Centrum voor Wiskunde en Informatica

REPORTRAPPORT

SIEIN]

Software Engineering

Software ENgineering

SEN About "trivial" software patents: the IsNot case

J.A. Bergstra, P. Klint

ReporT SEN-RO517 Decemeer 2005

CWI is the National Research Institute for Mathematics and Computer Science. It is sponsored by the
Netherlands Organization for Scientific Research [NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-orienfed structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA|
Software Engineering (SEN)
Modelling, Analysis and Simulation [MAS]

Information Systems (INS)

Copyright © 2005, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 S Amsterdam (NL)

Telephone +31 20 592 9333

Telefax +31 20 592 4199

ISSN 1386-369X

About “trivial” software patents: the IsNot case

ABSTRACT

So-called “trivial” software patents undermine the patenting system and are detrimental for
innovation. In this paper we use a case-based approach to get a better understanding of this
phenomenon. First, we establish a baseline for studying the relation between software
development and intellectual property rights by formulating a life cycle for the patenting system
as well as three variations of the software life cycle: the defensive patent-aware software life
cycle that prevents patent infringements, the more offensive patent-based software life cycle
that aims both at preventing infringements and at creating new patents, and the IPR-based
software life cycle that considers all forms of protection of intellectual property rights including
copyright and secrecy. Next, we study an application for a software patent concerning the
inequality operator and a granted European patent on memory management. We also briefly
mention other examples of trivial patents. These examples serve to clarify the issues that arise
when integrating patents in the software life cycle. In an extensive discussion, we cover the
difference between expression and idea, the role of patent claims, software patents versus
computer implemented inventions, the role of prior art, implications of software patents for open
source software, for education, and for government-funded research. We conclude the
discussion with the formulation of an “integrity axiom” for software patent authors and owners
and sketch an agenda for software patent research. We conclude that patents are too important
to be left to lawyers and economists and that a complete reinterpretation of the patenting
system from a software engineering perspective is necessary to understand all ramifications of
software patents. We end with explicit conclusions and policy recommendations.

2000 Mathematics Subject Classification: 68N01. Software--General

1998 ACM Computing Classification System: D.2 Software Engineering; K.5.1. Hardware/Software Protection; K.5.2.
Governmental Issues; K.7 The Computing Profession

Keywords and Phrases: Software patents; Trival software patents; Intellectual Property Rights (IPR); Software
Engineering

Note: This work was carried out as part of the EC project "Study of the effects of allowing patent claims for computer-
implemented inventions"

About “trivial” software patents: the IsNot case

Jan A. Bergstra® Paul Klint®

* Informatics Institute, University of Amsterdam
and
Faculty of Philosophy, University of Utrecht

www.Sscience.uva.nl/” janb

® Centrum voor Wiskunde en Informatica (CWI), Software Engineering Department
and
Informatics Institute, University of Amsterdam

www.cwi.nl/ paulk

November 25, 2005

Abstract

So-called “trivial” software patents undermine the patenting system and are detrimental for inno-
vation. In this paper we use a case-based approach to get a better understanding of this phenomenon.
First, we establish a baseline for studying the relation between software development and intellectual
property rights by formulating a life cycle for the patenting system as well as three variations of the
software life cycle: the defensive patent-aware software life cycle that prevents patent infringements, the
more offensive patent-based software life cycle that aims both at preventing infringements and at creating
new patents, and the IPR-based software life cycle that considers all forms of protection of intellectual
property rights including copyright and secrecy.

Next, we study an application for a software patent concerning the inequality operator and a granted
European patent on memory management. We also briefly mention other examples of trivial patents.
These examples serve to clarify the issues that arise when integrating patents in the software life cycle.

In an extensive discussion, we cover the difference between expression and idea, the role of patent
claims, software patents versus computer implemented inventions, the role of prior art, implications
of software patents for open source software, for education, and for government-funded research. We
conclude the discussion with the formulation of an “integrity axiom” for software patent authors and
owners and sketch an agenda for software patent research.

We conclude that patents are too important to be left to lawyers and economists and that a com-
plete reinterpretation of the patenting system from a software engineering perspective is necessary to
understand all ramifications of software patents. We end with explicit conclusions and policy recommen-
dations.

1 Background

For many years, there have been concerns in the Unites States (US) about the possibilities to patent “trivial”
software techniques and business methods. The patenting laws in the European Union (EU) have always
been more restrictive than their US counterparts, but in the discussion about the recently rejected EU
directive about patenting computer implemented inventions (CII), or software patents for short, the level of
triviality of a software patent has become a focal point in the debate: does a patent lay claims on techniques
that are generally considered to be common knowledge or does the patent claim a real invention?

One should be carefull with the term “trivial patent” itself. Informally, it means a patent that describes
a small but insignificant advance over the state of the art, but in a strict, legal, sense it means “novel, but

obvious” (US) or “novel, but lacking an inventive step” (Europe). As we will see, many software patents
that are usually called trivial are not even that: they are non-novel and are anticipated by prior art.

As part of a 3 year European Commission (EC) study' on the effects of software patents on innovation
we are involved in a multi-disciplinary effort to understand the effects of software patents. These effects
are studied from legal, economical, and computer science perspectives. The goal of the current paper is
to study trivial software patents from a computer science perspective and to make a contribution to the
discussion among experts from the three disciplines just mentioned. For economic effects we refer to
[21, 11] and for legal aspects to [32, 5].

Software patenting is a relatively new topic for both authors, as it probably is for most software engi-
neers and computer scientists. For completeness, we mention that both signed a petition to the European
Parliament [33]. The second author has acted as speaker on a conference about the topic [13] (later adopted
as point of view of the Royal Dutch Academy of Sciences) and has written a column about it [24]. Our
professional interest in the topic stems from a long involvement in software engineering research ranging
from study of the software life cycle [10], concepts of programming languages [9], theory, design and
use of software components [6, 7, 8], generic language technology [12] and program analysis [23]. Both
authors have cooperated in setting up the MSc curriculum in Software Engineering at the University of
Amsterdam, now organized in cooperation with Mark van de Brand of the Hogeschool van Amsterdam and
taught in cooperation with Hans van Vliet from the Vrije Universiteit in Amsterdam. Software patenting is
therefore a major concern for us.

The plan of the paper is as follows. First, we start exploring how what seems to be a huge distance
between the world of patents and the world of software engineering can be bridged. First we design
in Section 2 a life cycle for the patenting process and next we make a connection between patents and
software engineering by designing a patent-based software engineering life cycle (Section 3).

Given this conceptual framework, we study recent examples of software patents in order to get a better
perspective on the implications for these software life cycles. In Section 4 we describe a recent patent
application that might be a candidate for the predicate “trivial software patent”. In Section 5 we present
various views on this application. In Section 6 we briefly analyze a European patent on memory allocation
and conclude that its novelty is strongly debatable. Next, we mention in Section 7 other trivial patents, both
from the US and from Europe. A discussion (Section 8) and conclusions (Section 9) complete the paper.

2 The patent life cycle

It is important to describe the phases of the patenting process in such a manner that they become recog-
nizable for the software engineer. We conjecture that the Patent Life Cycle shown in Figure 1 is a fair
representation of this process. It consists of the following phases:

e An applicant applies for a patent.
e The applicant can decide to withdraw the application.
o The Patent Office can either grant or reject the application.

e The applicant can appeal against this decision and a reject decision may be changed into a grant
decision.

e The applicant of a granted patent applicant becomes the holder of the patent.
e A granted patent may be challenged by another party. This may lead to revocation of the patent.
e The patent holder may act on infringement of its patent.

e The patent holder may license its patent to another party.

LStudy of the effects of allowing patent claims for computer-implemented inventions, a joint study by MERIT (University of
Maastricht, Netherlands), Centre of Intellectual Property Law CIER (University of Utrecht, Netherlands), Centrum voor Wiskunde
en Informatica (Amsterdam, Netherlands), Telecommunication Engineering School at the Universidad Politécnica de Madrid (UPM),
Spain and Centre for Research on Innovation and Internationalization (CESPRI) at Bocconi University, Milan, Italy.

Granted

ax. duration
reached

= action by applicant

- =end of life

= action by third party |:| = action by patent office

= statutory action

Figure 1: The patent life cycle: from filing to expiration

e The patent holder may extend its patent periodically.
o The patent expires after a maximal duration.

It is open for debate whether this abstraction of the patenting process can be used in the EU as well as in
the US and Japan. However, since software developers have to be aware of potential patent infringements,
independent of the source of the patent, such an abstraction of the patenting process is essential. This is
relevant for developers of both commercial software and open source software.

The IsNot patent to be discussed later on in Section 4 is in the application phase, for all other patents
mentioned in this paper we have explicitly indicated their status.

3 Baseline: an IPR-based software engineering life cycle

The next step is to make a connection between the patenting process—or rather Intellectual Property Rights
(IPR) in general—and software engineering practices.

3.1 The software life cycle

In software engineering, the software life cycle is a frequently used manner of organizing the software
development process. Figure 2 shows a strongly simplified version of the life cycle taken from a standard
textbook [37]. It consists of the following phases:

e Requirements engineering: collect the requirements and expectations from the future owners and
users of the system.

Figure 2: The software life cycle

Design: translate the requirements in a specification that describes the global architecture and the
functionality of the system.

Implementation: build the system.This amount to transforming the design into software source code.

Testing: test that the implemented system conforms to the specification.
e Maintenance: install, maintain and gradually improve the system.

It should be emphasized that the software life cycle covers design and construction of a software product
as well as its use. Each phase contains a Validation and Verification (V&V) sub-phase in which the quality
of the deliverables of that phases are controlled. Also note the backward arrows that make this into a real
“cycle”: it is possible to discover in later phases that decisions made in a previous phase have to be revised.
We will now proceed in three steps. First, a defensive Patent-aware Software Life Cycle is sketched
that ensures that the software development organization does not infringe patents of third parties. Next, a
more offensive Patent-based Software Life Cycle is described that also considers the options to file patent
applications for knowledge that has been generated in each phase of the life cycle. Finally, the IPR-based
Software Life Cycle extends the previous one to all IPR options: secrecy, copyrights and patents.

3.2 The patent-aware software life cyle

In Figure 3, we sketch a Patent-aware Software Life Cycle in which an extra sub-phase is added that
performs patent validation. This generates immediately many unsolved questions. For each phase one may
wonder:

e Is it possible to infringe patents in this phase?
e If so, how can one find such infringements?

e How can such infringements be resolved?

Figure 3: The defensive patent-aware software life cycle

The Patent-aware Software Life Cycle is a defensive step that any commercial or open source software
development process should adopt. Clearly the costs for software development will increase significantly.

3.3 The patent-based software life cycle

It is, however, possible to go one step further. In Figure 4 we sketch a Patent-based Software Life Cycle
in which yet another sub-phase has been added that performs patent applications whenever possible. We
conjecture that this strategy is only available to the software development organizations with the deepest
pockets. For each phase now further questions apply, such as

e Does this phase generate patentable knowledge?
e Should we file a patent application for this knowledge?
o Are there other means to avoid that this knowledge generates an advantage for our competitors?

In many large software development organizations there exist “Chinese walls” between software devel-
opers and patent attorneys. This is not only the case for large commercial organizations but also for large
open source projects like the Apache Foundation. The rationale being that the less software developers
know about patents the stronger the position of the organization is in legal disputes. Implementation of
the Patent-based Software Life Cycle may require similar measures. Of course, such measures completely
defeat one of the primary goals of the patent system, i.e., knowledge dissemination.

3.4 The IPR-based software life cycle

The final step is the IPR-based Software Life Cycle sketched in Figure 5 that takes all aspects of IPR into
account during software development. For each phase the questions now become:

e Does this phase violate copyrights of others? If so, remove those violations.

Patent Application|

Patent Application

Patent Application|

Patent Application

Patent Application

Figure 4: The offensive patent-based software life cycle

e Does this phase infringe patents? If so, negotiate a license with the patent holder or take technical
measures to avoid the infringements.

e Does this phase generate valuable knowledge? If so, consider the following three options:

— Keep the knowledge secret and take appropriate legal or technical measures to achieve this.
— Establish copyrights on this knowledge.

— File patent applications for this knowledge.
These questions form a comprehensive description of the IPR policy one would expect of the biggest,
multi-national, software development organizations.
3.5 Discussion
These extended software life cycles already raise many fundamental questions that are not easy to answer:

e Isit possible to use these extended software life cycles in such a way that they comply with the major
patenting systems world wide?

e How can the software engineering knowledge that is hidden in the patent data bases made accessible
for software engineers?

e Isit possible to a give an operational definition of a patent infringement that can be used by software
engineers?

e For each of the phases of the software life cycle (requirements engineering, design, implementation,
testing and maintenance) the following questions should be answered:

— How is knowledge in this phase represented?

— Where can prior art for this phase be found?

IPR Application?

IPR Application?

IPR Application?

IPR Application?

IPR Application?

Figure 5: Considering all options: the IPR-based software life cycle

— How can patent infringements in this phase be identified?

— How can patent infringements in this phase be resolved?
We expect that the answers to these questions will widely differ for each phase.

e What are the technical implications for software development when using these extended software
life cycles?

e What are the economic implications of the extended software life cycles?

We will come back to these questions in the remainder of this paper and in Section 8.10 we will propose a
research agenda.

We will now relate the high-level discussion in the previous sections to the daily practice of software
patents by studying several examples.

4 The IsNot patent application

On May 14, 2003 the three Microsoft employees Paul A. Vick jr. (technical lead for Visual Basic), Cosica
Corneliu Barsan (member of the Visual Basic compiler team), and Amanda K. Silver (program manager
on the Visual Basic compiler team) filed United States Patent Application #437822 with the title “IS NOT
OPERATOR”. The abstract of the IsNot patent application (as we will call it) reads as follows:

A system, method and computer-readable medium support the use of a single operator that
allows a comparison of two variables to determine if the two variables point to the same
location in memory.

The 8 page application consists of 24 claims followed by a description of the background of the in-
vention, and detailed descriptions of illustrative embodiments. The first 5 claims of the application read as
follows:

What is claimed:

1. A system for determining if two operands point to different locations in memory, the system
comprising: a compiler for receiving source code and generating executable code from the
source code, the source code comprising an expression comprising an operator associated
with a first operand and a second operand, the expression evaluating to true when the first
operand and the second operand point to different memory locations.

2. The system of claim 1, wherein the compiler is a BASIC-derived programming language
compiler.

3. The system of claim 1, wherein the operator is IsNot.

4. The system of claim 1, wherein the compiler comprises a scanner, a parser, an analyzer and
an executable-generator.

5. The system of claim 4, wherein the source code comprises at least one statement, and
the statement comprises a keyword representing the operator, the keyword recognized by the
scanner.

The remaining 19 claims go into more details such as the parser determining that the operator is pre-
ceeded and followed by an operand, the fact that error messages are generated when the IsNot keyword or
one of its operands are missing, the fact that executable code is generated, and so on and so forth.

The patent application describes that the invention can be used in exemplary computing environments
ranging from PC, handhelds, servers, automatic teller machines, and more. The application also sketches
in detail the hardware architecture of a typical PC using the invention. The application also explicitly states
(in paragraph [0050]) the following:

It will be recognized that although in the examples, the operator is designated as “IsNoT”,
the invention is not so limited. Any suitable case sensitive or case insensitive tag for the oper-
ator is contemplated by the invention, such as, but not limited to “Is_Not”, “isnot”, “Isnot”,
“Is_Not”, “is_not” and so on.>

S Analysis of the IsNot patent application

5.1 IsNot is a trivial software patent

A lawyer or other non-specialist may be impressed by the clever invention described in the IsNot appli-
cation, but each first-year computer science student will recognize what it is about: this is the inequality
operator between pointer values as is known from many different programming languages ranging from
the Branch Not Equal instruction BNE in PDP11 assembly language [14] to the not equal operator . NE.
in Fortran [3] or the not equal operator ! =in C [22], Java [19] or C# [16].

For a computer scientist, the idea of having a single operator for comparing two pointer values is
common knowledge and the publications cited above constitute prior art.

For a computer scientist, granting this patent application will have devastating effects since it will cover
a large majority of the software worldwide and will completely block any further software development or
at least dramatically increase developments costs due to licensing.

In a strict sense, the claims in this patent application are non-novel and they are anticipated by prior art.
Colloquially, this would be called a trivial patent.

5.2 IsNot is not a trivial software patent

We find it hard to believe that the highly skilled software developers at Microsoft (or their well-known
colleagues at Microsoft Research) are unaware of the prior art mentioned above. It is also striking that prior
art occurs in one of Microsoft’s own products (the language C#). One is tempted to speculate about the
intentions of the applicants and their sponsors with this particular patent application. Several possibilities
come to mind:

21t seems that the two occurrences of “Is_Not” are a typo in the application.

e They think that the subject matter is new and this should be the default assumption. This raises
the question whether there exists (or should exist) a form of “patent etiquette” that assumes that
applicants truly consider their invention as new. According to Park [29], there is no explicit duty of
disclosing prior art in the European Patent Office, whereas the Patent Offices in the US and Japan
require the applicant to disclose the closest prior art that he acknowledges when the patent application
is filed. In the US this is done in a separately filed “Information Disclosure Statement” (IDS). See
Section 8.9 for a further discussion of this topic.

e They find that the matter of trivial patents and determining prior art need clarification and that filing
a patent application is the fastest road to achieve this goal, independent of the likelihood of accep-
tance. This defines the future options for patenting relatively simple inventions. When rejected, the
application builds up prior art and may be used to provide indemnity to clients against intellectual
property claims.

What if our first analysis from a computer science perspective is too naive? Is it still possible to
discover some form of innovation or hidden meaning in this application that merits its acceptance? We see
the following possibilities for this:

e The patent application is about the specific naming of the comparison operator. This is suggested
by the explicit phrase in the patent application we cited above: “Any suitable case sensitive or case
insensitive tag for the operator is contemplated by the invention, such as, but not limited to ...”. This
would mean that the application is not about the idea of an inequality operator but about the specific
form of that operator. In this way, the application would establish a form of copyright on the operator
name “IsNot”.

o The specific context of BASIC is the substance of the application. This also makes finding prior art
hard.

e By patenting this specific operator in BASIC, alternative implementations of the language can be
discouraged, or at least interoperability is hindered.

o Although claim 1 of the patent application is broader than any of the preceeding three possibilities,
the patent applicant may have written claim 1 for the strategic reason of giving the patent examiner
an easy claim to reject, thereby leaving the remaining (narrower) claims and providing the examiner
with a feeling of having done his job.

e The patent application is not concerned with the IsNot operator or the inequality operator at all. They
just serve as a smoke screen to hide an idea in one of the 23 other claims. Is the patent about giving
an error message when an operand of the IsNot operator is missing? Is this patent about BASIC-
compilers using a certain compiler organization? As far as we can judge these claims describe
common practices in compiler construction and language implementation and cannot be considered
to be inventions. This does, however, not mean that it is easy to find prior art since most of the claims
are very specific and may not occur in the literature. We invite the reader to investigate these claims
and to challenge our analysis.

e The application has yet an other meaning, for instance, challenging the patenting system. In this
case, we really congratulate the applicants for their brilliant contribution. Some implications are
further discussed in the remainder of the paper.

5.3 Our opinion

Our opinion about the IsNot patent application can be summarized as follows:

e The IsNot patent application would, when granted, lead to a trivial patent and its inventive step does
not differentiate itself from the manifest prior art given above. It is hard to understand why this
application would be granted. When granted, this patent could indeed be very harmful for further
development.

e In a similar fashion as each scientific publication needs a rationale, we miss a rationale for this patent
application.

e It is undesirable that others would have the obligation to find prior art. Given the fact that US patent
applications are required to disclose prior art, it is at least curious that this application gives none.

e It is unclear what an infringement of this patent (when granted) would mean. Is the design of a
programming language that contains an inequality operator an infringement? Is every program that
uses an inequality operator an infringement? Is the mere notion of an inequality test in any form an
infringement?

e We don’tsee a convincing argument why a major company would need this patent, apart from tactical
considerations where this patent may clearly play a role.

o Is this a typical patent application? It could be argued that this patent application is one of a kind,
and that our analysis of it is thus irrelevant. Although we agree that this is one specific example of
a trivial patent application, it is an application from a large firm with a large patent practice, and
certainly sufficient resources to determine whether an “invention” is trivial, and to identify prior art,
prior to submitting a patent application. So we believe that if IsNot may not be a typical patent
application, it is certainly potentially typical.

6 Analysis of a European patent on memory allocation

We claim that a patent application is part of the patent life cycle (see Section 2) and is thus part of the
open literature and should be publicly discussed and scrutinized for novelty and compliance with prior art.
One may counter that the IsNot application may very well be rejected. From a European perspective, one
may also counter that such an application would never be accepted by the European Patent Office (EPO).
Therefore, we will also briefly analyze a patent granted by the EPO that we consider to be debatable.

On June 1, 1998, European Patent #817044 on “Memory allocation in a multithreaded environment”
was granted to Sun Microsystems Inc. (US) with Nakhimovsky Gregory listed as inventor. The abstract
reads:

A method of allocating memory in a multithreaded (parallel) computing environment in which
threads running in parallel within a process are associated with one of a number of memory
pools of a system of memory. The method includes the steps of establishing memory pools in
the system memory, mapping each thread to one of the memory pools; and for each thread,
dynamically allocating user memory blocks from the associated memory pool. The method
allows any existing memory management malloc (memory allocation) package to be converted
to a multithreaded version so that multithreaded processes are run with greater efficiency.

The 8 page application consists of 21 claims followed by a description of the invention and preferred
embodiments. The first 6 claims read as follows:

Claims of EP0817044

1. A method of allocating memory in a multithreaded computing environment in which a plu-
rality of threads run in parallel within a process, each thread having access to a system mem-
ory, the method comprising: establishing a plurality of memory pools in the system memory;
mapping each thread to one said plurality of memory pools; and for each thread, dynamically
allocating user memory blocks from the associated memory pool.

2. The method of claim 1 wherein the step of dynamically allocating memory blocks includes
designating the number of bytes in the block desired to allocate.

3. The method of claim 1 further comprising the step of preventing simultaneous access to a
memory pool by different threads.

10

4. The method of claim I further comprising the step of establishing a memory pool for each
thread comprises allocating a memory buffer of a preselected size.

5. The method of claim 4 further comprising the step of dynamically increasing the size of the
memory pool by allocating additional memory from the system memory in increments equal to
the preselected size of the buffer memory.

6. The method of claim 4 wherein the preselected size of the buffer is 64 Kbytes.

The remaining 15 claims go into more details about the specific data structure to represent the memory
pool and the memory blocks, and about the deallocation of blocks as well as their merger after deallocation.

Although the subject matter of this patent is not as astonishingly simple as that of the IsNot example,
any computer scientist will see what this is about: memory allocation as it occurs in operating system
kernels and concurrent applications. A simple way to implement this is to have a single pool of memory
blocks that can be claimed by one of the parallel processes (threads). However, to avoid corruption of
the administration of the memory pool, access to the memory pool has to be strictly sequential. This is
achieved by locking and unlocking the memory pool during each request. Since this locking introduces a
time penalty, the idea formulated in this patent is to use a separate memory pool per process (thread).

In our opinion the idea to avoid the use of shared variables is trivial. We conjecture that this idea is
not new and we think that there is a proof obligation on the part of the applicants to show how this patent
improves upon earlier work (see Section 8.9).

This patent can have a major impact on the implementation of most, if not all, operating system kernels
and its mere existence poses a threat to further development.

7 Other trivial patents

There are many examples of trivial software patents worldwide.? Examples are:

e US Patent 4648067: Footnote management for display and printing (IBM, 1987). This patent de-
scribes the handling of footnotes in a text processing system. This is a standard technique that has
been used in every text processor since 1970.

e US Patent 5530794: Method and system for handling text that includes paragraph delimiters of
differing formats (Microsoft,1996). This patent describes the conversion of text documents from
Unix text files to MS Word format by inserting a carriage return character. Since the characters
carriage return (CR) and line feed (LF) were invented, different operating systems have used them in
different ways to end each line. This is a trivial technique that has been in use ever since.

e US Patent 5175857: System for sorting records having sorted strings each having a plurality of
linked elements each element storing next record address (Toshiba, 1992). This patent describes
sorting using linked lists. This is a standard technique found in every textbook.

o US Patent 6877000: Tool for converting SQL queries into portable ODBC (IBM, 2005): This patent
describes how SQL queries can be translated into queries for the portable database interface ODBC.
This obvious technique must be used by every database system that connects to ODBC.

Many other examples of trivial software patents are known.* From the fact that the above examples are
all US Patents one might draw the conclusion that the US Patenting Office is more likely to issue trivial
software patents. We think that this is not correct. The explanation is rather that the problem of trivial
software patents has been in existence in the US for over 20 years and that the US patent databases have
received more public scrutiny than, for instance, the European patent database. As an initial proof of this
statement we have collected, in a very limited amount of time, the following European Patents that we
consider to be trivial. Some trivial, but expired, patents are:

3In this section we give examples of patents which we suspect to be trivial in nature and merit further study. A meticulous search
for prior art is needed for each example. The fact that a patent is listed here does not imply a final judgment on our part of the patent’s
triviality or validity. The purpose of this section is merely to raise the awareness of potential trivial patents.

4See, for instance, http://www.base.com/software-patents/examples.html.

11

More recent examples are:

European patent 10186: Apparatus for handling tagged pointers (IBM, 1980). This patent describes
the addition of a tag bit to pointers in order to discriminate them from ordinary data. This is an old
technique that has been used in various systems.

European Patent 97818: Spelling verification method and typewriter embodying said method (IBM,
1984). This patent describes spell checking.

European Patent 98959: Method for producing right margin justified text data in a text processing
system (IBM, 1984).
5

European Patent 698844: Tunnel icon (IBM, 1996). Describes a tunnel-like icon to which the user
can drag files in order to encrypt or decrypt them. This patent is not particularly interesting or
harmful but illustrates the level of detail and specificity the subject matter of a patent can have.

European Patent 752695: Method and apparatus for simultaneously displaying graphics and video
data on a computer display (Sun, 1997). This is a common technique for displaying information in a
windowing system that has been in use for many years.

European Patent 1043659: File signature check (Konami, 2000). This patent describes the use of
checksums to detect whether files in a file system have been changed. This simple technique has
already been used by many tools and is the obvious solution for this problem.

European Patent 767940: Data pre-fetch for script-based multimedia systems (Intel, 2000). This
patent aims at speeding up the execution of multimedia scripts running in a limited memory client.
This is achieved by prefetching data references that occur in the script.

European Patent 0195098: System for reproducing information in material objects at a point of sale
location (Fpdc Inc, 1986).

“This invention contemplates a system for reproducing information in material objects at a point of
sale location wherein the information to be reproduced is provided at the point of sale location from
a location remote with respect to the point of sale location, an owner authorization code is provided
to the point of sale location in reponse to receiving a request code from the point of sale location
requesting to reproducing predetermined information in a material object, and the predetermined
information is reproduced in a material object at the point of sale location in response to receiving
the owner authorization code.”

This patent (on downloading and burning CDs!) was recently overturned by the UK High Court [28].
As the EPO did not overturn it, it is unclear whether the High Court would have been able to overturn
this if the Directive that enforced the EPO’s status quo to be uniformly implemented across the EU
were in place.

To conclude. we mention some recent patent applications:

European Patent 1046117: Web browser graphics management (Philips, filed 1999). This patent
application describes a prefetching mechanism for web browsers that has been floating around for
many years, for instance in the Mozilla browser, where it is called link prefetching.

European Patent 1014627: Constrained shortest path routing method (Lucent, filed 1999). This ap-
plication describes an algorithm for shortest path calculation and seems to be a variation on Dijkstra’s
algorithm [15].

As already stated, the above examples constitute cases where we suspect that triviality and/or existing prior
art make these patents or patent applications undesirable. Clearly, a public effort should be launched to
scrutinize the European patent data base and look for trivial software patents.® Another public effort that is
badly needed is to set up a searchable archive of prior art for software.

5See http://swpat.ffii.org/patents/samples/index.en.html for a more extensive collection of trivial Euro-
pean patents.

The reader is invited to inspect the Patent WIKI database at http://gauss.ffii.org/GaussFrontPage and do some
searching. It includes all patents issued by the European Patent Office. We can guarantee that there is some entertainment in this.

12

8 Discussion

8.1 Expression versus idea

The common view on copyright versus patenting is that copyright protects the expression of an idea, while a
patent protects the idea itself. One idea can be expressed in many different ways. In other words, copyright
can protect one specific mystery novel, while a patent on the idea of a mystery novel itself will prevent
anybody else to write mystery novels. The relevant US statute [36] reads as follows:

Whoever invents or discovers any new and useful process, machine, manufacture, or compo-
sition of matter, or any new and useful improvement thereof, may obtain a patent therefor,
subject to the conditions and requirements of this title.

U.S. courts have summarized this principle by stating that patents do not apply to ideas themselves, but
to "implementations” of ideas, intending a broader and more inclusive sense of “implementations” than is
commonly given in the software development community. It is akin to the notion that copyright protects
expressions of ideas rather than ideas themselves [27]. A similar definition can be found in the TRIPS
treaty [38] that regulates trade-related aspects of intellectual property rights:

... patents shall be available for any inventions, whether products or processes, in all fields of
technology, provided that they are new, involve an inventive step and are capable of industrial
application.

Now it happens to be the case that software engineering has its own ideology about the distinction
between idea and expression of that idea. A specification of a software system describes the desired func-
tionality of a system and defines what is required. The specification leaves open many options how the
specified system will be built (the implementation” of the system).

For a software engineer, it is hard to understand why software patents (supposed to be about ideas, e.g.,
specification level) end up having detailed flowcharts that belong to the implementation level. This raises
the issue how software engineering and the patenting system interfere.

Another observation is that the legal language in patents is about software. Now it also happens to
be the case that the topic of software specification has a long history in computer science and, from a
computer science perspective, the legal descriptions in patents can in no way be classified as such. In that
sense patent texts are technically (but, of course, not legally) unacceptable for software engineers, which
has implications for their utility as disclosure documents.

In our opinion, the patenting literature should take good notice of what is known about describing soft-
ware systems. A crucial observation is here that the notion of formally describing an idea does not occur
in the software engineering literature and it will be very hard to achieve this in patent texts. Another obser-
vation is that we think that it is unavoidable that patent texts will become machine processable documents
that will form an integral part of software in a similar fashion as specification, documentation, test cases
and the like form an integral part of a software system.

A final, and also crucial, observation is that the requirement that a patent should make a “technical
contribution” is hard to reconcile with software that lives in the realm of logical structures. In this way,
software patents have to be expressed in unnatural ways that lead to under-protection as well as over-
protection of certain inventions.

This is eloquently described by Plotkin [30], he proposes a reinterpretation of the patenting system from
a software perspective. His observation is that there are crucial differences between the invention, descrip-
tion and patenting of electromechanical devices as compared to software programs. His key observation
is that for electromechanical devices apart from a functional design, deriving a physical structural design
is hard and also essential for obtaining patent protection. In the case of software, the logical structures
described by the source code are the end point of human invention: the step to their physical realization is
fully automated. Plotkin’s objectives are the following:

"The word “implementation” is a multi-faced sword that may easily cause harm. In a legal sense, as in the previous paragraph,
implementation denotes any method to go from idea towards its realization. Following that meaning, the specification of a software
system is already an implementation of the idea for that system. In a computer science context, implementation always refers to the
actual building and realization of a system in software.

13

A methodology is proposed for determining how particular areas of law should apply to soft-
ware. The methodology asks and answers four questions: (1) What is software?, (2) How does
software differ from other creative works?, (3) How are such differences legally relevant?, and
(4) How should the law treat software in light of such differences? Application of the first half
of this methodology reveals that computer programs have the unique quality of being human-
readable and computer-executable instructions that describe actions in purely logical terms.
Application of the second half of this methodology to patent law and the First Amendment
to the US Constitution reveals that software’s unique features violate the law’s assumptions,
leading to results that are at odds with the underlying public policies in each case.

In later work [31] Plotkin proposes software patents in such a way that:
e a software program be claimable solely in terms of its logical structure;
e a software program be patentable if:

— the inventor provides a written description of the claimed logical structure;

— the inventor provides a description that enables one of ordinary skill in the art to make and use
the claimed program without undue experimentation;

— the claimed logical structure has a practical utility;
— the inventor conceives of the claimed logical structure;

— the claimed logical structure is novel and nonobvious; and

e the scope of a software patent claim be limited to products and processes that embody the claimed
logical structure.

Other interesting proposals exist for reforming the patent system or for providing other forms of legal
protection for software but they are not further discussed here. A concise summary of the history and
current status of software patentability can be found in [20].

8.2 The role of patent claims

In [26] Lening and Cavicchi say about claims:

A claim is what an inventor is stating to be unique about the invention. The claims become the
actual monopoly granted to the invention. Claims define the scope of protection granted to the
invention.

A claim can be independent (it stands by itself and is not dependent on another claim) or dependent (it
makes express reference to a previous claim and depends on it). In the IsNot patent application, claim 1
is an independent claim while claim 2 is a dependent claim. A patent may also contain descriptions of
preferred embodiments but they just serve as illustration and may at most be used to interpret the claims.
A patent may contain both independent and dependent claims and the question arises what an infringement
of a patent means exactly.® The precise procedure for interpreting the claims in a patent seems to be an
“art” and is a matter of debate among lawyers [4]. This is unsatisfactory from a software engineering per-
spective. The patent is ’infringed” (violated) if any one or more of the claims (independent or dependent)
are infringed.

The status of claims needs also further clarification in the light of the “expression versus idea” discus-
sion given earlier in Section 8.1. The question being: what is an infringement? From the perspective of the
software engineering life cycle (Section 3) the following questions need clarification:

o Is infringement possible during requirements engineering?

e Is infringement possible during design?

8The same questions can be asked when searching for prior art related to patent applications.

14

e Is infringement possible during implementation?
e Is infringement possible during testing?
o Is infringement possible during maintenance?

To be on the safe side, we have assumed in our patent-based software life cycle that the answer to all these
questions is “yes”. However, the nature of such infringements will be completely different, both in their
description, appearance, and discovery.

During requirements engineering and design, only the intended behavior of the system is available. It is
for instance, impossible to observe a running version of the software. Infringements can only be discovered
by a deep semantic comparison between patent text and design documents.

During implementation, the desired behavior is coded as software program. Now it becomes possible
to observe the behavior of the software by executing it on a computer. It also becomes possible to perform
more syntactic comparisons between patent text and program text.

Software is both human-readable and computer executable, and this makes it unique among patentable
artefacts.

8.3 Software patent versus computer implemented invention

We have, so far, spoken about “software patents”. However, the recently rejected EU patent directive
speaks about “computer implemented inventions” (CII) rather than software patent.

It may be maintained that software patents do not exist and that CII is the right phrase to use. We
completely agree that the notion of a computer implemented invention is a meaningful one and that such
inventions may be in need of patenting. In such cases computer programs may be used as an implementa-
tion strategy but a pure hardware implementation may be conceivable as well. In our opinion, all patents
discussed in Section 7 are software patents in a more generic sense. The patent is about how to achieve
something by means of running computer executable programs (software), or even on methods for writing
such programs or designing programming languages. None of these inventions makes any sense outside
the realm of programmed computers, and these inventions are about how something may be achieved given
that computer programs will be used. A software patent concerns an invention about a software-based
computer implementation, while a computer implemented invention is about an invention that may be im-
plemented in software.

We cannot imagine that the IsNot patent application could be classified as a computer implemented
invention which may admit a pure hardware embodiment, since this would amount to a single not gate. As
a consequence the mere need to grant patents for clear cases of computer implemented inventions (e.g.,
the design of novel control software/hardware for an airbag) should not be taken as an argument that pure
software patents do not exist. The software industry will soon be in a need to deal with a massive number
of “true software patents”. A careful consideration of the rules of that game from a software engineering
perspective is necessary to grasp the effects of the introduction of patent regulations that will generate an
abundance of such patents.

8.4 The role of “prior art”

Prior art is defined as the body of prior knowledge relating to the claimed invention, including prior use,
publications and patent disclosures [26]. During the patent life cycle (Section 3), prior art plays a role at
different moments:

e When an application is rejected, the applicant can dispute prior art that is used in the motivation of
the rejection.

e When the patent is challenged, the challenger has to produce prior art that invalidates one or more of
the claims of the patent.

e When the patent holder acts on an alleged infringement of its patent by a third party, he must show
that the third party uses results or methods that are claimed by the patent (one could call this “poste-
rior art”).

15

In the patent application it is usually indicated which previous patents are used or extended. As already
discussed in Section 5.2, only the European Patent Office does not require to mention prior art that is known
to the applicant.

We conjecture that in all the three cases mentioned above, the determination of prior art is identical,
whether this is true prior art or posterior art as defined above.

A patent may describe a technique that computer scientists consider to be trivial. Nonetheless, it may
turn out to be very hard to find prior art for it. Well-known techniques cannot be published in a scientific
publication for the simple reason that they are already well-known and do not constitute a new research
result. These well-known techniques may be used in the source code of many software systems, but this
does not count as “publication” and cannot be used to illustrate prior art. At the same time, it may also
be the case that they are not covered by any patent and someone can just file a patent application for this
well-known technique.

Ullman [35] is among the most cited computer science researchers world-wide and he describes elo-
quently the difficulty to find prior art for a patent application about matrix triangularization that was later
used in an unsuccessful attempt to bring suit to the large spreadsheet manufacturers.

In disciplines like chemistry and biology the patent literature forms the actual documentation of inven-
tions. For software the unique situation exists that there is another powerful information source that plays
no role in the patent process: the source code itself. This is a major handicap when searching for prior
art. There is evidence that cross-citation between the patenting literature and the computer science litera-
ture is nearly absent [1]. Compared to software patents, business patents seem to contain relatively more
references to the non-patent literature [2]. Nonetheless, the world of software and the world of patents
seem mostly disjoint. From this follows that computer scientists are currently not well-aware of the patent
literature.

We may conclude that it is urgent to find new ways to establish prior art. One way is the creation of
public web sites that solicit and award proofs of prior art. It seems reasonable to include procedures in the
patenting system where the public can submit prior art against patent applications.

Another way for establishing prior art is the patent system itself. Suppose the IsNot application is
rejected. This fact can have a very positive impact: all the claims in the application are considered to
be un-patentable and this blocks future patents on the issues stated in the rejected claims. In this way,
a rejected patent application contributes to building up prior art. It is conceivable that major companies
follow this strategy in order to prevent patent applications by competitors or to provide indemnity to clients
against intellectual property claims.

8.5 Implications for Open Source Software

There has been active opposition from the Open Source Software (OSS) community against the emergence
of a system for software patenting. As discussed earlier in Section 8.2, the assumption that open source
software products allow inspection at a syntactic level does not imply a greater risk for infringement detec-
tion. To establish that this risk would be higher requires a very clear understanding of what constitutes an
infringement of a software patent and how to establish such an infringement. As discussed earlier, exactly
this understanding is missing. On the contrary, OSS producing companies or individuals may often afford
to distribute quite vague functional specifications using the fact that their user community is willing to take
some risks and to accept some trial and error, whereas producers of closed software components need to
specify in meticulous detail what is to be expected from their products and this may even give better clues
for those who search for potential patent infringements. We see therefore no reason why the authors of
open source should be more (or less) worried about the potential implications of software patenting for
their business than the authors of closed software, from the perspective of establishing infringement.

Itis true, however, that the distributed development model of open source rests upon a legal infrastructure—
open source licenses—that assume that individual authors own, and thus have the right to ’give away”, what-
ever they write. While this works in the copyright system, it is incompatible with patents, since individual
developers can no longer assume that they own what they write, and can thus never know whether they
have the right to “give it away” through open source licenses. This is a subject of further research in the
course of the on-going study.

16

Many commercial manufacturers are now disclosing sources under limited licensing schemes while
making use of substantial copyright protection. The variation of licensing schemes has much impact on the
economic models used and only some licenses lead to the much debated cost reduction that many people
consider typical for open source software. Source pricing and source disclosure are independent matters:
open source software may even be quite expensive in some cases. If that were not the case (in principle) the
whole patenting system should be considered irrelevant as such because it only protects users and producers
of disclosed information.

8.6 Implications for education

Patent law requires that a patent should be non-obvious to a “person of ordinary skill in the art”. Note that
this skill regards a technical art and that the person is not expected to have any legal knowledge or ability to
interpret the legal meaning of a software patent. As already observed by Ullman [35], it is unclear what the
technical background of such a person should be: ranging from a self-educated programmer, via a bachelor
or master in computer science or software engineering, to a professional researcher in these areas. If we
consider the Software Engineering Body of Knowledge (SWEBOK [34]) as approved by IEEE, we are
pretty sure that a person with that technical knowledge is unable to read or interpret software patents let
alone determine potential infringements. The patent-aware software engineering life cycle (Section 3) also
requires an increased level of awareness of software patents among software engineers as well as the skills
to turn this awareness into deeds.

It is clear that the current education of software engineers and the future requirements imposed by a
patenting system including software patents will be dramatic. As far as we aware, there is no curriculum
worldwide that is prepared for this. Governments should invest in the development of such curricula and
in major retraining of professional software engineers.

8.7 Implications for government-funded research

Software is developed in many research projects that are being funded by national governments. Most of
these project follow a traditional software life cycle that ignores patents. In order to avoid that governments
become vulnerable for extensive infringement claims, they should require that these projects switch to at
least a patent-aware software life cycle. This will require extensive additional funding for these projects.

8.8 Implications for the debate on the software patents
The introduction of software patents in any form immediately raises the following questions:
a What constitutes prior art, and what is the status of existing programs.
b How to avoid trivial patents.
¢ How to design a patent-based software engineering life cycle.
d How to design a patent aware life cycle (less crucial but economically vital).

In the recent debate in the EU we get the impression that the (recently rejected) directive “on the
patentability of computer-implemented inventions” (software patent directive), as it stands would lead to
de-facto software patents (in spite of the CII jargon) without the prerequisite clarification concerning the
issues listed above, thus creating unpredictable legal risks for many parties involved.

Amending the directive to such extent that there is no legal basis left for the protection of any software
components deprives manufacturing companies from legal means available to them now, and thereby intro-
duces additional risks just as well. This seems to lead to the position that neither the directive nor a version
of it that cuts out any IPR protection for software components (or against infringing software components)
is a step forward.

The rejected proposal seemed to focus on software/hardware component specifications that constitute
a vital part of CII’s. The functional specification of a unit is given (as part of the proposed CII architecture)
and then an infringement may result by producing a software component that meets the specification even

17

if the manufacturer has shown the ability to implement the specification by means of the description of
a piece of hardware. Thus some branches of industry propose (understandably) a capability to provide
this form of protection. Unfortunately, the resulting scope of IPR and infringement protection has been
insufficiently demarcated.

The modularization paradox Some assume that by requiring that embodiments of a patent have effects
that depend on laws of nature (though excluding software as such) conceptual problems can be solved.
This cannot be excluded per se though it may get paradoxical as follows:

e One may describe an invention as an application in technology rather than dealing with laws of
nature.

e One may consider computer programs as software and one may also consider software as belonging
to technology.

e Now consider computer programs P and () where () provides a context within which P may work.
On the one hand P + () cannot be patented as it is ’software as such’, on the other hand P may be
patented because of its role it may play in the context of () (which is a technical context given the
above assumptions).

Taking this observation to the extreme: in a context where software as such cannot be patented and
technical effects are required, one may be tempted to split a software invention into claimed components
and stated components where the stated components are part of the justification of the claimed components.
Interestingly this introduces a tendency to trivialize a patent description. More importantly, however, the
whole state of affairs with P and P+ (@ is conceptually inconsistent. Therefore the dogma’s that software as
such cannot be patented and technical effects are required make sense only in a setting where one assumes
beforehand that a collection of software components never represents a part of technology.

How to move ahead? Given the fact that world-wide a large number of de-facto software patents exist
(even if a jargon is used that suggests these patents to be of another nature) it is already now important for
the EU to initiate substantial research and development for the clarification of the questions a—d mentioned
above. On the basis of such work technology can be developed that takes into account all existing patent
databases. In successive stages limited possibilities for the protection of

o software/hardware components specifications,

e software component implementations,

e software architectures,

e software processes (software engineering methods)

may be developed.

By doing this kind of work the EU will possibly lead the way in sophisticated use of software patent
databases while at the same time preparing for patenting regulations that really work. In terms of software
engineering these regulations themselves are just some form of standard concerning the software process.
It is clear that such a standard should only be enforced if it has substantial informal backing and if the
technology supporting it is sufficiently sophisticated.

We expect that in the long run software patents will indeed emerge and that this will lead to a wealth
of supporting technology. What is at stake here, is the risk that the EU misses the opportunity to leap
ahead by developing sophisticated legislation in which software is a first class citizen and also misses the
opportunity to develop the technology for supporting such legislation.

That leads us to this position: a sophisticated patenting system for (categories of) computer software
will enhance software technology in the EU, provided that the considerations given here are addressed on
a reasonably grand and effective scale. Introduction of a software patenting system without these prereq-
uisites in place will have disappointing effects. The opposition against the proposed directive as well as its
rejection in the parliament are a manifestation of these disappointing effects.

18

8.9 Integrity axiom for software patent authors and owners

We recommend to add the following integrity axiom to the assumptions about software patents: every
patent which is either live or in the application phase expresses the views held by its authors and owners
in the following way:

e The described invention did not conflict with prior art (in the most general sense of this expression)
when it came into existence and by definition has been so ever since.® In addition, the patent is
non-trivial at that same moment in time.

e The patent authors rightly claim as professional software engineers the IPR for said invention.
e This IPR entitles them to economic revenues in an enforcible way.

e If the patent is owned by an organization that employs one or more of its authors, the relevant
management layers of this organization share the views stated above.

This axiom is non-obvious because filing a patent application is an action by some agent and the axiom
is about the mental state of that agent.

One might drop the integrity axiom in which case software patenting becomes some form of gaming
not primarily based on the meaning of the patents but rather on their tactical and dynamic properties. For
instance, a company might file a sequence of trivial patents just to exhaust the capacity of an economic
opponent to effectively complain about these applications in order to arrive at a stage where IPR can be
claimed even if it is not justified in real terms. But if the only way to get something out of patents would
be along these lines we tend to agree with Knuth [25] that the whole enterprise is flawed. The integrity
axiom excludes tactical patenting which is not based on reliable facts. This is very similar to scientific
publications which are also supposed to adequately represent author’s views.

8.10 A research agenda for software patent research

Taking software patents seriously means designing patenting systems and studying their implications. Here
are some suggestions for a research agenda.

Current status of software patenting regimes One should take into account at least what happens in the
USA, the EU, Japan, India and probably more. The Gauss database mentioned earlier is an example of such
work. Here one finds the systematic investigation into the non-triviality and prior art violations of existing
patents. We can imagine that a patent monitor is developed which enables the public to systematically
submit their opinions about existing patents. In addition various forms of text-mining and cluster analysis
can be employed to unlock the knowledge in the patent databases.

Revision proposals concerning the various regimes Several proposals have already been made for
revising the various regimes. These should be studied and compared in detail.

Designing possible software patenting regimes There is no reason to believe that one unique software
patenting regime can be designed, assuming that one exists at all. Thus many different regimes should be
investigated. For each regime a set of questions has to be settled: what constitutes prior art, what is an
infringement, how to define the particular ’patent speak’ and its semantics, definition of the appropriate life
cycles, and so on.

An important step might be to develop a collection op hypothetical software patents, i.e., rewrites and
perhaps simplifications of the software development history in which known developments are ordered in
such a way that some steps can convincingly be patented. The historical development of computer software
might even be simulated in a game-like fashion in order to study the impact that some patents (had they
existed) might have had.

9US Patent Law requires a declaration from each applicant stating that “he believes himself to be the original and first inventor of
the [technology] for which he solicits a patent.”

19

Collection of prior art A crucial element in any patenting regime is the role of prior art. We propose to
investigate the possibilities for

e Formalizing prior art, i.e., all relevant knowledge about software. This would include patents, (non-

)academic publications, and any other relevant information.

e Formalizing the claims in patents, although it is unclear to what extent this is possible or even de-

sirable. Although ambiguity in patent claims can be harmful, some amount of ambiguity should be
tolerated. One role for judges is interpreting these ambiguities in light of technological developments
that occurred after the claims were written, and other changed circumstances. It would be difficult if
not impossible to retain such ambiguity if patent claims were formalized.

e Comparing formalized patent claims with formalized prior art.

o Automated searches for patent infringements in existing software, given formalized patent claims.

We believe that this research agenda can contribute to a revision of the patent system and may even lead to
a form of software patents that behave as intended: disseminate the knowledge about inventions and give
rewards to true inventors.

9 Conclusions, policy suggestions

Our main conclusion is that patents are too important to be left to lawyers and economists and that the
only way to fully understand the ramifications of software patents on existing software engineering is to
completely reinterpret the patenting system from a software engineering perspective. This will require
extensive study and will also create competitive advantages for the EU.

9.1

1.

9.2

Conclusions

Software is both human-readable and computer executable and this makes it unique among patentable
artefacts. The requirement that a patentable invention should make “a technical contribution” leads
to unnatural descriptions of software inventions and to inadequate claims.

There is a need for a patent life cycle that can be used to better understand the patenting process; in
this paper we propose such a life cycle. Since software developers work worldwide, the patent life
cycle should abstract from specific patenting regimes (EU, US, Japan).

We propose software life cycles that are patent-aware (defensive), patent-based (offensive), and IPR-
based (includes copyright, patents and secrecy). They are needed to reconcile software engineering
practices with the patenting system.

Adopting any patent-related software life cycle increases the costs of software development.

The fact that patenting of certain computer implemented inventions might be reasonable should be
considered independently from the implications of pure software patents. New forms for the protec-
tion of software inventions should be studied.

Policy suggestions

We come to the following policy suggestions based on the analysis given in this paper:

1.

The European Patent Office should require that patent applications mention all prior art (not only
from the patent literature but especially from sources outside the patent literature) that is known to
the applicants. In practice, disclosure or even awareness of prior art is avoided for legal reasons (see
the discussion on “Chinese walls” in Section 3). This is an undesirable situation since it undermines
one of the primary roles of the patenting system: acting as a knowledge dissemination mechanism.

20

2. A public effort should be launched to scrutinize (“garbage collect”) the European patent data base
and look for trivial software patents. Such a public validation phase should become part of the patent
application procedure.

3. The sources on which prior art searches are based should be extended in the case of software patents;
in particular web-sites, mailing lists, and software source code should be permitted as sources of
prior art.

4. Governments should make major investments in designing patent-based curricula for software engi-
neering and computer science as well as in retraining programs for professional software engineers.

5. Governments should require that all software development that takes places in projects they fund
follow the patent-aware software life cycle. Otherwise, governments may become vulnerable for
infringement claims.

6. Rejected trivial software patents are a tool for establishing prior art. The EU should launch collabo-
rative efforts to collect and categorize prior art in software engineering. This will lead to a defense
against software patents from outside the EU and it will also advance the level of knowledge and
technology to effectively handle patent information.

Although we have mostly argued for the elimination of trivial patents and do not draw the conclusion that
software patents are a bad idea under all circumstances, we cannot resist to conclude this paper with a quote
from the world-famous Donald Knuth, professor emeritus from Stanford University, in a letter to the US
Patent Office [25]:

The basic algorithmic ideas that people are now rushing to patent are so fundamental, the
result threatens to be like what would happen if we allowed authors to have patents on indi-
vidual words and concepts. Novelists or journalists would be unable to write stories unless
their publishers had permission from the owners of the words. Algorithms are exactly as basic
to software as words are to writers, because they are the fundamental building blocks needed
to make interesting products. What would happen if individual lawyers could patent their
methods of defense, or if Supreme Court justices could patent their precedents?

Acknowledgments

We thank our partners in the Study of the effects of allowing patent claims for computer-implemented
inventions for their insights and help. Reinier Bakels was very helpful in answering our questions about
legal matters, Bronwyn Hall pointed to relevant references, and Rishab Ghosh kept pressuring us to include
more European patent examples. All three reviewed drafts of this paper. We also thank the EU reviewers
Alfonso Fuggetta and Manuel Martinez Ribas for their comments.

Robert Plotkin made excellent comments (which we sometimes used literally in the final version of this
paper) and we also thank him for our ongoing discussion on the topic of IPR. Erik Josefsson was helpful
in pointing us to interesting EU patent applications and for setting up http://gauss.ffii.org/
GaussFrontPage as a useful tool for patent research. Dirk-Willem van Gulik draw our attention to the
importance of Chinese walls between software developers and patent attorneys. Paul E. Merrell pointed
to inaccuracies in our draft descriptions of what is patentable and his suggestions greatly helped to clarify
this. Jan van Eijck helped to increase our insight by challenging our assumptions about patents and Jo
Lahaye was a stimulating discussion partner on this topic. Finally, we thank the EU project officers Enrica
Chiozza and David Callhan for their continued support for this project.

References

[1] G. Aharonian. Patent examination system is intellectually corrupt. http://www.bustpatents.
com/corrupt . htm, May 2000.

21

[2] J.R. Allison and E. H. Tiller. Internet business method patents. In W. M. Cohen and S. A. Mer-
rill, editors, Patents in the Knowledge-Based Economy, pages 259-284. National Research Council,
Washington, National Academies Press, 2003.

[3] ANSIL. http://www.fortran.com/F77_std/f77_std.html, 1977. ANSI Standard X3.9-
1978 and ISO 1539-1980.

[4] R. Bakels, 2005. Private Communication.

[5] R. Bakels and P.B. Hugenholtz. The patentability of computer programmes: Discussion of European
level legislation in the field of patents for software. Technical report, European Parliament, 2002.

[6] J. A. Bergstra, J. Heering, and P. Klint, editors. Algebraic Specification. ACM Press/Addison-Wesley,
1989.

[7] J.A. Bergstra, J. Heering, and P. Klint. Module algebra. Journal of the ACM, 37(2):335-372, 1990.

[8] J.A. Bergstra and P. Klint. The discrete time ToolBus — a software coordination architecture. Science
of Computer Programming, 31(2-3):205-229, July 1998.

[9] J.A. Bergstra and M.E. Loots. Program algebra for sequential code. Journal of logic and algebraic
programming, 51(2):125-156, 2002.

[10] J.A. Bergstra and S.EM. van Vlijmen. Theoretische software engineering, kenmerken-faseringen-
classificaties, volume XXVIII of Questiones Infinitae. Zeno instituut voor Filosofie (Leiden-Utrecht),
1998. (In Dutch).

[11] J. Bessen and R.M. Hunt. An empirical look at software patents. Economics Research Working Paper
03-17/R, Philadelphia Federal Reserve Bank, March 2004.

[12] M.GJ. van den Brand, A. van Deursen, J. Heering, H.A. de Jong, M. de Jonge, T. Kuipers, P. Klint,
L. Moonen, P.A. Olivier, J. Scheerder, J.J. Vinju, E. Visser, and J. Visser. The ASF+SDF Meta-
Environment: a Component-Based Language Development Environment. In R. Wilhelm, editor,
Compiler Construction (CC ’01), volume 2027 of Lecture Notes in Computer Science, pages 365—
370. Springer-Verlag, 2001.

[13] Software patents: the choice is yours. http://www.softwarepatenten.be/
conferenties/september03, September 17, 2003. Brussels.

[14] Digital Equipment Corporation. Processor Handbook PDP11/45,1974.

[15] E.W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik, 1:269—
271, 1959.

[16] ECMA International. C# Language Specification, 2nd edition, December 2002. ECMA-334, http:
//www.ecma-international.org/publications/standards/Ecma—-334.htm.

[17] Foundation for a Free Information Infrastructure (FFII). Software patents: Questions, analyses, pro-
posals. http://swpat.ffii.org/analysis/index.en.html/, Visited August 28, 2005.

[18] Foundation for a Free Information Infrastructure (FFII. Third paradigm between patent and copyright
law. http://swpat.ffii.org/analysis/suigen/index.en.html, Visited August28,
2005.

[19] J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison-Wesley, 1996.

[20] J. Halbersztadt. Remarks on the patentability of computer software — History, Status, Developments.
swpat.ffii.org/events/2001/linuxtag/jh/swplxtg01l7jh.en.pdf, April 2001.

22

[21] B. H. Hall. Innovation and market value. In R. Barrell, G. Mason, and M. O’Mahoney, editors,
Productivity, Innovation and Economic Performance, pages 177-198. Cambridge University Press,
2000.

[22] B.W. Kernighan and D.M. Ritchie. The C Programming Language. Prentice-Hall, 1978.

[23] P. Klint. How understanding and restructuring differ from compiling—a rewriting perspective. In
Proceedings of the 11th International Workshop on Program Comprehension (IWPC03), pages 2—12.
IEEE Computer Society, 2003.

[24] P. Klint. Een patentoplossing? Nee, dank U! I/O Informaticaonderzoek, 1(2):3, September 2004.
(In Dutch), http://www.informaticaplatform.nl/images/uploaded/magazine_
2004_12_T02t%otaal.pdf.

[25] D. Knuth. Letter to the US patent office. http://lpf.ai.mit.edu/Patents/
knuth-to-pto.txt, September 2003.

[26] C.Lening and J.R. Cavicchi. Patent searching glossary. Technical report, Franklin Pierce Law Centre,
2003. http://ipmall.info/hosted_resources/patent_searching glossary.
pdf.

[27] P.E. Merrell, 2005. Private Communication.

[28] M. Murphy. Getty and corbis win image patent dispute. Seattle Post-Intelligencer http://
seattlepi.nwsource.com/business/227728_gettycorbis09.html, June 2005.

[29] J. Park. Evolution of industry knowledge in the public domain: Prior art searching for soft-
ware patents. SCRIPT-ed, 2(1), 2005. http://www.law.ed.ac.uk/ahrb/script-ed/
vol2-1/park.asp.

[30] R.Plotkin. From idea to action: toward a unified theory of software and the law. International Review
of Law, Computers & Technology, 17(3), November 2003.

[31] R. Plotkin. Computer programming and the automation of invention: a case for software patent
reform. Working Paper Series, Public Law & Legal Theory Working Paper 04-16, Boston University
School of Law, 2004.

[32] P. Samuelson. Should program algorithms be patented? Communications of the ACM, 33(8):23-27,
1990.

[33] 30 European Computer Scientists. Petition to the european parliament on the proposal for a directive
on the patentability of computer-implemented inventions. CEPIS UPGRADE The European Jour-
nal for the Information Professional, IV(3):24-25, June 2003. http://www.upgrade—-cepis.
org/issues/2003/3/upgrade-vIV-3.html.

[34] Software engineering body of knowledge (SWEBOK). http://www.swebok.org, 2004.

[35] J.D. Ullman. Ordinary skill in the art. http://www—db.stanford.edu/ ullman/pub/
focs00.html, November 2000.

[36] United States Code (USC). Title 35, Section 101: Inventions patentable. http://caselaw. lp.
findlaw.com/scripts/ts_search.pl?title=35&sec=101,January 22 2002.

[37] H. van Vliet. Software Engineering: Principles and Practice. Wiley, second edition, 2000.

[38] World Trade Organization (WTO). Trips: Agreement on trade-related aspects of intellectual propery
rights, Section 5, Article 27: Patentable Subject Matter. http://www.wto.org/english/
tratop_e/trips_e/t_agm3c_e.htm.

23

