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Conservation of wave action under multisymplectic
discretizations

ABSTRACT
In this paper we discuss the conservation of wave action under numerical discretization by
variational and multisymplectic methods. Both the general wave action conservation defined
with respect to a smooth, periodic, one-parameter ensemble of flow realizations and the specific
wave action based on an approximated and averaged Lagrangian are addressed in the
numerical context. It is found that the discrete variational formulation gives rise in a natural way
not only to the discrete wave action conservation law but to a generalization of the numerical
dispersion relation to the case of variable coefficients. Indeed a fully discrete analog of the
modulation equations arises. On the other hand the multisymplectic framework gives easy
access to the conservation law for the general class of multisymplectic Runge-Kutta methods. A
numerical experiment confirms conservation of wave action to machine precision and suggests
that the solution of the discrete modulation equations approximates the numerical solution to
order O(ε) on intervals of O(ε–1).
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Abstract. In this paper we discuss the conservation of wave action under
numerical discretization by variational and multisymplectic methods. Both the
general wave action conservation defined with respect to a smooth, periodic, one-
parameter ensemble of flow realizations and the specific wave action based on an
approximated and averaged Lagrangian are addressed in the numerical context.
It is found that the discrete variational formulation gives rise in a natural way
not only to the discrete wave action conservation law but to a generalization
of the numerical dispersion relation to the case of variable coefficients. Indeed
a fully discrete analog of the modulation equations arises. On the other hand
the multisymplectic framework gives easy access to the conservation law for the
general class of multisymplectic Runge-Kutta methods. A numerical experiment
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solution of the discrete modulation equations approximates the numerical solution
to order O(ε) on intervals of O(ε−1).
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1. Introduction

The wave action conservation law was introduced in (Whitham 1965) to study
modulations of wave trains in slowly varying media. The approach follows by
substituting a wave train with slowly varying amplitude, wave number and frequency
into the variational principle, neglecting terms of higher order in a small perturbation
parameter, and averaging the Lagrangian over phase to arrive at a variational principle
for the modulation equations. Whitham’s original theory thus leads to an approximate
conservation law. A generalized form of the conservation law of wave action was
introduced by (Hayes 1970), who considered a periodic, one-parameter family of
solutions to the Euler-Lagrange equations. Conservation of wave action then follows
from Noether’s theorem, due to the trivial invariance of the action integral under
translations in the ensemble parameter. This in turn makes Hayes’s theory an exact
one. The identification of Hayes’s ensemble parameter with a phase shift relates
the two theories (see (Hayes 1970) and (Grimshaw 1984) for more discussion). The
concept of wave action conservation was further extended in (Whitham 1970), and a
full treatment is given in the monograph (Whitham 1999).
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The utility of the wave action conservation law is that it holds even when the
action integral is explicitly dependent on time and space, such that the energy-
momentum tensor is not exactly conserved. An important example is the case of
waves defined on a slowly moving background flow, such as shallow water gravity
waves on a slowly evolving potential vorticity field. The theory has therefore found
application in wave-mean field interactions (Bretherton & Garrett 1969, Andrews &
McIntyre 1978, Grimshaw 1984). Another important application is the instability
theory of traveling waves (see (Bridges 1997b, Bridges 1997a) and the references
therein). The local conservation law for wave action is a space-time generalization
of the concept of an adiabatic invariant in a classical mechanical system with slow
dependence of the Hamiltonian on time (Arnold 1989).

In this paper we consider wave equations in one space and one time dimension
with a single wave action ensemble parameter. The results are easily generalized
to higher dimensional space-time, however (Frank 2006). In §3 we will show that
a number of multisymplectic numerical discretizations as developed in (Bridges &
Reich 2001, Reich 2000b) satisfy a discrete conservation law of wave action in the
sense of (Hayes 1970). This result is a corollary to the fact that multisymplectic
semi-discretizations satisfy a semi-discrete energy-momentum conservation in each
continuous (i.e. undiscretized) coordinate, which follows from the Noether theory
for multisymplectic PDEs (Bridges 1997b). The latter has been shown for special
cases in the literature (Reich 2000b), and a very general statement for the class
of multisymplectic Runge-Kutta box schemes is treated in (Frank 2006). In §4
we prove wave action conservation for this class of methods in the current setting.
Additionally we will consider in §3.1.1 a discrete variational integrator (Marsden
et al. 1998, Marsden & West 2001) applied to the linear Klein-Gordon equation
with slowly varying coefficients, for which a discrete averaged Lagrangian is obtained
which yields discrete versions of the modulation equations. It is curious that the wave
action conservation law so obtained is identical to the exact one obtained by ensemble
averaging, i.e. no approximation is necessary in the discrete case. In other words
Whitham’s and Hayes’s wave action concepts are equivalent in the discrete setting.

In §2 wave action conservation in the continuous case is reviewed, both in
the Lagrangian and multisymplectic Hamiltonian settings. In §5 we conclude with
a numerical computation of the linear Klein-Gordon equation with slowly varying
coefficients.

To the best of our knowledge this is the first paper to study discrete conservation
of wave action under numerical discretization. At this time, it is difficult to anticipate
the significance of this property. One can say, however, that conservation of wave
action is a property of certain solutions of continuous wave equations which is inherited
under discretization by the variational and multisymplectic methods considered here,
and as such it further attests to the realism of simulations by such methods.

2. Review of wave action conservation for continuous systems

2.1. Wave action conservation over a continuous ensemble

The concept of wave action conservation was developed in a variational setting.
Consider a wave equation derivable from a variational principle with Lagrangian L
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(Marsden & Ratiu 1994):

L =

∫

L(ut, ux, u, t, x)dx dt. (1)

The Euler-Lagrange equations are

δL

δu
= ∂t

(

∂L

∂ut

)

+ ∂x

(

∂L

∂ux

)

−
∂L

∂u
= 0. (2)

Due to the explicit dependence of L on time t and space x, solutions of the Euler-
Lagrange equations will not conserve energy or momentum in general. Suppose,
however, that (2) possesses an ensemble of solutions u(t, x, θ0) that can be smoothly
parameterized by a closed loop in phase space, with loop parameter θ0. The derivative
of the Lagrangian with respect to this parameter is

dL

dθ0
=

∂L

∂ut
utθ0

+
∂L

∂ux
uxθ0

+
∂L

∂u
uθ0

.

Solving (2) for ∂L
∂u and substituting into the above expression gives

dL

dθ0
= ∂t

(

∂L

∂ut
uθ0

)

+ ∂x

(

∂L

∂ux
uθ0

)

.

Integrating this relation around a loop in θ0 yields the conservation law of wave action:

∂tA+ ∂xB = 0, A =
1

2π

∮

∂L

∂ut
uθ0

dθ0, B =
1

2π

∮

∂L

∂ux
uθ0

dθ0,(3)

where A is the wave action density and B is the wave action flux.

2.1.1. Example: Klein-Gordon equation, averaged Lagrangian As a concrete
example let us take the linear dispersive Klein-Gordon equation in a slowly varying
medium:

utt = (α(t, x)2ux)x − β(t, x)2u. (4)

This equation was used in (Whitham 1970) to illustrate the above concepts. Equation
(4) is the Euler-Lagrange equation associated to the action integral

L =

∫

u2
t

2
− α(t, x)2

u2
x

2
− β(t, x)2

u2

2
dx dt. (5)

For this Lagrangian, the wave action density and flux (3) read

A =
1

2π

∮

utuθ0
dθ0, B =

1

2π

∮

α2uxuθ0
dθ0, (6)

In application of the theory to slow modulations of nearly periodic wave trains,
we assume that α and β are slowly varying with respect to time and space, i.e.
α = α(T, X), β = β(T, X), where X = εx, T = εt for small parameter ε. We
are interested in a family of nearly sinusoidal solutions with slowly varying amplitude,
frequency, and wave number, parameterized by a phase shift. To that end we make
the ansatz

u(t, x) = A(T, X) sin(θ(t, x) + θ0), (7)

θ(t, x) = ε−1Θ(T, X),

θt(t, x) = −ω(T, X), (8)

θx(t, x) = κ(T, X), (9)
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where θ0 is a phase shift. For such a solution, the wave action density and flux (6)
can be integrated to yield

A = −
1

2
A2ω, B =

1

2
α2A2κ. (10)

An alternative derivation proceeds by substituting (7) directly into the action
integral (5) and averaging over θ0. The averaged Lagrangian is

L̄ =
1

2π

∮

L(ut, ux, u, t, x) dθ0 (11)

=
1

2

[

A2θ2
t

2
+ ε2 A2

T

2

]

−
1

2
α2

[

A2θ2
x

2
+ ε2 A2

X

2

]

−
1

2
β2 A2

2
(12)

Neglecting terms of order ε2 gives the action integral

L̄ =

∫

1

4

[

A2θ2
t − α2A2θ2

x − β2A2
]

dx dt

in terms of A and θ. The Euler-Lagrange equations for this action principle are

δL̄

δθ
= ∂t

(

1

2
A2θt

)

+ ∂x

(

1

2
α2A2θx

)

= 0,

δL̄

δA
= θ2

t − α2θ2
x − β2 = 0.

By making use of (8) and (9), one can express the above two equations in terms of
the slowly varying quantities ω, κ and A:

∂t

(

−
1

2
A2ω

)

+ ∂x

(

1

2
α2A2κ

)

= 0, (13)

ω2 − α2κ2 − β2 = 0, (14)

κt + ωx = 0, (15)

where the last of these is the compatibility condition θxt = θtx.
Equations (13)–(15) are the modulation equations which (approximately) govern

the evolution of the envelope of the slowly varying wave train. The first of these is
just the wave action conservation law (3) for the specific case (10). Equation (14) is
a generalization of the dispersion relation to the case of variable coefficients.

It has been noted in (Whitham 1970) that although (3), (10) were obtained
directly through an ensemble average over θ0, (13) was only obtained after neglecting
terms of higher order in ε, and is therefore an approximate conservation law. We will
refer to the former, exact conservation with respect to an ensemble of flow realizations
as Hayes’s wave action, and the latter, approximate conservation law as Whitham’s
wave action. This paper primarily deals with the former, although for specific examples
we will always turn to the latter.

Note that, while (13) is derived by considering a family of solutions, in its final
form it applies to the amplitude, frequency and wave number of an individual solution
out of that family (it is local in the ensemble variable). This conservation law holds
even when the Lagrangian (1) depends explicitly on t and x, i.e. when energy and
momentum are not conserved.
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2.2. Multisymplectic structure and wave action

By taking a complete Legendre transformation of (1) not only with respect to ut but
also with respect to ux, one may derive a Hamiltonian wave equation in the abstract
multisymplectic form (Bridges 1997b)

Jut + Kux = ∇S(u, t, x), (16)

where u(t, x) ∈ R
N , JT = −J and KT = −K are N × N skew-symmetric matrices,

and S : R
N × R × R → R is a functional which may depend on t and x. The papers

(Bridges 1997a) and (Bridges 1997b) provide a complete and accessible introduction
to multisymplectic structure and some of its applications.

Suppose S has no explicit dependence on t in (16). Then taking the vector inner
product of (16) with ut gives

u
T
t Jut + u

T
t Kux = u

T
t ∇S(u, x). (17)

The first term is zero by skew-symmetry of J . Using the identity

u
T
t Kux = ∂t

(

1

2
u

T Kux

)

+ ∂x

(

1

2
u

T
t Ku

)

, (18)

and the fact that the right side of (17) is just the total derivative of S with respect to
t, the conservation law

et + fx = 0, e =
1

2
u

T Kux − S, f =
1

2
u

T
t Ku (19)

is obtained. In (Bridges 1997b) it is observed that this is the energy conservation
law associated with the invariance of (16) to time translations. If S does not depend
explicitly on x, the associated momentum conservation law follows analogously by
taking the inner product of (16) with ux.

The wave action conservation principle of (Hayes 1970) has been cast in
multisymplectic form in (Bridges 1997a). The idea is to consider a one-parameter
ensemble of solutions u(t, x, θ0) to (16) smoothly parameterized by a closed loop in
phase space θ0 ∈ S1. Taking the vector inner product of (16) with uθ0

and using the
same reasoning as above yields the conservation law

∂θ0

(

1

2
u

T Jut +
1

2
u

T Kux − S

)

+ ∂t

(

1

2
u

T
θ0

Ju

)

+ ∂x

(

1

2
u

T
θ0

Ku

)

= 0. (20)

The ensemble average gives Hayes’s conservation law of wave action

∂tA + ∂xB = 0, A =
1

4π

∮

u
T
θ0

Ju dθ0, B =
1

4π

∮

u
T
θ0

Ku dθ0. (21)

2.2.1. Example: multisymplectic description of the Klein-Gordon equation The
Klein-Gordon equation can be cast in the form (16) by introducing the Legendre
transformations v := ∂L/∂ut = ut and w := ∂L/∂ux = −α2ux. Then one finds, with
u = (u, v, w), that S = 1

2 (v2 − α−2w2 + β2u2) and

J =





0 −1 0
1 0 0
0 0 0



 , K =





0 0 −1
0 0 0
1 0 0



 .

The conservation law (21) holds with

A =
1

4π

∮

vθ0
u − uθ0

v dθ0 = −
1

2π

∮

uθ0
ut dθ0
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and

B =
1

4π

∮

wθ0
u − uθ0

w dθ0 =
1

2π

∮

α2uθ0
ux dθ0,

which are precisely (6).
The extension of this theory to higher dimensional space-time is straightforward.

Additional dimensions may be included within the multisymplectic framework with
an additional term K(d)

uxd
(K(d) skew-symmetric) for each additional coordinate xd.

If S is independent of xd, then a momentum equation analogous to (19) may be found
by taking the inner product of (16) with uxd

and applying the identity (18). Indeed,
the wave action conservation law (20) can also be derived in this way by considering
x0 ≡ θ0 as an additional spatial dimension with periodic boundary conditions, with
associated trivial skew-symmetric matrix K0 = 0. Then it is the translation symmetry
in θ0 which leads to (20). For a general statement in the context of multisymplectic
Runge-Kutta discretizations, see (Frank 2006).

In (Bridges 1997a) it is shown that (21) is equivalent via Stokes theorem to a
local conservation law of symplecticity. The defining property of a multisymplectic
numerical discretization is that it satisfies a discrete version of the local conservation
law of symplecticity. However, since Stokes theorem does not in general hold
after discretization, it is not immediate that multisymplectic discretizations have
an analogous wave action conservation law. In the next section we identify such
conservation laws for some discrete variational and multisymplectic methods.

3. Discrete wave action conservation

3.1. Wave action conservation for a discrete variational integrator

Below we follow a derivation analogous to that of §2.1 for a discrete variational
integrator, see (Marsden et al. 1998, Marsden & West 2001). Define a discrete
Lagrangian by

Ln
i := L(

un+1
i − un

i

∆t
,
un

i+1 − un
i

∆x
, un

i , xi, tn). (22)

The discrete action integral (up to boundary conditions) is

LD =
∑

i,n

Ln
i ,

and the discrete Euler-Lagrange equations are given by

0 =
∂LD

∂un
i

=
1

∆t

(

L1
n
i − L1

n−1
i

)

+
1

∆x

(

L2
n
i − L2

n
i−1

)

− L3
n
i , (23)

where Lp
n
i denotes the partial derivative of L with respect to its pth argument,

evaluated at the same indices as (22). The scheme (23) will be referred to as the
discrete variational Euler scheme.

Next we assume a family of discrete functions un
i (θ0), satisfying (23) and smooth

and periodic in θ0. We compute the derivative of Ln
i with respect to θ0:

∂Ln
i

∂θ0
= L1

n
i ∂θ0

un+1
i − un

i

∆t
+ L2

n
i ∂θ0

un
i+1 − un

i

∆x
+ L3

n
i ∂θ0

un
i .

Substituting (23) into the last term on the right and rearranging gives

∂Ln
i

∂θ0
=

1

∆t

(

L1
n
i ∂θ0

un+1
i − L1

n−1
i ∂θ0

un
i

)

+
1

∆x

(

L2
n
i ∂θ0

un
i+1 − L2

n
i−1∂θ0

un
i

)

.
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Finally, taking the ensemble average yields a discrete conservation law. That is,

Proposition 1 The discrete variational Euler scheme (23) satisfies the discrete
conservation law of wave action

1

∆t
(A

n+1/2
i −A

n−1/2
i ) +

1

∆x
(Bn

i+1/2 − Bn
i−1/2) = 0, (24)

where

A
n+1/2
i =

1

2π

∮

L1
n
i ∂θ0

un+1
i dθ0, Bn

i+1/2 =
1

2π

∮

L2
n
i ∂θ0

un
i+1 dθ0. (25)

Equation (24) is the discrete analog of (3).

3.1.1. Example: variational discretization of the Klein-Gordon equation Now let us
consider a variational integrator for (4). The action principle (5) is approximated by
the sum

L =
∑

i,n

1

2

(

un+1
i − un

i

∆t

)2

− (αn
i+1/2)

2 1

2

(

un
i+1 − un

i

∆x

)2

− (βn
i )2

1

2
(un

i )2. (26)

As in the continuous case, let us assume a family of discrete, slowly modulated
waves of the form

un
i = An

i sin(θn
i + θ0). (27)

Substituting this family directly into (24) and taking the ensemble average yields the
discrete wave action density

A
n+1/2
i =

1

2
An

i An+1
i ∆t−1 sin(θn+1

i − θn
i ) (28)

and discrete flux

Bn
i+1/2 =

1

2
(αn

i+1/2)
2An

i An
i+1∆x−1 sin(θn

i+1 − θn
i ). (29)

These quantities are second order approximations to (10).
It is also instructive to follow the averaged Lagrangian approach used in §2.1.1.

Substituting (27) into (26) and averaging over θ0 gives the averaged variational
principle

L̄ =
∑

i,n

1

4∆t2
[

(An+1
i )2 − 2An

i An+1
i cos(θn+1

i − θn
i ) + (An

i )2
]

+
(αn

i+1/2)
2

4∆x2

[

(An
i+1)

2 − 2An
i An

i+1 cos(θn
i+1 − θn

i ) + (An
i )2

]

+
(βn

i )2

4
(An

i )2. (30)

Taking the discrete variation with respect to θn
i produces precisely (24) with (28) and

(29):

0 =
1

2∆t2
[

An+1
i An

i sin(θn+1
i − θn

i ) − An
i An−1

i sin(θn
i − θn−1

i )
]

+

1

2∆x2

[

(αn
i+1/2)

2An
i+1A

n
i sin(θn

i+1 − θn
i ) − (αn

i−1/2)
2An

i An
i−1 sin(θn

i − θn
i−1)

]

(31)

In contrast to the continuous case, it is unnecessary to neglect any small terms in
the Lagrangian to obtain the identical formulation. Hayes’s ensemble average over
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phase shift and Whitham’s averaged Lagrangian give formally identical wave action
conservation laws, without neglecting any higher order terms in the Lagrangian.

The variation of (30) with respect to An
i gives a generalized numerical dispersion

relation for variable coefficients:

0 =
1

∆t2

[

An
i −

1

2
An+1

i cos(θn+1
i − θn

i ) −
1

2
An−1

i cos(θn
i − θn−1

i )

]

+

1

∆x2

[

(αn
i+1/2)

2 + (αn
i−1/2)

2

2
An

i − (αn
i+1/2)

2 1

2
An

i+1 cos(θn
i+1 − θn

i )

−(αn
i−1/2)

2 1

2
An

i−1 cos(θn
i − θn

i−1)

]

+
(βn

i )2

2
An

i . (32)

A discrete analog of the modulation equations (13)–(15) can be obtained by
eliminating θn

i through the substitutions

θn+1
i − θn

i ≡ −ω
n+1/2
i ∆t, θn

i+1 − θn
i ≡ κn

i+1/2∆x

in (31) and (32). We then need the compatibility condition

1

∆t
(κn+1

i+1/2 − κn
i+1/2) +

1

∆x
(ω

n+1/2
i+1 − ω

n+1/2
i ) = 0. (33)

Since the variables An
i , κn

i+1/2 and ω
n+1/2
i are all slowly varying, the discrete

modulation equations could conceivably be solved on a coarser grid.

3.2. Discrete multisymplectic integrators

The wave action conservation law (31) may also be derived directly from a multi-
symplectic description. Consider a wave equation of the form (16).

Defining matrices J+, J−, K+, K−, to be the upper triangular and lower
triangular parts of J and K, respectively, the multisymplectic Euler discretization
of (16) is given by (Moore & Reich 2003a):

J+ u
n+1
i − u

n
i

∆t
+ J−

u
n
i − u

n−1
i

∆t

+ K+ u
n
i+1 − u

n
i

∆x
+ K−

u
n
i − u

n
i−1

∆x
= ∇S(un

i , xi, tn). (34)

Next assume a family of numerical solutions, smoothly and periodically dependent
on the parameter θ0, and compute the vector inner product of (34) with ∂θ0

u
n
i .

Rearranging, and using the fact that (J+)T = −J−, (K+)T = −K− gives the semi-
discrete conservation law‡

∂θ0

[

(un−1
i )T J+

u
n
i − (un

i )T J+
u

n
i

∆t
+

(un
i−1)

T K+
u

n
i − (un

i )T K+
u

n
i

∆x
− S(un

i , xi, tn)

]

+
(∂θ0

u
n
i )T J+

u
n+1
i − (∂θ0

u
n−1
i )T J+

u
n
i

∆t
+

(∂θ0
u

n
i )T K+

u
n
i+1 − (∂θ0

u
n
i−1)

T K+
u

n
i

∆x
= 0.

Integrating around a closed loop in θ0, the first term disappears, leaving a discrete
conservation law of the form (24), i.e.

‡ This expression also suggests the form of semi-discrete energy-momentum conservation laws for
semi-discretizations with the multisymplectic Euler scheme.
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Proposition 2 The multisymplectic Euler scheme (34) satisfies the discrete wave
action conservation law (24) with

A
n+1/2
i =

∮

(∂θ0
u

n
i )T J+

u
n+1
i dθ0, Bn

i+1/2 =

∮

(∂θ0
u

n
i )T K+

u
n
i+1 dθ0. (35)

Since the above discretization is equivalent to the discrete Euler-Lagrange
equations (23), these discrete density and flux functions are equal to (25). A larger
class of multisymplectic discretizations will be dealt with in the next section.

4. Wave action conservation for multisymplectic Runge-Kutta box

schemes

In this section we derive discrete wave action conservation laws for a popular class of
multisymplectic methods, the Runge-Kutta box schemes (Reich 2000b). It is sufficient
to consider a single space-time grid cell [t0, t1] × [x0, x1].

The discretization is a composition of an s-stage Runge-Kutta method in time
and an s̃-stage method in space, and the method coefficients (Hairer et al. 1993) are
denoted analogously

cm, bm, am`, m, ` = 1, . . . , s (36)

c̃j , b̃j , ãjk, j, k = 1, . . . , s̃ (37)

The points (τm, ξj), where τm = t0 +cm∆t and ξj = x0 + c̃j∆x, are collocation points.
With these definitions, the Runge-Kutta box scheme semi-discretization is defined

by a set of s × s̃ collocation equations

JT
m
j + KX

m
j = ∇S(Um

j , τm, ξj),
j = 1, . . . , s̃,
m = 1, . . . , s,

(38)

where U
m
j , T

m
j and X

m
j are stage vectors approximating, respectively, u, ut and ux

at (τm, ξj). Additionally we have the relations

U
m
j = u

0
j + ∆t

∑s
`=1 am`T

`
j ,

U
m
j = u

m
0 + ∆x

∑s̃
k=1 ãjkX

m
k ,

{

j = 1, . . . , s̃,
m = 1, . . . , s.

(39)

In (39) the quantities u
0
j and u

m
0 approximate u on the cell faces at (t0, ξj) and

(τm, x0), respectively. The values on the opposite faces are denoted u
1
j and u

m
1 and

are obtained from

u
1
j = u

0
j + ∆t

∑s
m=1 bmT

m
j ,

u
m
1 = u

m
0 + ∆x

∑s̃
j=1 b̃jX

m
j ,

{

j = 1, . . . , s̃,
m = 1, . . . , s.

(40)

Additional formulas are necessary to relate the above quantities to gridpoint values
(Frank et al. 2006). However, the relations (38), (39) and (40) are sufficient to obtain
the conclusions of this paper.

A Runge-Kutta box scheme is multisymplectic (i.e. satisfies a discrete local
conservation law of symplecticity in the sense of (Bridges & Reich 2001)) if both
coefficient sets {cm, bm, am`} and {c̃j , b̃j , ãjk} define symplectic RK methods (Hairer
et al. 2002), i.e.

bmb` − b`a`m − bmam` = 0, ∀m, `,

b̃j b̃k − b̃kãkj − b̃j ãjk = 0, ∀j, k.
(41)

The following lemma is the discrete analog of (18).
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Lemma 1 Consider a skew-symmetric matrix K ∈ R
N×N and a set of vectors u0(θ0),

u1(θ0), Uj(θ0), Xj(θ0) ∈ R
N , j = 1, . . . , s̃, smoothly dependent on a parameter θ0

and satisfying the Runge-Kutta formulas

Uj = u0 + ∆k
s̃

∑

k=1

ãjkXk, m = 1, . . . , s (42)

u1 = u0 + ∆k
s̃

∑

j=1

b̃mXj . (43)

For symplectic Runge-Kutta methods (41) the following identity holds:

s̃
∑

j=1

b̃j ∂θ0
U

T
j KXj = ∂θ0





s̃
∑

j=1

b̃j
1

2
U

T
j KXj



 +
1

∆x
(F1 − F0), (44)

with Fi = 1
2∂θ0

u
T
i Kui, i = 0, 1.

Proof. Substitute (43) into the definition of F 1 to obtain

∂θ0
u

T
1 Ku1 = ∂θ0

u
T
0 Ku0 + ∆x

s̃
∑

j=1

b̃j∂θ0
u

T
0 KXj + ∆x

s̃
∑

j=1

b̃j∂θ0
X

T
j Ku0

+∆x2
s̃

∑

j,k=1

b̃j b̃k∂θ0
X

T
j KXk. (45)

Solving (42) for u0, differentiating with respect to θ0, and substituting into the first
series above yields

s̃
∑

j=1

b̃j∂θ0
u

T
0 KXj =

s̃
∑

j=1

b̃j∂θ0
U

T
j KXj − ∆x

s̃
∑

j,k=1

b̃j ãjk∂θ0
X

T
k KXj

=
s̃

∑

j=1

b̃j∂θ0
U

T
j KXj − ∆x

s̃
∑

j,k=1

b̃kãkj∂θ0
X

T
j KXk,

where the skew-symmetry of K been used. Similarly, the second series becomes

s̃
∑

j=1

b̃j∂θ0
X

T
j Ku0 =

s̃
∑

j=1

b̃j∂θ0
X

T
j KUj − ∆x

s̃
∑

j=1

b̃j ãjk∂θ0
X

T
j KXk.

Substituting the above two formulas into (45) gives

∂θ0
u

T
1 Ku1 = ∂θ0

u
T
0 Ku0 + ∆x

s̃
∑

j=1

b̃j∂θ0
U

T
j KXj + ∆x

s̃
∑

j=1

b̃j∂θ0
X

T
j KUj

+∆x2
s̃

∑

j,k=1

(b̃j b̃k − b̃kãkj − b̃j ãjk)∂θ0
X

T
j KXk. (46)

For symplectic RK methods (41), the last term in (46) cancels. Finally we note that

∂θ0
U

T
j KXj + ∂θ0

X
T
j KUj = 2∂θ0

U
T
j KXj − ∂θ0

(

U
T
j KXj

)

,

and (44) follows. �
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Next, by premultiplying (38) by ∂θ0
U

m
j and applying the quadrature over j and

m,
∑

j,m

bmb̃j(∂θ0
U

m
j )T

[

JT
m
j + KX

m
j −∇S(Um

j , τm, ξj)
]

= 0,

and applying Lemma 1, we arrive at the semi-discrete conservation law

∂θ0

∑

j,m

bmb̃j

[

1

2
(Um

j )T JT
m
j +

1

2
(Um

j )T KX
m
j − S(Um

j , τm, ξj)

]

+
1

∆t
(A1 − A0) +

1

∆x
(B1 − B0) = 0, (47)

where

An =
s̃

∑

j=1

b̃j
1

2
(∂θ0

u
n
j )T Ju

n
j , n = 0, 1,

Bi =
s

∑

m=1

bm
1

2
(∂θ0

u
m
i )T Ku

m
i i = 0, 1.

Finally, taking the ensemble average of (47) around a loop in θ0 proves

Proposition 3 The multisymplectic Runge-Kutta discretization (38)–(41) satisfies
the following discrete conservation law of wave action

1

∆t
(A1 −A0) +

1

∆x
(B1 − B0) = 0, (48)

where

An =
1

2π

∮ s̃
∑

j=1

b̃j
1

2
(∂θ0

u
n
j )T Ju

n
j dθ0, n = 0, 1,

Bi =
1

2π

∮ s
∑

m=1

bm
1

2
(∂θ0

u
m
i )T Ku

m
i dθ0, i = 0, 1.

Note that the discrete wave action conservation law (48) holds for nonlinear
problems, for problems (16) where S depends explicitly on the space-time coordinated
x and t (where energy and momentum are not conserved), and for any tensor product
grid (we have looked at a single grid cell here, without any reference to the size of
neighboring cells). This discrete conservation law is the discrete analog of the general
wave action conservation law of (Hayes 1970) and is an exact law. However, like the
result of (Hayes 1970), the utility of this result depends on the identification of the
ensemble parameter θ0.

Remark. By identifying θ0 with another coordinate direction, say y, which
need not be periodic, the semi-discrete conservation law (47) corresponds to the
conservation of momentum associated with translation symmetry in the y dimension
(since S exhibits no explicit dependence on y). As such, (47) is a more general
statement of a semi-discrete conservation law of semi-discretizations, with respect
to the momentum in the nondiscretized directions (Frank 2006). This semi-discrete
conservation law has been noted in other contexts before, see (Reich 2000b, Reich
2000a, Bridges & Reich 2001, Moore & Reich 2003a, Moore & Reich 2003b, Hong &
Li 2006).
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5. Numerical experiment

In this section we illustrate discrete wave action conservation using the discrete
variational/multisymplectic Euler method (23),(34), applied to a slowly modulated
wave train solution of the Klein-Gordon equation (4). The domain is the interval
x ∈ [0, L) with L = 2π/ε and periodic boundary conditions. The coefficients α and β
are chosen to be

α = 1 +
1

5
sin(

π

27
εt) exp

[

−25(
x

L
−

1

2
)2

]

, β = 1 − cos(
π

20
εt) exp

[

−25(
x

L
−

1

2
)2

]

.

We take as initial condition a uniform, right-traveling wave train

u(0, x) = sin(κx + θ0), v(0, x) = ut(0, x) = −ω cos(κx + θ0), κ = ω =
4π

εL
.

For the discretization, we have N = 30/ε, ∆t = εL/N , and integrate to time
160/ε.

For a linear problem, it is possible, by taking the derivative of (34) with respect
to θ0, to also integrate numerically and determine uθ0

and vθ0
, using initial conditions

uθ0
(0, x) = cos(κx + θ0), vθ0

(0, x) = ω sin(κx + θ0).

Then, under the assumption that un
i = Ãn

i sin(θ̃n
i + θ0), ∂θ0

un
i = Ãn

i cos(θ̃n
i + θ0), we

can approximate the amplitude and phase of the numerical solution by

Ãn
i =

√

(un
i )2 + (∂θ0

un
i )2, θ̃n

i = tan−1 un
i

∂θ0
un

i

. (49)

Alternatively, we can integrate the discrete modulation equations (31), (32) to
approximate An

i and θn
i . A comparison of the numerical solution and the amplitude

obtained by a separate integration of (31), (32) is shown in Figure 1.

0 50 100 150 200 250 300
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x

u,
 A

Figure 1. Solution un

i
(light blue) and amplitude An

i
(blue) at time T = 160/ε

for ε = 0.02.
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The wave action density is given by (28). The total wave action at time tn is
given by

An =
∑

i

An
i ∆x.

This quantity is conserved to machine precision, as can be seen by applying the
summation above to (31) with periodic boundary conditions. If we substitute Ãn

i

and θ̃n
i as determined from (49) into (31), the residual is nonzero. Nonetheless, the

total wave action is conserved in this case as well. Figure 2 compares the relative
variation in total wave action to that of total energy for ε = 0.05. The total wave
action is 2π/ε and the initial energy is 13.3/ε.

0 1000 2000 3000 4000 5000 6000 7000 8000
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

t

E
/E

0 −
 1

,  
A

/A
0 −

 1

 

 

Energy H(0) = 1.5e4
Wave action A(0) = 3.1e2

Figure 2. Relative variation in total energy (light blue) and total wave action
(blue) as a percentage of the initial value. ε = 0.02.

As a measure of the accuracy of the discrete modulation equations, we can
measure the approximation error in the L∞-norm

en = max
i

|un
i − An

i sin θn
i | ,

where again An
i and θn

i are obtained from a separate integration of (31), (32). This
quantity is plotted as a function of time in Figure 3 for ε = 0.4, 0.2, 0.1 and 0.05.
The results are scaled in time to fit on one plot. The similarity of the error evolution
suggests that the discrete modulation equations approximate the numerical solution
to order O(ε) for intervals of O(ε−1).

6. Concluding remarks

In this paper we have derived discrete wave action conservation laws for the discrete
variational/multisymplectic Euler method and the class of multisymplectic Runge-
Kutta box schemes. Within the variational framework it is also possible to derive
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Figure 3. Approximation of the solution by the discrete modulation equations
as a function of ε.

discrete modulation equations. Numerical experiments confirm that wave action is
conserved to machine precision and also suggest that the discrete modulation equations
approximate the numerical solution to order O(ε) for intervals of O(ε−1). Since the
discrete modulation equations can be written in terms of slowly varying amplitude,
wavenumber and frequency, it might be feasible to solve these on a coarse mesh.

Because the discrete variational framework also gives access to the full modulation
equations, a general development of wave action for this class would be desirable.

The wave action conservation laws of this paper apply more generally to
discretized nonlinear PDEs, and in the case of the box schemes, also to nonuniform
space-time grids. To actually compute the wave action, however, one must have an
explicit expression for a periodic wave train, just as in the continuous case.

Wave action is the generalization to PDEs of the concept of an adiabatic invariant.
The classical example of an adiabatic invariant is the slowly modulated harmonic
oscillator, obtained from (4) by setting α ≡ 0 (Arnold 1989). Reich has shown
that symplectic integrators conserve adiabatic invariants over exponentially long times
(Reich 1999, Cotter & Reich 2004), see also (Cotter 2004). Estimates of the longevity
of wave action conservation for PDE discretizations are currently lacking.
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