Chapter 2

Basic ontology concepts

This chapter introduces a set of basic concepts of ontology engineering. Its main
aim is to provide a basic understanding of ontologies, which are the basis of this work.

2.1 The Semantic Web
The Semantic Web is an initiative to develop machine processable data on the

World Wide Web. The Semantic Web provides a common framework that allows data
to be shared and reused across application, enterprise, and community boundaries.
Semantic Web is a form of Web content that is meaningful to computers. [6].

“The Semantic Web is an extension of the current web in which information is
given well-defined meaning, better enabling computers and people to work in cooper-
ation.”

Tim Berners-Lee, James Hendler, Ora Lassila, The Semantic Web, Scientific
American, May 2001

The Semantic Web is built on layers of enabling standards. Figure 2.1 illustrates a
layered approach to the Semantic Web and describes the main layers of the Semantic
Web design and vision. We begin explaining at the bottom of the figure and we finish
at the top [3, 37].

• URIs or Uniform Resource Identifiers are an important component of the cur-
rent World Wide Web, which provides a way of identifying resources and links
among resources.

• XML or eXtensible Markup Language is a language that lets one write struc-
tured Web documents with a vocabulary defined by the user. It is a fundamental
component for syntactical interoperability.

• RDF or Resource Description Framework is a basic data model for writing sim-
ple statements about resources.

4

2. Basic ontology concepts 5

Figure 2.1: A layered approach to the Semantic Web from [5]

• RDFS or RDF Schema provides modeling primitives for organizing resources
into hierarchies. Modeling primitives are: classes and properties, subclass and
subproperty relationships, and domain and range restrictions. RDFS is based on
RDF.

• The ontology vocabulary layer expands RDF Schema and allows the representa-
tions of more complex relationships between resources.

• The logic layer allows the writing of knowledge rules.

• The proof layers execute the use of rules and the representation of proofs in Web
languages and proof validation.

• The trust layer will emerge through the use of digital signatures and other kinds
of knowledge. The Web will be safer when users trust in its operations (security)
and in the quality of information provided. Digital signatures and other kinds of
knowledge can be used to authenticate the identity of the sender of a message,
or of the signer of a document. It can also be used for detecting modifications in
the original content of the message or document.

2.2 The role of ontologies
The concept ontology arises from philosophy. In this area, ontology (from the

Greek ων = being and λòγoς = word/speech) is the most fundamental branch of meta-
physics. This branch of philosophy focuses the origins, essence and meaning of being.

6 2.3. Standards and ontology languages

In the nineties, the term ontology became embraced by computer science. In this
context, ontology is a controlled vocabulary that describes objects and the relations
between them in a formal way. Ontology comprises a grammar for using the vocabulary
terms to express something meaningful within a specified domain of interest [19].

In general, every one has his/her individual view on the world and the things that
he/she has to deal with every day. However, we have a common vocabulary to commu-
nicate this own conception of the world with another person. This vocabulary can be
called a common shared vocabulary. The concepts involved in this shared vocabulary
can be a little different but belong to a common understanding of the world. We call
this concept a conceptualization of the world.

We know that a large number of languages and different viewpoints exist. We often
find terms whose meaning can differ in different areas. For instance, the term ontology
used in this section has a different use in philosophy than in computer science. This
is the reason that we create a separation into different groups that share a common
terminology and its conceptualization.

More formally, an ontology is an explicit and formal specification of a shared con-
ceptualization [23]. A conceptualization refers to an abstract model of how people
think about a real thing in the world. Explicit refers to the fact that the type of con-
cepts used and the constraints on their use are defined. Formal means that the ontology
should be machine comprehensible. Shared means that an ontology involves know-
ledge accepted by a group of people. Using ontologies we can describe the semantics
of information sources and solve heterogeneity problems [18].

2.3 Standards and ontology languages

Various ontology languages have been developed, focusing on different aspects of
ontology modeling. In this section, we show how ontologies should be represented
and share information. We analyze some ontology languages that are compatible with
existing Web technology. We will explain briefly RDF, RDFS and OWL because on-
tologies to integrate in Chapter 6 are written in these languages.

2.3.1 Semantic-oriented languages

• RDF

RDF, Resource Description Framework, is a family of specifications which was
developed by W3C. RDF provides a foundation for representing and processing
metadata. An RDF graph is a set of triples, each triple consisting of a subject, a
predicate and an object. The subject is the resource, the ”thing” being described.
The predicate is what trait or aspect about that resource that is being described,
and often expresses a relationship between the subject and the object. The object
is the object of the relationship or value of that trait. This notion is useful because

2. Basic ontology concepts 7

Figure 2.2: Modeling components of RDF Schema from [40]

RDF allows subjects and objects to be interchanged. For instance, any subject
from one triple can play the role of an object in another triple [38].

• RDFS

RDF Schema expands RDF by adding a particular vocabulary for RDF data. In
particular, RDF Schema defines class, subclass relations, property, subproperty
relations, and domain and range restrictions. RDF and RDFS are different and
complementary at the same time. The combination of both is sometimes denoted
as RDF(S) [40].

Figure 2.2 illustrates the different modeling components of RDF schema.

• OWL

RDF and RDFS allow the representation of ontological knowledge. However,
a number of other features are missing. For instance, we cannot define local
scope of properties, disjointness of classes, boolean combinations of classes or
cardinality restrictions.

OWL, Web Ontology Language, is designed to process the content of informa-
tion instead of just presenting information to humans. OWL facilitates greater
interoperability of Web content than XML and RDF(S) by providing a richer
vocabulary along with a formal semantics. OWL is composed of three sublan-
guages: OWL Lite (classification hierarchy and simple constraints), OWL DL
(adding class axioms, boolean combinations of class expression and arbitrary
cardinality) and OWL Full (permits also meta-modeling facilities in RDF(S)).
Ontology developers need to select the most suitable sublanguage for their needs
[3, 39].

8 2.4. Existing ontologies

2.3.2 Database and query languages
In this subsection we deal with databases and query languages which work with

RDF and RDFS. We analyze and summarize briefly Sesame and SeRQL because this
database and query language we use to integrate ontologies in Chapter 6.

• Sesame

Sesame is an open source Java framework for storing, querying and reasoning
with large quantities of metadata in RDF and RDF Schema. It can be used as
a database for RDF and RDF Schema, or as a Java library to work with RDF
internally. Sesame provides the necessary tools to parse, interpret, query and
store all information in an RDF file [1, 9, 10, 30].

• SeRQL

SeRQL, “Sesame RDF Query Language” pronounced circle, is an RDF/RDFS
query language that addresses practical requirements from the Sesame user com-
munity. It is very similar to SPARQL (“Protocol And RDF Query Language”).
[31]

SeRQL combines the best features of other query languages such as RQL,
RDQL, N-Triples or N3, and adds some of its own. Some of SeRQL’s most im-
portant features are: graph transformation, RDF Schema support, XML Schema
datatype support, expressive path expression syntax and optional path matching.

SeRQL has a construct clause where you can specify which triples should be re-
turned. However, construct queries can also be used to do graph transformations
or to specify simple rules. Graph transformation is a powerful tool in domains
where mappings between different vocabularies need to be defined [2, 8, 29].

2.4 Existing ontologies
We need a set of terms to build our shared vocabulary. There are several vocabu-

laries and conceptualizations of the domain accepted as a standard. The selection of
these sources is an important step when building a shared ontology. The majority of
ontologies discussed in this section are not available in RDF. However, the number of
ontologies available in RDF is increasing.

• Upper-Level Ontologies

The use of an upper-level ontology provides us with a vocabulary. We can use
these upper-level ontologies to find the bridge concept when we begin to create
the shared vocabulary. Some examples are Dublin Core [15] and VRA Core [36].

– Dublin Core

2. Basic ontology concepts 9

Dublin Core [15] has become an important part of the emerging infrastruc-
ture of the Internet. The Dublin Core metadata standard is a simple element
set for describing a wide range of resource. The Web metadata might be
used to infer semantic relationships. The Dublin Core Metadata Initiative
(DCMI) is the organization dedicated to promoting the adoption of these
metadata and developing specialized metadata vocabularies for describing
resources.

– VRA Core
The VRA Core Categories Version 3.0 [36] consists of a single element
set with which we can create records to describe works of visual culture as
well as the images that document them. As Dublin Core, only one object
or resource may be described within a single metadata set. The elements
are designed to facilitate the sharing of information among visual resources
collections about works and images. These elements may not be sufficient
to fully describe a local collection and additional fields can be added for
that purpose. Moreover, every element may be repeated as many times as
necessary within a given set to describe the image or work.

• Scientific Classification

Scientific Classifications are another standard way to describe a domain. In order
to effectively study plants and animals, all scientists need to use the same names.
Taxonomy is a subject-based classification that arranges the terms in a controlled
vocabulary into a hierarchy [32].

• Thesauri

Thesauri are controlled vocabularies of terms in a particular domain with hierar-
chical, associative and equivalence relations between terms [34].

Domain thesauri are appropriate sources for finding concept names for the
shared vocabulary. These thesauri sometimes contain definitions of the term in-
cluded which might provide guidance for the definition of concepts. Example
thesauri are MeSH1, Wordnet2, AAT and ULAN.

– AAT
The Art and Architecture Thesaurus (AAT) [20] was developed as a vehi-
cle for indexing catalogs of art objects. The AAT is used in cultural he-
ritage institutions for cataloging art collections. The AAT was developed
according to the ISO standard for the definition of monolingual (ISO2788)
and multilingual thesauri (ISO5964). These standards consist of a record
structure with a set of attributes and three relations: hierarchical relation

1Medical Subject Headings, http://www.nlm.nih.gov/mesh/
2Wordnet RDF Representation, http://www.semanticweb.org/library/

10 2.4. Existing ontologies

(broader/narrower term), equivalence of terms (synonyms and lexical va-
riants) and an associative relation (related terms). This thesaurus is avail-
able in English, Spanish, Dutch and French.

– ULAN
The Union List of Artist Name (ULAN) [33] is a structured vocabulary
which contains around 259,000 names and other information about artists.
Names in ULAN may include given names, pseudonyms, variant spellings,
names in multiple languages, etc. Among these names, one is the preferred
name.
The focus of each ULAN record is an artist. Currently there are around
118,000 artists in ULAN. In the database, each artist record is identified by
a unique numeric ID. Linked to each artist record are names, related artists,
sources for the data, and notes.

– Data catalogs
Data catalogs provide metadata and terminology about their data including
lists of variables with definitions and the time period for the data collection.
Furthermore, knowledge catalogs provide online tools for collaborators and
practitioners to describe and share their practice, research methods, and
data [32].

Chapter 3

Ontologies in information integration

3.1 Introduction
Information is often heterogeneous and distributed. When we want to share diffe-

rent information sources, many technical problems have to be solved. The problem
appears when we try to obtain information from different information sources. We can
distinguish two main heterogeneity problems: structural heterogeneity and semantic
heterogeneity. The structural heterogeneity means that different information sources
store their data in different structures. The Semantic heterogeneity considers the con-
tents of an information item and its intended meaning. Semantic conflicts appear when
two sources do not use the same interpretation of the information. The use of ontolo-
gies for the description of a domain is a possible approach to overcome the problem of
semantic heterogeneity.

Ontologies can be used in an integration task to describe the semantics of the infor-
mation sources and to make the contents explicit. There are different ways for relating
different ontologies: single ontology approaches, multiple ontology approaches and
hybrid approaches [41]. The ideas of these approaches are depicted in figure 3.1

3.2 Single ontology approach
The principal aim is to develop a single global ontology that is the result of merging

the related ontologies. This approach provides a shared vocabulary for the specification
of the semantics. All information sources are related to the global ontology. We have
to make semantic mappings between the global ontology and the information sources.

Mapping identifies semantically corresponding terms of different source ontolo-
gies whose terms are semantically equivalent or similar. For instance, in the example
ontologies in Chapter 6, the term Artist in one ontology is semantically equivalent to
the term Artist in the other one. We have to be careful that two terms with the same
name does not mean that they are semantically equivalent. These semantic mappings
are not a difficult task if all information sources involved have the same view on a

11

12 3.3. Multiple ontology approach

Figure 3.1: Three possible ways for using ontologies for content explication, from [41]

domain. But if one information source has a different point of view, for instance by
providing another level of granularity, is better to try another approach.

The advantage of this approach is that the global ontology contains all information
that is needed for information sharing. The drawbacks are that we will find many pro-
blems if we want to change something. Single ontology approaches are susceptible to
changes in the information sources. These changes can imply others in the global onto-
logy and indirectly, in the mappings with other information sources. These drawbacks
lead us to the use and development of multiple ontology approaches.

3.3 Multiple ontology approach

The goal of this approach is avoid the creation of large global ontologies. In mul-
tiple ontologies, each information source is described by its own ontology. Modifica-
tions in one information source or the adding or removing of sources are possible.

Advantages are the absence of a global ontology and the support of heterogeneous
points of view of a domain. A drawback of this approach is that it is extremely difficult
to compare different source ontologies. We need to specify mappings between all on-
tologies to compare them. For instance, if we have to integrate ten ontologies, we have
to create ten local ontologies and relate each of them with the nine others. We can find
many semantic heterogeneity problems when we want to use this approach in practice.

3. Ontologies in information integration 13

Figure 3.2: Advantages and drawbacks of the different ontology integration ap-
proaches, from [41]

3.4 Hybrid ontology approach
This approach takes the advantages of the Single Ontology approach and the Mul-

tiple Ontology Approach. The Hybrid Approach is similar to the Multiple Approach
Ontology: each information source is described by its own ontology. The difference is
that a shared vocabulary is built below the source ontologies to make them comparable.
The shared vocabulary defines basic terms of the primitives of a domain. This shared
vocabulary is useful to compare the source ontologies to each other and can also be an
ontology.

The advantage is that new information sources can be added easily without the
need of modification in the other mappings or in the shared vocabulary. We only have
to relate the new information source with the terms and properties belonging to the
shared vocabulary. The use of a shared vocabulary makes the source ontologies com-
parable and avoids the disadvantages of multiple ontology approaches. A drawback
is that existing ontologies cannot be reused easily. We must carry out a deep analysis
and study of the new ontology because it has to refer to the shared vocabulary. This
new ontology added will be comparable with the other ontologies involved when all
relations with the shared vocabulary are made.

Figure 3.2 gives a summary of the three approaches.

Chapter 4

Mismatches

4.1 Introduction
The goal of the Semantic Web is that computers understand the information on the

World Wide Web. Ontologies are necessary to describe a domain of discourse formally.
Typically, an ontology consists of a finite list of terms and the relationships between
these terms. Nowadays, there are many ontologies, and the idea of reuse of these is
very interesting and useful. We could find different problems when we try to adapt an
ontology for new purposes or integrate two or more ontologies. Differences between
ontologies are called mismatches in [22], and will be used throughout this work.

The aim of this chapter is to analyze the problem of ontology heterogeneity, which
is characterized by different kinds of mismatches between ontologies. We need to solve
this heterogeneity problem in order to combine multiple ontologies, which is needed
in many. Mismatches can appear at two levels: language level and ontology level. The
first is the level of the language primitives that are used to specify the ontology. The
mismatches which appear at this level are the ways to define classes, relations, etc.
The second happen when two or more ontologies are combined and these ontologies
describe overlapping domains. A mismatch at this level is a difference in the way the
domain is modeled. The main point in this chapter is mismatches at the ontology level.
Figure 4.1 depicts a framework of issues, related to the integration of ontologies.

4.2 Language level mismatches
Mismatches at the language level occur when the ontologies are written in different

languages. In [22], four types of mismatches are distinguished:

• Syntax. Each ontology has its own syntax. For instance, to define the class Artist
in RDF Schema, we write <rdfs:Class about=“Artist”>. In LOOM, the expres-
sion defconcept Artist is used to define the same class. It is typical that an onto-
logy language has several syntactical representations. The solutions to solve this

14

4. Mismatches 15

type of mismatch is syntax rewriting.

• Logical representation is the difference in the representation of logical notions.
This type of problem is a little more difficult. For instance, there are ontology
languages where it is possible to describe that two classes are disjoint. This
means that an individual that is a member of one class cannot simultaneously be
a member of another specified class. For instance in OWL:

<owl:Class rdf:about=“Painting”>
blanco<owl:disjointWith rdf:resource=“#Furniture”/>
blanco<owl:disjointWith rdf:resource=“#Building”/>
</owl:Class>

In other ontologies this concept does not exist and it is necessary to use negation
in subclass statements. For instance: (A subclassOf NOT(B)) AND (B subclassOf
NOT(A)). One possible solution for this problem is to create translation rules.

• Semantics of primitives.
This type of mismatch is the difference at the metamodel level. Sometimes the
same name is used for more than one ontology but the semantics can differ. For
instance, there are several interpretations of A equalTo B. A solution for solving
to this problem is to rename the primitives.

• Language expressiveness mismatches.
This is the most difficult mismatch at the metamodel level to resolve. It happens
when one language can express something that in another one is inexpressible.
For instance, some languages support expressions such as lists, sets, etc. that
others do not support. One solution is to create translation rules.

4.3 Ontology level mismatches
This type of mismatch can appear when both ontologies are written in the same

language or not. In [22], ontology level mismatches are divided into: conceptualization
mismatches and explication mismatches.

4.3.1 Conceptualization mismatch
A conceptualization mismatch is a difference in the way a domain is interpreted,

which implies different ontological concepts or different relationships between those
concepts. We can find two mismatch types in this category. The mismatches descri-
bed below cannot be solved automatically and require knowledge and decisions of a
domain expert.

16 4.3. Ontology level mismatches

Figure 4.1: Framework of issues on ontology integration

• Scope

The scope mismatch or class mismatch appear when two ontologies have two
classes that apparently represent the same concept, but do not have the same
instances of the object. The most standard example is the class employee, that
several organizations use slightly different concepts of this class. For instance,
employee can mean ”all people that have a room within a company” or ”all
people that get paid by a company”.

• Model coverage and granularity

These mismatches appear in the part of the domain that is covered by the onto-
logy and is related with the ontology granularity. This is often the reason why
ontologies are merged. For instance, we suppose that we have three different on-
tologies about cars: one ontology can represent cars but not trucks. Another one
might model cars and trucks but only classify them into a few categories. The
last one can do a detailed distinction between types of trucks based on their char-
acteristics. This mismatch is often not a problem, but can be a motive to use two
or more ontologies together. In this case, we will have to align the overlapping
parts of the ontology.

4.3.2 Explication mismatch

Explication mismatch is a difference in the way the conceptualization is specified.
There are three different subclassifications: terminological mismatches, modeling style
and encoding.

4. Mismatches 17

Terminological mismatch

• Synonym terms

This type of mismatch occurs when two or more concepts are represented by
different names. For instance, in one ontology the term Artefact has the same
meaning as the term Artwork in another ontology. Another example is the use of
the term car in one ontology and the term automobile in another ontology.

This mismatch occurs because of the natural language in which ontologies are
described differ. To solve this problem we can use thesauri to integrate ontolo-
gies with synonyms in different languages. This mismatch takes a large amount
of human effort and we have to be careful when we try to solve this type of
problem because we can indirectly generate scope mismatches.

• Homonym terms

Also called concept mismatch. The meaning of a term is different in another
context or domain. For instance, the term conductor has a different meaning in a
music domain from in an electrical engineering domain. To solve this mismatch,
human intervention is required.

Modeling style

Modeling style is related to the paradigm and conventions taken by developers.

• Paradigm

A paradigm refers to a pattern or model. A collection of assumptions, concepts,
practices, and values that constitute a way of viewing reality, in particular for
an intellectual community that shares them. Different paradigms can be used to
represent concepts such as time, action, plans, causality, propositional attitudes,
etc.

• Concept description

Also called modeling conventions. Several choices can be made for the mode-
ling of concepts in ontologies. We can make the distinctions by attributes or
subclasses. A possible choice in concept descriptions is the way in which a hie-
rarchy is built. For instance, we can model the distinction between paint and
non-paint books as: art < book < paint book or as art < paint book < book, or
even as subclass of book and art at the same time. Another example: a motorbike
can be for one ontology a bike with motor and for another one, a motor-vehicle
with only two wheels.

18 4.4. Practical problems

Encoding

This is a trivial type of mismatch that appear when values in the ontologies may
be coded in different formats. For instance, we can represent the distance in miles or
kilometers, the height in centimetres or inches, the date may be appear as dd/mm/yyyy
or as mm-dd-yy, etc. We can find many mismatches of this type, but these are all very
easy to solve. It is only necessary to define a transformation step to eliminate all the
differences.

4.4 Practical problems
We have studied the technical problems, but there are also practical problems that

require serious human effort. These mismatches are done by hand. In [22] three im-
portant types are distinguished:

• it is difficult to find the terms that need to be aligned.

• when we make a mapping, its consequences are difficult to see.

• the repeatability of merges. Frequently, the sources that are used for the merging
continue to evolve. The alignments that are created for the merging should be as
reusable as possible for the merging of the revised ontologies. A solution can be
an executable specification of the alignment.

4.5 Approaches and techniques to solve mismatches
The focus of this work is on ontology level mismatches, or in other words, semantic

mismatches. We have seen different types of mismatches. We will briefly describe
different techniques to solve language mismatches.

4.5.1 Solving language mismatches
We start looking at techniques for solving language mismatches. There are sev-

eral approaches for solving the problem of integrating ontologies that are written in
different knowledge representation languages. In [22] four approaches to enable inter-
operability between different ontologies at the language level have been identified.

• Aligning the metamodel
In [7], an approach to transforming information from one representation to an-
other is described. The paper focus is on model-based information where the
information representation scheme provides structural modeling construction,
analogous to a data model in a database. The semantic mismatches at the onto-
logy level are not covered by this approach.

4. Mismatches 19

Figure 4.2: Semantic mismatches that are analyzed in this document

• Layered interoperability
In [24], aspects of the language are divided in clearly defined layers and interop-
erability is resolved layer by layer. There are three main layers: the syntax layer,
the object layer, and the semantic layer. It seems that a separation between diffe-
rent layers may facilitate interoperability. However, only some of the language
mismatches are solved.

• Transformation rules
The relation between two constructs in different ontology languages is handled
by a unidirectional rule that specifies the transformation from one ontology to
the other. In [12] this approach is described.

• Mapping onto a common ontology
In this approach, the constructs of an ontology language are mapped onto a com-
mon ontology, for instance OKBC (The Open Knowledge Base Connectivity)
[13].

4.6 Semantic Integration

4.6.1 Mappings
Mappings are the glue for integrating information sources. More formally, a ma-

pping consists of relating similar concepts or relations from different sources to each
other by an equivalence relation. Mappings are the connection of an ontology to other
parts of the application system and preserve the meaning of the elements involved.
There are many different kinds of models that we might want to connect with seman-
tic mappings (thesauri, database schemes, ontologies...) and many languages exist for
representing these models.

In the following, we briefly briefly mappings between different ontologies used in
a system. This mapping division is taking from [22].

20 4.7. Conclusion

Inter-Ontology mapping

The majority of the existing information integration systems use more than one
ontology to describe the information. We can find several problems when we try to
map different ontologies. We only consider general approaches that are used in this
area [22].

• Defined mappings

The translations between ontologies are made by mediator agents. These provide
to the user the possibility to define 1-1 mappings between classes and values
or mappings between compound expressions. The advantage of this mapping
is the great flexibility. There is, however, a large drawback: in this approach it
is difficult to guarantee a preservation of semantics because the user is free to
define the mappings even if they do not make sense or produce conflicts.

• Lexical relations

This approach provide semantics for mappings between concepts in different
ontologies. Relationships used are synonym, hypernym, hyponym, overlap, cov-
ering and disjoint.

• Top-Level grounding

Top-Level Grounding relates all ontologies to a top-level ontology. This can be
done by inheritance techniques. Using this type of mapping we can resolve con-
flicts and ambiguities. Another advantage is that we can establish connections
between concepts from different ontologies in terms of common superclasses.
For instance, in the following chapters we make semantic correspondences bet-
ween terms or properties using subClassOf and subPropertyOf.

• Semantic correspondences

This approach tries to find semantic correspondences using a shared vocabulary.
In order to avoid arbitrary mappings between concepts, these approaches have to
rely on a common vocabulary for defining concepts across different ontologies.

4.7 Conclusion
To solve ontology level mismatches, a complete understanding of the meaning of

concepts involved is required. This task cannot be fully automated. However, there
are many tools and approaches that concentrate on ontology level mismatches. These
approaches suggest alignments and mappings. For instance, such tools help the user to
find concepts in the different ontologies that will be good candidates for merging.

Conceptualization mismatches and most explication mismatches are hard to solve.
Some mismatches can be solved automatically, but some will need our intervention to

4. Mismatches 21

solve them. In order to integrate ontologies, we need to know the different semantic
level mismatches.

We are going to apply the top-level grounding approach in the next chapters. We
establish connections between different ontologies in terms of common superclasses
using subClassOf and subPropertyOf. When we carry out this approach in practice we
find a group of mismatches which we have seen in this chapter.

Chapter 5

Aria and Chime integration

5.1 Introduction
We have seen many techniques and approaches for integrating information from

different sources. In this chapter, we are going to apply the hybrid approach and our
shared ontology construction method for integrating two ontologies: Aria and Chime.
Both ontologies describe art-media domains. Each one comprises several files written
in RDF(S) which contain information about artist, artworks, media-items, etc. We have
chosen a hybrid approach because both ontologies have several files and it is more
easier to add, remove and modify sources. It is also better for comparing ontologies.

Our approach relies on the use of shared ontologies. Shared ontologies as descri-
bed in Chapter 3 are useful for identifying semantic correspondences. Our approach is
based on the definition of a common terminology similar to an upper-level ontology.
This common terminology consists of a set of elements that are used to describe classes
from different ontologies in terms of formal concept expressions. The shared vocabu-
lary must be sufficiently expressive and should be as small as possible for reducing
the effort and time building it. Also, later it will be more easy to achieve the seman-
tic mappings between the information sources and the shared vocabulary. Therefore, a
process to build such shared terminologies is required. Firstly, we show this process for
building shared ontologies. Secondly, we give an explanation about Aria and Chime.
Finally, we apply our shared ontology construction method to our ontologies.

5.2 The ontology construction method
Our development process is based on stepwise-refinement. The method is a combi-

nation of the process presented in [11, 32] and my own contribution. These approaches
are insufficient because they do not consider the different mismatches that be can found
in the integration task. Therefore, they say nothing about how to resolve these mis-
matches. We carry out an analysis of mismatches and subsequently we solve them
in our ontology construction method. We also define the connections with our top-

22

5. Aria and Chime integration 23

Figure 5.1: Ontology Construction Method

level ontology and we present a framework for solving ontology level mismatches.
Figure 5.1 illustrates the procedure designed.

As we can see, the method has two main stages: building the shared vocabulary
and building semantic mappings. Each stage includes a set of steps that must be carried
out.

5.2.1 Building the shared vocabulary

As Figure 5.1 shows, this stage contains six main steps: analysis of information
sources, analysis of mismatches, search for terms or primitives, search for properties,
definition of the global ontology and refinement of definitions. We describe the steps
as follows.

1. Analysis of Information sources

24 5.2. The ontology construction method

The first step is to decide what we want to translate. It implies a complete anal-
ysis of the information sources: what information is stored, how it is stored, the
semantic meaning of this information, etc.

2. Analysis of Mismatches

In this step we must localize the different types of mismatches between the on-
tologies involved in the integration process. We have seen in Chapter 4 the di-
fferent types of mismatches that we can find.

3. Search for Terms or Primitives

In this step we have to select the terms or primitives that are going to belong to
our shared vocabulary. The shared vocabulary must be as expressive as possible
to later reduce the effort and time of making the mapping between the informa-
tion sources and the shared vocabulary.

We have to find a concept which subsumes all classes from the sources. This
concept is called a bridge concept [32] because it makes a semantic translation
from one source to another. We define the properties and attributes of this con-
cept. The most general bridge concept is a concept that includes every other
possible concept. It is recommended to select a concrete bridge concept for an
exact classification. We can define more than one if we need it. We decide how
many terms are going to be a member of our shared vocabulary. It depends on
the level of description of our shared vocabulary.

4. Search for Properties

Each concept has the properties that describe it. In this step we have to find
suitable properties for the bridge concept and the concepts found in the last step.
For instance, an artwork can be described using concepts such as size, material,
creator, etc.

5. Defining the Global Ontology

In this step we use the terms and its properties chosen in the previous steps to
build the global ontology.

6. Refine Definitions

This process is based on the life cycle. It allows us to step back at any time
to add, remove and modify ontologies, terms, properties, etc. It is important to
achieve a vocabulary as simple and as expressive as possible to later make the
semantic mappings between the information sources and the shared vocabulary.

Sometimes we have to adapt our ontology because our shared vocabulary will
not express all the terms that we want to translate. In this case, we have to refine
our ontology in order to resolve the problem.

5. Aria and Chime integration 25

Figure 5.2: Framework to solve ontology level mismatches

5.2.2 Building semantic mappings

As Figure 5.1 shows, this stage contains four steps: analysis of information source,
solving the mismatches, defining mappings and refinement.

1. Analysis of information source

This step is similar to the first step with the same name in the previous stage
with one exception: we must do this analysis without taking into account the
other information sources. With our shared vocabulary as a reference our aim
is to get a semantic connection between one information source and the shared
vocabulary.

2. Solving the mismatches

The next step for building the semantic mappings is to resolve the mismatches
that have been found in the analysis of mismatches belonging to the last stage.
In order to integrate ontologies, it is better to separate mismatches that are hard
to solve and those that are not. We will begin resolving the easy mismatches to
proceed with the hard ones. Conceptualization mismatches often need human
efforts to be solved. Most explication mismatches can be solved automatically,
but the terminological mismatches may be difficult.

Figure 5.2 illustrates a framework to solve ontology level mismatches.

26 5.3. Aria and Chime integration

3. Defining the mappings

Each information source defines and describes its own terms and properties in-
dependently of the other sources of information. In this step we relate a source
ontology to our shared vocabulary. We implement the semantic connection bet-
ween the terms or properties that are semantically equivalent or similar in a sepa-
rate file. Through these semantic connections we can resolve a good proportion
of the mismatches found in the last steps.

4. Refinement

In the last step we defined the relations between the ontologies and the shared
vocabulary. Subsequently, we must solve the mismatches that we cannot resolve
in the last step.

5.3 Aria and Chime integration

5.3.1 Topia project
The Topia project, based on Aria (Amsterdam Rijksmuseum Interactive) reposi-

tory, comprises a system which generates a media presentation structure around media
objects. The Aria repository contains pictures and descriptions of the full Rijksmuseum
collection. This project aims to show how a semantically rich multimedia database can
be the basis for a ”storyline” that conveys the underlying relationships in the data.
Aria is built with Semantic Web technologies to provide computable descriptions of
archived media.

Through semantic queries the user can retrieve media items from the repository.
Aria has a keyword search interface based on a list of relevant URIs. The search is
applied by a SeRQL [2] query that searches for literal values and returns all resources
that appear in triples as subjects with the literal as the object.

In this section, we give only a brief summary of the Aria project. See [27] for a
more complete overview. See [4] for an on-line demo. Figure 5.3 illustrates the Aria
project’s implementation.

5.3.2 Chime project
The aim of the Chime project (Cultural Heritage in an Interactive Multimedia En-

vironment) is to investigate the use of semantic models for tailoring the presentation
of cultural information extracted from existing repositories to different types of users.

A part of the Chime project is SampLe (Semi-Automatic Presentation generation
Environment) [17], that is a framework where system support is provided at any stage
of the presentation building process. The support is managed by incorporating explicit
knowledge about the domain, narrative structures, media modalities and tasks involved
in the process of multimedia presentation creation. SampLe consists of five layers

5. Aria and Chime integration 27

Figure 5.3: Aria’s implementation design from [27]

Figure 5.4: SampLe topic selection phase and the overall view on the interface from
[16]

each dealing with a certain user task. These tasks are: theme identification, building
the logical structure of the presentation, selecting the material, organizing the material
and a suitable material presentation. Figure 5.4 illustrates a screenshot from SampLe.

The aim of the system is to facilitate time-consuming actions (exploration and
search) and to support a user in performing creative actions. Users communicate with
SampLe using a web browser. All application functionality is realized on the server
side, using standard tools. The three main components of the SampLe system are the
Exploration, Discourse structure and Material collection support mechanism. These
three components are implemented using XSLT and XSP. The RDF repositories are
accessed by using an XSLT extension that allows SeRQL to be combined with XSLT.
Figure 5.5 illustrates the SampLe architecture. See [14] [16] and [17] for a more com-
plete overview.

28 5.4. Applying the ontology construction method

Figure 5.5: SampLe architecture from [16]

5.4 Applying the ontology construction method
Our proposal is based on a hybrid approach. We have seen in Chapter 3 the main

advantages of this approach:

• New information sources can be added without need of modification. We only
have to define the semantic mappings between the information source and the
shared vocabulary

• The different information sources are easily comparable.

Figure 5.6 illustrates the hybrid approach applied to our integration task.

We have seen a method for building shared ontologies. We are going to apply this
method to our two ontologies: Aria and Chime.

Building the shared vocabulary

The first stage consists in building the shared vocabulary which will contain a set
of terms and properties to define it. We describe this process step by step.

1. Analysis of information sources
Before we begin with the construction of our shared vocabulary, we have to
carry out a complete and exhaustive analysis of the information sources. In other
words, we have to check all information that is stored in each information source,
how this information is stored, the explicit and implicit semantic meaning, etc.
However, analyzing the information and knowing the structure from the ontolo-
gies is not an easy task. We remind that Aria and Chime are encoded in RDF
and RDFS and they are not a small ontologies. Each one has several files that
describe them. We known that it is difficult to make an idea about the struc-
ture of an ontology written in RDF(S). In RDF, we have many small chunks of

5. Aria and Chime integration 29

Figure 5.6: Hybrid approach: semantic mappings and query structure

information with many explicit relations among them. We need different tools
and techniques to get this objective. Different approaches to displaying RDF are
explained in [28].

Several systems for automatic generation of hypermedia from RDF reposito-
ries have made some progress in displaying RDF: Haystack [26], Hera [35],
Disc [21] and Noadster [28]. We have used Noadster for exploring our ontology
repositories: Aria and Chime. Noadster is a demonstrator system which illus-
trates ways of structuring information and conveying the structure allowing the
user to explore a particular view of the repository. Noadster uses a single XSLT
extension that allows the querying of a Sesame RDF repository [9, 10]. Noadster
does not need any knowledge of the RDF vocabulary used and can be applied to

30 5.4. Applying the ontology construction method

Figure 5.7: Aria Classes

different domains.

We can find different techniques to explore an ontology repository to understand
its structure. Therefore, users can select the best approach for their repositories
in the literature. In our case, for a deep study of the Aria and Chime structure
we have chosen the combination of Sesame explore mode with Noadster sys-
tem. We have made an analysis of our ontologies with the help of these tools.
This analysis is not trivial. However, it is necessary in order to carry out the in-
tegration task. If the structure of both ontologies was already known, this step
would not be so difficult. Figure 5.7 illustrates a global and relevant part of the
classes and relationships in Aria. In the same way, figures 5.8 and 5.9 represent
the Chime structure. Figure 5.10 shows the different concept descriptions of the
term Artwork in each ontology. In the same way, figure 5.11 illustrates the term
Artist. All these figures, which display different parts of the ontology structures,
have been made after a deep analysis of all information systems involved in the
integration task.

2. Analysis of mismatches
Aria and Chime are written in the same language: RDF and RDFS. Therefore,
we do not find language level mismatches when we try to integrate both
ontologies. We move on classify and analyze the different types of ontology
level mismatches between both ontologies.

5. Aria and Chime integration 31

Figure 5.8: Chime Art Subject

• Scope
Scope mismatch appears when two or more ontologies have two classes
that apparently represent the same concept but they do not have the same
instances of the concept. At first sight seems that the term Artefact in Aria
is equal to the term Artwork in Chime. However, in Chime, the concept
Artwork subsumes paintings, furniture, designs and buildings. In Aria, ho-
wever, the class Artefact includes paintings and sculptures.

• Model coverage and granularity
It is related with the level of detail to which a domain is modeled. Ac-
cording to the scope mismatch, Chime can represent furniture, designs and
buildings and Aria cannot. This type of mismatch is very common in the
integration of ontologies. We have some concepts that only appear in one
ontology. For instance, we can find in Chime the concept Discourse that
is used to build the storyline presentation. In Aria this term do as not app-
ear. On the otherhand, Aria can represent the continent, region and place
of an artefact. Whereas, Chime does not offer this possibility. This type
of mismatches appear because Aria is a system that generates presentation
structure around media objects and Chime is a system that creates a story-
line presentation around different art themes. The basis is the same, media
art objects, but the aim of each project is different.

• Synonym terms
This mismatch appears when we have two or more concepts semantically
equivalent which are represented by different names. We can find several
synonym mismatches between both ontologies. Sometimes, inside one on-

32 5.4. Applying the ontology construction method

Figure 5.9: Chime Media and Text

tology there are synonym concepts such as isDesignedBy and creator or
location and expositionPlace. Figure 5.12 summarises all the mismatches
of this type that we find in the analysis. These concepts that both ontologies
have in common will be good candidates to be a member of our shared vo-
cabulary. We only have to search for a suitable name which will represent
the concept or property in the shared vocabulary. Finally, we will have to
carry out the semantic mapping between each concept or property in the
information sources and the new concept in the shared vocabulary.

• Homonym terms
We have two or more concepts which are not semantically equivalent but
are represented by the same name. Both our ontologies have the same do-
main: media art. This type of mismatch does not occur.

• Paradigm
Different paradigms can be used to represent concepts. Both ontologies
share the same point of view in the art media domain. For instance, there
are a set of artists who create artworks and these artworks are shown in
different places. We do not find this type of mismatch in this analysis.

• Concept description
This is the way in which we have modeled a concept. We would like to
denote some concept description mismatches that we find in our analysis:

5. Aria and Chime integration 33

Figure 5.10: Term ’Artwork’ and its properties in Aria and Chime

– Style period movement
Each artwork belongs to a style period movement. The term Movement
in Chime is subClassOf the term Style and Periods that belong to AAT.
Movement name is represented as rdfs:label in AAT. We cannot make
a semantic connection between rdfs:label and the property stylePeri-
odMovement belonging to the shared vocabulary. Property rdfs:label
is a common and general property. The effects can be dreadful if we
denote it as a rdfs:subPropertyOf of the property stylePeriodMove-
ment.
How can we achieve this translation in our integration task? Our on-
tologies are written in RDF/RDFS and we use SeRQL as the query
language to access the information stored in the repository. One pos-
sible solution using these tools is to make use of the construct query
belonging to the SeRQL query (see section 2.3.3). Construct queries
can also be used to specify simple rules or to do graph transforma-
tions. Graph transformation is a powerful tool in application scenarios

34 5.4. Applying the ontology construction method

Figure 5.11: Term ’Artist’ and its properties in Aria and Chime

where semantic mappings between different vocabularies need to be
defined.

– Year of birth and death
In the same way, year of birth and death are represented by year prop-
erty in Chime. The property year is also a general property. We can-
not express this property as a rdfs:subPropertyOf of its correspondent
property in the shared vocabulary. For instance, if we make a query for
getting Mondrian year of birth, we will retrieve all years stored in the
repository. We can solve this problem using a Sesame construct query.

– Media item
Class Media item does not exist in Aria. However, we can find pro-
perties as artefactImage or frameImageURL which describe images.
Using Sesame construct query we can create this new class whose va-
lues are the set of URLs about images. Later, we can achieve a seman-
tic mapping between the new class Media Item and its corresponding
class in the shared vocabulary.

– Represents
We have defined the class Media Item. Therefore, we have to create
the property represents between the classes Media Item and Artefact.

5. Aria and Chime integration 35

Figure 5.12: Synonym mismatches between Aria and Chime

– isRepresentedBy
The Sesame construct query gives us the opportunity of creating on
the inverse property. Using this technique we get more expressiveness
in our shared vocabulary without much effort.

Figure 5.13 shows all concept description mismatches that we have found
in the integration task.

• Encoding
Encoding appears when values in the ontologies may be encoded in di-
fferent formats. We find two types of encoding mismatches. The first one
is about artwork size representation. For instance, in Chime there are art-
works measured in inches and others in centimetres.
We also can find in both ontologies artworks modeled in three dimensions
and others only in two.
The reason for this encoding mismatch is because some paintings are in En-
glish museums and their size is represented in inches and other paintings
are in Amsterdam and their size is in centimetres.
Another mismatch is the representation of the artist names in the diffe-
rent ontologies. For intance, in Aria we have the following properties re-
lated with artist name: artistFirstName, artistFamilyName and artistMid-
dleName. In Chime, however, the value is represented as a full name with
the following format: artistFamilyName, artistFirstName. We are going to
see how to solve these mismatches in the next stage.

3. Search for terms or primitives
The next step is to select the terms or primitives that are going to be a member
of our shared vocabulary. The set of terms and property from the synonym and

36 5.4. Applying the ontology construction method

Figure 5.13: Concept description mismatches between Aria and Chime

concept description mismatches are good candidates to be a term or a properties
of our shared vocabulary.

A suitable candidate for our general bridge concept can be a new class called
MuseumResource. As following, we have to decide the group of terms belonging
to our shared vocabulary. This task is not very difficult. We only have to think
in the concepts included in the information sources domains. For instance, we
clearly distinguish in both ontology domains: artists, artworks, media items and
descriptions or text about these artists and artworks.

4. Search for properties

The next step is to search for properties which define each term found in the
previous step. For instance, figures 5.10 and 5.11 can be useful for selecting
the properties about artworks and artists and the group of properties which we
obtained in the analysis of synonym and concept description mismatches. We
only define the properties that appear in both ontologies because we want the
shared vocabulary to be as small as possible. Later, if we add new information
sources, the semantic connections with the shared vocabulary will be more easy
to carry out.

Figure 5.14 illustrates the shared vocabulary structure with all its classes and
properties.

5. Aria and Chime integration 37

Figure 5.14: Shared Vocabulary Structure

5. Defining the global ontology

Finally, we have to implement our shared ontology. In our case the implemen-
tation is in RDF(S). We have to define all concepts and properties found in the
previous steps. We can use standard top level ontologies such as Dublin Core
[15] in our shared vocabulary. For instance, the title of an artwork in our shared
ontology is subPropertyOf the resource title belonging to Dublin Core. We can
see the final implementation of our shared ontology structure in Appendix A. It
is summarized in figure 5.14.

6. Refinement

This process is not direct. When we carried it out, we had to step back many
times to add, remove and modify ontology concepts, properties, etc. We do not
carry out a formal evaluation of our shared vocabulary. Therefore, we have only
tested our shared vocabulary doing different experiments. We have concluded
that sometimes it is necessary to step back for adding, removing or modifying
terms and properties. It is important to get a suitable shared vocabulary to avoid
other difficulties in the posterior semantic mappings.

Building semantic mappings

The next stage is to achieve all semantic mappings for connecting our ontologies.
We have to carry out four steps.

38 5.4. Applying the ontology construction method

1. Analysis of information source

Now, we must do the analysis between our new shared ontology and each in-
formation source without taking in account the other information sources into
account. We must have our shared vocabulary as reference all the time. This
new analysis help us to achieve the semantic mappings in the correct way.

2. Solving the mismatches

In this step we have to resolve the different mismatches that we have found in
the previous steps.

• Scope
Although the concept Artefact in Aria and the term Artwork in Chime di-
ffers, we decide to map both to the concept Artwork in the shared vocabu-
lary. The only difference is that we cannot ask for buildings or furniture in
Chime with the query terminology of the shared vocabulary. One possible
solution is to combine in a query the syntax of the information sources with
the syntax of the shared vocabulary for accessing specific information that
is not mapped.

• Model coverage and granularity
The shared vocabulary only represents terms and properties which are des-
cribed in both ontologies. Therefore, this mismatch is not a problem.

• Synonym terms
Synonym mismatches that appear in figure 5.12 are a member of our shared
vocabulary with a different name. We only have to map the concept or
property belonging to each information source with its corresponding term
or property in the shared vocabulary. We have seen how to do this in an
example in section 4.3.2.

• Concept description
We have explained that the way to resolve this type of mismatch is through
Sesame construct queries. We can find all these queries in Appendix D.

• Encoding
There are a number of solutions for resolving encoding mismatches. One
possibility to resolve the size encoding mismatch is to change all sizes and
dimensions to a common one. To resolve the concatenation name encoding
mismatch, we have implemented a script in Prolog which concatenates
the artistFamilyName and artistFirstName in Aria in the same format as
Chime.

5. Aria and Chime integration 39

3. Defining the mappings
In this step we relate the source ontology to our shared vocabulary. Therefore,
we implement all the semantic mappings in a separate file which we must add
to our repository. We can see the Aria semantic mappings in Appendix B. In the
same way, in Appendix C we find the Chime semantic mappings.

4. Refinement
In this last step we must solve the mismatches which we cannot resolve in the
previous steps.

5.5 Conclusion
In this chapter we have created a useful and practical method for the construction

of a shared ontology used in hybrid approaches. The method has two main stages:
building the shared vocabulary and building semantic mappings. Each stage consists
of a number of steps that must be followed. We have also presented a framework to
solve different ontology level mismatches. Through this framework we can explore
different techniques to solve different problems.

We have also seen a real case about the integration of two different art ontologies:
Aria and Chime. The goal of this chapter was to present an ontology construction
method for building shared ontologies and apply this process to a real case. We have
concluded that this process can become a difficult task if the size of the information
sources is extensive.

Chapter 6

Conclusion

6.1 Summary
In this thesis we have seen:

• different approaches for integrating information. These approaches are: single
ontology, multiple ontology and hybrid ontology.

• different types of mismatches that we can find when we integrate two or more
ontologies.

• approaches and techniques for solving these mismatches.

• an ontology construction method for building shared ontologies.

• a framework for solving ontology level mismatches.

• a real case of integration of two art-media ontologies, Aria and Chime, belonging
to the Rijksmuseum of Amsterdam. Into this integration we have applied our
construction method to build the shared vocabulary.

6.2 Conclusion
In this thesis we focused on the integration of heterogeneous information belonging

to different information sources.
The goal of this thesis was to present an ontology construction method for building

shared ontologies and apply this process to a real case: the integration of two on-
tologies which contain images and information about the artworks in Rijksmuseum in
Amsterdam. We also presented a framework for resolving different type of semantic
mismatches that we can find in the integration task.

Our main experience with the shared ontology construction method shows that the
process can become a difficult task if the size of the information sources is extensive.

40

6. Conclusion 41

A possible solution in this case is to divide the information sources into small modules
selected by topic. After this, we have to apply our construction method to each module
for making a large shared vocabulary as descriptive as possible.

Another drawback is that human intervention is required several times. However,
we have seen that a construction method for a shared vocabulary is possible. This can
be the basis for developing automatic tools that can help to integrate fully or partially
different ontologies.

One possible application of our ontology construction method can be in a cultural
heritage domain. For instance, we suppose that we are interested in the generation of
a presentation about artworks placed in different museums. We will find several pro-
blems. For instance, heterogeneity problems. We also find several mismatches between
the different sources. We need to know different techniques and approaches for solving
these mismatches.

Furthermore, it can be interesting to apply our ontology construction method to
different domains, not only cultural heritage ones. Our method is general enough to be
applied to other domains.

We have learned that integrating different ontologies belonging to the same domain
is not an easy task. Specifically, multimedia presentation generators use a set of media
items, which are combined in a coherent presentation to the user. For this, a large
amount of information about these media items and their relations is needed. When we
try to integrate this amount of information we find several heterogeneity problems. We
have learned through our study how to solve this problems. In other words, we have
shown different techniques to carry out a integration task with success.

6.3 Evaluation
We have used the following techniques for carrying out our integration task:

RDF(S) for doing the semantic connections, Sesame construct queries for resolving
the more difficult mismatches and Prolog for solving encoding mismatches. We do not
carry out a formal evaluation of our shared vocabulary. We have only tested the shared
vocabulary doing different experiments. For instance, we have made a test implemen-
tation based on Noadster [28] where we retrieve all the artists and their artworks stored
in different sources: Aria and Chime. We generate a presentation through this artist or
artworks using Noadster. The goal of this application is to show how the integration of
different ontologies can be used in presentation generation.

To tie together a set of component ontologies as part of a third is frequently useful
to be able to indicate that a particular class or property in one ontology is equivalent to
a class or property in a second ontology. OWL [3, 39] is useful for doing these connec-
tions. The OWL property owl:equivalentClass is used to indicate that two classes have
the same instances. In the same way, the OWL property owl:equivalentProperty is used
to indicate that two properties have the same instances. We can also use owl:sameAs
that indicates that two URI references actually refer to the same thing. For instance,

42 6.4. Future work

we could state that two URI references actually refer to the same person. This prop-
erty is often used for defining mappings between ontologies. We do not carry out our
integration task with OWL language because Sesame does not support it. OWL allows
us to we can define local scope of properties, disjointness of classes, boolean combi-
nations of classes or cardinality restrictions. A possible upgrading of our integration
task would be the addition of OWL language.

6.4 Future work
Further research is required for automating different steps belonging to our on-

tology construction method presented in this document. For instance, the analysis of
mismatches and their resolution is a task that takes a great deal of human effort. We
can include finding similar terms within two or more ontologies or for finding other
types of mismatches.

Nowadays, when you are building an ontology you try to relate it with other stan-
dard shared vocabularies to make your ontologies as standard as possible. For instance,
Chime makes semantics connections with Ulan, AAT, Dublin Core and VRA Core. An-
other future work can be an automatic process for building semantic mappings between
terms and properties belonging to an information source and its corresponding defini-
tions in the shared vocabulary.

Another possible way is to refine our construction process by testing it with diverse
ontologies. For instance, we can apply our method to other domains.

Appendix A

Shared vocabulary in RDF(S)

<?xml version=’1.0’ encoding=’ISO-8859-1’?>
<!DOCTYPE rdf:RDF [
blanco<!ENTITY rdf ’http://www.w3.org/1999/02/22-rdf-syntax-ns#’>
blanco<!ENTITY rdfs ’http://www.w3.org/2000/01/rdf-schema#’>
blanco<!ENTITY sha ’http://www.cwi.nl/ media/ns/sha#’>]>

<rdf:RDF xmlns:rdf=“&rdf;”
xxrdf:RDFxmlns:rdfs=“&rdfs;”
xxrdf:RDFxmlns:sha=“&sha;”>

<!– Terms –>

<rdfs:Class rdf:about=“&sha;MuseumResource”>
blanco<rdfs:label>Museum Resource</rdfs:label>
blanco<rdfs:subClassOf rdf:resource=“&rdfs;Resource”/>
</rdfs:Class>

<rdfs:Class rdf:about=“&sha;ArtMuseumConcept”>
blanco<rdfs:label>Art Museum Concept</rdfs:label>
blanco<rdfs:subClassOf rdf:resource=“&sha;MuseumResource”/>
</rdfs:Class>

<rdfs:Class rdf:about=“&sha;Artist”>
blanco<rdfs:label>Artist</rdfs:label>
blanco<rdfs:subClassOf rdf:resource=“&sha;ArtMuseumConcept”/>
</rdfs:Class>

<rdfs:Class rdf:about=“&sha;Artwork”>
blanco<rdfs:label>Artwork</rdfs:label>
blanco<rdfs:subClassOf rdf:resource=“&sha;ArtMuseumConcept”/>
</rdfs:Class>

<rdfs:Class rdf:about=“&sha;MediaItem”>
blanco<rdfs:label>Media Item</rdfs:label>
blanco<rdfs:subClassOf rdf:resource=“&sha;MuseumResource”/>
</rdfs:Class>

43

44

<rdfs:Class rdf:about=“&sha;TextItem”>
blanco<rdfs:label>Text Item</rdfs:label>
blanco<rdfs:subClassOf rdf:resource=“&sha;MuseumResource”/>
</rdfs:Class>

<!– Artist properties –>

<rdf:Property rdf:about=“&sha;fullName”>
blanco<rdfs:label>Artist Full Name</rdfs:label>
blanco<rdfs:domain rdf:resource=“&sha;Artist”/>
blanco<rdfs:range rdf:resource=“&rdfs;Literal”/>
</rdf:Property>

<rdf:Property rdf:about=“&sha;yearOfBirth”>
blanco<rdfs:label>Artist Year of Birth</rdfs:label>
blanco<rdfs:domain rdf:resource=“&sha;Artist”/>
blanco<rdfs:range rdf:resource=“&rdfs;Literal”/>
blanco<rdfs:subPropertyOf rdf:resource=“http://purl.org/dc/elements/1.1/date”/>
</rdf:Property>

<rdf:Property rdf:about=“&sha;yearOfDeath”>
blanco<rdfs:label>Artist Year of Death</rdfs:label>
blanco<rdfs:domain rdf:resource=“&sha;Artist”/>
blanco<rdfs:range rdf:resource=“&rdfs;Literal”/>
blanco<rdfs:subPropertyOf rdf:resource=“http://purl.org/dc/elements/1.1/date”/>
</rdf:Property>

<rdf:Property rdf:about=“&sha;creates”>
blanco<rdfs:label>Artist Creates</rdfs:label>
blanco<rdfs:domain rdf:resource=“&sha;Artist”/>
blanco<rdfs:range rdf:resource=“&sha;Artwork”/>
</rdf:Property>

<!– Arwork properties –>

<rdf:Property rdf:about=“&sha;title”>
blanco<rdfs:label>Title of Artwork</rdfs:label>
blanco<rdfs:domain rdf:resource=“&sha;Artwork”/>
blanco<rdfs:range rdf:resource=“&rdfs;Literal”/>
blanco<rdfs:subPropertyOf rdf:resource=“http://purl.org/dc/elements/1.1/title”/>
</rdf:Property>

<rdf:Property rdf:about=“&sha;creator”>
blanco<rdfs:label>Creator of Artwork</rdfs:label>
blanco<rdfs:domain rdf:resource=“&sha;Artwork”/>
blanco<rdfs:range rdf:resource=“&sha;Artist”/>
blanco<rdfs:subPropertyOf rdf:resource=“http://purl.org/dc/elements/1.1/creator”/>
</rdf:Property>

<rdf:Property rdf:about=“&sha;size”>

A. Shared vocabulary in RDF(S) 45

blanco<rdfs:label>Size of Artwork</rdfs:label>
blanco<rdfs:domain rdf:resource=“&sha;Artwork”/>
blanco<rdfs:range rdf:resource=“&rdfs;Literal”/>
blanco<rdfs:subPropertyOf rdf:resource=“http://purl.org/dc/elements/1.1/format”/>
</rdf:Property>

<rdf:Property rdf:about=“&sha;material”>
blanco<rdfs:label>Material of Artwork</rdfs:label>
blanco<rdfs:domain rdf:resource=“&sha;Artwork”/>
blanco<rdfs:range rdf:resource=“&rdfs;Literal”/>
blanco<rdfs:subPropertyOf rdf:resource=“http://purl.org/dc/elements/1.1/format”/>
</rdf:Property>

<rdf:Property rdf:about=“&sha;year”>
blanco<rdfs:label>Data of Artwork </rdfs:label>
blanco<rdfs:domain rdf:resource=“&sha;Artwork”/>
blanco<rdfs:range rdf:resource=“&rdfs;Literal”/>
blanco<rdfs:subPropertyOf rdf:resource=“http://purl.org/dc/elements/1.1/date”/>
blanco<rdfs:subPropertyOf rdf:resource=“http://purl.org/dc/elements/1.1/coverage”/>
</rdf:Property>

<rdf:Property rdf:about=“&sha;place”>
blanco<rdfs:label>Place of Artwork</rdfs:label>
blanco<rdfs:domain rdf:resource=“&sha;Artwork”/>
blanco<rdfs:range rdf:resource=“&sha;Museum”/>
blanco<rdfs:subPropertyOf rdf:resource=“http://purl.org/dc/elements/1.1/contributor”/>
blanco<rdfs:subPropertyOf rdf:resource=“http://purl.org/dc/elements/1.1/coverage”/>
</rdf:Property>

<rdf:Property rdf:about=“&sha;stylePeriodMovement”>
blanco<rdfs:label>Style Period Movement</rdfs:label>
blanco<rdfs:domain rdf:resource=“&sha;Artwork”/>
blanco<rdfs:range rdf:resource=“&rdfs;Literal”/>
blanco<rdfs:subPropertyOf rdf:resource=“http://purl.org/dc/elements/1.1/coverage”/>
blanco<rdfs:subPropertyOf rdf:resource=“http://purl.org/dc/elements/1.1/subject”/>
</rdf:Property>

<!– Media Item properties –>

<rdf:Property rdf:about=“&sha;represents”>
blanco<rdfs:label>Represents</rdfs:label>
blanco<rdfs:domain rdf:resource=“&sha;MediaItem”/>
blanco<rdfs:range rdf:resource=“&sha;ArtMuseumConcept”/>
blanco<rdfs:subPropertyOf rdf:resource=“http://purl.org/dc/elements/1.1/relation”/>
</rdf:Property>

<rdf:Property rdf:about=“&sha;isRepresentedBy”>
blanco<rdfs:label>is Represented By</rdfs:label>
blanco<rdfs:domain rdf:resource=“&sha;ArtMuseumConcept”/>
blanco<rdfs:range rdf:resource=“&sha;MediaItem”/>
blanco<rdfs:subPropertyOf rdf:resource=“http://purl.org/dc/elements/1.1/relation”/>

46

</rdf:Property>

<!– Text Item properties –>

<rdf:Property rdf:about=“&sha;describes”>
blanco<rdfs:label>Describes</rdfs:label>
blanco<rdfs:domain rdf:resource=“&sha;TextItem”/>
blanco<rdfs:range rdf:resource=“&sha;ArtMuseumConcept”/>
blanco<rdfs:subPropertyOf rdf:resource=“http://purl.org/dc/elements/1.1/relation”/>
</rdf:Property>

<rdf:Property rdf:about=“&sha;isDescribedBy”>
blanco<rdfs:label>is Described by</rdfs:label>
blanco<rdfs:domain rdf:resource=“&sha;ArtMuseumConcept”/>
blanco<rdfs:range rdf:resource=“&sha;TextItem”/>
blanco<rdfs:subPropertyOf rdf:resource=“http://purl.org/dc/elements/1.1/relation”/>
</rdf:Property>

<rdf:Property rdf:about=“&sha;text”>
blanco<rdfs:label>Text</rdfs:label>
blanco<rdfs:domain rdf:resource=“&sha;TextItem”/>
blanco<rdfs:range rdf:resource=“&rdfs;Literal”/>
blanco<rdfs:subPropertyOf rdf:resource=“http://purl.org/dc/elements/1.1/description”/>
blanco</rdf:Property>
</rdf:RDF>

Appendix B

Aria Semantic Mappings in RDF(S)

<?xml version=’1.0’ encoding=’ISO-8859-1’?>
<!DOCTYPE rdf:RDF [
blanco<!ENTITY rdf ’http://www.w3.org/1999/02/22-rdf-syntax-ns#’>
blanco<!ENTITY topia ’http://www.telin.nl/rdf/topia#’>
blanco<!ENTITY rdfs ’http://www.w3.org/2000/01/rdf-schema#’>
blanco<!ENTITY sha ’http://www.cwi.nl/ media/ns/sha#’>]>

<rdf:RDF xmlns:rdf=“&rdf;;”
xxrdf:RDFxmlns:topia=“&topia;;”
xxrdf:RDFxmlns:rdfs=“&rdfs;;”
xxrdf:RDFxmlns:sha=“&sha;;”>

<!– ARIA –>
<!– Terms or primitives –>

<rdf:Description rdf:about=“&topia;Artist”>
blanco<rdfs:subClassOf rdf:resource=“&sha;Artist”/>
</rdf:Description>

<rdf:Description rdf:about=“&topia;Artefact”>
blanco<rdfs:subClassOf rdf:resource=“&sha;Artwork”/>
</rdf:Description>

<rdf:Description rdf:about=“&topia;artefactImage”>
blanco<rdfs:subClassOf rdf:resource=“&sha;MediaItem”/>
</rdf:Description>

<rdf:Description rdf:about=“&topia;Frame”>
blanco<rdfs:subClassOf rdf:resource=“&sha;TextItem”/>
</rdf:Description>

<!– Artist properties –>

<rdf:Description rdf:about=“&topia;artistFullName”>
blanco<rdfs:subPropertyOf rdf:resource=“&sha;fullName”/>
</rdf:Description>

47

48

<rdf:Description rdf:about=“&topia;artistYearOfBirth”>
blanco<rdfs:subPropertyOf rdf:resource=“&sha;yearOfBirth”/>
</rdf:Description>

<rdf:Description rdf:about=“&topia;artistYearOfDeath”>
blanco<rdfs:subPropertyOf rdf:resource=“&sha;yearOfDeath”/>
</rdf:Description>

<rdf:Description rdf:about=“&topia;creator”>
blanco<rdfs:subPropertyOf rdf:resource=“&sha;creates”/>
</rdf:Description>

<!– Artwork properties –>

<rdf:Description rdf:about=“&topia;artefactTitle”>
blanco<rdfs:subPropertyOf rdf:resource=“&sha;title”/>
</rdf:Description>

<rdf:Description rdf:about=“&topia;artefactMainCreator”>
blanco<rdfs:subPropertyOf rdf:resource=“&sha;creator”/>
</rdf:Description>

<rdf:Description rdf:about=“&topia;artefactSize”>
blanco<rdfs:subPropertyOf rdf:resource=“&sha;size”/>
</rdf:Description>

<rdf:Description rdf:about=“&topia;artefactMaterial”>
blanco<rdfs:subPropertyOf rdf:resource=“&sha;material”/>
</rdf:Description>

<rdf:Description rdf:about=“&topia;artefactYear”>
blanco<rdfs:subPropertyOf rdf:resource=“&sha;year”/>
</rdf:Description>

<rdf:Description rdf:about=“&topia;artefactExpositionPlace”>
blanco<rdfs:subPropertyOf rdf:resource=“&sha;place”/>
</rdf:Description>

<rdf:Description rdf:about=“&topia;artefactStylePeriode”>
blanco<rdfs:subPropertyOf rdf:resource=“&sha;stylePeriodMovement”/>
</rdf:Description>

<!– Media Item properties –>

<rdf:Description rdf:about=“&topia;artefactImage”>
blanco<rdfs:subPropertyOf rdf:resource=“&sha;represents”/>
blanco<rdfs:domain rdf:resource=“&sha;MediaItem”/>
</rdf:Description>

</rdf:RDF>

Appendix C

Chime Semantic Mappings in RDF(S)

<?xml version=’1.0’ encoding=’ISO-8859-1’?>
<!DOCTYPE rdf:RDF [
blanco<!ENTITY rdf ’http://www.w3.org/1999/02/22-rdf-syntax-ns#’>
blanco<!ENTITY rdfs ’http://www.w3.org/2000/01/rdf-schema#’>
blanco<!ENTITY sha ’http://www.cwi.nl/ media/ns/sha#’>
blanco<!ENTITY art ’http://www.cs.vu.nl/bi/ns/art#’>
blanco<!ENTITY museum ’http://www.cs.vu.nl/bi/ns/museum#’>
blanco<!ENTITY vra ’http://www.swi.psy.uva.nl/mia/vra#’>
blanco<!ENTITY aat ’http://www.swi.psy.uva.nl/mia/aat#’>
blanco<!ENTITY ulan ’http://www.swi.psy.uva.nl/mia/ulan#’>
blanco<!ENTITY txt ’http://www.cs.vu.nl/bi/ns/text#’>]>

<rdf:RDF xmlns:rdf=“&rdf;”
xxrdf:RDFxmlns:rdfs=“&rdfs;”
xxrdf:RDFxmlns:sha=“&sha;”
xxrdf:RDFxmlns:vra=“&vra;”
xxrdf:RDFxmlns:art=“&art;”
xxrdf:RDFxmlns:museum=“&museum;”
xxrdf:RDFxmlns:aat=“&aat;”
xxrdf:RDFxmlns:ulan=“&ulan;”
xxrdf:RDFxmlns:txt=“&txt;”>

<!– CHIME2–>

<!– Terms or primitives –>

<rdf:Description rdf:about=“&art;Artist”>
blanco<rdfs:subClassOf rdf:resource=“&sha;Artist”/>
</rdf:Description>

<rdf:Description rdf:about=“&art;Artwork”>
blanco<rdfs:subClassOf rdf:resource=“&sha;Artwork”/>
</rdf:Description>

<rdf:Description rdf:about=“&museum;VisualResource”>
blanco<rdfs:subClassOf rdf:resource=“&sha;MediaItem”/>

49

50

</rdf:Description>

<rdf:Description rdf:about=“&txt;TextualResource”>
blanco<rdfs:subClassOf rdf:resource=“&sha;TextItem”/>
</rdf:Description>

<!– Artist properties –>

<rdf:Description rdf:about=“&ulan;name”>
blanco<rdfs:subPropertyOf rdf:resource=“&sha;fullName”/>
</rdf:Description>

<rdf:Description rdf:about=“&art;creates”>
blanco<rdfs:subPropertyOf rdf:resource=“&sha;creates”/>
</rdf:Description>

<!– Artwork properties –>

<rdf:Description rdf:about=“&vra;title”>
blanco<rdfs:subPropertyOf rdf:resource=“&sha;title”/>
</rdf:Description>

<rdf:Description rdf:about=“&vra;creator”>
blanco<rdfs:subPropertyOf rdf:resource=“&sha;creator”/>
</rdf:Description>

<rdf:Description rdf:about=“&art;isDesignedBy”>
blanco<rdfs:subPropertyOf rdf:resource=“&sha;creator”/>
</rdf:Description>

<rdf:Description rdf:about=“&vra;measurements”>
blanco<rdfs:subPropertyOf rdf:resource=“&sha;size”/>
</rdf:Description>

<rdf:Description rdf:about=“&vra;material”>
blanco<rdfs:subPropertyOf rdf:resource=“&sha;material”/>
</rdf:Description>

<rdf:Description rdf:about=“&vra;date.creation”>
blanco<rdfs:subPropertyOf rdf:resource=“&sha;year”/>
</rdf:Description>

<rdf:Description rdf:about=“&art;expositionPlace”>
blanco<rdfs:subPropertyOf rdf:resource=“&sha;place”/>
</rdf:Description>

<rdf:Description rdf:about=“&vra;location”>
blanco<rdfs:subPropertyOf rdf:resource=“&sha;place”/>
</rdf:Description>

<!– Media Item properties –>

C. Chime Semantic Mappings in RDF(S) 51

<rdf:Description rdf:about=“&museum;represents”>
blanco<rdfs:subPropertyOf rdf:resource=“&sha;represents”/>
</rdf:Description>

<rdf:Description rdf:about=“&vra;depicts”>
blanco<rdfs:subPropertyOf rdf:resource=“&sha;represents”/>
</rdf:Description>

</rdf:RDF>

Appendix D

Sesame construct queries

— STYLE PERIOD MOVEMENT (CHIME) —

construct distinct {Artwork} sha:stylePeriodMovement {stylePeriodMovement}
from {Artwork} rdf:type {art:Artwork};
xArtworkxxxxxxvra:stylePeriod.movement {movementName},
blanc{movementName} rdfs:label {stylePeriodMovement}
using namespace
blasha = <http://www.cwi.nl/ media/ns/sha#>,
blaart = <http://www.cs.vu.nl/bi/ns/art#>,
blavra = <http://www.swi.psy.uva.nl/mia/vra#>

— YEAR OF BIRTH (CHIME) —

construct distinct {Artist} sha:yearOfBirth {birthYear}
from {Artist} rdf:type {art:Artist};
Artistxxxxxxxulan:born {yearOfBirth},
blanc{yearOfBirth} ulan:year {birthYear}
using namespace
blasha = <http://www.cwi.nl/ media/ns/sha#>,
blaart = <http://www.cs.vu.nl/bi/ns/art#>,
blaulan = <http://www.swi.psy.uva.nl/mia/ulan#>

— YEAR OF DEAT (CHIME) —

construct distinct {Artist} sha:yearOfDeath {deathYear}
from {Artist} rdf:type {art:Artist};
Artistxxxxxxxulan:died {yearOfDeath},
blanc{yearOfDeath} ulan:year {deathYear}
using namespace
blasha = <http://www.cwi.nl/ media/ns/sha#>,
blaart = <http://www.cs.vu.nl/bi/ns/art#>,
blaulan = <http://www.swi.psy.uva.nl/mia/ulan#>

— MEDIA ITEM (ARIA) —

construct distinct {MediaItem} rdf:type {sha:MediaItem}

52

D. Sesame construct queries 53

from {} rdf:type {topia:Artefact};
xxxxxxxtopia:artefactImage {MediaItem}
using namespace
blasha = <http://www.cwi.nl/ media/ns/sha#>,
blatopia = <http://www.telin.nl/rdf/topia#>

— REPRESENTS (ARIA) —

construct distinct {MediaItem} sha:represents {Artwork}
from {Artwork} rdf:type {topia:Artefact};
Artworkxxxxxxxtopia:artefactImage {MediaItem}
using namespace
blasha = <http://www.cwi.nl/ media/ns/sha#>,
blatopia = <http://www.telin.nl/rdf/topia#>

— IS REPRESENTED BY (’REPRESENTS’ INVERSE) —
IMPORTANT: YOU MUST ADD THE RESULTS OF CONSTRUCT 5

construct distinct {ArtMuseumConcept} sha:isRepresentedBy {MediaItem}
from {MediaItem} rdf:type {sha:MediaItem};
MediaItemxxxxxxx sha:represents {ArtMuseumConcept}
using namespace
blasha = <http://www.cwi.nl/ media/ns/sha#>

— IS DESCRIBED BY (CHIME. ARTIST) —

construct distinct {Artist} sha:isDescribedBy {TextItem}
from {TextItem} rdf:type {sha:TextItem};
TextItemxxxxxxxtxt:subject {Artist},
blanc{Artist} rdf:type {sha:Artist}
using namespace
blasha = <http://www.cwi.nl/ media/ns/sha#>,
blatxt = <http://www.cs.vu.nl/bi/ns/text#>

— IS DESCRIBED BY (CHIME. ARTWORK) —

construct distinct {Artwork} sha:isDescribedBy {TextItem}
from {TextItem} rdf:type {sha:TextItem};
TextItemxxxxxxxtxt:subject {Artwork},
blanc{Artwork} rdf:type {sha:Artwork}
using namespace
blasha = <http://www.cwi.nl/ media/ns/sha#>,
blatxt = <http://www.cs.vu.nl/bi/ns/text#>

— IS DESCRIBED BY (ARIA. ARTIST) —

construct distinct {Artist} sha:isDescribedBy {TextItem}
from {Artist} rdf:type {topia:Artist};
Artistxxxxxxxtopia:artistScreen {artistScreens},
blanc{artistScreens} rdf:type {topia:Screen};
artistScreensxxxxxxxtopia:screenPage {artistPages},

54

blanc{artistPages} rdf:type {topia:Page};
artistPagesxxxxxxxtopia:pageFrame {TextItem}
using namespace
blatopia = <http://www.telin.nl/rdf/topia#>,
blasha = <http://www.cwi.nl/ media/ns/sha#>

— IS DESCRIBED BY (CHIME. ARTWORK) —

construct {Artwork} sha:isDescribedBy {TextItem}
from {Artwork} rdf:type {topia:Artefact};
Artworkxxxxxxxtopia:artefactScreen {artworkScreens},
blanc{artworkScreens} rdf:type {topia:Screen};
artworkScreensxxxxxxxtopia:screenPage {artworkPages},
blanc{artworkPages} rdf:type {topia:Page};
artworkPagesxxxxxxxtopia:pageFrame {TextItem}
using namespace
blatopia = <http://www.telin.nl/rdf/topia#>,
blasha = <http://www.cwi.nl/ media/ns/sha#>

— DESCRIBES (’IS DESCRIBE BY’ INVERSE) —
IMPORTANT: YOU MUST ADD BEFORE THE RDF RESULTS FROM CONSTRUCTS 7,8,9 AND 10

construct distinct {TextItem} sha:describes {ArtMuseumConcept}
from {ArtMuseumConcept} rdf:type {sha:ArtMuseumConcept};
ArtMuseumConceptxxxxxxxsha:isDescribedBy {TextItem}
using namespace
blasha = <http://www.cwi.nl/ media/ns/sha#>

— TEXT (CHIME) —
IMPORTANT: YOU MUST ADD BEFORE THE RDF RESULTS FROM CONSTRUCT 11

construct distinct {TextItem} sha:text {text}
from {TextItem} rdf:type {sha:TextItem};
TextItemxxxxxxxsha:describes {ArtMuseumConcept};
TextItemxxxxxxxtxt:text {text}
using namespace
blasha = <http://www.cwi.nl/ media/ns/sha#>,
blatxt = <http://www.cs.vu.nl/bi/ns/text#>

— TEXT (ARIA) —
IMPORTANT: YOU MUST ADD BEFORE THE RDF RESULTS FROM CONSTRUCT 11

construct distinct {TextItem} sha:text {text}
from {TextItem} rdf:type {sha:TextItem};
TextItemxxxxxxxsha:describes {ArtMuseumConcept};
TextItemxxxxxxxtopia:frameText {text}
using namespace
blasha = <http://www.cwi.nl/ media/ns/sha#>,
blatopia = <http://www.telin.nl/rdf/topia#>

Bibliography

[1] Aidministrator Nederland B.V. Sesame, 2002.

[2] Aidministrator Nederland B.V. SeRQL user manual, April 4, 2003.

[3] Grigoris Antoniou and Frank van Harmelen. A Semantic Web Primer. The MIT
Press Cambridge, Massachusetts, London England, 2004.

[4] ARIA. http://topia.demo.telin.nl.

[5] Tim Berners-Lee. Weaving the Web. Orion Business, 1999.

[6] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web. Scientific
Amercan, 284(5):35–43, 2001.

[7] S. Bowers and L. Delcambre. Representing and transforming model-based infor-
mation. In Proceedings of the FirstWorkshop on the Semantic Web at the Fourth
European Conference on Digital Libraries, Lisbon, Portugal, 2000.

[8] J. Broekstra and Kampman A. Serql: An rdf query and transformation language.
Submitted to the International Semantic Web Conference, ISWC 2004, August
2004. Available at http://www.cs.vu.nl/˜jbroeks/papers/SeRQL.pdf.

[9] J. Broekstra, A. Kampman, and F. van Harmelen. Sesame: An Architecture
for Storing and Querying RDF Data and Schema Information. In D. Fensel,
J. Hendler, H. Lieberman, and W. Wahlster, editors, Semantics for the WWW.
MIT Press, 2001.

[10] Jeen Broekstra, Arjohn Kampman, and Frank van Harmelen. Sesame: A Generic
Architecture for Storing and Querying RDF and RDF Schema. In Ian Horrocks
and Jim Hendler, editors, The Semantic Web - ISWC 2002, number 2342 in Lec-
ture Notes in Computer Science, pages 54–68, Berlin Heidelberg, 2002. Springer.

[11] Agustina Buccella and Alejandra Cechich. An ontology approach to data inte-
gration. JCS&T, Vol. 3 (No.2), October2003.

55

56 BIBLIOGRAPHY

[12] Hans Chalupsky. OntoMorph: A translation system for symbolic logic. In An-
thony G. Cohn, Fausto Giunchiglia, and Bart Selman, editors, KR2000: Prin-
ciples of Knowledge Representation and Reasoning, pages 471–482, San Fran-
cisco, March 2000. Morgan Kaufmann.

[13] V. Chaudhri, A. Farquhar, R. Fikes, P. Karp, and J. Rice. Okbc: A program-
matic foundation for knowledge base interoperability. In Proceedings of AAAI-
98, pages 600–607, 1998.

[14] CHIME. http://homepages.cwi.nl/media/projects/chime/index.html.

[15] Dublin Core Community. Dublin Core Element Set, Ver-
sion 1.1, 2003. ISO Standard 15836-2003 (February 2003),
http://www.niso.org/international/SC4/n515.pdf; NISO Standard Z39.85-
2001 (September 2001), http://www.niso.org/standards/resources/Z39-
85.pdf; CEN Workshop Agreement CWA 13874 (March 2000),
http://www.cenorm.be/isss/cwa download area/cwa13874.pdf.

[16] Kateryna Falkovych and Frank Nack. Context aware guidance for multimedia
authoring: harmonizing domain and discourse knowledge. INS-E0502, 2005.

[17] Kateryna Falkovych, Frank Nack, Jacco van Ossenbruggen, and Lloyd Rutledge.
SampLe: Towards a Framework for System-supported Multimedia Authoring.
Technical Report INS-E0302, CWI, August 2003.

[18] D. Fensel, J. Hendler, H. Lieberman, and W. Wahlster. Spinning the semantic
web. MIT Press, pages 1–8, 2003.

[19] Dieter Fensel, Michael Erdmann, and Rudi Studer. Ontology Groups: Semanti-
cally Enriched Subnets of the WWW. In Proceedings of the International Work-
shop Intelligent Information Integration during the 21st German Annual Confer-
ence on Artificial Intelligence, Freiburg, Germany, September 9-12, 1997.

[20] Getty Research Institute. Art & Architecture Thesaurus (Online).
http://www.getty.edu/research/tools/vocabulary/aat/, 2000. Version 2.0.

[21] Joost Geurts, Stefano Bocconi, Jacco van Ossenbruggen, and Lynda Hardman.
Towards Ontology-driven Discourse: From Semantic Graphs to Multimedia Pre-
sentations. Technical Report INS-R0305, CWI, May 2003.

[22] A. Gomez-Perez, M. Gruninger, H. Stuckenschmidt, and M. Uschold. Proceed-
ings of the IJCAI-01 Workshop on Ontologies and Information Sharing. Techni-
cal Report 47, CEUR workshop proceedings, Seattle, USA, August 2001.

[23] T.R. Gruber. A Translation Approach Portable Ontology Specification. Know-
ledge Acquisition, 1993.

BIBLIOGRAPHY 57

[24] S. Melnik and S. Decker. A layered approach to information modeling and in-
teroperability on the web. In Proceedings of the ECDL 2000 Workshop on the
Semantic Web, Lisbon, Portugal, 2000.

[25] Natalya F. Noy. Semantic integration: a survey of ontology-based approaches.
SIGMOD Rec., 33(4):65–70, December 2004.

[26] Dennis Quan and David R. Karger. How to Make a Semantic Web Browser. In
The Thirteenth International World Wide Web Conference, New York City, May
17-22, 2004. IW3C2, ACM Press.

[27] Lloyd Rutledge, Martin Alberink, Rogier Brussee, Stanislav Pokraev, William
van Dieten, and Mettina Veenstra. Finding the Story — Broader Applicability of
Semantics and Discourse for Hypermedia Generation. In Proceedings of the 14th
ACM Conference on Hypertext and Hypermedia, pages 67–76, Nottingham, UK,
August 23-27, 2003. ACM.

[28] Lloyd Rutledge, Jacco van Ossenbruggen, and Lynda Hardman. Making RDF
Presentable – Integrated Global and Local Semantic Web Browsing. In The Four-
teenth International World Wide Web Conference, pages 199–206, Chiba, Japan,
May 2005. IW3C2, ACM Press.

[29] SeRQL. Available at http://www.openrdf.org/doc/users/ch06.html.

[30] Sesame. http://sesame.aduna.biz/sesame.

[31] SPARQL. Available at http://www.w3.org/tr/2005/wd-rdf-sparql-query-
20050419/.

[32] Heiner Stuckenschmidt. Ontology-Based Information Sharing in Weakly Struc-
tured Environments. PhD thesis, Vrije Universiteit, Amsterdam, January 23,
2003.

[33] ULAN. http://www.getty.edu/research/conducting research/vocabularies/ulan/.

[34] Mark van Assem, Maarten R. Menken, Guus Schreiber, Jan Wielemaker, and
Bob Wielinga. A method for converting thesauri to rdf/owl. Proceedings of the
3rd International Semantic Web Conference (ISWC’04), Hiroshima, Japan, 2004.
Available at http://thesauri.cs.vu.nl, accompanying this paper.

[35] R. Vdovjak, F. Frasincar, G.J. Houben, and P. Barna. Engineering Semantic Web
Information Systems in Hera. Journal of Web Engineering, 2(1 and 2):3–26,
2003.

[36] Visual Resources Association. Visual Resources Association Website.

[37] W3C. Semantic Web Activity.

58 BIBLIOGRAPHY

[38] W3C. Resource Description Framework (RDF) Model and Syntax Specifica-
tion. W3C Recommendations are available at http://www.w3.org/TR, February
22, 1999. Edited by Ora Lassila and Ralph R. Swick.

[39] W3C. Web Ontology Language (OWL) Reference Version 1.0. Work in progress.
W3C Working Drafts are available at http://www.w3.org/TR, 12 November 2002.
Edited by Mike Dean and Dan Connolly and Frank van Harmelen and James
Hendler and Ian Horrocks and Deborah L. McGuinness and Peter F. Patel-
Schneider Lynn Andrea Stein.

[40] W3C. RDF Vocabulary Description Language 1.0: RDF Schema. W3C Recom-
mendation, 10 February 2004. Edited by Dan Brickley and R.V. Guha.

[41] H. Wache, T. Voegele, U. Visser, H. Stuckenschmidt, G. Schuster, and H. Neu-
mannand S.Huebner. Ontology-based integration of information - a survey of
existing approaches. In Ontologies and Information Sharing [22], pages 108–
117.

