
C e n t r u m v o o r W i s k u n d e e n I n f o r m a t i c a

Software ENgineering

A language independent framework for context-sensitive
formatting

M.G.J. van den Brand, A.T. Kooiker, J.J. Vinju,
N.P. Veerman

REPORT SEN-R0601 JANUARY 2006

SEN
Software Engineering

Centrum voor Wiskunde en Informatica (CWI) is the national research institute for Mathematics and
Computer Science. It is sponsored by the Netherlands Organisation for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2006, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-369X

A language independent framework for context-
sensitive formatting

ABSTRACT
Automated formatting is an important technique for the software maintainer. It is either applied
separately to improve the readability of source code, or as part of a source code transformation
tool chain. In this paper we report on the application of generic tools for constructing formatters.
In an industrial setting automated formatters need to be tailored to the requirements of the
customer. The (legacy) programming language or dialect and the corporate formatting
conventions are specific and non-negotiable. Can generic formatting tools deal with such
unexpected requirements? Driven by an industrial case of nearly 80 thousand lines of Cobol
code, several limitations in existing formatting technology have been addressed. We improved
its flexibility by replacing a generative phase by a generic tool, and we added a little
expressiveness to the formatting back end. Most importantly, we employed a multi-stage
formatting framework that can cope with any kind of formatting convention using more
computational power.

1998 ACM Computing Classification System: D2.3;D1.2
Keywords and Phrases: context-sensitive formatting; pretty-printing; case study; Cobol; Box

A Language Independent Framework for Context-sensitive Formatting

M.G.J. van den Brand∗, A.T. Kooiker, J.J. Vinju
Centrum voor Wiskunde en Informatica

P.O. Box 94079, NL-1090 GB, Amsterdam, The Netherlands
{Mark.van.den.Brand, Taeke.Kooiker, Jurgen.Vinju}@cwi.nl

N.P. Veerman
Department of Computer Science, Vrije Universiteit Amsterdam
De Boelelaan 1081a, NL-1081 HV, Amsterdam, The Netherlands

nveerman@cs.vu.nl

Abstract

Automated formatting is an important technique for the
software maintainer. It is either applied separately to im-
prove the readability of source code, or as part of a source
code transformation tool chain. In this paper we report on
the application of generic tools for constructing formatters.

In an industrial setting automated formatters need to be
tailored to the requirements of the customer. The (legacy)
programming language or dialect and the corporate for-
matting conventions are specific and non-negotiable. Can
generic formatting tools deal with such unexpected require-
ments?

Driven by an industrial case of nearly 80 thousand lines
of Cobol code, several limitations in existing formatting
technology have been addressed. We improved its flexi-
bility by replacing a generative phase by a generic tool,
and we added a little expressiveness to the formatting back
end. Most importantly, we employed a multi-stage format-
ting framework that can cope with any kind of formatting
convention using more computational power.

1 Introduction

The layout and style of program source code are crucial
for the time required to understand and thus modify it [16].
In fact, these aspects are too integral to the coding aspect
to be changed effectively later [15, p399]. However, a sys-
tem may be initiated with a proper coding standard, years of
evolution causes the code to deviate from it. For instance,
some programmers format code to a preferred style by hand

∗As of January 1st, 2006: Software Construction, Technische Univer-
siteit Eindhoven, Den Dolech 2, NL-5612 AZ, Eindhoven, The Nether-
lands, m.g.j.v.d.brand@tue.nl

before making changes. The result is a mixture of different
programming styles, which increases the time for mainte-
nance.

A solution to these problems is to format source code
with automatic tools. Automatic formatting improves the
productivity of maintenance programmers, but it hardly im-
plements the company specific conventions. There exist
some language-specific formatting tools that can be used
off-the-shelf [9, 22], but these tools suffer from a profu-
sion of command line arguments required to deal with the
highly variable formatting conventions that users of the tool
will have. Therefore configuring these tools to deal with
company specific requirements can be very difficult or even
impossible. When a language-specific formatting tool is
not available for a certain legacy or domain-specific lan-
guage, generic formatting (e.g. tools [7, 8, 19, 25]) can be
applied. Such tools allow a formatting convention for any
language to be defined and can then generate the format-
ting tool from this definition. They can even provide a more
flexible alternative to existing language-specific formatters.
However, one of the limitations of existing generic format-
ters is that these can not use context information or allow ar-
bitrary complex computation, which can be required when
formatting according to industrial coding standards.

The goal of this research is to be able to rapidly obtain
a formatter for any language that implements arbitrary for-
matting requirements.

1.1 Contributions

In Section 3 we describe in detail the formatter that meets
the requirements needed in our Cobol casestudy (See Sec-
tion 1.2). First we will evaluate limitations of existing for-
matting technology, and propose our improvements. We
claim that the resulting framework can be expected to han-

Table 1. Required layout standard in the
Cobol case study.

Description Column
Start of divisions, sections, declarations, paragraphs 01
Start of PIC and REDEFINES clauses 41
Start of VALUE, COMP and OCCURS clauses 51
Start of statements 09
Second part of statements (e.g. MOVE Id TO . . .) 25
Third part of Statements (e.g. MOVE Id TO . . . 49
Fourth part of Statements (e.g. MOVE . . . TO Id) 53

Description Indentation
A nested data declaration should indent with respect to its asso-
ciated group variable

4

A level 88 data declaration should indent with respect to its pre-
ceding variable

4

In a data declaration, a level number and a variable name are
separated

2

Indentation of nested statements 4

dle all kinds of unexpected formatting conventions in any
programming language. Specific contributions of this paper
are:

• Context-sensitive formatting;
• A formatting framework that needs no default format-

ter to be generated;
• Demonstrating the use of generic formatting technol-

ogy on an industrial case.

1.2 An industrial case with context-
sensitive requirements

In the context of a software renovation research project,
we were asked by a company to enforce a corporate format-
ting standard to the source code of a medium sized Cobol
system. The system had about 78 thousand lines of code
spread over 91 Cobol programs.

We were given a document [20] with conventions for for-
matting a number of Cobol language constructs, which is
summarized in Table 1. For several constructs, the assigned
starting columns and indentation depths are displayed. The
requested standard is illustrated by a code example in Fig-
ure 1, containing column numbers, data declarations and a
number of statements. The example shows a record struc-
ture for storing a date. Level 03 sub-records are used
to store the day, month and year, and a level 88 condi-
tion entry is declared to check if there is a date. Then in
the PROCEDURE DIVISION, if no date is present in the
record, the date is retrieved from the system clock. In addi-
tion to this, the date is stored in another record.

Many formatting conventions are geared to clarify the
logical structure of the source code. For example, the state-
ments inside an IF are indented to clearly indicate that their
execution is subject to the conditional. However, this for-
matting convention also contains some more unusual rules.

Column 10 20 30 40 50 60 70
12345678901234567890123456789012345678901234567890123456789012345678901

DATA DIVISION.
WORKING-STORAGE SECTION.

01 WD_DATE VALUE ZERO.
88 WD_NO_DATE VALUE ZERO.
03 WD_DD PIC 9(02).
03 WD_MM PIC 9(02).
03 WD_JJ PIC 9(02).

PROCEDURE DIVISION.
INITIALIZE_DATE SECTION.
INIT_00.

IF WD_NO_DATE
ACCEPT WD_DATE FROM DATE

END-IF
MOVE WD_DD TO WR_DD
MOVE WD_MM TO WR_MM
MOVE WD_JJ TO WR_JJ.

Figure 1. Example program with standardized
formatting according to Table 1.

Figure 1 shows how the FROM part of the ACCEPT state-
ment is aligned with the TO parts of MOVE statements that
are outside the conditional. This is an example of align-
ment that crosscuts the logical structure of the program. In
a more traditional formatting convention the FROM part of
the ACCEPT statement would be indented relative to the be-
ginning of the entire statement. Instead the convention dic-
tates that we must indent the first ACCEPT part and put the
FROM part at an absolute column, regardless of the current
indentation level.

Another point of interest is the 88 declaration. This dec-
laration needs context information to be formatted properly
according to our formatting conventions. The trailing 03
fields are not indented with respect to the level 88 field. In
fact, when we read the fine print of the standard we found
out that trailing fields after an 88 declaration are not to be
indented. It is a formatting exception that assigns a particu-
lar meaning to the number 88. The more general scheme is
that declarations with a higher number should be indented
more. In this example 01 is not indented, while 03 is in-
dented four positions. The Cobol level number thus dictates
the indentation depth. The 88 declaration introduces an ex-
ception to this rule, since subsequent declarations are not
indented. To format the 88 declaration, the context needs
to be carefully inspected.

1.3 Generic formatters

Assuming there is no off-the-shelf Cobol formatter with
enough command line arguments to serve our purposes, we
will have to develop a tailor-made formatter. Generic for-
matters exist that should automate the boilerplate part of
formatting, leaving only some high-level configuration to
be expressed by us.

Generic formatters assume the existence of a parser that
produces a parse tree of the input program encoded in a

Table 2. Box formatting operators

”S” = S H[B1 B2] = B1 B2 V[B1 B2] =

B1

B2

HV[B1 B2 B3] = B1 B2 B3 or

B1 B2

B3

or

B1

B2 B3

or

B1

B2

B3

HOV[B1 B2 B3] = B1 B2 B3 or

B1

B2

B3

V[B1 I[B2] B3] =

B1

B2

B3

V[B1 H[WD[B1] B2]] =

B1

B2

A[R[B1 B2] R[B3 B4]] =

B1 B2

B3 B4

well-known format. These can pretty-print the parse tree to
text or other output formats using default formatting rules.
These also accept high-level user-defined formatting rules,
in order to adapt the formatter to specific requirements.
The expressiveness of these user-defined rules defines the
amount of variability that is allowed for defining a format-
ter.

Many formatting systems use some variant of the Box
language as an intermediate format [1, 2, 7, 8, 25]. The Box
language, introduced in [6] for defining user interfaces, has
operators that define exactly the two-dimensional relative
positions of source code elements such as keywords and
identifiers. From a Box structure, a reusable Box back-end
generates formatted text, or any other visual representation
of the source code (e.g. in HTML).

The remainder of this section will give a brief explana-
tion of each Box operator. Table 2 shows an example of
each Box operator being used. Box operators can be com-
bined recursively. String literals, denoted as S in Table 2,
are atomic Box expressions. H boxes place their operands
horizontally, while V boxes place them vertically with re-
spect to each other. The two hybrid operators, HV and HOV
place their operands either horizontally or vertically. The
first maximizes the number of horizontally placed operands,
while the second puts all operands vertically if they do not
fit next to each other on a single line. The I and WD oper-
ators are used to define static and dynamic indentation re-
spectively. Finally, an A box declares an alignment environ-
ment, in which R boxes are aligned in columns. The abso-
lute placement of boxes on a two-dimensional page follows
from their relative positioning, their width, and the available
space. Each Box operator has various parameters to fine-
tune it. For example, H hs=2 will separate each operand
of the H box by two spaces. Note that Box operators never

loose operands, or change the order of appearance of their
operands on a page read left-to-right, and top-to-bottom.

1.4 Related work

The development of generic formatters [18,21] has been
tackled in various ways. Many of these approaches are in
one way or the other influenced by the early work by Op-
pen [19] on pretty-printing and Coutaz [6] on user inter-
faces. Oppen’s work can be characterized as the lexical
approach. A stream of lexical tokens interwoven with es-
cape characters to direct the pretty-printing is the input for
Oppen’s pretty-printer. TXL [4] uses an approach which
strongly resembles the original approach of Oppen (see
Chapter 5 of [5]). TXL grammar rules can also be used to
define formatting conventions. As such, a grammar must
be adapted to each set of formatting requirements. The
Box layout abstraction offers a general way of expressing
two dimensional formatting and decouples the formatting
of back-ends from syntax trees. The pretty-print engines of
PPML [1, 17] pioneered the use the Box language for for-
matting source code. Box was extended in [27] and [25]
to be able to cope with the details of larger programming
languages, such as Pascal and Cobol.

One approach to obtain Box based formatters is to gen-
erate pretty-print rewrite rules that map syntax constructs
to Box operators. This approach is described in [25]. The
starting point of that work is the generation of a collection
of default pretty-print rules. Default rules are generated
using heuristics that analyze typical structures of program-
ming languages. If the behavior of a specific rule does not
satisfy the required layout, a new rule can be added by the
user that supersedes the behavior of the default rules. The
drawback of this approach is that this technique is volatile to

Stage 1 Stage 2 Stage 3

Parser

Parsetree
User-defined

 mapping
Hybrid

 Box/Parsetree
Default

 mapping
Boxtree

Syntactic
Safety Checker

box2text

box2html

box2pdf

...

Text

HTML

Text

PDF

...

Figure 2. A multistage formatting pipeline that allows any formatting convention, and still automates
the bulk of formatting.

modifications in the underlying grammar. If the grammar is
adapted the large set of default rules has to be regenerated.
An advantage of this approach is that context information
can be taken into consideration during pretty-printing. Al-
though this can only be achieved by overriding almost all
generated default rules. The implementation details of the
generated rules can not be hidden from the user.

An alternative approach to the generation of a collection
of pretty-print rules was presented in [7]. The starting point
of this work is a table consisting of names of abstract syntax
tree nodes and default pretty-print rules, which is also based
on a Box-like language. These rules can be overridden by
giving an alternative pretty-print rule for a specific abstract
syntax tree node. The advantage of this approach is that it
is less sensitive to modifications in the underlying grammar.
The table approach has been used to develop pretty-printers
for re-engineering purposes [8].

The Box language is also used by the commercial DMS
program transformation system [2]. It uses a mapping from
production rules to Box constructs, which allows similar ex-
pressibility to the table approach described above.

A drawback of the two latter approaches is that they do
not take context information into account and thus any un-
foreseen requirements are not easily dealt with.

2 A description of the framework

Our industrial case illustrates that formatting is a process
which heavily depends on specific user requirements, re-
quiring context information in some cases. The application
of formatting source codes is bound by strict, but possibly
irregular rules given by the owner of the code base. Both the
used language, as well as the corporate conventions may be
unique.

Existing generic pretty-printing, apart from [25], do not
cope well with unexpected formatting conventions that re-

quire more elaborate analysis of the source code. Extra in-
formation such as nesting depth, specific identifiers, or rel-
ative positions between several constructs in a language is
often important; this is context-sensitive information.

When language constructs are mapped during pretty-
printing, we should allow more elaborate user-defined com-
putation. Nevertheless, default pretty-printing is very prac-
tical because it automates the major part of creating a for-
matting tool. Therefore, the formatting process in our
framework is split into three stages, see Figure 2.

2.1 Stage 1: user-defined mapping

The input for Stage 1 consists of a parse tree. The user-
defined mapping that is applied to this parse tree consists
of transforming particular language constructs to Box con-
structs. The language constructs that are transformed, de-
pend on the formatting requirements that are not handled
as desired by the default mapping in Stage 2. Any program-
ming language or tool can be used to map selected language
constructs to Box constructs. For our Cobol application we
used ASF+SDF [26], because its application domain is in
these kind of language transformations. We may use any
kind of context information to construct this mapping.

Applying a user-defined mapping on the input parse
tree results in a hybrid parse tree containing both source
language constructs and Box constructs. Figure 3 illus-
trates such a hybrid tree, where Box language operators
can have programming language constructs as children, and
vice versa. The borders between the source code language
formalism and Box formalism are guarded by encapsulat-
ing nodes which are marked by two special node attributes:
from-box and to-box. The outermost pyramid shows a
Cobol parse tree that is partially formatted. It has one child
that has been transformed to Box constructs. The transi-
tion from Cobol to Box is guarded by a from-box node.

Cobol

Cobol

Box

from−box

to−box

Figure 3. A hybrid tree with guarding
from-box and to-box nodes.

This part of the tree does contain an unformatted Cobol part
again. The transition from Box back to Cobol is guarded by
a to-box node.

2.2 Stage 2: default mapping

In Stage 2 the default formatting engine applies default
pretty-print rules to the hybrid parse tree result of Stage 1.
All Cobol constructs that are left in the hybrid tree are then
mapped to Box operators. The algorithm used by the for-
matting engine skips over all Box expressions that are be-
tween a from-box and a to-box node, since they have
been formatted already (see Figure 3). The resulting tree
contains only Box expressions. It is guaranteed that all
source language constructs have been transformed into Box
constructs.

It is surprising that in general more nodes are formatted
in Stage 2 than in Stage 1. Programming languages share
typical syntactic idioms that can be formatted in a similar
way. The most obvious example is the block structure: a
syntax rule that begins and ends with a literal, and has a
list of other constructs in the middle. There is an easy op-
portunity for reuse. Stage 2 benefits from these similari-
ties by using some smart heuristics. It extracts information
from parse trees to identify syntactical idioms, and maps
them to Box expressions. We reuse the default mapping
that was proposed in [25], but now we implement it on the
hybrid tree instead of generating a default implementation
that the user needs to adapt. The benefit is twofold: the
user can choose the technology he prefers to use for the
user-defined formatter and we avoid common maintenance
problems with generated code altogether.

2.3 Stage 3: Box back-ends

For Stage 3 several reusable Box back-ends are avail-
able [7, 8, 25] that can be reused to output formatted pro-
grams. Using the Box tree from Stage 2, the size of every
Box will be computed and the output will depend on these
sizes.

2.4 Syntax safety

The default formatter in Stage 2 is constructed in such
a manner that it guarantees syntax safety. It will not throw
away, flip, or invent programs or program parts. With a
user-defined formatter, that might use arbitrary computa-
tional power we do not have such a guarantee. Therefore,
Stage 1 also contains a tool that correlates the hybrid tree
with the original parse tree. If the user-defined formatter ter-
minates, this tool can assert that at least the resulting Box
language constructs represent exactly the characters from
the original parse tree, and output an error message if not.
Note that this tool uses the information in the parse tree
with a complete representation of the context-free and lexi-
cal grammars.

3 Case study: Cobol layout standardization

In this project, we were driven by an industrial applica-
tion: the layout of a medium sized DEC Cobol system had
to be standardized according to specific conventions (Ta-
ble 1). We describe what kind of effort was needed to create
a formatter that meets all requirements using the above de-
scribed formatting pipeline (Figure 2). In particular, we de-
scribe how we dealt with specific language constructs that
had to be standardized. Furthermore, we report on some
performance measurements.

3.1 Implementation of the formatting
framework

For implementing both the parser and the user-defined
formatting we have used the language specification formal-
ism ASF+SDF [26]. This is a formal language that is well-
equipped for transformations of source code. Using SDF

grammar productions, the syntax of Cobol has been defined.
The SDF grammar was derived from the on-line IBM VS
Cobol II grammar [12–14] and adapted to be able to parse
DEC Cobol-specific constructs; the adaptation was done us-
ing the Grammar Deployment Kit [11]. The adapted gram-
mar productions were used to generate a parser for DEC
Cobol. The parser outputs a parse tree that can be used in
Stage 1 (see Figure 2).

In the case that the default mapping was different from
the formatting convention, ASF rewrite rules have been de-
fined to implement the mapping of Cobol constructs to Box
language constructs. These rewrite rules are applied to the
parse tree in Stage 1.

The Cobol SDF grammar is not discussed here, except
for production rules to illustrate a few examples. Instead
we focus on the formatter written in ASF. ASF rewrite rules,
have a tag, a left-hand side, a right-hand side and optionally
some conditions that guard the application of a rewrite rule.
If a language construct in a parsed program matches the left-
hand side of a rewrite rule, it is replaced by the right-hand
side. A rewrite rule may have complex matching patterns.
By defining parameterized functions, rewrite rules can also
receive context information to guide a transformation. In
ASF information flows by passing parameters [23].

As our examples will illustrate, ASF rewrite rules use the
concrete syntax of the manipulated language on both sides
of a rule and in the conditions. The mapping of Cobol con-
structs to Box constructs is therefore immediately recogniz-
able as such.

For efficiency reasons, Stage 2 and 3 are linked together
in a new tool called Pandora. Pandora is distributed with
the ASF+SDF Meta-Environment [3,10,24] and can be used
with and without a user-defined mapping. Having Pandora
as a separate tool allows us to maintain and evolve it with-
out influencing user-defined rules too much. Pandora can
therefore be implemented in any language. As our indus-
trial application will show, we need most operators of the
Box language as presented in Table 2, and one important ex-
tension: tab stops. Tab stops support placing of constructs at
fixed columns independent of the current indentation level.
The crosscutting concern mentioned in Section 1.2, where
parts of a language construction have to be placed at fixed
columns, has inspired this extension.

3.2 General implementation scheme

The implementation of a pretty-printer involves specify-
ing at least one rewrite rule for each construct that the stan-
dardization document describes, unless the default mapping
(Stage 2) coincides with the standard. We will discuss a
number of Cobol constructs with their implementation:

• Data declarations;
• Structured statements (e.g. IF);
• Non-structured statements (e.g. MOVE).

The general implementation scheme is illustrated by Fig-
ure 4. An example construct, with keywords BEGIN and
END is formatted by a single rewrite rule. The syntax is
defined by a production rule, and we define some meta vari-
ables. We prefix the variables with hash signs in our ex-
amples for readability, and use ? to indicate a variable

context-free syntax
"BEGIN" Sort1 Sort2 "END" -> Sort3
context-free syntax
from-box(Box) -> Sort3 {from-box}
to-box (Sort1) -> Box {to-box}
to-box (Sort2) -> Box {to-box}

variables
"#Sort1" -> Sort1
"#Sort2" -> Sort2

equations
[format-example-construct]
... (optional conditions)
===>
BEGIN #Sort1 #Sort2 END
=
from-box(
V ["BEGIN"

to-box(#Sort1)
I is=2 [to-box(Sort2)]
"END"

])

Figure 4. General scheme of mapping a lan-
guage construct to Box using ASF+SDF.

equations
[] IndStatement = 9
[] IndSecondPartStatement = 25
[] IndDDFirstClause = 41
[] IndThirdPartStatement = 49
[] IndDDOtherClauses = 51
[] IndFourthPartStatement = 53

[] DatanameSpace = 2
[] IndDataEntry = 4
[] IndStructured = 4

[] determine-ind (#Level)
= ... (not shown)

[] get-group-variable(#Data-desc-entries)
= ... (not shown)

Figure 5. Constant and parameterized functions
for column numbers.

matches an optional construct. The left-hand side of the
rule tagged format-example-constructmatches all
instances of this construct. The conditions of a rule guard
its application and may introduce local variables. On the
right-hand side of the rule, we replace the construct by a
Box expression. In this example we format all parts of the
construct vertically using a V box. One of the members of
this construct is indented two positions using I is=2.

The from-box and to-box constructs (see Sec-
tion 2.1) mark the borders between the Cobol and Box for-
malisms and make the hybrid trees type correct. The mem-
bers of the example construct, captured by the variables
#Sort1 and #Sort2, are nested in the Box expression us-
ing to-box productions. The entire construct is translated
to Box, and this Box expression is nested in its surround-
ings using a from-box production. The above scheme is
applied to all constructs we format.

We implemented the conventions from Table 1 as a
number of constant ASF functions, and some parameter-

ized functions. Figure 5 displays the defined constants,
and the left-hand sides of the parameterized functions.
determine-ind computes the indentation level of data
declarations based on the level number. For example, for
01 it returns 0, and for 03 it returns 4. The function
get-group-variable is used to retrieve the level num-
ber of previous data declarations. This is a typical example
of context-information being used to influence indentation.

In the remainder of this section, we describe some of
the rules for a number of Cobol constructs we implemented
in our case-study. For each construct, we show the SDF

production that defines its syntax, together with the corre-
sponding rewrite rule that defines its formatting.

3.3 Formatting data declarations

In Cobol, there are various types of data declarations.
We briefly summarize the syntax and semantics of this con-
struct.

A single data declaration is called a data descrip-
tion entry, and several entries are grouped into a
WORKING-STORAGE SECTION. See Figure 6 for the
context-free production rules in SDF. An entry consists of
a level number (e.g. 01, 03, . . .), an optional data-name or
FILLER, and zero or more clauses for specifying proper-
ties of the data item. In Cobol, a filler is a data item which
can not be referred to. Properties of data items are for in-
stance their size, usage, and value. The declaration is ter-
minated by a period. A number of data description entries
can be grouped to form a record structure. The grouping
is only indicated by the different level numbers, not by the
tree structure of the program. An entry with a higher level
number is subordinate to an entry with a lower level, i.e.,
03 is a sub-record of 01. This is also shown in Figure 1.
The picture clause, indicated by the PIC keyword, is used
to specify the size of the variable. The value clause, indi-
cated by the VALUE keyword, is used to initialize the value
of the variable. A special level number is the level 88 dec-
laration; it can be used as a flag for the associated group
variable in conditional statements, such as an IF statement.

In order to formalize the layout standard for data de-
scription entries using ASF+SDF, we implemented a num-
ber a rewrite rules. To give an idea of what such a rewrite
rule contains, we show two of the actual rules for the
data description entry from our specification (Figure 6).
On the left-hand side of the first rule, we see the syn-
tax defined by the left-hand side of the production rule
for Data-desc-entry. On the right-hand side of the
rewrite rule, we see the formalization of the layout, ex-
pressed with Box operators. The following will help to un-
derstand this Box term:

• The first H hs=0 specifies that the parts of a data de-
scription should be printed horizontal with no spaces

in between, since the spacing is set by tab stops;
• Next, H ts=. . . defines the tab stop position of the

data names or FILLERs. We use the helper function
determine-ind that was described earlier. The
hs=2 specifies that the #Level and the optional data-
name or FILLER are separated by two spaces;

• Then the #Picture-clause is set at a certain tab
stop;

• The #Data-desc-entry-clauses are printed at
a different tab stop;

• Finally, we close the statement with the atomic box
".".

So the rewrite rule in Figure 6 is used to pretty-print data
declarations. In addition to this rule, we implemented sev-
eral other rules to deal with different flavors of data dec-
larations. For instance, a data description entry without a
picture clause requires an additional rule.

Level 88 data declarations are slightly more compli-
cated. Its formatting convention requires context sensitive
information. The second rule in Figure 6 deals with 88
declarations. The rule matches a larger context, namely
a list of data description entries in a working storage sec-
tion, instead of a single declaration. This provides the
context needed to determine the group variable of the cur-
rent record. We retrieve this information by applying the
function get-group-level-number to the declara-
tions that precede an 88 declaration. Using the retrieved
level number, the indentation of the record is determined,
and by adding IndDataEntry we calculate the required
indentation for the level 88 variable.

3.4 Formatting structured statements

In Cobol there are a number of structured statements.
A structured statement is a statement which can contain
other statements. Some examples of such statements in
Cobol are: IF statement (conditional), EVALUATE state-
ment (switch), PERFORM statement (loop). There are some
more structured statements in Cobol, but we do not discuss
them here. We focus on the IF statement.

In Figure 7, two SDF production rules show the syntax
of the Cobol IF statement, and two ASF rewrite rules show
the formatting conventions for IF. In the first rule, the IF
statement is divided into three parts, which are printed in
vertical mode:

• The first part consists of the IF keyword, the
#Condition and the optional THEN. These are
printed in horizontal mode. In addition, the
#Condition is printed at a certain tab stop using
ts=...;

• The second part is the #Statement-list, which is
formatted with an indentation using an I box;

context-free syntax
"WORKING-STORAGE" "SECTION" "." Data-desc-entry* -> Working-storage-section
Level (Data-name|"FILLER")? Data-desc-entry-clauses "." -> Data-desc-entry

equations
[format-data-desc-entry-using-level-number]
#Level != 88
===>
#Level #Data-nameOrFILLER? #Picture-clause #Data-desc-entry-clauses,
=
from-box(
H hs=0 [

H ts=determine-ind(#Level) hs=2 [to-box(#Level) to-box(#Data-nameOrFILLER?)]
H ts=IndDDFirstClause [to-box(#Picture-clause)]
H ts=IndDDOtherClauses [to-box(#Data-desc-entry-clauses)]
"."

])

equations
[format-data-desc-entry-level-88-using-context-information]
#Level := get-group-level-number(#Data-desc-entries1),
#Ind-level := determine-ind(#Level) + IndDataEntry
===>
WORKING-STORAGE SECTION.

#Data-desc-entries1
88 #Data-nameOrFILLER? #Data-desc-entry-clauses .
#Data-desc-entries2

=
WORKING-STORAGE SECTION.

#Data-desc-entries1
from-box(
H hs=0 [

H ts=#Ind-level hs=2 ["88" to-box(#Data-nameOrFILLER?)]
H ts=IndDDFirstClause [to-box(#Data-desc-entry-clauses)]
"."

])
#Data-desc-entries2

Figure 6. Two SDF production rules for Cobol data declarations, and two conditional ASF rewrite rules
that map them to Box.

• The last part is the optional #Else-phrase, which
is formatted below the #Statement-list because
of the outermost V.

The second rule from Figure 7 specifies that the closing key-
word END-IF should be printed in vertical mode using a V
box.

3.5 Formatting non-structured state-
ments

In Cobol, a non-structured statement consists of a single
statement. For instance, the ADD, COMPUTE and DIVIDE
statements without SIZE ERROR parts for error handling
are non-structured. All such statements are formatted on a
single line, using an H box. When possible they are divided
into three parts. Each part has its defined tab stop according
to the standardization document.

A statement which always belongs to the category of
non-structured statements is the MOVE statement, since it
has no error handling parts. An example is shown below:

MOVE A TO B

According to the syntax, which is shown in 8, an identifier
or literal can be moved to one or more receiving identifiers.
In Figure 8, the ASF rewrite rule is shown for formalizing
layout of the MOVE statement. The rule defines the required
layout convention: each part of the statement is printed in a
different column using three applications of the H operator
with a certain tab stop value.

3.6 Summary

In this case study, we implemented formatting rules to
enforce the requested layout standardization on several con-
structs from the Cobol grammar. We implemented rules for
10 different statements, and a number of rules for the data
declarations. In addition, rules were implemented to format
divisions, sections and paragraphs. In total, about 50 ASF

rewrite rules were implemented to cover the constructs that
appeared in the corporate convention (Stage 1), the rest of
the constructs were formatted according to the default rules
(Stage 2).

Several rewrite rules, such as for the MOVE statements
are simple one-to-one mappings. They do not use any con-

context-free syntax
"IF" Condition "THEN"? Statement-list Else-phrase? -> If-statement-non-closed
If-statement-non-closed "END-IF" -> If-statement

equations
[if-statement-non-closed]
IF #Condition #THEN? #Statement-list #Else-phrase?
=
from-box(
V [H ["IF" H ts=IndSecondPartStatement [to-box(#Condition)] to-box(#THEN?)]

I is=IndNestedStatement [to-box(#Statement-list)]
to-box(#Else-phrase?)

])

[if-statement]
#If-statement-non-closed END-IF
=
from-box(
V [to-box(#If-statement-non-closed)

"END-IF"
])

Figure 7. Two SDF production rules for the Cobol IF statement, and two ASF rewrite rules to formalize
its layout standard.

context-free syntax
"MOVE" (Identifier | Literal) "TO" Identifier-list -> Move-statement

equations
[move-statement]
MOVE #IdentifierOrLiteral TO #Identifier-list
=
from-box(
H ["MOVE"

H ts=IndSecondPartStatement [to-box(#IdentifierOrLiteral)]
H ts=IndThirdPartStatement ["TO"]
H ts=IndFourthPartStatement [to-box(#Identifier-list)]

])

Figure 8. An SDF production rule for the Cobol MOVE statement, and the ASF rewrite rule to formalize
its layout standard.

text information, but they do use the tab stop feature of the
Box language, to be able to define alignment that crosscuts
the logical structure of a program. Note that the absolute
tab stop feature is not available in most implementations of
the Box language.

On the other hand, with the Cobol data declarations we
have shown how to use context information and how to as-
sign specific semantics to selected level numbers. We used
freedom of applying arbitrary computational power to ana-
lyze a program and influence its formatting.

3.7 Performance

We measured the performance of application of format-
ting 78 thousand lines of Cobol code. Parsing 78 KLOC
was done in 420 seconds. Stage 1 using compiled rewrite
rules, took only 22 seconds, while Pandora took 74 seconds
to perform Stage 2 and 3, of which 32 seconds are spent by

the default mapping. The above measurements show that
formatting 78 thousand lines of code using this framework
is feasible.

4 Conclusions

We have taken a given set of formatting requirements
for a Cobol system as spelled out in a standardization doc-
ument, and applied generic formatting technology to im-
plement them. It appeared that corporate conventions can
dictate alignment that crosscuts the logical structure of a
program, and can even dictate indentation that needs to be
computed from context information.

We have developed and implemented a formatting
framework that allows arbitrary computational power for
mapping language constructs to the Box language. The en-
abling feature is a hybrid format that merges Box expres-
sions with parse trees. Much of the boilerplate part of for-

matting can still be automated by a default mapping to Box.
Absolute tab stops, an important feature which is not found
in many Box back-ends, are used extensively in our case
study.

5 Acknowledgments

This research was done at the Centrum voor Wiskunde
en Informatica and the Vrije Universiteit. The case study
was carried out at the Vrije Universiteit in cooperation with
PinkRoccade The Netherlands. We would like to thank
Steven Klusener and Paul Klint for their contributions. We
also like to thank Rob Economopoulos and Chris Verhoef
for proofreading this paper.

The research was supported by the Dutch Ministry
of Economic Affairs via contract SENTER-TSIT3018
CaLCE: Computer-aided Life Cycle Enabling of Software
Assets.

References

[1] I. Attali, C. Courbis, P. Degenne, A. Fau, and D. Parigot.
Smarttools: a generator of interactive environments tools.
In R. Wilhelm, editor, Compiler Construction, volume 2027
of Lecture Notes in Computer Science, pages 355–360.
Springer-Verlag, Genova, Italy, April 2001.

[2] I. D. Baxter, C. Pidgeon, and M. Mehlich. Dms: Program
transformations for practical scalable software evolution. In
ICSE ’04: Proceedings of the 26th International Conference
on Software Engineering, pages 625–634. IEEE Computer
Society, 2004.

[3] Centrum voor Wiskunde en Informatica.
The ASF+SDF Meta-Environment, 2005.
http://www.cwi.nl/projects/MetaEnv/.

[4] J. R. Cordy. Txl — a language for programming language
tools and applications. In G. Hedin and E. van Wyk, edi-
tors, 4th International Workshop on Language Descriptions,
Tools and Applications (LDTA’2004), Electronic Notes in
Theoretical Computer Science, pages 1–27. Elsevier, 2004.

[5] J. R. Cordy, I. H. Carmichael, and R. Halliday. TXL — Pro-
gramming Language, 2005. Version 10.4.

[6] J. Coutaz. The box, a layout abstraction for user inter-
face toolkits. Technical report, Carnegie Mellon University,
1984. CMU-CS-84-167.

[7] M. de Jonge. A pretty-printer for every occasion. In I. Fer-
guson, J. Gray, and L. Scott, editors, Proceedings of the
2nd International Symposium on Constructing Software En-
gineering Tools (CoSET2000), pages 68–77. University of
Wollongong, Australia, June 2000.

[8] M. de Jonge. Pretty-printing for software reengineering. In
Proceedings: International Conference on Software Main-
tenance (ICSM 2002), pages 550–559. IEEE Computer So-
ciety Press, Oct. 2002.

[9] GNU. indent, 2005. http://www.gnu.org/software/indent.
[10] P. Klint. A meta-environment for generating programming

environments. ACM Transactions on Software Engineering
and Methodology, 2(2):176–201, April 1993.

[11] J. Kort, R. Lämmel, and C. Verhoef. The grammar deploy-
ment kit. Electronic Notes in Theoretical Computer Science,
65(3), 2002.

[12] R. Lämmel and C. Verhoef. VS Cobol II Grammar Version
1.0.3, 1999. http://www.cs.vu.nl/grammars/vs-cobol-ii/.

[13] R. Lämmel and C. Verhoef. Cracking the 500-
Language Problem. IEEE Software, pages 78–88, Novem-
ber/December 2001.

[14] R. Lämmel and C. Verhoef. Semi-automatic Grammar Re-
covery. Software—Practice & Experience, 31(15):1395–
1438, December 2001.

[15] S. McConnel. Code Complete. Microsoft Press, 1993.
[16] R. J. Miara, J. A. Musselman, J. A. Navarro, and B. Shnei-

derman. Program indentation and comprehensibility. ACM,
26(11):861–867, 1983.

[17] E. Morcos-Chounet and A. Conchon. PPML: a general for-
malism to specify prettyprinting. In H.-J. Kugler, editor, In-
formation Processing 86, pages 583–590. Elsevier, 1986.

[18] J. M. Neighbors. Software Construction using Components.
PhD thesis, University of California, Irvine, Department of
Information and Computer Science, 1980. Technical Report
UCI-ICS-TR-160.

[19] D. C. Oppen. Prettyprinting. ACM Trans. Program. Lang.
Syst., 2(4):465–483, 1980.

[20] PinkRoccade. Formatting conventions (internal document),
2004.

[21] D. V. Schorre. Meta ii a syntax-oriented compiler writing
language. In Proceedings of the 1964 19th ACM national
conference, pages 41.301–41.3011, New York, NY, USA,
1964. ACM Press.

[22] Software & Solutions. Jindent, 2005.
http://www.jindent.com.

[23] M. G. J. van den Brand, P. Klint, and J. J. Vinju. Term
rewriting with traversal functions. ACM Trans. Softw. Eng.
Methodol., 12(2):152–190, 2003.

[24] M. G. J. van den Brand, A. van Deursen, J. Heering, H. A.
de Jong, M. de Jonge, T. Kuipers, P. Klint, P. A. Olivier,
J. Scheerder, J. J. Vinju, E. Visser, and J. Visser. The
ASF+SDF Meta-Environment: a Component-Based Lan-
guage Development Environment. In R. Wilhelm, edi-
tor, Compiler Construction (CC ’01), volume 2027 of Lec-
ture Notes in Computer Science, pages 365–370. Springer-
Verlag, 2001.

[25] M. G. J. van den Brand and E. Visser. Generation of for-
matters for context-free languages. ACM Trans. Softw. Eng.
Methodol., 5(1):1–41, 1996.

[26] A. van Deursen, J. Heering, and P. Klint, editors. Lan-
guage Prototyping: An Algebraic Specification Approach,
volume 5 of AMAST Series in Computing. World Scientific,
1996.

[27] K. Vos. PRETTY for an easy touch of beauty. Master’s
thesis, Universiteit van Amsterdam, 1990.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Create a new document
 Trim: fix size 8.268 x 11.693 inches / 210.0 x 297.0 mm
 Shift: move down by 56.69 points
 Normalise (advanced option): 'improved'

 32

 D:20060124094907
 841.8898
 a4
 Blank
 595.2756

 Tall
 1
 1
 Full
 600
 308
 Fixed
 Down
 56.6929
 0.0000

 Both
 AllDoc

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0c
 Quite Imposing Plus 2
 1

 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.268 x 11.693 inches / 210.0 x 297.0 mm
 Shift: move right by 14.17 points
 Normalise (advanced option): 'improved'

 32

 D:20060124094907
 841.8898
 a4
 Blank
 595.2756

 Tall
 1
 0
 Full
 600
 308
 Fixed
 Right
 14.1732
 0.0000

 Both
 AllDoc

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0c
 Quite Imposing Plus 2
 1

 0
 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.268 x 11.693 inches / 210.0 x 297.0 mm
 Shift: move right by 8.50 points
 Normalise (advanced option): 'improved'

 32

 D:20060124094907
 841.8898
 a4
 Blank
 595.2756

 Tall
 1
 0
 Full
 600
 308
 Fixed
 Right
 8.5039
 0.0000

 Both
 AllDoc

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0c
 Quite Imposing Plus 2
 1

 0
 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.268 x 11.693 inches / 210.0 x 297.0 mm
 Shift: move left by 14.17 points
 Normalise (advanced option): 'improved'

 32

 D:20060124094907
 841.8898
 a4
 Blank
 595.2756

 Tall
 1
 0
 Full
 600
 308

 Fixed
 Left
 14.1732
 0.0000

 Both
 AllDoc

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0c
 Quite Imposing Plus 2
 1

 0
 10
 9
 10

 1

 HistoryList_V1
 qi2base

