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Infinitary normalization

ABSTRACT
In infinitary orthogonal first-order term rewriting the properties confluence (CR), Uniqueness of
Normal forms (UN), Parallel Moves Lemma (PML) have been generalized to their infinitary
versions CR-inf, UN-inf, PML-inf, and so on. Several relations between these properties have
been established in the literature. Generalization of the termination properties, Strong
Normalization (SN) and Weak Normalization (WN) to SN-inf and WN-inf is less straightforward.
We present and explain the definitions of these infinitary normalization notions, and establish
that as a global property of orthogonal TRSs they coincide, so at that level there is just one
notion of infinitary normalization. Locally, at the level of individual terms, the notions are still
different. In the setting of orthogonal term rewriting we also provide an elementary proof of UN-
inf, the infinitary Unique Normal form property.
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Infinitary Normalization

Jan Willem Klop and Roel de Vrijer

Dedicated to Dov Gabbay, in celebration of his 60th anniversary.

abstract. In infinitary orthogonal first-order term rewriting the
properties confluence (CR), Uniqueness of Normal forms (UN), Par-
allel Moves Lemma (PML) have been generalized to their infinitary
versions CR∞, UN∞, PML∞, and so on. Several relations between
these properties have been established in the literature.

Generalization of the termination properties, Strong Normaliza-
tion (SN) and Weak Normalization (WN) to SN∞ and WN∞ is less
straightforward. We present and explain the definitions of these in-
finitary normalization notions, and establish that as a global property
of orthogonal TRSs they coincide, so at that level there is just one
notion of infinitary normalization. Locally, at the level of individual
terms, the notions are still different. In the setting of orthogonal term
rewriting we also provide an elementary proof of UN∞, the infinitary
Unique Normal form property.12

Keywords and phrases: term rewriting systems, infinitary term rewrit-
ing, normalization, strong normalization, infinite normal form, unique
normal forms, ordinal numbers

1 Outline

We work in the framework of infinitary first-order term rewriting, dealing
with transfinite rewrite sequences that may converge to a limit and the fun-
damental notion of an infinite normal form. Infinite normal forms can e.g.
be seen to arise quite naturally as the limits of infinite processes generat-
ing “streams” of natural numbers, for example the primes or the fibonacci
numbers.

1This paper appeared in the two-volume book of essays in honour of the 60th birthday
of Dov Gabbay. Please use [Klop and de Vrijer, 2005] for reference purposes.

2This research is in the framework of the project INFINITY: Infinite objects, compu-
tation, modeling and reasoning, supported by NWO-BRICKS/FOCUS.
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After recapitulating some of the basic definitions and facts, we consider
the question of how to generalize the notions of weak normalization (WN)
and strong normalization (SN) to the infinite setting, obtaining WN∞ and
SN∞, respectively. It turns out, somewhat surprisingly, that when ap-
plied to orthogonal term rewriting systems (OTRSs), these notions coin-
cide. Moreover, although CR∞ is no longer a general property of infinitary
orthogonal rewriting, we still have that—finite or infinite—normal forms
are unique (UN∞). The proofs of these facts use classical techniques of
orthogonal term rewriting, such as the parallel moves lemma, generalized
to the infinitary setting and an analysis of infinitary head normalization.

The notion of SN∞ was first introduced in [Kennaway, 1992]. A slightly
different definition than ours is given there, in topological terms, in the
context of abstract rewriting. Given our concrete approach to the notion of
infinitary reduction the two definitions appear to amount to the same. Also
UN∞ for orthogonal TRSs is not new here; in [Terese, 2003] it is shown
as a consequence of an analysis of meaningless terms and Böhm trees in a
broader setting, including infinitary lambda calculus. For first-order term
rewriting systems a simpler proof of UN∞ can be given, making use of
the infinitary parallel moves lemma. Note that PML∞ fails for the lambda
calculus. The main technical contribution of the present paper is that WN∞

and SN∞ coincide as properties of infinitary orthogonal TRSs.

2 Introduction to infinitary term rewriting

We are concerned with the framework of first-order term rewriting and we
assume familiarity with that area. For general background reading on term
rewriting the reader may consult any standard text, for example [Baader and
Nipkow, 1998], [Terese, 2003], [Klop, 1992], [Dershowitz and Jouannaud,
1990] and for more specific information on infinitary rewriting [Kennaway
et al., 1995], [Klop and de Vrijer, 1991] or the chapter Infinitary Rewriting
by Kennaway and de Vries in [Terese, 2003]. Some of the basic notions will
be recapitulated when and where needed, and the same for notation. We
will also assume some familiarity with ordinal numbers.

2.1 Finitary and infinitary perspectives on term rewriting

One aspect of term rewriting is that it can be used to model computations
with normal forms as the intended outcomes.

As a simple example consider the TRS N specifying the natural numbers
with zero, successor and addition, with the reduction rules of Figure 1,
which go back to [Dedekind, 1888].
Closed terms in this TRS represent arithmetical expressions involving the
addition operator and the outcomes are the closed normal forms 0, S(0),
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A(x, 0) → x

A(x,S(y)) → S(A(x, y))

Figure 1. Dedekind’s rules

S(S(0)), etcetera, the numerals. Thus we have e.g. the reduction

A(A(S(S(0)), 0), S(0)) → S(A(A(S(S(0)), 0), 0))
→ S(A(S(S(0)), 0))
→ S(S(S(0)))

modeling a computation of (2 + 0) + 1 with outcome 3. This example
illustrates the interest in terminating reductions with finite terms (normal
forms) as outcomes.

There is also an infinitary aspect to term rewriting. Again consider the
TRS N , its signature now expanded with a binary symbol P and a unary
E and with the additional reduction rule E(x) → P (x, E(S(S(x)))). Think
of P as pairing, or a list-forming cons operator, which we will also denote
by the infix symbol : for better readability. Beginning with the term E(0)
we now have the following infinite reduction

E(0) → 0 : E(S(S(0))) → 0 : S(S(0)) : E(S(S(S(S(0))))) → · · ·

The consecutive terms in this reduction appear to converge in the limit to
an infinite “term” representing the stream of even natural numbers, namely

0 : S(S(0)) : S(S(S(S(0)))) : S(S(S(S(S(S(0)))))) : . . .

Likewise the stream of all naturals is generated from the term N(0) using
a unary symbol N with the reduction rule N(x) → x : N(S(x)) and for
example the constant stream of zeros 0 : 0 : 0 : 0 : . . . can be obtained as
the limit of an infinite reduction

Z → 0 : Z → 0 : 0 : Z → 0 : 0 : 0 : Z → · · ·

starting from a constant Z and using the single reduction rule Z → 0 : Z

The finitary and infinitary perspectives on term rewriting give rise to a
difference in emphasis on properties of term rewriting systems. If the finite
normal forms are considered as the outcomes of computations, strong nor-
malization is an attractive property: regardless of your reduction strategy,
an outcome will always be found. The objective of generating streams as
outcomes, on the other hand, is incompatible with strong normalization.
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2.2 Convergence and limits defined

The structure of the infinite terms that arise as limits is most clearly dis-
played by representing them as infinite term trees. In Figure 2 infinite term
trees are drawn for the streams of zeros and naturals, respectively generated
by the terms Z and N(0). Note that the function symbols Z and N them-
selves do not occur anymore in the limit terms, although they did occur in
all finite approximations.
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Figure 2. Infinite term trees

The question arises what the formal status of infinite terms is. We just
offer a quick and informal answer. For a more extensive treatment we refer
to [Terese, 2003]. First note that each finite term corresponds one-one to
its term tree: a finite set of labeled positions satisfying the following three
requirements:

1. the set of positions is closed under prefixes

2. each position is labeled by a function symbol or a variable

3. the arity of the function symbol at a position equals the number of
outgoing edges at that position

So the constants (function symbols of arity 0) and the variables are at the
endpoints of the term tree. Now we take an infinite term tree to be just a
possibly infinite set of labeled positions, satisfying the same requirements
1-3. So in particular in an infinite term each position has a finite distance
to the root.

It is sometimes convenient to use recursion equations to characterize in-
finite term trees. The example of the stream of zeros is then given by the
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equation t = P (0, t), or shorter t = 0 : t, with the obvious semantics.3

Having extended our domain of rewriting to the infinite terms, we keep
the notion of rewriting itself as it was: rewrite rules are pairs of finite
terms.4 However, now also infinite terms can be rewritten. A redex C[lσ] is
still identified as a pattern occurring at a finite position with prefix C, but
now the substitution σ may involve also infinite terms. So for example with
the reduction rule I(x) → x, the infinite term I(I(I(I . . .))) characterized
by the equation t = I(t) has a redex at each of its positions. Note that
in this particular case all these redexes and their reducts happen to be the
same term, all identical to the original term itself, which we will henceforth
denote by Iω.

In order to explain the notion of convergence we use, we consider again
the example of the stream of the naturals. We have the infinite reduction

N(0) → 0 : N(S(0)) → 0 : S(0) : N(S(S(0))) → · · ·

In Figure 3 we get a clear picture by drawing the term trees again.
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Figure 3. Converging infinite reduction

Looking at the terms as they evolve during this reduction, two things stand
out. First, after each step a larger and larger prefix remains fixed throughout

3Of course one thinks here of a least fixed-point semantics. We note that it could in
fact be implemented by the very techniques of infinitary term rewriting that this paper
is about.

4One may also consider rewrite rules involving infinite terms. Most of the existing
theory of infinitary rewriting extends to rewrite rules with infinite righthand side. For
rules with infinite lefthand sides the situation is less clear.



6 Jan Willem Klop and Roel de Vrijer

the rest of the reduction and, secondly, the depth (i.e. the distance to
the root) of the contracted redexes increases. In accordance with these
observations we formulate the following two conditions:

1. For any depth n the prefix of positions up to depth n eventually gets
fixed throughout the rest of the reduction.

2. The depth (i.e. the distance to the root) of the contracted redexes
eventually grows beyond any finite value.

Note that condition 1 alone already would be sufficient to guarantee the
existence of a well-defined limit, any position has a finite depth and hence
will eventually be fixated. In the literature this is called weak convergence
and it was used in the ground-breaking paper on infinitary term rewriting
[Dershowitz et al., 1991]. However, later developments have made it clear
that it is better to require the stronger property 2, which is easily seen to
imply 1. The reason is that with the stronger notion the resulting theory of
infinitary term rewriting is much better behaved.5 For details of this consult
the background literature, e.g. [Terese, 2003]. Convergence according to
the stronger notion 2 is usually called strong convergence, but since we
will not be concerned anymore with alternative notions we will also call it
convergence without more.

An example af a weakly but not strongly convergent reduction sequence
can be given for example with the reduction rule A(x) → A(B(x):

A(x) → A(B(x)) → A(B(B(x))) → A(B(B(B(x)))) → · · ·

The infinite term A(B(B(B( . . . )))) could in principle be considered as the
limit, but we will not do so because, as all redex contractions occur at the
root, the reduction sequence is not strongly convergent.

It is illustrative to contrast this example of non-convergence with a “mir-
ror” example, the TRS with the rule A → B(A). The reduction

A → B(A) → B(B(A)) → B(B(B(A))) → · · ·

is convergent, with as limit the infinite normal form Bω. To indicate a
convergent reduction of length ω we write A →ω Bω.

2.3 Transfinite reductions

Reduction can proceed beyond the ordinal ω. An easy way to see this is by
adding a passive pairing operator to the signature of the last example and
considering the convergent reduction

P (A, A) → P (B(A),A) → P (B(B(A)),A) → P (B(B(B(A))),A) → · · ·

5More specifically, adopting 2 enables us to extend the notion of descendant of a
subterm after a reduction to infinite reductions, where the critical point in the definition
is of course the limit case.
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We have that P (A, A) →ω P (Bω, A), but now the limit P (Bω, A) is not a
normal form, as it contains the redex A. So after the first ω steps another
one is possible and so on, and by taking another limit we reach the normal
form P (Bω , Bω), in ω + ω steps. Notation: A →ω+ω P (Bω, Bω).

Now it is not difficult to construct longer reductions, for example the
infinite term characterized by t = P (A, t) has a reduction of length ω2 to
t = P (Bω, t). As we will see in Example 3 below, convergent transfinite
reductions can be constructed of any countable ordinal length.

DEFINITION 1. We sum up the notion of a transfinite reduction ρ of length
β. It consists of rewrite steps tα →sα

tα+1:

ρ : t0 →s0
t1 →s1

· · · tω →sω
tω+1 →sω+1

· · ·

or in a more compact notation ρ = (sα)α<β . This only makes sense if
for each limit ordinal λ < β the prefix ρλ = (sα)α<λ of ρ is convergent,
with limit tλ. Let dα be the depth—in the term tα—of the redex that is
contracted in step sα. Then for each limit ordinal λ < β we must have that
(dα)α<λ tends to infinity.

Figure 4 depicts the course of the redex depths in a convergent reduction
of length ω2.

Figure 4. Convergence at each limit ordinal ≤ ω2

Note that in Definition 1 we do not require convergence at the ordinal β,
that is, convergence of the whole reduction. We get back to the topic of
divergent transfinite reductions in Section 2.5.

2.4 Compression

Continuing the example of the last section, there is also a convergent re-
duction P (A, A) →ω P (Bω, Bω), by alternating between performing steps
in the left and right argument positions of P :

P (A, A) → P (B(A),A) → P (B(A),B(A)) → P (B(B(A)),B(A)) → · · ·
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The transition from the reduction of length ω ·2 to that of length ω is called
compression. A key result in the theory of infinitary rewriting is that for
OTRSs compression of transfinite reductions to length ω is always possible.
As a matter of fact, left-linearity of the TRS already suffices for having
compression.

2.5 Convergence and divergence

For a transfinite reduction ρ of length λ with λ a limit ordinal there are two
possibilities: either ρ is convergent or it is not. In the first case there is a
limit term tλ and we have that ρ : t0 →λ tλ. In the second case we say that
ρ is divergent. Note again that for any reduction of length λ, convergent or
divergent, all prefixes must be well-defined, meaning convergence at each
limit ordinal < λ.

Now we look into the question of what constitutes a divergent reduction
ρ of length λ. Let ρ again consist of steps sα. Divergence of ρ means that
there exists a finite number n such that for every α < λ there exists a β > α
such that the step sβ has depth ≤ n. If we then take N to be the smallest
such n, we have that infinitely many steps sβ have depth N .

Conversely, if for some N there are infinitely many steps of depth N , then
we have divergence. For let X = {α | dα = N} be an infinite set. Then
we construct an infinite sequence of ordinals α1, α2, . . . such that for all i,
dαi

= N by taking α1 the smallest element of X , α2 the next smallest and so
on. At the limit β of this increasing sequence we do not have convergence of
ρβ . We must then have β = λ, as otherwise a prefix of ρ would be ill-defined,
and hence the reduction ρ is divergent.

We proved:

THEOREM 2. A transfinite reduction is divergent if and only if for some
N there are infinitely many steps at depth N .

An immediate consequence of this theorem is that all convergent trans-
finite reductions have countable length. Namely for each N there can only
be finitely many steps of depth N and a countable union of finite sets is
countable.

But we can also directly prove a stronger result, namely that all reduc-
tions, no matter whether they are convergent or divergent, must be count-
able. For assume not. Then there is certainly a reduction ρ = (sα)α<ω1

,
where ω1 is the first uncountable ordinal. Infinitary pigeon holing yields an
N ∈ ω such that ρ has infinitely (even uncountably) many steps at depth N .
As before we consider the infinite set X = {α | dα = N} and construct an
infinite increasing sequence α1, α2, . . . of ordinals inside X . At the limit β
of this increasing sequence we do not have convergence of the prefix ρβ , but
since β is a countable limit ordinal, β < ω1 and hence ρ is not well-defined.
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EXAMPLE 3. It is instructive and also entertaining to play some more
with the infinite term Iω, which, as we already remarked, reduces only to
itself and has at each position an identical redex. So, as a rewrite step is
determined by its depth, a transfinite reduction ρ = (sα)α<λ of Iω can be
identified with the sequence (dα)α<λ, where dα is the depth of sα.

The constant sequence (0, 0, 0, . . .), for example, codes the divergent re-
duction of length ω consisting of only root steps, whereas in the reduction
(0, 1, 2, . . .) the depth of the steps tends to infinity, hence it converges. An
example of a divergent reduction of length ω ·2 is (0, 1, 2, . . . 0, 0, 0, . . .). We
find converging and diverging reductions (dα)α<ω2 and (d′α)α<ω2 of length
ω2 by taking dω·n+m = n + m and d′ω·n+m = m, respectively.

We will now show that (1) the term Iω admits a convergent reduction of
length any countable ordinal λ, and (2) if λ is a limit ordinal also a divergent
reduction.

1. Take a countable λ. So there is a bijection d : λ → ω. Then the reduc-
tion (d(α))α<λ is a convergent reduction of length λ by Theorem 2.

2. We can use 1 to construct also a divergent reduction of length λ, if it
is a limit ordinal. For consider a convergent reduction ρ = (dα)α<λ

and let α1, α2, . . . be an increasing sequence of ordinals with limit λ.
Define ρ′ = (d′α)α<λ, where d′αi

= 0 for all i ∈ ω and d′α = dα for all
other α < λ. Then one easily sees that ρ′β still converges at any limit
ordinal β < λ, as it differs from ρβ in at most finitely many places.
Hence ρ′ is well-defined and it obviously diverges at λ.

3 Normal forms and normalization properties

3.1 WN and SN in the finitary setting

Consider the TRS T = {f(x) → b, a → f(a)}. In T we have an infinite
reduction originating from the term a:

a → f(a) → f(f(a)) → f(f(f(a))) → · · ·

but on the other hand any term can be reduced to a normal form, in par-
ticular we have a →→ b via the reduction

a → f(a) → b

This is an example of a TRS that is weakly normalizing (WN), every term
reduces to a normal form, but not strongly normalizing (SN), there are
reductions that go on indefinitely, without ever reaching a normal form.6

6Term rewriting systems that are SN are also called terminating.
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Of course there is the trivial implication SN =⇒ WN and the above
example shows that the converse does not hold. In this respect it is worth
mentioning a classic result of [O’Donnell, 1977], specifying a situation where
the converse does go through. It goes back to [Church, 1941], where it is
proved that in the λI-calculus WN and SN are equivalent. A TRS is called
non-erasing if in each rewrite rule all variables in the left-hand side occur
also in the right-hand side.

THEOREM 4 (O’Donnell). For non-erasing OTRSs we have WN ⇐⇒
SN.

For the sake of completeness we add a recently discovered fact from
[Ketema et al., 2005]. Here AC is the property of acyclicity, there are
no reduction cycles.

THEOREM 5. For OTRSs we have WN =⇒ AC.

3.2 Infinite normal forms

A normal form, finite or infinite, is a term from which no rewrite step is
possible, that is, a term without redex occurrences. Typical examples of
infinite normal forms are the terms representing the streams of zeros and
naturals, depicted in Section 2.2. Less standard examples in the TRS N of
addition are the infinite term Sω and the infinite binary tree labeled with
A’s, defined by the recursion equation t = A(t, t).

A typical example of an infinite term that is not a normal form is the
term Iω from Section 2.2. As we already indicated this term does not reduce
to a normal form either, as it can only reduce to itself. So Iω is an example
of a term that is not WN∞, where WN∞ is the property of reducing by a
possibly transfinite reduction to an (infinitary) normal form.

3.3 The notion of infinitary strong normalization

Now we want to consider the question what SN∞ could mean. To keep
the analogy with finitary SN it should be something like: no matter how
you reduce, if you just keep going, in the end a normal form will always
be reached. Naturally it might take any (countable) transfinite number of
steps. This analysis leads us to the following provisional definition.7

A term t has the property SN∞ if any maximal transfinite re-
duction from t reduces t to a normal form.

7In [Kennaway, 1992] a similar phrasing is rejected, apparently due to a subtle differ-
ence in perspective. Our transfinite reductions of length α presuppose (strong) conver-
gence at all limit ordinals λ < α from the outset, whereas Kennaway also considers weak
convergence, only to be eliminated later on. The resulting notions of SN∞ are the same.
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The question that then has to be answered is of course: what are maximal
reductions? But that is not difficult. There are just two types of transfinite
reductions from t that cannot be prolonged:

1. The reductions that reduce t to a normal form.

2. The reductions that diverge.

Now the first possibility satisfies the provisional criterion, and only the
second violates it. Hence it is clear what the definition of SN∞ should be.

DEFINITION 6. A (finite or infinite) term is SN∞ if it has no divergent
reductions.

The notions of finitary SN and infinitary SN∞ are independent, as we will
point out in 1 and 2 below. Here especially the failure of SN =⇒ SN∞,
although easy to understand, may come as a surprise.

1. SN 6⇒ SN∞. Consider the two-rule TRS N for addition from Sec-
tion 2.1. It is clearly SN. However SN∞ fails as witnessed by the
infinite term recursively defined by t = A(t, 0). We have t → t, yield-
ing a divergent reduction, i.e. ¬SN∞.

For another, even simpler counterexample consider again the one-rule
TRS I(x) → x, trivially SN, and the infinite term Iω that has no
normal form.

2. SN∞ 6⇒ SN. There is a far from obvious couterexample here: take the
fragment of Combinatory Logic (CL) consisting of the terms solely
built by application from the combinator S, with the reduction rule
Sxyz → xz(yz). This is an orthogonal TRS which is not SN, as e.g.
the term SSS(SSS)(SSS) has an infinite reduction. But it has the
property SN∞, according to [Waldmann, 2000].

3.4 Newman’s Lemma

A typical application of SN in the finitary case is in Newman’s Lemma:
WCR & SN =⇒ CR. However, infinitary Newman Lemma fails, that is,
we do not have the implication WCR & SN∞ =⇒ CR∞. The following
is an easy counterexample. An alternative counterexample can be found in
[Kennaway, 1992].

EXAMPLE 7. Consider the TRS R with the three rules:

C → A(C)
C → B
A(B) → B
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So R is not orthogonal. All reductions from C are depicted in Figure 5.
There are two normal forms, Aω and B. Hence UN∞ does not hold and

Aω

B A(B) A2(B)

C A(C)

A3(B)

A2(C) A3(C)
.....

.....

ω

Figure 5. Reduction graph of C

neither does CR∞. As all relevant terms of R are shown, it is clear that R
is CR and also WCR. We also have SN∞, as one easily sees.

4 Infinitary orthogonal rewriting

It is by now well-known that even for orthogonal TRSs infinitary confluence
may fail. This is shown by the following example.

EXAMPLE 8. Consider the TRS with rules

C → A(B(C))
A(x) → x
B(x) → x

Then CR∞ fails since C reduces in ω steps to Aω and Bω, infinite terms
that both only reduce to themselves, so having no common reduct.

In this example it is essential that there are two collapsing rewrite rules
and conditions can be given under which CR∞ does go through, but we
will not pursue this matter here, see [Kennaway et al., 1995]. An important
reason for the interest in confluence is that it implies uniqueness of normal
forms. Below we will prove that despite the failure of CR∞, in infinitary
orthogonal rewriting we do have UN∞, uniqueness of normal forms.

4.1 The Parallel Moves Lemma

A parallel step consists of the contractions of a possibly infinite set of disjoint
redexes. This can be done in any order and will always result in a convergent
reduction.

Fundamental is the infinitary parallel moves lemma (PML∞) for OTRSs
in this form:
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THEOREM 9. It is always possible to construct the finite or transfinite
reduction diagram of a convergent reduction ρ against a parallel step p. The
projection p/ρ is again a parallel step and ρ/p a convergent reduction.

By way of example we give a more microscopic view of this construction
for the case that ρ has length ω · 2. So we have

ρ : t0 →s0
t1 →s1

· · · tω →sω
tω+1 →sω+1

· · · tω·2

Define p0 = p and pα = p/ρα (where ρα is the prefix of ρ of length α). Note
that then also pα+1 = pα/sα.) Finally let Sα = sα/pα.

We then have locally at each tα the diagram construction with initial
term tα of the single step tα →sα

tα+1 against the parallel step pα. The
bottom and right residual steps are the Sα and pα+1. The complete diagram
construction consists of collating the local diagrams. It is essential here that
at the limits we have convergence. See Figure 6.

Figure 6. PML∞ for a transfinite reduction of length ω · 2

To appreciate that PML∞ is non-trivial we mention that for infinitary
lambda calculus (λ∞), this fundamental lemma fails.

One can make sense also of the projection of a divergent reduction ρ over
a convergent reduction σ, given that the projections of ρ’s prefixes exist. Let
the ρα’s (α < λ) be the prefixes of ρ. Then, as the prefixes of a divergent
reduction are convergent reductions, we can take ρ/σ as the union of the
ρα/σ, α < λ. A priori ρ/σ can be either convergent or divergent.

In fact, already the projections of convergent reductions σ and ρ over
each other may be divergent. An example is the reduction diagram in
Figure 7. It is obtained from the reductions C →ω Aω and C →ω Bω in
the counterexample to CR∞ above. In Figure 7 the steps crossing a light
layer are empty steps. The reduction Aω → Aω → · · · in the righthand side
is a root reduction, hence divergent; likewise the reduction from Bω at the
bottom.
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Figure 7. Non-confluent infinite reduction diagram

5 Unique normal forms: UN∞ for OTRSs

In this section we assume orthogonality for all TRSs and under this restric-
tion we prove uniqueness of infinitary normal forms (UN∞).

There is the well-known distinction between root (or head) reduction and
non-root reduction, also called internal reduction. In a root (head) step the
root of the term is part of the contracted redex, in an internal step the
root is left untouched. We will generalize this notion of internal reduction
relative to the root position to internal reduction relative to an arbitrary
prefix C. This is called C-stable reduction or ιC -reduction and it leaves all
of C untouched.

DEFINITION 10.

1. Let C be a prefix of t. A rewrite step from t is C-stable (a ιC -step) if
the contracted redex lies below C. Idem for parallel steps.
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2. C-stable reduction or ιC-reduction is reduction consisting of only C-
stable steps.

3. A term is called C-stable if it allows only C-stable reduction.

4. If C is the “full” prefix up to depth n then C-stable reduction, is also
called n-stable reduction. Accordingly a term allowing only n-stable
reduction is called n-stable.

So internal or root-stable reduction is the same as 1-stable reduction, or C-
stable reduction where C is just the root. A root-stable term is also called
a head normal form.

C

redex r

pattern

Figure 8. Redex r overlapping with prefix C

LEMMA 11.

1. If redex r overlaps with C and t → s by a ιC-step, then r has a unique
residual in s, at the same position and still a redex.

2. The same for ρ : t →→ s.

3. The same for ρ : t →α s.

Proof.

1. This is the crux of orthogonal rewriting. Not only C is stable, but
also C ∪ π(r), the union of C with the pattern π(r) of r.

2. Repetition of 1.
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3. If the prefix C ∪ π(r) is stable in ρ, it will also be present in the limit
(by the very definition of what a limit is).

�

PROPOSITION 12. If t reduces to an infinite normal form by ιC-reduction,
then no redex in t overlaps with C.

Proof. By Lemma 11(3). �

It is easy to see that projection of (parallel) ιC -steps over each other yields
ιC -steps as residuals.

LEMMA 13. Projection of a ιC-reduction over a (parallel) ιC-step yields a
ιC-reduction again.

PROPOSITION 14.

1. If t reduces to an infinite normal form by ιC-reduction ρ and t → s,
then C is a prefix of s and no redex in s overlaps with C.

2. If t reduces to an infinite normal form by ιC-reduction, then t is C-
stable.

3. If t reduces to an infinite normal form by n-stable reduction, then t is
n-stable.

Proof.

1. No redex in t overlaps with C because of Proposition 12. Hence t →p s
is a ιC -step. Then by Lemma 4 the projection ρ/p is a ιC -reduction
again, by PML∞ to a normal form. Apply Proposition 12 again.

2. By Proposition 12 no redex in t itself overlaps with C and by repeating
(1) we see that this property is preserved under reduction.

3. This is a special case of (2).

�

THEOREM 15. For OTRSs we have UN∞.

Proof. Consider two reductions ρ and σ from the same term t, both con-
verging to infinitary normal forms, say nf1 and nf2, respectively.

ρ : t0 →s0
t1 →s1

· · ·nf 1

σ : t′0 →s′

0
t′1 →s′

1
· · ·nf 2



Infinitary Normalization 17

Figure 9. Proof of UN∞

By compression we may assume that ρ and σ have length at most ω. We
show that all finite prefixes of the normal forms nf 1 and nf 2 are identical,
hence nf 1 = nf 2. The proof is depicted in Figure 9.

Let C be a finite prefix of nf 1, say of depth n. Both in ρ and in σ all
redex activity will eventually be below depth n, say after N1 and N2 steps
respectively, with N = max(N1, N2). Now note that by Proposition 14(3),
the terms tN and t′N are n-stable, as both reduce to infinite normal form
by n-stable reduction. And in particular tN will be C-stable.

Projecting the finite reductions ρN and σN yields a common reduct t′′

of tN and t′N . Because of the n-stability of tN and tN ′ , t′′ will share its
prefix up to depth n with both these terms. So in particular C will also be
a prefix of t′N , and hence of nf 2. �
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As a corollary we now have the following theorem from [Dershowitz et al.,
1991].8 The proof is immediate, analogous to that of UN & SN =⇒ CR
for the finitary case.

COROLLARY 16. For OTRSs the implication SN∞ =⇒ CR∞ holds.

6 The equivalence of SN∞ and WN∞

Also in this section we assume orthogonality. We show that as properties
of an OTRS the notions SN∞ and WN∞ are equivalent.

PROPOSITION 17. Consider a transfinite divergent reduction ρ of length
λ, containing infinitely many head steps and a coinitial parallel step p. Then
the projections σα = ρα/p (α < λ) are the prefixes of a divergent reduction
σ of length λ, also containing infinitely many head steps.

Proof. Let sα be the step in ρ performed at ordinal α. So we have

ρ : t0 →s0
t1 →s1

· · · tω →sω
tω+1 →sω+1

· · ·

Define p0 = p and pα = p/ρα (Note that then also pα+1 = pα/sα.) Finally
let Sα = sα/pα.

There are two possibilities:

1. For all ordinals α such that sα is a head step, pα is internal. Then
each of the corresponding Sα’s is a head step as well: infinitely many.

2. For some α such that sα is a head step, pα is a head step too. Then
pα+1 = ∅ and hence pβ = ∅ for all β > α. Hence Sβ = sβ for all
β > α. Since the set {sβ | β > α} contains infinitely many head steps,
so does {Sβ | β > α}.

In both cases σ contains infinitely many head steps, hence diverges. �

COROLLARY 18. Projection of a ρ containing infinitely many head steps
over any finite reduction yields a σ containing infinitely many head steps.

PROPOSITION 19. Assume t has a divergent reduction ρ containing in-
finitely many head steps. Then t does not reduce to a head normal form.

8As a matter of fact, in [Dershowitz et al., 1991] instead of SN∞ a notion is used
that is called there top termination and which corresponds to our notion SHN∞ (see
Section 7). However, a result of the present paper is that as properties of OTRSs the
notions SN∞ and SHN∞ are equivalent.
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Proof. For a proof by contradiction suppose t has a transfinite reduction
to head normal form h. Claim: t can be reduced to h in a finite reduction
ϕ. For, suppose not. Then by compression we may assume that t →ω h.
For this reduction to be convergent the head must be in rest after finitely
many steps. By Corollary 18 projection of ρ over ϕ yields a divergent
reduction from h containing infinitely many head steps. This contradicts
the assumption that h is a head normal form. �

COROLLARY 20. A term t cannot both have a normal form and a reduc-
tion containing infinitely many head steps.

PROPOSITION 21. Consider an OTRS T and suppose there exists a di-
vergent reduction ρ in T . Then there is in T also a divergent reduction σ
containing infinitely many head steps.

Proof. Let ρ = (sα)α<λ, as in the display in the proof of Proposition 17
above. Divergence of ρ implies that λ is a limit ordinal and that for some
n we have that for every α < λ there exists a β > α such that the step sβ

has depth ≤ n. Let N be the smallest such n.
If N = 0, then we are done, take σ = ρ.
Otherwise N > 0 and then, as ρ has only finitely many steps with depth

< N , there exists an ordinal Γ < λ such that for all β > Γ the depth of step
sβ is ≥ N . Beyond Γ the prefix of the term tΓ consisting of all positions
up to depth N − 1 will be fixed throughout the rest of the reduction ρ. So
there is a fixed finite set of positions of depth N , uniform for all terms tβ ,
β > Γ. At these positions all infinitely many steps sβ, β > Γ of depth N
must take place and by pigeon holing at least one of these positions, say P ,
then will have infinitely many of these steps. Now consider the reduction
from the term tΓ|P consisting of all steps sβ , β > Γ that take place at or
below P . That will be a transfinite reduction σ containing infinitely many
root steps, which is therefore also divergent. �

THEOREM 22. For OTRSs we have SN∞(T ) ⇐⇒ WN∞(T ).

Proof. (⇒) is trivial.
(⇐) Assume that T is not SN∞. That is, in T there exists a divergent

reduction. Then by Proposition 21 there exists in T also a reduction with
infinitely many head steps. By Corollary 20 it then follows that T is not
WN∞. �

On reflection, recalling O’Donnell’s Theorem 4 (OD) which states that in the
finitary case the equivalence of WN and SN follows from non-erasingness,
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it is remarkable that according to Theorem 22 in the infinitary setting the
equivalence holds without more. Here it is crucial to keep in mind that
Theorem 22 is about WN∞ and SN∞ as properties of an OTRS T . At the
level of terms the infinitary case deviates from finitary as well, but quite in
the opposite direction: for terms O’Donnell’s Theorem does not hold at all.
Abbreviating the property of non-erasingness by NE, the infinitary version
of O’Donnell’s Theorem for terms would read:

OD∞ : NE =⇒ (WN∞(t) ⇐⇒ SN∞(t) )

Failure of OD∞ is demonstrated by the following example.

EXAMPLE 23. Consider the term a(c) in the non-erasing orthogonal TRS
T = {c → c, a(x) → b(a(x))}; it violates OD∞ by being WN∞ but not
SN∞.

WN∞: The infinite reduction a(c) → b(a(c)) → b(b(a(c))) → · · · reduces
a(c) to its infinitary normal form bω.

¬SN∞: There is also the divergent reduction a(c) → a(c) → a(c) → · · ·

For an intuitive explanation first note that a(c) is a counterexample to OD∞

in particular in the sense that it does not satisfy the implication

WN∞(t) & ¬SN∞(t) =⇒ ¬NE

In the finitary case, erasure (¬NE) is “needed” for getting rid of the part
of a ¬SN-term that generates an infinite reduction, in order to pass to a
normal form. One wonders why the same would not be needed as well in
the infinitary case. Well, look at the example again. The c is not erased
literally, but in the infinite reduction it is pushed over the edge of infinity,
so to say, with the same effect as erasure: the potentially divergent part c
has disappeared in the infinite normal form bω.

7 Weak and Strong Head Normalization

We also consider the notions of weak and strong head normalization (WHN
and SHN). A head normal form is a term which is root-stable, as defined in
Section 5. Then we have for a term t:

WHN: There is a reduction of t to a head normal form.

SHN: In each infinite reduction of t after a finite number of steps a head
normal form is reached.

The infinitary versions then follow naturally.



Infinitary Normalization 21

WHN∞: There is a possibly transfinite reduction of t to a head normal
form.

SHN∞: In each maximal transfinite reduction of t, no matter whether con-
verging or diverging, at some point a head normal form is reached.

We restrict attention to orthogonal systems again. Then, if a head normal
form can be reached by an infinite reduction, by compression it can be
reached already in a reduction of length ≤ ω. In this reduction the root
becomes stable after finitely many steps. So for finite terms there is no
difference between finitary and infinitary WHN. As to SHN∞, again one
easily sees that for finite terms it is equivalent to finitary SHN. By contrast
note that Iω is an infinite term that is neither SHN∞ nor WHN∞ in the
TRS with rule I(x) → x, notwithstanding the TRS being both WHN and
SHN.

Figure 10. Survey of infinitary properties

The following two examples show that the four implications between the lo-
cal properties SN∞, WN∞, SHN∞ and WHN∞ as in Figure 10 are strict.
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EXAMPLES 24.

1. In the TRS with rules {c → c, a(x) → b} the term a(c) is WN∞,
¬SN∞, WHN∞ and ¬SHN∞.

2. In the TRS with the single rule c → c and additional unary function
symbol e the term e(c) is SHN∞, ¬SN∞, WHN∞ and ¬WN∞

This was all at the level of terms. At the global level of orthogonal TRSs the
notions of WHN∞ and SHN∞ both coincide with WN∞ and SN∞, which
we showed to be the same.

We conclude this section on head normalization by noting that the im-
plication WN =⇒ AC (Theorem 5) can be strengthened to WHN =⇒
AC. This was proved in [Ketema et al., 2004].

8 Concluding remarks

There are two directions in which we would like to see the subject of this
paper extended. The first is to relax the requirement of orthogonality to
weak orthogonality. A TRS is weakly orthogonal if the reduction rules are
left-linear and critical pairs 〈t, s〉 generated by overlapping rules are trivial,
i.e. of the form 〈t, t〉. An example of a weakly orthogonal TRS is obtained
by adding to the TRS for addition as in this paper a function symbol P for
predecessor, with extra reduction rules S(P (x)) → x and P (S(x)) → x.

The second direction is the extension to the higher-order case, where
bound variables are present, as in λ-calculus. For λβ-calculus the property
UN∞ does hold, see [Terese, 2003], but for general orthogonal higher-order
systems UN∞ is a conjecture only. The infinitary λ-calculus itself is fully
covered in [Terese, 2003]. Work on general infinitary higher-order rewriting
has already begun in [Ketema and Simonsen, 2005].

A combination of these two directions is found in the λβη-calculus, which
is a higher-order weakly orthogonal TRS. Unfortunately, because the η-rule
tests for the absence of a variable9, something which may happen only in
the limit, fundamental theorems such as compression do not hold for the
infinitary λβη-calculus. Recently, Severi and de Vries have considered both
η-reduction and η-expansion with the aim of generating and studying models
by means of transfinite rewriting techniques [Severi and de Vries, 2002;
Severi and de Vries, 2005].

Figure 11 summarizes the situation (OCRS stands for Orthogonal Com-
binatory Reduction System).

9In higher-order terminology: the rule is not fully-extended.
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Figure 11. Some open questions in infinitary rewriting
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models. In Proceedings of CSL’05, 2005. To appear.

[Terese, 2003] Terese. Term Rewriting Systems. Cambridge University Press, 2003.
[Waldmann, 2000] J. Waldmann. The combinator S. Information and Computation,

159(1–2):2–21, 2000.


