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Abstract
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expression for the joint distribution function of the workloads of the first and second queue,
which also allows us to calculate their exact large-buffer asymptotics. The nature of these
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1 Introduction

Consider {B(t) — ct,t > 0}, where B(t) is a standard Brownian motion, and ¢ > 0 is a scalar.
The distribution of the supremum B, of such a Brownian motion with drift is known: P(FC >
b) = exp(—2bc). The reflection of {B(t) — ct,t > 0} at 0 could be called a Brownian queue. It
can be argued [11] that the steady-state workload @ of such a Brownian queue is distributed as
B., i.e., also exponentially with mean 1/(2c).

The case of networks of Brownian queues is considerably less studied. In [8] and [3] a two-
node tandem queue is analyzed: [8] derives the joint distribution function of the first and total
queue length, whereas [3] focuses on the distribution function of the second queue. Also, several
papers consider the more general case of tandem systems with Lévy input, i.e., arrival processes
with stationary, independent increments (this class comprises, besides Brownian motion, also
compound Poisson input). We remark that the solution presented in [7] and [4] is in terms of a
joint Laplace transform; no explicit expression for the joint distribution function is given.

In this paper we analyze a two-node tandem queue with Brownian input. Building on the
work of [8], we explicitly derive the joint distribution function P(Q1 > b1, Q2 > ba), where Q;
is the steady-state workload of node i. By setting by = ab, bs = (1 — a)b, with a € [0,1],
and letting b — oo, we also obtain exact large-buffer asymptotics, i.e., we find a function f(-)
such that P(Q1 > ab,Q2 > (1 — a)b)/f(b) — 1 as b — oo. It turns out that the nature of
the asymptotics depends on the value of a and the service rates of both queues, i.e., there are
different regimes. These regimes can be further interpreted relying on Schilder’s sample-path
large-deviations theorem. In particular, we obtain the so-called most probable path, i.e., the
most likely way for the buffers to fill.

The remainder of the paper is organized as follows. In Section 2 we present a detailed descrip-
tion of the two-node tandem queue, as well as a closely related two-node parallel queue. We also
give formal implicit expressions for the overflow probabilities, and we briefly discuss Schilder’s
sample-path large-deviations theorem. In Section 3 the two-node parallel queue is analyzed: we
derive an exact expression of the joint distribution function, large-buffer asymptotics, and the
most probable path. Then we argue that the two-node parallel queue is closely related to the
two-node tandem queue. Exploiting this property we obtain in Section 4 the desired results for
the tandem system. Finally, in Section 5 we further discuss our results, and identify some open
research questions.

2 Preliminaries

In this section we first describe our queueing models: the two-node parallel queue and the two-
node tandem queue. For each of the models we present an implicit expression for the joint
overflow probability. We conclude by briefly discussing some large-deviations results, which will
be needed in the next sections.

2.1 Two-node parallel queue

Section 3 considers a two-node parallel queue with service rate ¢y at queue I, and ¢j; at queue
II. Traffic that enters the system has to be served at both queue I and II, which is done in
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Figure 1: Left: Two-node parallel queue. Right: Two-node tandem queue

parallel; see Figure 1 for an illustration. The case ¢ = ¢j1 being trivial, we assume without loss
of generality that ¢ > cr1. Let Q1 and Q1 denote the steady-state workload of queue I and
queue II, respectively.

We assume that the input process is a standard Brownian motion {B(t),¢ € R}. It can be
verified that I'(s,t) := Cov(B(s), B(t)) = min{s, t}, with s, > 0.

We study the joint distribution of the steady-state workloads of queue I and queue II:

P(Qr > br, Qu > bm). (1)

Note that if by1 < by, then (due to ¢1 > cr1) the event {Q1 > br} automatically implies {Qm1 > b}
Hence, we concentrate on by > by. Reich’s formula [11] states that

Q1 =sup{—B(—s) —as} and Qu = sup{—B(-t)— cmt}. (2)
5>0 >0

Let s* and ¢* denote an optimizing s and ¢ in (2). Now, —s* (—t*) can be interpreted as the

beginning of the busy period of queue I (queue II) containing time 0. Hence, ¢ > ¢y implies

that s* < t*, and therefore (1) can be rewritten as P(B(-) € S), with

S:={feF|Fjt>0:3s€[0,t]: —f(—s) > br + c18, —f(—t) > b1 + cmt}, (3)

where F := {f|f(0) = 0}.

2.2 Two-node tandem queue

In Section 4 we consider a two-node tandem queue, again with standard Brownian input. Thus,
the output of the first queue is fed into the second queue; see Figure 1. Assume constant service
rates ¢ and ¢, respectively. To avoid the trivial situation of the second queue remaining empty,
it is assumed that ¢; > ¢9 > 0.

We focus on the joint probability that the stationary workloads of the first and second queue,
Q1 and Q)o, respectively, exceed thresholds by and by, with by,b2 > 0. For any queue in which
traffic leaves the first queue as fluid, the steady-state total workload QT in the two-node tandem
queue behaves as single queue emptied at rate ca, see e.g. [9] and references therein. As a

consequence,
Q1 =sup{—B(—s) —c1s} and Qr = sup{—B(—t) — cat}. (4)
s>0 £>0



As for the parallel system, we have that the optimizing s is not larger than the optimizing ¢ in
(4). Hence, for b > by > 0, P(Q1 > b1, QT > br) equals P(B(:) € T'), with

T:={feF|3t>0:3s€[0,t]: —f(—s) > b1+ c18,—f(—t) > by + cat}. (5)

Note that (3) and (5) coincide if ¢; = ¢, ca = eq, b1 = by, and by = by;. We will exploit
this property in Section 4. Evidently, the distribution of (Q1,Qt) uniquely determines the
distribution of (Q1,Q2). Using that Q2 = Q1 — Q1, we obtain that P(Q1 > b1, Q2 > be), with
b1,b2 > 0, equals P(B(:) € U), where

Jdt>0:3s € [0,¢] : Vu e [0,s]:

_f(_s) > b + s,
f(=u) — f(=t) > ba + cot — c1u } ' (6)

U::{fGF

2.3 Large deviations

In this subsection we recall two key large-deviations theorems, which are needed in the analysis
of Sections 3.3 and 4.3.

Theorem 2.1 Let (X,Y) ~ Norm(0,%), for a non-degenerate 2-dimensional covariance-matriz
Y.. Then,

(1) —limpeo %logP(% Y Xi>w) = %w2/(211)2;
(11) —limp oo 1logP (137 | X; > 2,2 57 | Y; > y) = inf,>, infy>y A(a, b),

n

where A(a,b) := 1(a )T (a b)7T.

We continue with a description of the framework of Schilder’s sample-path LDP (see [2], and
also Thm. 1.3.27 of [5] for a more detailed treatment). Define the path space § as

t t
Q:=qw:R — R continuous,w(0) = 0, lim w(t) = lim w(®) =0;.
t—oo 1+ |t| t——00 1+ |t

Then one can construct a reproducing kernel Hilbert space R C €2, consisting of elements that
are roughly as smooth as the covariance function I'(s, -); for details, see [1]. Now we can define
the rate function:

1 / 2 : .
1) ::{ s/@ )Pt if weR
00 otherwise.

For standard Brownian inputs the following sample-path large deviations principle (LDP) holds.

Theorem 2.2 [Schilder| With G C Q,

1 1 :
_nh—EEOEIOgP<E;Bi(.) € G’) =a1JI€1£YI(w).



Remark: Intentionally, Theorem 2.2 has been formulated slightly imprecise. In fact, the LDP
consists of an upper and lower bound, which apply to closed and open sets, respectively. However,
we will use Theorem 2.2 for the sets U, S and T as defined before. It can be verified that

inf I(w)= inf I
Jnf I(w) Inf (w),
where U° (U) is the interior (closure) of U; the same holds for S and T. For a proof, this can
be done completely analogously to [10] and Appendix A of [9].

3 Analysis of the two-node parallel queue

In this section we focus on the two-node parallel queue. We derive the joint distribution function
of queue I and queue II, large-buffer asymptotics, and the most probable path leading to overflow.

3.1 Joint distribution function

In this subsection we derive an exact expression for p(b) := P(Qr > by, Qu > bm), with b =
(br,br1). For the sake of brevity, write x = x(b) := (b;r — b1)/(c1 — c1). Furthermore, let
®(-) denote the distribution function of a standard Normal random variable, ¢(-) := ®'(-), and

U(-):=1— ®(-). We first present the main theorem of this subsection.
Theorem 3.1 For each by > by > 0,
p(B) =~ (k1 (B) + U (ka(B)e 1 + Wy (B))e 21 (1= W(Ry(B)) ) 2t omn),

b +crx o (B) = —br + cix ks (B) = by + (1 — 2cnn)x ka(B) = —br + (a1 — QCII)X‘

)= 5 Ve i Vi

Proof: In [8] an expression was derived for P(Qr < b1, Qu < br) in case of standard Brownian
input. We give a short sketch of the proof. First note that, due to time-reversibility arguments,

P(Qr < b1, Qu < bir) = P(Vt > 0: B(t) < min{br + cit, b + cnt}).

Let y = y(b) := br + crx. Hence, (x,y) is the point where by + c1t and bt + crit intersect. For
t € [0,x] the minimum is given by by + cit, whereas for ¢t € [y, 00) the minimum is by + crrt.
Now, conditioning on the value of B(x), being normally distributed with mean 0 and variance
X, one obtains that P(Q < by, Qi1 < byp) equals

/yoo %(ﬁ (%) P(Vt € [0,x] : B(t) < br+cit|B(x) = z)P(Vt > 0: B(t) <y — z + crrt)dz.

The first probability can be expressed (after some rescaling) in terms of the Brownian bridge:

P(Vt € [0,1]: B(t) <b+ct|B(1) = 0) = 1 — exp(—2b(b + ¢)),



whereas the second translates into the supremum of a Brownian motion: 1 — exp(—2(y — z)cyy).-
After substantial calculus we obtain that P(Q1 < by, Q1 < byr) equals

B (k1 (b) — ®(k2(b))e 21 — B (k3(b))e 2 4 & (ky(b))e 2br(cr—2em)+buen)
Furthermore, it is well known that P(Q; > b;) = e 2%, i = I, II. The stated follows from

p(d) =1—P(Q1 < by) — P(Qu < brr) + P(Q1 < by, Qur < b). m]

3.2 Exact large-buffer asymptotics

In this subsection we derive the exact asymptotics of the joint buffer content distribution. We
write f(u) ~ g(u) when f(u)/g(u) — 1 if u — co. Define ((z) := ( 27r:c)_1 exp(—x2/2). Also,
c 2eir—eor o —2en

= y Qo 1= y O 1= .
2c1 — e I 2c1 — 3en

o

It can be verified that ap < 0 < a— < a4 < 1if ¢1 > 2¢y1, whereas 0 < oy < a4 < 1if ef < 2¢g.
Let us first present the following useful lemma.

Lemma 3.2 Let by = ab and by = b, with o € [0,1]. If b — oo, then

(k1 (b)) ~ C(ka(b));
((k2(b)) i @ < ay;
P(ka(b)) ~ 4 1/2 if o = ay;
1 otherwise;
C(kg(g)) ’ifOé > «ap;
W (k3(b)) ~ < 1/2 if & = ao;
1 otherwise;
1 if a < a_ and ¢y > 2cyy;
1— U(ka(d)) ~ S 1/2 if o = a_ and c1 > 2cry;

—((ka(b)) otherwise.

Proof: First determine for which values of br/bi1 = «, ki(b), ¢ € {1,2, 3,4}, is positive or nega-

tive. Note that k1(b) is always positive, given that by > by > 0. Also, k4(b) is always negative

if ¢1 < 2¢y1 and by > 0. Hence, we obtain a4, ¢ and a_ as critical values from k;(b), ¢ = 2, 3,4,
respectively. Next use the fact that ¥(u) ~ ((u) and ¥(—u) ~ 1 as u — oo. Observe that

T(0) = 1/2. -
Define
1 (1 1 11 d (B o (brrer — brem)’?
0= 7= (i 2 o m®) O e e



Straightforward calculus also shows the following equalities:

exp <—%b)2) = exp (—@) exp (—2bjcr) = exp <— k3(25)2) exp (—2byren) =

k4(b)? _
exp <—#) exp (—2(br(c1 — 2c11) + brren)) = exp (—’y(b)) . (7)
Theorem 3.3 Let by = ab and bi; = b, with o € [0,1]. Suppose ¢t > 2c1. For b — oo,

e—2(br(er—2crr)+brren) ifa e [0, a_);
%6—2(b1(c1—20n)+b11611) ifa =a_;

p(d) ~{ Bb)e @ ifa € (a,ay);
%e*%m if o = ag;
e~ 2bier if o € (ag,1].

Proof: We only prove the first statement, as the other four statements follow in a similar way.
‘We have to prove that

p(b) exp(2(br(cr — 2crr) + brrerr)) — 1 as b — oo, for a € [0, ).
From Lemma 3.2 we obtain that for a € [0, a_),
T(k1(0) ~ C(k1(b)); U (k2(b)) ~ C(k2(D)); T(ks(B)) ~ C(Rs(B); 1 — W(ka(b)) ~ 1 —C(Ra(b)).
Now it can be checked from (7) that, as b — co,
(k1 (b)) = o <e—2(b1(c1—2cn)+bncn))) :

and the same applies for W(kq(b))e 2211 and W(k3(b))e 2buct, With 1 — W(k4(b)) ~ 1, Theorem
3.1 implies the stated. g

Theorem 3.4 Let by = ab and by = b, with « € [0,1]. Suppose c1 < 2¢y1. For b — oo,

e 2buen if @ € [0, ap);

%e_QbHCH if o = ap;
p() ~ < BB ifa e (an,at);
%6—211161 zfa = oy
e~ 2biar if a € (ay,1].
Proof: The proof is similar to that of Theorem 3.3. a

Remark: Note that for ¢; = 2¢y1, one obtains ag = 0. It can be verified that in this special case
Theorem 3.4 reduces to
e 2buen if a =0;
o)~ B0 7 Hae 00
€ if a = ay;

e 2brer if a € (aq,1].



3.3 Most probable path

In the previous subsection it was shown that the nature of the large-buffer asymptotics strongly
depends on the model parameters «, ¢1 and ¢y, i.e., there are different regimes. In this subsec-
tion we will interpret these regimes by using sample-path large deviations. Schilder’s theorem
(Theorem 2.2) implies that the exponential decay rate of the joint overflow probability in the
parallel system is characterized by the path in S that minimizes the decay rate. Among all paths
such that queue I exceeds by and queue II exceeds by, this is the so-called most probable path
(MPP): informally speaking, given that this rare event occurs, with overwhelming probability
(b1, br) is reached by a path ‘close to’ the MPP. The goal of this subsection is to find the MPP
in S, and to relate its form to the regimes identified in Section 3.2.

Consider the two-node parallel queue as described before. Now, in order to apply ‘Schilder’,
we feed this network by n i.i.d. standard Brownian sources. The link rates and buffer thresholds
are also scaled by n: ner, nerr, nbr and nbyy respectively. Now, py, (b) := P(Q1,n > nbr, Qirn > nbr)
can be expressed as

1 n
P <—ZBZ~(-) € s) :
"=
From ‘Schilder’ it follows that

T .1 N P
J(b) := — lim - log pn(b) = }161% I(f) = %Izlg sér[})f’t] T(s,t), (8)

with

Y(s,t) = inf 1(f) and §° = {f € F| = f(~3) > br-+ cxs, ~{(=0) > bu + ent)

using the fact that the decay rate of a union of events is the minimum of the decay rates of the
individual events. As mentioned in Section 2.3, we can replace ‘>’ by ‘>’ in S%¢, without any
impact on the decay rate.

We first show how, for fixed s,t, the infimum of Y(s,¢) over S*! can be computed. Define

b by —b
1’ and ga(s) := PRI .
c1 —cm)s e e

g1(s) = ¢ T
Note that gi(-) is a concave function, whereas ga(-) is a linear function. Furthermore, gi(s) >
g2(s) if s < x, g1(s) = ga(s) if s = x, and otherwise g1(s) < g2(s). Also, define

Ar:={(s,t)ls <t < gi(s)};

Ag = {(s,t)|s <t < ga(s)};

As := {(s, t)|t > max{gi(s), g2(s)},s > 0}.

(See Figure 2 for an illustration.)

Lemma 3.5 Fort >0, and s € [0,t],

ha(t) := 7@“;;1122 if (s,t) € Ay;
Y(s,t) = { hy(s) := Grtasl 2 | i (s,t) € Ay;
ha(s,t) = (rgash 4 Qutaifasl - gf (s,¢) € Aj.
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Figure 2: Line g1(-) and ga(-).

Proof: The proof is analogous to Lemma 3.4 of [9]. The paths in S correspond to a bivariate
Normal random variable (—B(—s), —B(—t)). Now, by using Theorem 2.1, we find for y,z € R

and t >0, s € [0,¢],
—1
() (Y) e

T = inf inf A ith A =
()= inf o nf,  AW:2), with Aly,2)

N | =

One can show that if
yo := E[-B(—s)| — B(—t) = br1 + cnt] > by + c1s,

or, equivalently, ¢ < g;(s), then the optimum in (9) is attained at (y*,2*) = (o, bir + cit).
Hence, the rate function is independent of s, and given by A(yo, brr + crit) = ha(t).
In a similar way, if

20 := E[-B(—t)| — B(—s) = br + c18] > by1 + crit,

or, after rewriting, ¢ < go(s), then the optimum in (9) is attained at (y*,2*) = (b1 + a8, 20)-
The rate function is then given by A(br + c18, 20) = ha(s) (independently of ¢).

If yo < br + cs and 29 < brir + cnt, then the optimum in (9) is attained at (y*,z*) =
(br + c1s,brr + crrt). It is readily verified that this yields hg(s,t) for ¢ > max{gi(s), g2(s)}. O

In view of (8), the next step is to optimize Y(s,t) over all ¢ > 0, s € [0, ¢].

3.3.1 Area A;

The optimization over A; reduces to

inf Y(s,t) = inf hy(t). 10
o (s,t) s 1(t) (10)



It can be verified that hq(t) is strictly decreasing in the interval [0, by1/crr), and strictly increasing
in the interval (byi/cy, 00). Therefore, if brir/crr < x then ¢* = by/err and s* € [gl_l(t*),t*],
whereas otherwise t* = s* = x.

Lemma 3.6 Ezpression (10) equals 2brien if bi/bi € [0, a], otherwise v(b).

Proof: The condition brr/crir < x is equivalent to by/bir < (2¢i1 — ¢1)/enr = ap. Evaluation of
(10) for t* = byy/ci proves the first statement. Similarly, evaluation of (10) for ¢* = x proves
the second statement. O

3.3.2 Area A,

The approach is very similar to above. We are to solve the following optimization problem:

inf T(s,t) = inf ha(s). 1
whig, YD = L Rals) (1)

The function hy(s) has a global minimum that is attained at s = by/cr. Thus, if by/cr > x, then
s* = br/er and t* € [s*, ga(s*)], whereas otherwise s* = t* = x. The following lemma is proven
analogously to Lemma 3.6.

Lemma 3.7 Ezpression (11) equals 2bict if bi /bt € [ay, 1], otherwise v(b).

3.3.3 Area Ajg

We divide area As in two parts. Let us start with the part s € [x, c0) and t € [ga(s), 00):

inf inf  hg(s,t). 12
el ) et o) 12(50) (12)

Clearly, (12) is bounded from below by

inf inf ha(s). 13
B o ooy 2(8) (13)

One can show that hs(s,t) reduces to ha(s) if t = ga(s) (s € [x,00)). Therefore, analogously to
the area Ajg, if by/cy > x, then s* = by/cr and t* = gao(s*) = (2br — brr)/cr1, whereas otherwise
s* =t* = x. We thus obtain the following result.

Lemma 3.8 Ezpression (12) equals 2bicr if bi/bn € [oy, 1], otherwise y(b).
We now turn to the last part: s € [0, x] and ¢ € [g1(s), 00):

inf inf hs(s,t). 14
5€[0,x] t€lg1 (s),00) 3(5:1) (14)

10



First concentrate on the minimum of h3(s,t) over ¢ > 0, which is attained at

t

_ bir — by n 32611 —c1

=103 (S)

cil ci
if s € [0,x] (for s > x it is attained at t = ga(s), but this case is irrelevant here). Note that
g3(s) is linearly decreasing (increasing) if ¢; > 2¢r1 (e1 < 2¢rp). Also, g3(x) = x. Hence, we have

to distinguish between two cases:

e First concentrate on ¢y > 2¢yr. Then g3(s) > gi(s) for all s € [0,x) (as g3(s) is non-
increasing and g3(x) = x). Substituting ¢ = g3(s) in (14) gives

inf b% + QbI(CI — 2611)8 + 4byrerrs + (CI — 2011)282
s€(0,x] 2s '

(15)

This is minimized for s* = br/(c1—2cr) and t* = g3(s*) = (b1 —2b1) /e if b/ (e1—2cm1) < x,
whereas otherwise s* = x = t*.

e Next consider ¢; < 2¢pr. In this case it is not clear a priori whether g3(s) > g1(s). For the
moment assume that this is true. Then (15) is again appropriate, and this is minimized
for s* = bi/(2cii — a1) and t* = g3(s) = bu/en if bi/(2cnn — 1) < x, whereas otherwise
s* = x = t*. Now, in the former case it can be checked that g3(s*) = g1(s*) = by /eq1, and
in the latter case we find g3(s*) = g1(s*) = ¥, i.e., the minimizers satisfy gs(s*) > g1(s*),
and hence we are done.

This reasoning leads to the following result.

Lemma 3.9 Ezpression (14) equals

2(111(61 — 2011) + bHCH) Zf c1 > 2c1 and bI/bH € [0, a,];

’}/(b) if e1 > 2cq1 and by /by € (Oé,, 1];
2br1enn if c1 < 2¢11 and bI/bH (S [0, ao];
’Y(E) if 1 < 2¢11 and bI/bH € (040, 1].

3.3.4 Exponential decay rate

We now present an exact expression for the rate function J(b). We start with the case ¢f > 2¢yy.

Theorem 3.10 Suppose c1 > 2cr1. Then it holds that

~ 2(111(01 — 2cr1) + briient)  if bi/bi € [0, a—];
J() =1 ~(b) if by/bu € (-, ay);
2b1c1 if br/bn € [y, 1].

Proof: Combine Lemmas 3.6-3.9. There exist two critical values of by/by1, given that ¢ > 2¢1.
Recall from Section 3.2 that 0 < a— < a; < 1if ¢ > 2¢1. Now, if by/byp € [0,a_], then
J(b) = min {2(b1(c1 —2cm1) + bHcH),'y(E)}. Straightforward calculus shows that the first argu-

ment is smaller for these values of br/bry. Similarly, if br/bir € (a—,ay), then J(b) = ~(b).

11



Finally, if bi/bn € [ay,1], then J(b) = min {2bicr,7(b)}. Applying straightforward calculus
yields that the first argument is smaller if by /by € (a4, 1]. O

In addition to the exponential decay rates of Theorem 3.10, we also (implicitly) obtained
the corresponding MPPs. In the MPP of the first regime, queue I starts to build up at —s* =
—br/(c1 — 2c11), whereas queue II starts to build up at —t* = — (bt — 2b1)/cri. The MPP is such
that, for r € [—t*,0],

f*(r)=E(B(r)|B(—s") — B(—t*) = bt — by + ent™ — c1s™)  if r € [—t*, —s);
ff(r)=E(B(r)| — B(—s") = by + c1s™) if r € [-5%,0].
That is, traffic enters the network at a constant rate 2c¢yr in the interval [—¢*, —s*), and at a
constant rate 2(c1 — cqr) in the interval [—s*,0]. Given service rates ¢; and cy1 at queue I and
queue II respectively, this indeed results in Q1(0) = by and Qu(0) = brr. Applying ‘Schilder’,
one can verify that, as expected, I(f*) = 2(bi(cr — 2cr1) + brren).

In the second regime, queue I and queue II start to build up at —t* = —(bir — br) /(1 — cr)-
The MPP is such that, for r € [—t*, 0],

f*(r)=E(B(r)| — B(—t*) = by + cit™) . (16)

Thus, traffic enters the network with constant rate (br/(bir — br))(cr — ci) + cr in the interval
[—t*,0], and this yields Q1(0) = br and Qr1(0) = brr.

In the third regime, both queues start to build up at —¢t* = —by/c;. The MPP is such that,
for r € [—t*, 0],

fH(r) =E(B(r)| = B(—t") = br + crt”) .

The MPP produces traffic at constant rate 2¢y in the interval [—t*,0], and this gives Q1(0) = b1
and Q11(0) = (br/c1)(2cr — cr1). Note that Qrr(0) is larger than by if b /bir € (o, 1], so there is
indeed exceedance of byj.

Theorem 3.11 Suppose c; < 2ci1. Then it holds that

B 21)1_1011 lf bI/bH (S [0, Ot()];
J(®) =1 ()  ifbi/bu € (o, rt);
2b1cr if bI/bH S [a+, 1].

Proof: The proof is similar to that of Theorem 3.10. a
In the MPP corresponding to the first regime of Theorem 3.11, both queues start to build
up at —t* = —byr/crir. The MPP is such that, for r € [—t*, 0],
fr(r) =E(B(r)| — B(—t") = bu + cut”) -

Hence, traffic is generated at a constant rate 2cjr in the interval [—¢*,0], and this results in
Q1(0) = (brr/en)(2err — er) > by and Qr(0) = brr. The MPPs corresponding to the second and
third regime are similar to the MPPs corresponding to the second and third regime of Theorem
3.10.
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3.4 Discussion

Using Theorems 3.3 and 3.4, also the logarithmic large-buffer asymptotics follow directly. To
this end, define

- 1
J*(by) := —blir{.lo ElogP(QI >ab,Qn >b) with a€l0,1], b>0,

where b, = (ab,b). With ab = by and b = by, i.e., by, = b, it is not hard to see that J*(bs)
equals J(b); compare Theorems 3.10 and 3.11 with Theorems 3.3 and 3.4, respectively. Indeed,
since we assumed that in the many-sources framework the standard Brownian sources are i.i.d.,
and because a standard Brownian motion is characterized by independent increments, J*(bs)
and J(b) should match, see for instance Example 7.4 of [6].

In the analysis of the two-node parallel queue we assumed that the input process was a
standard Brownian motion, i.e., no drift and v(¢) = ¢t. We now show how the results can be
extended to general Brownian input, which have drift 4 > 0 and variance v(t) = At, A > 0.
Clearly, we should have that ¢ > ¢;1 > @ > 0 to ensure stability. We denote the input process
of a general Brownian motion by {B*(t),t € R}. Then, analogously to (3), p(b) = P(B*(-) €
S) =P(B(-) € §*), with

S* = {feF G >0:3s€[0,t]: —f(—s) >

b — b — )t

1+ (e “)8,—f(—t)> 1 + (e — 1) }
VA VA

Hence in order to generalize the results of Section 3 to general Brownian input, we have to set

¢ — (¢ — p)/v/A and b; < b; /v, i =L 1L

4 Analysis of the two-node tandem queue

In this section we focus on the two-node tandem queue. Exploiting the results of the two-node
parallel queue in Section 3, we derive similar results for the two-node tandem queue.

4.1 Joint distribution function

In this subsection we derive an exact expression for g(b) := P(Q1 > by, Q2 > bs), with b = (b1, ba).
In Section 2.2 we argued that p(br, br1) equals g(bt) := P(Q1 > b1, QT > br), with by = (b, br),
given that by = by, by = by, ¢ = ¢1 and c¢;p = co. In a first step to obtain g(b), we derive
g (br) := —q(br)/0b1. With mild abuse of notation, we also write gf(br) = P(Q1 = b1, Q1 >

br). Define 77 = 7(bt) := (bt — b1)/(c1 — c2) and T = 7(b2) := ba/(c1 — c2).
Lemma 4.1 For each bt > b1 > 0,
_ o) - .
g7 (br) = _%ﬂfl(bﬂ) +2c1%(£2(br))e e

905 (b - O05(b _
725)1T) P(La(br))e 201 + 72&” p(L3(br))e 21

+2(e1 —2¢2)(1 — \P(£4(ET)))6_2(b1(61_262)+bT02)

_OBn) 4y, By 2en(er—2ea)bren)
b,

+
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- b1 + c17r - —b1 + c1mr
balbr) = NV ba(br) = T/

— b1 + (e¢1 — 2¢9) 71 — —b1 + (¢1 — 2¢9) 717
toff) = 2 T L b = (ﬁ .

Proof: Use Theorem 3.1, with by = by, by = by, ¢ = ¢ and ¢j1 = c2, to obtain g(br). Then
recall that g7(br) = —9q(br)/0bi. We extensively use the chain rule:

0U(f(u)) _ _0f(w)

)]
Applying straightforward calculus now gives the desired result. O
Note that
qg(b) =P(Q1 > b1, QT > b2+ Q1) = /boo P(Q1 =z,QT > by + x)dz = /boo qf(T)dz, (17)
1 1
where T = (z, by + z). Define
ma®)i= "5 na(B) = T ()i G2

We directly present the main theorem on tandem queues.

Theorem 4.2 For each by,bs > 0,

q0) = — 2 T(my (b)) + T(ma(B))e 211 +

€1 — C2 €1 —C2

c1 — 2¢y

(1- \I/(m4(5)))6—2(171(01—02)+b2cz).

Proof: Use (17) in combination with Lemma 4.1. Note that q;(T) consists of 6 terms. Let us
start with the first term:

| -E @) - ve@)
b1

: — U (m (D). (18)

Similarly, for the second and third term:

(oo} 8£ - oo —
/ <261\I/(£2(E))e_2clz + #(ﬁ(zZ(f))e—%w) dr = —\II(EQ(E))e_Zc” , —_ ‘I/(mg(b))e_%lcl.
b1 1
(19)
Proceeding with the fourth term:
o 6£3(f) =\ ,—2cz(ba+x) 3., _ /oo 8£3(f) 1 _4@? B
P T e T
©olh(z) 1 _a@? @ _
= — = M 2
/bl 5o 7ot ¢ do=—Y@)|, = VmE); (20)



here the first equality in (20) follows from the fact that exp(—£3(Z)%/2)exp(—2c2(bs + 7)) =
exp(—£1(Z)?/2), whereas the second equality holds due to 9¢3(z)/0z = 8¢1(Z)/0z. We decom-
pose the fifth term into two parts:

2(e1 — 2¢2)(1 — U (Ly(T)))e2@(cr—ea)tbaca)

2(e1 — e2) (1 — W(ly(z)))e 2@ amee)Tbaca) L 9e) (W (4y(T)) — 1)e2(@(camea)tbaca)

Now, taking the first decomposed fifth term and the sixth term:

/ (2(1 - \I’(£4(E)))(Cl - c2)672(z(c17cz)+b2m) _ 6{;7(‘7)4)(64(5))62@(61c2)+bzcz))d$ —
b1 €z
(1~ T (L4(@)))e 2 o)™ = (1 (my(B)))e 201 baea), (21)

b1

We are left with the second decomposed fifth term:

| 2eaa@) - e elrenineag -
by

c2 / 2er — e2)(T(£a(F)) — 1)e2aler—e2)tbaea) gz —
Cl1 —C2 b1

1) -
\\} —
c1 —c2 (ma(6)) c1 — ¢

C2

(1= W(ma )20 (et (22)

here the second equality in (22) is obtained by applying integration by parts, but requires te-
dious calculus. Adding up (18), (19), (20), (21), and (22) yields the stated. O

Remark: For by > 0 and by = 0, we find ¢(b1,0) = P(Q1 > b1) = exp(—2bic1) in Theorem
4.2, i.e., the well-known exponential distribution with mean 1/(2¢1). For by = 0 and by > 0,
Theorem 4.2 yields

C1 C1 C1 — 202 —2boc ( (Cl — 262 ))
0,b9) = P(Qy > by) = T by | +—— 2722 (1 0 [ ——=./by | |,
Q( 2) (Q2 2) Cl1 — C2 <\/Cl — C2 \/72> Cl1 —C2 v/C1 —C2 2

which is in line with Theorem 4.3 in [3].

4.2 Exact large-buffer asymptotics
In this subsection we derive the exact asymptotics of the joint buffer content distribution. Define

c1 c1 — 2c¢9

[0

© 2¢1 —co) " 2¢ — 3¢y’

It can be verified that 0 < a— < ag < 1lif ¢g > 2¢9, and 0 < ay < 1if ¢ < 2¢3. Recall that
C(z) = ( 27rx)_1 exp(—x2/2). First we present the counterpart of Lemma 3.2.
Lemma 4.3 Let by = ab and be = (1 — a)b, with a € [0,1]. If b — oo, then

T(ma (b)) ~ ((ma(b));
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((ma(b)) i o <y

Uma®) ~{ 1/2 ifa=ay
1 otherwise;

1 if a < a_ and c1 > 2¢9;

1 — ¥(my(b)) ~ 1/2 ifa=a_ and ¢ > 2c9;

—((my4(b)) otherwise.

Proof: The proof is as in Lemma 3.2. m|
Define
- 1 1 1 —2c 1 - — 2
o(b) = ( e 1 , 1 _a-e 1 ) and §(p) 1= (reL = c2) +bzcr)”
V2r \c1 —camq(b) ma(b)  c1—c2 my(b) 2ba(c1 — ¢2)
(23)
The following equalities can shown to hold true:
72 )2
exp (_m1(b) ) — exp <_m2( ) ) exp (=2bic;) =
2 2
ma(b)? _
exp <—#) exp (—2(b1(c1 — ¢2) + baca)) = exp (—6(D)) . (24)

The proof of the following two theorems is similar to the proof of Theorem 3.3, but now requires
Lemma 4.3 and Equations (23) and (24). We omit the proofs.

Theorem 4.4 Letb; = ab and by = (1—a)b, with a € [0,1]. Suppose that ¢y > 2co. Forb — o,

c1—2c2 ,—2(b1(c1—c2)+bac) ; .
=2e ifa€l0,a_);
Lei—2¢p ,—2(b1(c1—c2)+bacz)

5 e ifa=a_;

q(d) ~ ¢ (b)e3® ifa € (a_,at);
%e*%lcl if @ = ag;
e 211 if o € (ag,1].

Theorem 4.5 Letb; = ab and by = (1—a)b, with a € [0, 1]. Suppose that ¢y < 2ca. Forb — oo,

0
(@~ ] lema ifa=a;
e~ 2biaa if a € (ay,1].

Remark: We note that for ¢; < 2c2 and by = 0 (¢ = 0) the asymptotics are not given by

6(b) exp(—d(b)), as it can be verified that 6(b) equals 0 in this special case. Ther;efore we have
to rely here on the sharper asymptotic ( 27ru)_1 exp(—u?/2) — ¥(u) ~ (V2mu?)  exp(—u?/2).
Using this, it can be shown [3] that

1 c1 — C2 ) 3/2 4cy f—c% b
0, by) ~ e 2(ci—c2) “,
q( 2) V2T < bg C%(Cl — 262)2
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4.3 Most probable path

Similar to the parallel system, the large-buffer asymptotics now depend on the model parameters
a, c1 and c3. Again, we will interpret the corresponding regimes by determining the structure
of the MPPs.

We feed n i.i.d. standard Brownian sources into the tandem system, and also scale the link
rates and buffer thresholds by n: nci, nce, nbi and nbe respectively. By using (6), we can write

qn(E) = ]P)(Ql,n > nbl,QQ’n > an) =P (% Z;B’() S U) .

Clearly, U C U* C V, with

U ={feF|3t>0:3s€(0,t]: —f(—s) > b1 +c18, f(—s) — f(—t) > ba + cot — c15};
Vi={feF|3t>0:3s€[0,t] : —f(—s) > b1 + c18,— f(—t) > b1 + ba + cat}.

Hence, ‘Schilder’ gives

K(B) = — lim ~loggu(b) = inf () > inf 1(6). (25)

n—soon fev

Let the MPP in set V' be denoted by f*. If f* € U, then there is clearly equality in (25).

Theorem 4.6 Suppose c; > 2co. Then it holds that

~ 2(b1 (Cl — 62) + b262) if b1/(b1 + b2) S [0, Oé_];
K(b) =1 4(b) if b1/ (b1 + b2) € (a—, oy);
2bicy if b1/(b1 + bz) S [Ot_|_, 1].

Proof: Consider Theorem 3.10 with ¢ = ¢1, ci1 = ¢2, by = by and by = by + be, i.e., we have
UCV =S5. The MPPs (in S = V) corresponding to each of the regimes of Theorem 3.10 were
derived in Section 3.3. It can easily be checked that these MPPs are also contained in U, and

consequently they are the MPPs in U. This implies that K(b) is given by Theorem 3.10. a

Theorem 4.7 Suppose ¢; < 2¢co. Then it holds that

= ) 8(b)  ifb1/(b1+b2) € [0,04);
k() = { 2bicr if b1 /(b1 +b2) € [y, 1].

Proof: Consider Theorem 3.11 with ¢; = ¢1, ¢ir = ¢o, by = b1 and by = by + by. Again, the
MPPs corresponding to the second and third regime of Theorem 3.11, are also contained in set
U. However, the MPP corresponding to the first regime is not contained in U, so we need a
different approach here. In order to obtain a workload in queue 2 at least as large as by at time
0, queue 2 needs to start building up at —7 = —ba/(c1 — c2) at the latest. Set U can now be
rewritten as

{feF

It >7:3s€(0,t]: Vu € (0,8] :

—f(—$) > b1 + 15,
f(=u) = f(—t) > b2 + cat — c1u
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first second third

Qut) Qi(t) Q1(t)
€ b1 - bl
1 b
, ) o
o — %, } . ,7;(01 — ) . = L t
| | t M t
_% _clilhg 0 T a—ca 0 T 0
Qa(t) Qa(t) Q2(t)
1 by
1 L a-a)
. T
S — e
. VC2V Cl1 —C2 Ccl —C2
S — t | t i t
bbb 0 _ b 0 _b 0

c2 c1—2c c1—cy ¢y

Figure 3: The most probable storage path in {Q1 > b1,Q2 > b} corresponding to each of
the regimes of Theorem 4.6. The most probable storage path corresponding to each of the two
regimes of Theorem 4.7, is also given by the most probable storage paths of the last two regimes
of Theorem 4.6.

which is contained in
{f € F|E|t >7:ds € (O,t] : —f(—s) > b1 + ¢y, —f(—t) > by + by + Cgt} = W.

Using the results of Section 3.3, with by = by, by = b1 + be, ¢ = ¢1 and cj1 = ¢2, one can show
that if b1/(b1 + b2) € [0,a4) and ¢1 < 2¢g, then the MPP in W is given by (16). As (16) is

contained in U, it is also the MPP in U, implying that K (b) = §(b). a

Figure 3 depicts for each of the regimes of Theorem 4.6 the most likely way the buffers fill.
Clearly, the most likely way the buffers fill for each of the two regimes of Theorem 4.7, coincides
with the most probable storage paths of the last two regimes of Theorem 4.6.

Remark: If we set by > 0 and by = 0, then Theorems 4.6 and 4.7 give K (b) = 2bjcy, which
indeed is the exponential decay rate of the overflow probability in single queue with standard
Brownian input, emptied at rate ¢;. For b = 0 and by > 0, Theorems 4.6 and 4.7 yield

K@) =

_ 2boco if ¢1 > 2c9;
by otherwise,

1
2(c1—c2)

which is in line with Section 4.1 in Mandjes & Van Uitert [9].
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4.4 Discussion

As in the two-node parallel queue, we can derive the logarithmic large-buffer asymptotics by
using Theorems 4.4 and 4.5. That is,

1 _
—blim 5 logP(Q1 > ab,Q2 > (1 — a)b) =: K*(by) with a€[0,1], b>0,
—00

where b, = (ab, (1 — a)b). With by = ab and by = (1 — )b, i.e., by = b, it is not hard to
see that K*(b,) and K (b) coincide; compare Theorems 4.6 and 4.7 with Theorems 4.4 and 4.5,
respectively.

Again the results can also be generalized immediately to general Brownian input. Assuming

that ¢; > ¢z > p > 0, this is done by setting ¢; < (¢; — p)/vV/X and b; < b;/V/A, i =1,2.

5 Conclusions

In this paper we analyzed a two-node tandem queue with Brownian input. We obtained the joint
distribution function of the workload of the first and second queue, large-buffer asymptotics, and
the most probable path leading to overflow. These results were derived by first considering the
closely related two-node parallel queue, for which similar results were obtained.

Future research directions include: (1) Analysis of the joint overflow probability in a two-class
Generalized Processor Sharing (GPS) system with Brownian inputs. (2) Extending the results
obtained in this paper to other input processes. The main approach used in this paper relies
on the fact that Brownian motions are characterized by independent increments. Therefore, we
expect our approach to be also valid for other input processes that have independent increments
(and an LDP), e.g., light-tailed Lévy processes.
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