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A fluid system with coupled input and output, and its
application to bottlenecks in ad hoc networks

ABSTRACT
This paper studies a fluid queue with coupled input and output. Flows arrive according to a
Poisson process, and when n flows are present, each of them transmits traffic into the queue at
a rate c/(n + 1), where the remaining c/(n + 1) is used to serve the queue. We assume
exponentially distributed flow sizes, so that the queue under consideration can be regarded as a
system with Markov fluid input. The rationale behind studying this queue lies in ad hoc
networks: bottleneck links have roughly this type of sharing policy. We consider four
performance metrics: (i) the stationary workload of the queue, (ii) the queueing delay, i.e., the
delay of a ‘packet’ (a fluid particle) that arrives at the queue at an arbitrary point in time, (iii) the
flow transfer delay, i.e., the time elapsed between arrival of a flow and the epoch that all its
traffic has been put into the queue, and (iv) the sojourn time, i.e., the flow transfer time
increased by the time it takes before the last fluid particle of the flow is served. For each of
these random variables we compute the Laplace transform. The corresponding tail probabilities
decay exponentially, as is shown by a large-deviations analysis.
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Abstract

This paper studies a fluid queue with coupled input and output. Flows arrive according to a Pois-
son process, and when n flows are present, each of them transmits traffic into the queue at a rate
c/(n + 1), where the remaining c/(n + 1) is used to serve the queue. We assume exponentially
distributed flow sizes, so that the queue under consideration can be regarded as a system with
Markov fluid input. The rationale behind studying this queue lies in ad hoc networks: bottleneck
links have roughly this type of sharing policy. We consider four performance metrics: (i) the sta-
tionary workload of the queue, (ii) the queueing delay, i.e., the delay of a ‘packet’ (a fluid particle)
that arrives at the queue at an arbitrary point in time, (iii) the flow transfer delay, i.e., the time
elapsed between arrival of a flow and the epoch that all its traffic has been put into the queue, and
(iv) the sojourn time, i.e., the flow transfer time increased by the time it takes before the last fluid
particle of the flow is served. For each of these random variables we compute the Laplace trans-
form. The corresponding tail probabilities decay exponentially, as is shown by a large-deviations
analysis.
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1 Introduction

Standard Markov fluid queues consist of traffic sources feeding into a queue that is emptied at a con-
stant rate, say c. The sources are for instance of the exponential on-off type: they alternate between
activity periods (with a duration that is exponentially distributed with mean µ−1 during which traffic
is generated at some fixed rate, say p) and silences (which have an exponential distribution with mean
λ−1). If there are n of such sources (i.i.d.), and if np > c, every now and then the buffer of the queue
fills. Under the stability condition npf < c, with f := λ/(λ + µ) the fraction of time each source is
on, the queue’s workload has a steady-state distribution, say W ?. A detailed performance analysis of
this workload is known, see e.g. [1].
In practical situations, however, often the role played by the sources and the queue is rather different.
In this paper we consider a stylized model of a so-called bottleneck in an ad hoc wireless communi-
cation network; here it suffices to understand the working of ad hoc networks at an abstract level, but
for more details, particularly on Quality-of-Service aspects, we refer to the excellent survey [3]. Flows,
for instance arriving according to a Poisson process, wish to send their information through the bot-
tleneck node. The complicating issue, however, is that the total transmission capacity is fixed (say c),
and this capacity should be used both to feed the traffic from the flows into the bottleneck node, and
to serve the queue of the bottleneck node. A common situation is that, when n flows are present, each
of these uses c/(n+ 1) to transmit their traffic into the queue, while the remaining capacity c/(n+ 1)
is used to drain the queue. The question arises whether the analysis techniques for standard Markov
fluid models carry over to these fluid systems with coupled input and output. From a practical per-
spective, one is interested in characterizing the steady-state workload, the queueing delay, etc., in
terms of expectations, variances, and higher moments, but also their tail behavior.

Standard Markov fluid queues have been studied extensively. In the seminal studies [1, 15] a system of
differential equations (known as Kolmogorov forward equations) is derived for P(W ? ≤ x,N? = n),
where N? is the number of sources in the on-state in steady-state. Later these results have been
extended in many dimensions. To mention a few: one has considered heterogeneous sources, sources
with a more general structure than exponential on-off, see e.g. [20], there have been rather explicit
results for the case that the sources have a so-called birth-death structure [9] or have a countably
infinite state-space, see e.g. [26], and also models have been studied in which the source behavior
depends on the current workload [17, 24]. In addition there has been considerable interest in so-
called large-buffer asymptotics, i.e., expansions of P(W ? > x) for large x; these relate nicely to a
notion of effective bandwidths [11, 14].

The goal of the present paper is to extend the results for standard Markov fluid queues to our model
of a bottleneck in an ad hoc network. Interestingly, not even the stability criterion is completely
trivial, as essentially all traffic has to be ‘served’ twice (it has to be transmitted into the queue, and
subsequently it has to be served by the queue); as a result the common stability condition that the
mean input rate, say m, be smaller than c does not apply. In Section 2 we present, besides a detailed
model description, the correct stability requirement.
The second aim is to characterize the steady-state workload distribution. It is not hard to see that this
can be analyzed by setting up a system of Kolmogorov forward equations, but the special structure
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allows more explicit results. The crucial helpful property of our model with coupled input and output
is that the queue drains only when there are no flows present. This property entails that our model
strongly resembles the classical M/G/1 queueing model, and hence the Laplace transform (LT) of the
steady-state workload distribution can be given explicitly. These results are presented in Section 3.
In standard Markov fluid queues there is a one-to-one mapping between the buffer content that a
‘fluid particle’ sees upon arrival, and the delay it has: if it sees x units traffic in the queue, it leaves
the queue after x/c units of time. As a consequence, for standard Markov fluid queues, the queueing
delay distribution follows immediately from the steady-state workload distribution. This is not the
case for our model with coupled input and output; more specifically, when considering a tagged
fluid particle that arrived at time 0, flows arriving in the future have impact on the service capacity
available to the queue, and hence also on the delay of the fluid particle. This makes the analysis of
the queueing delay non-standard. A full characterization of its Laplace transform, also relying on the
results of Section 3, is given in Section 4.
In Section 5 we study the flow transfer delay, i.e., the time it takes before the flow has transmitted all
its traffic into the queue. This delay is essentially the absorption time of a certain continuous-time
Markov chain. Again, the solution is given in terms of Laplace transforms.
The sojourn time of a flow is defined as the flow transfer time of an arbitrary flow increased by the
time it takes before the last fluid particle of the flow is served. As these two components are correlated
the Laplace transform of the sojourn time does not immediately follow from the results of Sections
4 and 5. The derivation of the transform of the sojourn time explicitly uses the fact that the buffer
content cannot decrease during any flow transfer time. These issues are dealt with in Section 6.
Having the Laplace transforms of the workload, queueing delay, and flow transfer delay at our dis-
posal, a next question is how the tails of these distributions behave. In Section 7 it is shown that they
decay exponentially, and, relying on large-deviations tools, the decay rates are derived.
Section 8 concludes and identifies a few challenging subjects for future research. In particular, it is
discussed to what class of sharing policies (between the flows and the queue) our results can be
extended.

2 Model and background

In this section, we first give a detailed description of our model. Then we derive the steady-state
distribution of the number of flows simultaneously present in the system, allowing us to give a precise
stability condition.

2.1 Model

Consider a queueing system at which flows arrive according to a Poisson process, transmit traffic into
a queue, and leave when ready. When there are n flows active, any flow can transmit its traffic into
the queue at rate c/(n + 1), while a rate c/(n + 1) is used to serve the queue; as a consequence, the
queue only drains when there are no flows present, while it stays at the same level if exactly one flow
is active. Suppose that we impose the admission control policy that the system accommodates maxi-
mally n ∈ N flows simultaneously; in this way each active flow (as well as the queue) is guaranteed
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at least a transmission rate c/(n + 1).
We let Nt denote the number of flows present (i.e., feeding traffic into the queue) at time t. It is
not hard to see that, under the assumption of exponentially distributed flow sizes (with mean µ−1)
and interarrival times with mean λ−1, the process Nt constitutes a Markov chain on {0, . . . ,n}, with
generator matrix

Q :=



−λ λ

µ1c −µ1c− λ λ

µ2c −µ2c− λ λ
. . . . . . . . .

µnc −µnc


, (1)

where µn := µn/(n + 1). When Nt = n, the aggregate traffic rate generated by the flows is ri,n :=
cn/(n + 1), while the queue’s output rate is ro,n := c/(n + 1), such that the net rate of change of the
queue is 0 when Qt = Nt = 0, and otherwise, for n ∈ {0, . . . ,n},

ra,n := ri,n − ro,n = c
n− 1
n+ 1

.

Define Ri := diag{ri}, Ro := diag{ro}, and Ra := Ri −Ro.

Two variants of this model. In a first variant, one lets n → ∞, thus getting a countably infinite state
space. This means that there is no admission control imposed on the number of flows.
In a second variant, there are n sources that can be potentially active, and each source has a silence
time that is exponentially distributed with mean λ−1. The qn,n+1 should be (n−n)λ rather than λ (for
n = 0, . . . ,n− 1).

2.2 Stability condition

Due to the sharing of the service capacity between the flows and the queue, the stability condition of
this model is not standard. Also, a fraction of the flows is rejected because they enter when already n

flows are present. In this subsection we find the stability condition and the blocking probability.
To find a condition on λ, µ and c under which the queue is stable, we first determine the equilibrium
distribution π of (Nt)t∈R. Trivially, the balance equations are

πnµnc = πn−1λ, n = 1, . . . ,n.

Recursively solving these equations, it is not hard to derive, with % defined as λ/(µc), that

πn =
%n(n+ 1)∑n
k=0 %

k(k + 1)
.

Standard calculus on the geometric series yields

n∑
k=0

%k(k + 1) =
d
d%

(
n∑

k=0

%k+1

)
=

d
d%

(
%

1− %n+1

1− %

)
=

1− %n+1(n + 2) + %n+2(n + 1)
(1− %)2

.
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The equilibrium condition of the fluid model is
∑n

n=0 πnra,n < 0, after considerable algebra translat-
ing into

−1 + 2%− %n+1n + %n+2(n− 1)
1− %n+1(n + 2) + %n+2(n + 1)

· c < 0.

Due to the PASTA-property, the probability of an arbitrary arriving flow being blocked is

πn =
%n(n + 1)(1− %)2

1− %n+1(n + 2) + %n+2(n + 1)
.

Special case of n → ∞. Interestingly, for n → ∞, the equilibrium probabilities πn have the form
(1−%)2(n+1)%n, and the equilibrium condition (−1+2%)c < 0, or, equivalently, 2λ/µ < c. The latter
condition has an appealing interpretation. In the model with n → ∞, the input process is essentially
a Poisson stream (arriving at rate λ) of flows that have mean size µ−1. Every flow has to be processed
twice: first it has to be put into the queue, and then it has to be served by the queue. This immediately
leads to the stability condition 2λ/µ < c.

3 Steady-state workload distribution

In this section we study the steady-state workload of the queue. As mentioned in the introduction,
one could set up a system of Kolmogorov forward equations as in [1], which, in conjunction with
the proper boundary condition, characterize the distribution function (in terms of eigenvalues and
eigenvectors of some matrix). Due to the specific structure of our model, however, rather explicit
results for the Laplace transform of the steady-state workload can be given. In particular we exploit
the property that the buffer content only decreases when no flows are present, and the fact that these
periods have an exponential duration, cf. for instance [6, 26]. As a consequence, our model is closely
related to the family of M/G/1 systems.

3.1 Busy periods

In our analysis of the steady-state workload distribution, we need the notion of busy periods. A busy
period B is, in this context, defined as a period that starts at an epoch at which (Nt)t∈R jumps from
0 to 1, and ends at a moment that it jumps from 1 to 0. We introduce the auxiliary quantity Bn, for
n = 1, . . . ,n:

Bn := inf{t ≥ 0 : Nt = n− 1 | N0 = n};

evidentlyB d= B1. In our analysis we also need the distribution of T , the net amount of traffic entering
the queue (i.e., the increase of the buffer content) duringB. DefineA(s, t) :=

∫ t
s ra,Nudu. Then T d= T1,

with

Tn
d= A(0, Bn).

Analysis of the Laplace transform. Using standard arguments, cf. [13, 21, 23], we find the recursion, for
n = 1, . . . ,n− 1,

Ee−sTn =
λ

λ+ µnc + ra,ns
Ee−sTn+1Ee−sTn +

µnc

λ+ µnc + ra,ns
, (2)
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while for n = n the random variable Tn is exponentially distributed with mean rn/(µnc):

Ee−sTn =
µnc

µnc + ra,ns
. (3)

The above implies that Ee−sT is the solution of a finite recursion, of which the starting condition is
known (namely Ee−sTn). The nature of the formula for Ee−sT is an n-fold iterated fraction.

Mean and second moment. Similarly to the above, we can find a recursion for the mean. It reads

ETn =
ra,n

µnc
+

λ

µnc
ETn+1 = . . . =

n∑
i=n

λi−nra,i

µn · · ·µici−n+1
=

1
nµ

n∑
i=n

%i−n(i− 1).

In particular,

ET =
1
µ
· %

(1− %)2
(
1− %n−1n + %n(n− 1)

)
;

for the case n → ∞, this converges to the clean expression %/(µ(1 − %)2). For the second moment
we can develop a recursion in the same way, again by distinguishing between the period where the
number of flows is n, and the first jump afterwards. We obtain

ET 2
n =

2r2a,n

(λ+ µnc)2
+

2ra,n

λ+ µnc

λ

λ+ µnc
(ETn + ETn+1)

+
λ

λ+ µnc
(ET 2

n + 2ETnETn+1 + ET 2
n+1),

with ET 2
n = 2r2a,n/(µnc)2. The recursion can be restated as ET 2

n = αnET 2
n+1 + βn, with αn := λ/(µnc),

and

βn := 2
r2a,n

µnc(λ+ µnc)
+ 2

ra,nλ

µnc(λ+ µnc)
(ETn + ETn+1) + 2

λ

µnc
ETnETn+1;

notice that βn, n = 1, . . . ,n, are known numbers, in view of the formulae for ETn above. The solution
of the recursion is, with the ‘empty product’ defined as 1,

ET 2
n =

n−1∑
i=n

 i−1∏
j=n

αj

βi

+

n−1∏
j=n

αj

ET 2
n .

In particular, by inserting n = 1 we derive the second moment of T :

ET 2 =

(
n−1∑
i=1

%i−1iβi

)
+ 2%n−1n

r2a,n

(µnc)2
.

3.2 Steady-state workload

The steady-state workload, say W ?, is, according to Reich’s formula [22], distributed as

W ? d= M := sup
t≥0

A(−t, 0) d= sup
t≥0

A(0, t),

where the second equality in distribution is due to the reversibility of (Nt)t∈R. In this subsection, we
derive an explicit expression for the LT of M . Define

Mi := sup
t≥0

{A(0, t) | N0 = i};
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clearly Ee−sM =
∑n

n=0 πnEe−sMn , hence we have to find expressions for Ee−sMn , for n = 0, . . . ,n.
As for n = 1, . . . ,n, during periods Bn the queue does not decrease, the random variables Tn are
nonnegative almost surely. In fact, A(0, t) attains its maximum either at time 0, or at an epoch at
which Nt jumps from 1 to 0. These observations lead to the following equality in distribution:

Mn
d= Tn + Tn−1 + · · ·T1 +M0,

with Bn, Bn−1, . . . , B1,M0 independent. This entails that

Ee−sMn = Ee−sM0 ·
n∏

i=1

Ee−sTi ,

for n = 0, . . . ,n (again defining the empty product to be 1). With a recipe to compute Ee−sTi given in
the previous section, we are left to compute Ee−sM0 .
We now introduce an embedding that facilitates easy computation of the LT of M0. Starting in 0, the
maximum of A(0, t) over t ≥ 0 equals the maximum of

∑i
j=0(Xj − Yj) over i = 0, 1, . . ., with the Xj

i.i.d. samples, distributed as T , and the Yj i.i.d. samples from an exponential distribution with mean
c/λ (where also the sequences Xj and Yj are independent). The LT of the latter maximum is given by
the celebrated Pollaczek-Khinchine formula, see for instance [2], so that we arrive at

Ee−sM0 =
(

1− λET
c

)
s

s− (λ/c)(1− Ee−sT )
.

Our final result is stated in the following theorem.

Theorem 3.1 The LT of the steady-state workload is given by, s ≥ 0,

Ee−sW ?
= Ee−sM =

n∑
n=0

πn

(
1− λET

c

)
s

s− (λ/c)(1− Ee−sT )

(
n∏

i=1

Ee−sTi

)
,

where the Ee−sTi follow from (2) and (3).

Moreover, we can also consider the joint distribution of the steady-state workload W ? and number of
flows N?. It turns out that

E(e−sW ?
1{N? = n}) = πn

(
1− λET

c

)
s

s− (λ/c)(1− Ee−sT )

(
n∏

i=1

Ee−sTi

)
. (4)

The above results also enable calculation of the mean steady-state workload:

EW ? =
(

1
2

λET 2

c− λET

)
+

(
n∑

n=0

(
πn

n∑
i=1

ETi

))
,

following the convention that the empty sum is defined as 0.
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4 Queueing delay distribution

As argued in the introduction, it is a nontrivial step to translate the steady-state workload distribu-
tion into the queueing delay distribution: for standard Markov fluid queues the buffer content seen
by a fluid particle arriving, say at time 0, fully determines the epoch at which it will leave the queue,
whereas in our system with coupled input and output the arrivals and departures of flow after 0 has
impact. In the first subsection we analyze the so-called virtual queueing delay, i.e., the delay experi-
enced by a fluid particle arriving at a random point in time (i.e., a ‘time average’), whereas the second
subsection characterizes the queueing delay of an arbitrary fluid particle (i.e., a ‘traffic average’).

4.1 Virtual queueing delay

Let D? denote the delay experienced by a fluid particle arriving at the queue in steady state, say for
ease at time 0; this type of delay is sometimes referred to as virtual queueing delay. Let O(0, t) denote
the amount of output capacity available in the interval [0, t). Then, cf. [16, Section III],

Ee−sD?
=

∫ ∞

0
e−stP(D? = t)dt =

∫ ∞

0
e−stP(W ? = O(0, t))dt

=
n∑

n=0

∫ ∞

0
e−stP(W ? = O(0, t), N? = n)dt.

Now define, for z ≥ 0, the random variable τz as the time until z units of service have become
available:

τz := inf {t ≥ 0 : O(0, t) = z} = inf
{
t ≥ 0 :

∫ t

0
ro,Nsds = z

}
;

notice that O(0, t) is increasing in t. Using this notion, we get, with some abuse of notation,

Ee−sD?
=

n∑
n=0

∫ ∞

0
e−stP(τW ? = t,N? = n)dt,

which equals, remarking that O(0, t) depends on (W ?, N?) just through N?,

n∑
n=0

∫ ∞

0

∫ ∞

0
e−stP(W ? = z,N? = n)P(τz = t | N? = n)dzdt.

Now we interchange the order of integration, to get

n∑
n=0

∫ ∞

0
E(e−sτz | N? = n)P(W ? = z,N? = n)dz.

Hence, to further compute this expression, we need to evaluate E(e−sτz | N? = n). Fortunately, we
have the following proposition at our disposal, cf. [5] and the appendix of [14].

Proposition 4.1 Consider an irreducible, finite-state (with states 0, . . . ,n), continuous-time Markov chain
(Xt)t∈R with generator Q. Let r be a componentwise positive vector of dimension n, and R := diag{r}. Define

τz := inf
{
t ≥ 0 :

∫ t

0
rXsds = z

}
,
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and ξn(s, z) := E(e−sτz | X0 = n). Then, with ξ(s, z) = (ξ1(s, z), . . . , ξn(s, z))T, and 1 an (n + 1)-
dimensional vector with 1’s,

ξ(s, z) = exp((R−1Q− sR−1)z)1. (5)

In addition, the eigenvalues δ0(s), . . . , δn(s) of R−1Q− sR−1 are real, negative, and unique (s > 0).

Proof. A straightforward conditioning argument yields, with qj := −qjj ,

ξn(s, z) =
∑
m6=n

ξm(s, z − rn ∆t)qnm∆t + ξn(s, z − rn ∆t)e−s∆t(1− qn ∆t) + o(∆t).

Now writing e−s∆t = 1 − s∆t + O((∆t)2), subtracting ξn(s, z − rn ∆t) from both sides, dividing the
equation by rn∆t, and letting ∆t ↓ 0, we arrive at

∂

∂z
ξn(s, z) =

n∑
m=1

qnm

rn
ξn(s, z)− ξn(s, z)

s

rn
.

In matrix-notation, we have that

∂

∂z
ξ(s, z) = (R−1Q− sR−1)ξ(s, z),

which yields (5).
Geršgorin’s circle theorem [19] implies that each eigenvalue of M(s) = (mij)ni,j=0 := R−1Q− sR−1 is
in at least one of the disksz ∈ C :

∣∣∣∣z − qii − s

ri

∣∣∣∣ <∑
j 6=i

qij
ri

 ,

and hence all eigenvalues are in the left half plane. Furthermore, the matrix M(s) is real and tridiag-
onal with mi,i+1mi+1,i > 0 for i = 0, . . . ,n − 1, and hence all its eigenvalues are real and unique, see
again [19]. 2

Apply Proposition 4.1, with continuous-time Markov chain Nt governed by Q as defined by (1), and
R := Ro (which is indeed componentwise positive). Recalling that all eigenvalues δ0(s), . . . , δn(s) of
M(s) := R−1

o Q− sR−1
o are different, so that we can write, for constants γmn with m,n = 0, . . . ,n,

E(e−sτz | N? = n) =
n∑

m=0

γmne
δm(s) z. (6)

Then we have found an explicit expression of the LT of the virtual queueing delay.

Theorem 4.2 For s > 0,

Ee−sD?
=

n∑
n=0

n∑
m=0

γmnE(eδm(s)W ?
1{N? = n}),

where the γmn are as in (6). The δn(s), for n = 0, . . . ,n, are the eigenvalues of R−1
o Q − sR−1

o (which are
negative). An expression for E(e−sW ?

1{N? = n}) is available from Theorem 3.1.
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4.2 ‘Packet-average’ queueing delay

Informally, the previous section gave the LT of the queueing delay ‘at an arbitrary point in time’.
Clearly, there is a bias between the delay D? ‘at an arbitrary point in time’ and delay D̄? ‘seen by an
arbitrary fluid molecule’. The correction to be made is rather straightforward:

Ee−sD̄?
=

n∑
n=0

(
ri,n∑n

k=0 πkri,k

) n∑
m=0

γmnE(eδm(s)W ?
1{N? = n}),

cf. Asmussen [2, Prop. 7.2].

5 Flow transfer delay distribution

Now we focus on the time F it takes for an arbitrary arriving flow to transmit its traffic. We define the
transfer time as the time between arrival and the epoch that its last fluid particle has been transmitted
into the queue.

5.1 Flow transfer delay

Let the process (Zi)i∈N correspond to the number of flows present at (i.e., just after) arrival epochs.
This process is a Markov chain, with, say, transition matrix P = (pmn)nm,n=1. It is clear that Zi can
jump only one level up, or in other words, pmn = 0 for all n > m+ 1. It can be verified easily that, for
m = 1, . . . ,n and n = 1, . . . ,m+ 1,

pmn =

(
m∏

k=n

µkc

λ1{k 6= n}+ µkc

)
λ

λ+ µn−1c
.

From this the equilibrium distribution πZ can be computed efficiently due to the fact that the chain
can jump just one level upwards. More directly, however, one can argue that we can use the PASTA-
property here, such that

πZ
n :=

πn−1∑n−1
m=0 πm

. (7)

We can now compute the LT of the flow transfer delay. Define F as the transfer delay of a tagged flow,
that arrives at, say, time 0, when there are n− 1 flows present (i.e., there are n flows immediately after
the arrival of the tagged flow), n = 1, . . . ,n. We compute, for n = 1, . . . ,n and m = 0, . . . ,n− 1,

φnm(s) := E(e−sF 1{NF+ = m} | N0 = n).

A standard linear system can be written down, for n = 1, . . . ,n − 1, cf. the analysis for the finite-
capacity processor-sharing queue in [4, Section II]:

φnm(s) =
1

λ+ µnc + s

(
λφn+1,m(s) +

n− 1
n

µnc φn−1,m(s) +
1
n
µnc 1{n− 1 = m}

)
;

here the fraction 1/n is the probability that at a departure epoch it is the tagged flow that leaves. We
also have

φnm(s) =
1

µnc + s

(
n− 1

n
µnc φn−1,m(s) +

1
n
µnc 1{n− 1 = m}

)
.
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We have thus derived, for fixed m = 0, . . . ,n − 1 and s, n linear equations in n unknowns; as in [4]
it can be shown that the corresponding matrix is, for any s > 0, diagonally dominant and thus non-
singular, and hence there is a unique solution. The transform of the flow transfer delay of an arbitrary
customer now reads

Ee−sF =
n∑

n=1

n−1∑
m=0

πZ
n φnm(s). (8)

5.2 Representation of flow transfer delay with a phase-type distribution

Alternatively, the flow transfer delay distribution can also be found through a system of Kolmogorov
equations. Defining

fnm(t) := P(F > t,NF+ = m | N0 = n),

it is standard to derive through the usual ∆t-argumentation, for n = 1, . . . ,n and m = 0, . . . ,n− 1,

fnm(t+ ∆t) = fn+1,m(t) λ∆t 1{n < n} + fn−1,m(t) µnc
n− 1
n

∆t 1{n > 1}

+ fnm(t) (1− (λ 1{n < n}+ µnc 1{n > 1})∆t) ,

immediately leading to

f ′nm(t) = λ 1{n < n}fn+1,m(t) + µnc
n− 1
n

1{n > 1}fn−1,m(t)

− (λ 1{n < n}+ µnc 1{n > 1})fnm(t).

Define the matrix Q? = (q?
mn)nm,n=1 through q?

n,n−1 := qn,n−1 (n − 1)/n, and q?
mn := qmn otherwise.

Then we have that the vector fm(t) := (fm1(t), . . . , fmn(t))T satisfies f ′m(t) = Q?fm(t). Now also
observe that the starting condition fmn(0) (again, fix m) follows from

(λ 1{n < n}+ µnc 1{n > 1})fnm(0) = λ 1{n < n}fn+1,m(0) +
n− 1
n

µncfn−1,m(0) +

1
n
µnc1{n− 1 = m};

we call the solution f̄m := (f̄m1, . . . , f̄mn)T. We thus have obtained that

fm(t) = exp(Q?t)f̄m.

As Q? is strictly diagonally dominant, it is non-singular. Using Geršgorin’s theorem, one can prove
that the eigenvalues δ̄1, . . . , δ̄n have a negative real part. In addition, as q?

m,m+1q
?
m+1,m > 0 and Q? is

a real and tridiagonal matrix, all eigenvalues are real and unique [19]. These observations imply that
we can find constants γ̄nm such that

P(F > t | N0 = n) =
n∑

m=1

γ̄nme
δ̄mt. (9)

Now we can rewrite LT (8) as follows. Observe that

Ee−sU = 1−
∫ ∞

0
P(U > u)se−sudu,

11



for any random variable U on [0,∞) for which these expectations exist. Hence, we obtain that, using
that

∑n
n=1 γ̄mn = 1 for all m, and

∑n
m=1 π

Z
m = 1,

Ee−sF = 1−
n∑

m=1

πZ
m

(
n∑

n=1

γ̄nm
s

−δ̄n + s

)
=

n∑
m=1

πZ
m

(
n∑

n=1

γ̄nm
−δ̄n

−δ̄n + s

)

=
n∑

n=1

γ̄n
−δ̄n

−δ̄n + s
, with γ̄n :=

n∑
m=1

πZ
mγ̄nm.

We conclude that F has a phase-type distribution, with shape parameters −δ̄1, . . . ,−δ̄n and weights
γ̄1, . . . , γ̄n (where the latter vector sums to 1).

5.3 Mean transfer delay

Consider the mean transfer delay of a flow that finds n− 1 flows upon arrival (n = 1, . . . ,n), i.e.,

E(F | N0 = n) =: ηn;

at time 0 there are n flows present, including the tagged flow. Clearly, ηn is characterized through the
n linear equations

(λ 1{n < n}+ µnc 1{n > 1}) ηn = 1 + λ 1{n < n}ηn+1 +
n− 1
n

µnc 1{n > 1}ηn−1.

Interestingly, these equations can be solved iteratively, as follows. The first equation gives η2 in terms
of η1. Then consider the second equation; this gives η3 in terms of η1 and η2, and hence also η3 in terms
of η1 alone. Continuing in this way, we derive from the j th equation ηj+1 in terms of η1. After the
(n−1)-st equation we have η1 up to ηn expressed in terms of η1. Plug these into the n-th equation, and
solve η1, and implicitly also η2, . . . , ηn. This procedure, however, does not lead to attractive explicit
expressions.

Mean flow transfer delay EF . First consider the limiting case of n → ∞. Then it turns out that the
above equations do allow a nice explicit solution. Inspired by the results for the processor-sharing
queue [25], we try the ‘linear solution’ ηn = ϑI + ϑII n. Plugging these into our recursion yields the
remarkably simple expressions

ϑI =
1
µc

1
2− %

, ϑII =
1
µc

3
2− %

,

so that

E(F | N0 = n) =
1
µc

n+ 3
2− %

.

The unconditioned mean file transfer delay (of an accepted flow) now reads (use PASTA)

EF =
∞∑

n=0

πnE(F | N0 = n+ 1) =
∞∑

n=0

%n(n+ 1)(1− %)2
1
µc

n+ 4
2− %

=
2

µc− λ
=

2
µc

1
1− %

.

We remark that the latter quantity can be computed also in a direct way, as follows. The mean number
of flows in the system is

∑∞
n=0 n%

n(n+ 1)(1− %)2 = 2%/(1− %), and with ‘Little’ we get the desired.
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‘Little’ can of course also be used when n < ∞; the advanatge is that then we do not need explicit
expressions for E(F | N0 = n) to compute EF . It yields

EF =
∑n

n=0 nπn

λ(1− πn)
=
∑n

n=0 n%
n(n+ 1)(1− %)2

λ(1 + %n+1n− %n(n + 1))
=

1
µc

∑n−1
n=0 %

n(n+ 1)(n+ 2)(1− %)2

1 + %n+1n− %n(n + 1)
;

an explicit (though unattractive) expression for the numerator can be derived by differentiating the
finite geometric series

∑n
n=0 %

n = (1− %n+1)/(1− %) twice.

Mean flow transfer delay EF (x) of a flow of size x. We can also compute the expected flow transfer delay
(of an accepted flow) given that the flow has size x. It is given by [6]

EF (x) =
x

c

1
1− πn

(
n−1∑
n=0

%n cn+1

n!

)/(
n∑

n=0

%n cn
n!

)
,

where cn is the fraction of the service rate c that is dedicated to a single flow, when there are n flows
present, i.e., 1/(n+ 1). This formula, which is remarkably enough linear in x, can be simplified to

EF (x) =
x

c

∑n−1
n=0 %

n(n+ 1)(n+ 2)∑n−1
n=0 %

n(n+ 1)
=
fx

c
, with f :=

∑n−1
n=0 %

n(n+ 1)(n+ 2)(1− %)2

1 + %n+1n− %n(n + 1)
;

by integrating x out, the above expression for EF is recovered.

6 Sojourn time distribution

In this section we analyze the sojourn time of flows in the system, which is in fact the flow transfer
time, increased by the time it takes to serve the last fluid particle of the flow. Notice that these two
components are not independent, and as a consequence the LT of the sojourn time does not follow
immediately from our earlier results.
We first describe the state of the system just after an arrival of an accepted flow. Then we study the
transform of the flow transfer time jointly with the increase of the buffer during this period. Finally
we use these ingredients to find the LT of the sojourn time.

6.1 Situation at flow arrival epochs

Here the PASTA-property applies. In other words: the joint distribution of the workload and the
number of flows just after an arrival of an accepted flow is given by (4). Therefore, associating time 0
with the accepted flow arrival, we write, for n = 1, . . . ,n,

χn(s) := E(e−sW01{N0 = n}) =
πn−1∑n−1
m=0 πm

(
1− λET

c

)
s

s− (λ/c)(1− EesT )

(
n∏

i=1

EesTi

)
, (10)

cf. also (7).
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6.2 Joint transform of flow transfer delay and workload increment

The goal of this subsection is to compute the transform of the transfer delay F of a job that finds n− 1
jobs upon arrival (n = 1, . . . , N ), jointly with the increment of the workload in this period, say ∆W ,
and the number of flows present at the end of the transfer (not counting the flow that just left) NF+:

ψnm(~s) := E(e−s1F−s2∆W 1{NF+ = m} | N0 = n),

with ~s ≡ (s1, s2). Notice that the workload cannot decrease during the flow transfer, and, as a conse-
quence, the distribution of ∆W depends on the past only through N0 (importantly, the value of W0

does not play a role).
The ψnm(~s) satisfy, for n = 1, . . . ,n− 1, the following system of equations:

ψnm(~s) =
1

λ+ µnc + s1 + ra,ns2

(
λψn+1,m(s) +

n− 1
n

µnc ψn−1,m(s) +
1
n
µnc 1{n− 1 = m}

)
. (11)

We also have

ψnm(~s) =
1

µnc + s1 + ra,ns2

(
n− 1

n
µnc ψn−1,m(s) +

1
n
µnc 1{n− 1 = m}

)
. (12)

For fixed m and ~s, these form a system of linear equations, which is (as earlier) non-singular.

6.3 Sojourn time

In our analysis, we use the following decomposition of the sojourn time S: S can be written as the
sum of

- the flow transfer delay,

- and the time required to process the last particle of the flow. The buffer content at the end of the
flow transfer time can be decomposed into

(i) the amount of traffic in the buffer at the epoch the flow arrived,

(ii) the net amount of fluid that entered the buffer during the flow transfer delay.

Above we have seen that the workload at flow arrival (intersected with the event that n flows are
present) is characterized through the LT χn(s). On the other hand, the net amount of fluid entering the
queue, jointly with the flow transfer delay and intersected with the event that when the tagged flow
leaves there are m flows present, given that at the start of the flow transfer n flows were transmitting,
is characterized through LT ψnm(s). Combining these gives, with some abuse of notation, and with
τz as defined before, the following expression for the LT of S:

Ee−sS = E exp(−sF − sτW0+∆W )

=
∫ ∞

0

∫ ∞

0

n∑
n=1

n−1∑
m=0

P(W0 = x,N0 = n)

E(e−sF 1{∆W = y,NF+ = m} | N0 = n)E(e−sτx+y | N0 = m)dxdy.
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Now using Proposition 4.1, this expression equals∫ ∞

0

∫ ∞

0

n∑
n=1

n−1∑
m=0

P(W0 = x,N0 = n)

E(e−sF 1{∆W = y,NF+ = m} | N0 = n)
n∑

k=0

γkme
δk(s) (x+y)dxdy.

We have proven the following result.

Theorem 6.1 For s > 0,

Ee−sS =
n∑

n=1

n−1∑
m=0

n∑
k=0

γkmχn(−δk(s))ψnm(s,−δk(s)),

where the γmn are as in (6), χn(·) as in (10), and ψ(·) defined through (11) and (12).

Remark 6.2 The above procedure also yields the joint LT of the flow transfer time F , and the time
τW0+∆W it takes to serve the last fluid particle of the flow:

E exp(−s1F − s2τW0+∆W ) =
n∑

n=1

n−1∑
m=0

n∑
k=0

γkmχn(−δk(s2))ψnm(s1,−δk(s2)).

This formula (implicitly) describes the correlation between F and τW0+∆W . ♦

7 Tail probabilities

In this section, we study the tail behavior of W ?, D?, and F , and S. More specifically, we show that
these three random variables decay exponentially, and, in addition, we identify the associated decay
rate. We first recall the following collection of results, which were proven in, e.g., [14], relying on the
Gärtner-Ellis theorem [8, Thm. 2.3.6]. A key role is played by the asymptotic logarithmic moment
generating function (mgf), or cumulant function, and its properties.

Proposition 7.1 Consider an irreducible, finite-state (with states 0, . . . ,n), continuous-time Markov chain
(Xt)t∈R with generator Q and equilibrium distribution π. Let r be a vector of dimension N such that ma :=∑N

n=0 πnrn < 0, and R := diag{r}. Define A(s, t) :=
∫ t
s rXudu.

1. The asymptotic logarithmic mgf of A(0, t), i.e.,

Λa(θ) := lim
t→∞

1
t

log E exp(θA(0, t)),

is a convex function, and equals the largest eigenvalue of Q + θR, irrespective of the value of X0. With
qi :=

∑
j 6=i qij , we have that Λa(θ) exists for all θ smaller than

min
{
qi
ri

: ri > 0
}
.
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2. For any x > ma,

lim
t→∞

1
t

log P
(
A(0, t)
t

> x

)
= −Ia(x),

with Ia(x) := supθ(θx− Λa(θ)); Ia(·) is convex, Ia(ma) = 0. Similarly, for x < ma,

lim
t→∞

1
t

log P
(
A(0, t)
t

< x

)
= −Ia(x).

3. For the steady-state workload W ?, which is distributed as supt≥0A(−t, 0), it holds that

lim
x→∞

1
x

log P(W ? > x) = −θ?.

Here θ? is the smallest positive eigenvalue solving the eigensystem −θRx = Qx. Alternatively, θ? is
characterized as the unique positive solution of Λa(θ) = 0. Yet a third way of computing the decay rate is

θ? = inf
m>0

Ia(m)/m. (13)

Remark 7.2 An intuitive explanation of the relation (13) is the following. Ia(m) can be interpreted as
the cost incurred for the processA(0, t) to generate traffic at ratem; evidently there is no cost involved
when sending at the average rate ma (reflected by Ia(ma) = 0), but there is a positive cost for sending
at a higher (or lower) rate. Suppose the process generates traffic at rate m > 0. Then it takes about
x/m to reach buffer level x, and the cost made is Ia(m)/m. There is an evident trade-off between the
numerator and the denominator: when choosing m small but positive, the cost per unit of time are
relatively low, but it takes long to reach x, whereas the opposite applies when choosing m large. We
conclude that the ‘most likely speed’ m? is the minimizing argument in

x

(
inf
m>0

Ia(m)/m
)
, (14)

where (14) roughly equals − log P(W ? > x), for x large. ♦

7.1 Decay rate of steady-state workload

The decay rate θ? of W ? follows immediately from Proposition 7.1, with continuous-time Markov
chain Nt governed by Q as defined by (1), and R := Ra: θ? is the smallest positive eigenvalue of the
system−θRax = Qx. In fact, one can prove the stronger statement that P(W ? > x) exp(θ?x) converges
to some constant κ > 0 for x→∞, and even, for n = 0, . . . ,n,

lim
x→∞

P(W ? > x,N? = n) exp(θ?x) = κn, (15)

for κn > 0, see for instance [15].
Another way to characterize θ? is as follows [18]. Let Umn be the value of A(0, Vn) conditional on
N0 = m, where Vn is the epoch of the first entrance of Nt for t > 0 to state n. Then θ? can be
alternatively characterized as the unique positive solution of EeθUmm = 1; remarkably, in [18] it is
shown this solution is identical for any m = 0, . . . ,n. Now consider m = 0. Then U00 is distributed
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as E + T , with E exponentially distributed with mean λ−1, T as defined in Section 3, and E and T

independent. The equation EeθU00 = 1 then reduces to

λ

λ+ θc
EeθT ,

or, equivalently, θ + (λ/c)(1 − EeθT ) = 0. We conclude that the decay rate θ? coincides with (minus)
the pole of Ee−sW ?

, cf. Theorem 3.1.

7.2 Decay rate of queueing delay

We next characterize the exponential decay rate of the queueing delay. We here focus on the virtual
queueing delay, but it can be verified easily that the same decay rate applies to the ‘packet average’.
We first define the cumulant function of the output process, as follows. For θ ∈ R,

Λo(θ) := lim
t→∞

1
t

log E exp(θO(0, t)).

This function equals the largest eigenvalue ofQ+θRo, due to Proposition 7.1. We also define Io(x) :=
supθ(θx − Λo(θ)), and mo :=

∑
n=0 nπnro,n. We first observe that, again due to Proposition 7.1,

irrespective of the number of flows present at time 0,

lim
u→∞

1
u

log P(O(o, u) ∈ [iεu, (i+ 1)εu)) = ζi(ε) :=


−Io(iε) if mo < iε;
−Io((i+ 1)ε) if mo > (i+ 1)ε;
−Io(mo) = 0 if iε < mo < (i+ 1)ε,

explicitly using the convexity of Io(·). The following result is [8, Lemma 1.2.15].

Lemma 7.3 For any finite index set S, and ωi(u) ≥ 0,

lim sup
u→∞

1
u

log
∑
i∈S

ωi(u) = max
i∈S

lim sup
u→∞

1
u

logωi(u).

Now we have collected the prerequisites for the proof of the following result.

Theorem 7.4 The decay rate of the virtual queueing delay equals

lim
t→∞

1
t

log P(D? > t) = − inf
m

(Io(m) + θ?m) = Λo(−θ?). (16)

Proof. We first prove the first equality in (16). We start by establishing the upper bound. Conditioning
on the value of O(0, t),

P(D? > t) =
n∑

n=0

P(W ? > O(0, t), N? = n)

≤
n∑

n=0

∞∑
i=0

P(W ? ≥ (i+ 1)εt,N? = n)P(O(0, t) ∈ [iεt, (i+ 1)εt) | N? = n). (17)

It is clear that for some values of i there is no contribution, due to the fact that the rates in the vector
ro are between c/(n + 1) and c. Therefore, we can restrict ourselves to

i ∈ Iε, where Iε :=
{
i ∈ N :

c

ε(n + 1))
− 1 ≤ i ≤ c

ε

}
.
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The decay rate of P(W ? ≥ (i + 1)εt,N? = n) is −θ?(i + 1)ε, independently of n, see (15). The decay
rate of P(O(0, t) ∈ [iεt, (i+ 1)εt) | N? = n) is ζi(ε), as given above, also independently of n. In view of
Lemma 7.3, the decay rate of (17) is majorized by

max
i∈Iε

(−θ?(i+ 1)ε+ ζi(ε)) .

Now let ε ↓ 0; using the continuity of Io(·), we arrive at

sup
m∈[c/(n+1),c]

(−θ?m− Io(m)). (18)

Now we present the lower bound, which is established in a similar fashion. Evidently, for any i,

P(D? > t) ≥ P(W ? ≥ (i+ 1)εt,N? = n)P(O(0, t) ∈ [iεt, (i+ 1)εt) | N? = n).

The decay rate of the right-hand side of the previous display is −θ?iε + ζi(ε); as this holds for any i,
the supremum over i is still a lower bound. Taking ε ↓ 0, we obtain that the upper bound (18) is also
lower bound.
We have now proven the first equality in (16); the second immediately follows from the duality rela-
tion Λo(θ) = supx(xθ − Io(x)), see for instance [10, Thm. VI.4.1]. 2

Remark 7.5 There is an appealing alternative way to characterize this decay rate, cf. Remark 7.2.
Consider the event that a fluid particle arriving at time 0 has (approximately) virtual delay t. Suppose
that, after time 0, the queue drains at rate m, which costs Io(m) per unit of time. In order to achieve
delay t, the workload at time 0 should have beenmt. Supposing that the queue built up at ratem′ > 0
before time 0, with cost Ia(m′) per unit of time, this took (m/m′)t time. In other words, we are to
minimize

inf
m,m′>0

(
Ia(m′)

mt

m′ + Io(m) t
)

= t

(
inf
m>0

(θ?m+ Io(m))
)
,

where the equality is due to (13). ♦

7.3 Decay rate of flow transfer delay

The decay rate of the flow transfer delay follows immediately from the phase-type distribution iden-
tified in Section 5. Directly from Equation (9), we see that

lim
x→∞

1
x

log P(F > x) = δ̄ := max
n=1,...,n

δ̄n,

i.e., the dominant eigenvalue of Q?.

7.4 Decay rate of sojourn time

We now turn our attention to the tail behavior of the sojourn time. This is a complicated issue, as long
sojourn times are due to a combination of (i) a high workload when the flow enters, (ii) a large flow,
(iii) a large amount work brought along by flows arriving during the flow transfer time of the tagged
flow, (iv) a low service speed available to the queue after the flow transmission time (i.e., when the

18



complete flow has been put into the queue). We below sketch how the exponential decay rate can be
computed; the arguments can be made precise as in Section 6.2.
Using the representation S = F + τW0+∆W , we condition on the values of W0,∆W, and F . With some
abuse of notation,

P(F + τW0+∆W > t)

≈
n∑

n=1

∫ ∞

0
P(W0 = zt | N0 = n)P(F + τz+∆W > t,N0 = n)dz

≈
n∑

n=1

n−1∑
m=0

∫ ∞

0

∫ ∞

0

∫ ∞

0
P(W0 = zt | N0 = n)P(F = ft,∆W = wt,N0 = n,NF+ = m)

P(τzt+wt > t− ft,N0 = m)df dw dz,

with f ∈ (0, 1). Now use the folk theorem that says that the decay rate of an integral equals the decay
rate of the maximum of the integrand. We saw earlier that the exponential decay rate (x large) of
P(W0 = zt | N0 = n) does not depend on n; likewise, the decay rates of the other two probabilities,
P(F = ft,∆W = wt,N0 = n,NF+ = m) and P(τzt+wt > t− ft,N0 = m), do not depend on m and n.
They can be computed as follows:

• As before, for z > 0,

lim
t→∞

1
t

log P(W0 = zt) = −zθ? =: J1(z).

• Similar to the decay rate of F being equal to maxn=1,...,n δ̄n, i.e., the infimum over all s < 0 for
which Ee−sF <∞, we have that

lim
x→∞

1
t

log P(F = ft,∆W = wt) = inf
{
s1f + s2w : Ee−s1F−s2∆W <∞

}
=: J2(f, w).

Notice that this decay rate is larger than −∞, as can be seen as follows. Suppose that T is the
flow size of the tagged flow. Then, as each flow receives a rate of maximally c/2, we have that
F ≥ 2T/c. Hence, for s1 > −µc/2,

Ee−s1F−s2∆W ≥ µ

µ+ 2s1/c
,

and Ee−s1F−s2∆W = ∞ for s1 ≤ −µc/2.

• Also, as earlier,

lim
t→∞

1
t

log P(τzt+wt > t−ft)

= lim
t→∞

1
t

log P(O(0, (1− f)t) < zt+ wt) = −(1− f)Io

(
z + w

1− f

)
=: J3(z, f, w),

with (z + w)/(1− f) < mo.

Collecting terms, we find that

lim
x→∞

1
t

log P(S > t) = sup
z,f,w

(J1(z) + J2(f, w) + J3(z, f, w)) ,

where the maximization is over all z, w > 0 and f ∈ (0, 1), such that (z + w)/(1− f) < mo.
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8 Discussion and outlook

An important feature of our model is that there is just one state in which the queue drains. It has
appeared that this is a key property in our analysis. Importantly, it entails that the dynamics of the
number of flows in the system are not affected by the workload process. This enabled the compuation
of the LT of the workload, as it brought us into the framework of M/G/1-type of models. Also, it
implied that the workload cannot decrease during flow transfer; as a consequence ∆W (as used in
Section 7) depends on N0, and not on W0. One could, however, think of other allocation policies (i.e.,
policies to distribute the capacity between the flows and the queue, as alternatives to the ‘c/(n + 1)-
policy’ used in this paper), which still have the desirable property that there is just one ‘buffer drain
state’. An example could be

ri,n := cmax
{

n

n+m
,
1
2

}
,

for m ∈ N, and ro,n := c − ri,n. When m is chosen 0, each source gets a fraction 1/n of the capacity,
and traffic is served by the queue (at rate c) only when no flows are present; compared to the model
of the present paper, i.e., m = 1, the flow transfer delays will be smaller, while the queueing delay
will be longer. In the other extreme, m → ∞, each source gets c/(2n) and the queue c/2, so that the
sources suffer from long flow transfer delays, but the queue never fills. The choice m = 1 is in this
sense a compromise.
Another interesting extension would relate to the situation without admission control. The complica-
tion is that the state-space of (Nt)t∈R becomes (countably) infinite. The results of Section 3 carry over
to this situation; still the LT of T can be computed by methods similar to those in [13, 21]. The results
of the other sections will change; in any case all matrix-exponentials should be handled with care.
One could also study the situation of multiple bottleneck links that are sharing capacity. The com-
plicating factor is that then the dynamics of the flows feeding into one queue will be affected by the
workload process in other queues. As a result, this model has the flavor of coupled-processors sys-
tems as studied in, e.g., [12], which are notoriously hard to analyze. Other challenging extensions
include: (i) non-exponential flow-size distribution (for instance regularly varying), (ii) heterogeneous
flow types, (iii) allocation policies that do not depend only on the number of flows present, but also
on the buffer content, cf. [24].
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