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Abstract— Channel-aware scheduling strategies provide an
effective mechanism for improving the throughput performance
in wireless data networks by exploiting channel fluctuations. The
performance of channel-aware scheduling algorithms has mainly
been examined at the packet level for a static user population,
often assuming infinite backlogs. Recently, some studies have also
explored the flow-level performance in a scenario with user dy-
namics governed by the arrival and completion of random service
demands over time. Although in certain cases the performance
may be evaluated by means of a Processor-Sharing model, in
general the flow-level behavior has remained largely intractable,
even basic stability properties. In the present paper we derive
simple necessary stability conditions, and show that these are also
sufficient for a wide class of utility-based scheduling policies. This
contrasts with the fact that the latter class of strategies generally
fail to provide maximum-throughput guarantees at the packet
level.

I. I NTRODUCTION

Channel-aware scheduling strategies provide an effective
mechanism for improving the throughput performance in wire-
less data networks by harnessing channel variations. A prime
example is the Proportional Fair algorithm, which has been
adopted as the default scheduler for the CDMA 1xEV-DO
system [7], [14], [16], and is also considered for implementa-
tion in HSDPA. The performance of channel-aware scheduling
algorithms has mainly been investigated at the packet level
for a static user scenario, sometimes including packet-scale
dynamics [4], [28], but often assuming infinite backlogs [1],
[13], [23], see also [24], [25], [31], [33] for related results.
The assumption of a static user population is a reasonable
modeling convention because of the separation of time scales:
the scheduling mechanism operates at the packet level on
which the user population evolves only relatively slowly.
However, when examining the throughput performance, and in
particular comparing the throughput allocation among elastic
traffic users under various strategies, it is not satisfactory
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to assume that the user population is independent of the
specific properties of the scheduler. For example, a scheduling
strategy that provides high throughput to users with favorable
channel conditions, will tend to satisfy the service demands
of these users sooner. As a result, the scheduler would be left
facing a user population with a higher fraction of users with
poor channel conditions. Conversely, a scheduling strategy
that grants reasonable throughput to users with poor channel
conditions, should to a certain degree benefit from that by
seeing fewer of these users.

Recently, some studies have explored the flow-level perfor-
mance in a scenario as described above with user dynamics
governed by the arrival and completion of random service
demands over time. In particular, it has been shown that in
certain cases the flow-level performance may be described
by means of a multi-class Processor-Sharing model where
the total service rate varies with the total number of active
users [12]. The latter model provides explicit formulas for
the distribution of the number of active users of the various
classes, the mean response times, the blocking probabilities,
and the throughputs. Similar Processor-Sharing type models
have been proposed for various types of wireless systems [10],
[22], [27], [32].

Despite the above results, the flow-level performance in
general has remained largely elusive, even basic stability
properties. In the present paper, we derive simple necessary
stability conditions, and show that these are in fact also
sufficient for a wide class of utility-based scheduling policies.
Of course, (in)stability is to a certain extent a theoretical
concept that cannot occur in an actual system due to admission
and flow control mechanisms and the inherent finiteness of
buffers. However, it is plausible that instability effects will
be reflected in poor performance in terms of long delays in
practical circumstances as well.

It is interesting to observe that the above stability result
contrasts with the fact that utility-based scheduling strategies
generally fail to provide maximum-throughput guarantees at



the packet level, see for instance [3], [24]. Various simple
queue-length-based strategies on the other hand do achieve
stability at the packet level whenever possible [4], [17],
[30], [31]. In order to reconcile these paradoxical facts, it
is worth observing that while utility-based strategies operate
agnostically of the queue lengths at the packet level, theydo
respond to congestion that occurs at the flow level. Thus, from
a stability perspective, the behavior of a utility-based strategy
at the flow level shows resemblance to that of a queue-length-
based strategy at the packet level. A somewhat related finding
in the context of ‘imperfect’ scheduling in multi-hop wireless
networks is reported in [21].

However, a crucial distinction is that at thepacket level
channel fluctuations give rise torandomtime-varying service
rates for the various users, which areindependentof the
number of packets stored in the buffer. In contrast, the feasible
service rates for the various classes at theflow level are
deterministicas the channel fluctuations ‘average out’, but they
vary with the number of users because the scheduling gains
increase with the degree of multi-user diversity. In that sense,
the stability results in the present paper differ from those for
queue-length-based strategies at the packet level [4], [30], [31]
and extend results for state-independent rate sets as obtained
in [5], [6], [8].

The remainder of the paper is organized as follows. In
Section II we recapitulate some relevant results for a static
user population and state some preliminary facts. We extend
the model to accommodate a dynamic user configuration in
Section III. In Section IV we establish necessary stability
conditions, and prove that these are in fact also sufficient for a
wide class of utility-based scheduling strategies. In Section V
we discuss some extensions.

II. STATIC USER POPULATION

We first review some relevant results for a system with a
static population ofM data users. For convenience, we assume
that the system operates in a time-slotted fashion. The feasible
rates for the various users vary over time according to some
stationary and ergodic discrete-time stochastic process{R(t)},
with R(t) ⊆ R representing the set of feasible rate vectors to
be selected from in time slott andR ⊆ RM

+ denoting the set
of all possible rate vectors. To avoid technicalities, we assume
that the setR is finite. With minor modifications, the results
extend to scenarios where the setR is infinite. Let R be a
random set with as distribution the stationary distribution of
the set of feasible rate vectors, and letp(S) := P{R = S} be
the stationary probability that the set of feasible rate vectors
is S ∈ S, with S := 2R.

Denote byA ⊆ RM
+ the set of all achievable (long-term)

throughput vectors.

The next proposition provides a characterization of the setA
[4], [13], [15], [26].

Proposition 2.1:The set of achievable throughput vec-

torsA may be characterized as

A = {T ∈ RM
+ : T ∈

∑
S∈S

p(S)conv(S)},

or equivalently,

A = {T ∈ RM
+ : z(T ) ≥ 1},

wherez(T ) is the optimal value of the linear program

max z

sub z ≤ zi =
∑
S∈S

∑
r∈S

p(S)x(r, S)ri/Ti i = 1, . . . ,M∑
r∈S

x(r, S) ≤ 1 S ∈ S

x(r, S) ≥ 0 r ∈ S, S ∈ S.
The variablex(r, S) in the above linear program may

be interpreted as the fraction of time that the rate vector
r ∈ S is selected given that the set of feasible rate vectors
is S ∈ S. Thus,

∑
r∈S

x(r, S)r ∈ conv(S) is the average rate

vector selected given that the set of feasible rate vectors is
S ∈ S, and

∑
S∈S

∑
r∈S

p(S)x(r, S)r is the throughput vector.

In particular, the term
∑

S∈S

∑
r∈S

p(S)x(r, S)ri represents the

throughput received by useri, and the variablezi measures
the throughput as a fraction of the target throughputTi.

The next proposition provides a characterization of the
optimal solution to the above linear program based on the
complementary slackness conditions [4], [13].

Proposition 2.2:There exists a vectorw∗ ∈ RM
+ such that

any optimal solutionx∗(r, S) to the above linear program
satisfies

x∗(r, S)

[
M∑
i=1

w∗i ri −max
s∈S

M∑
i=1

w∗i si

]
= 0,

for all r ∈ S, S ∈ S.
The above proposition shows that any feasible (non-

dominated) throughput vector can be achieved by some
weight-based strategy which selects in time slott the rate
vectorr ∈ R(t) identified by

M∑
i=1

w∗i ri = max
s∈R(t)

M∑
i=1

w∗i si,

augmented with a suitable tie-breaking rule. In particular,
any component-wise increasing function of the throughput
vector is maximized by some weight-based strategy. (This
may also be deduced from the observation that the achiev-
able throughput region is convex by a simple time-sharing
argument.) However, determining the weights that maximize a
given objective function directly is a formidable task, requiring
detailed information on the channel statistics. Instead, one
may maximize a given objective function by using adaptive
weights, without the need for explicit knowledge of the rate
characteristics. Specifically, letUi(·) be the strictly concave
utility function of useri. A gradient-based strategy selects in



slot t a rate vectorr ∈ R(t) that maximizes
M∑
i=1

riU
′
i(Wi(t)),

i.e., it selects in time slott a rate vectorr ∈ R(t) identified
by

M∑
i=1

riU
′
i(Wi(t)) = max

s∈R(t)

M∑
i=1

siU
′
i(Wi(t)), (1)

whereWi(t) denotes the exponentially smoothed throughput
of user i at time t. The exponentially smoothed throughput
is updated in each time slot asWi(t + 1) = (1 − δ)Wi(t) +
δX(r, t)ri, with δ a smoothing coefficient andX(r, t) a 0–1
variable indicating whether rate vectorr is selected in time
slot t or not. A prime example of a gradient-based strategy
is the Proportional Fair algorithm for the CDMA 1xEV-DO
system [7], [14], [16] which involves a utility functionUi(·) ≡
log(·) as the name suggests.

Note that the above selection rule may be interpreted as a
stochastic gradient ascent scheme. It has been shown in [2],
[20], [29], [34] that under mild assumptions the gradient-based
strategy indeed maximizes the aggregate utility as the time
constantT = 1/δ in the exponential smoothing grows large.
Specifically, asδ ↓ 0, the exponentially smoothed throughputs
approach a limit pointT ∗ = (T ∗1 , . . . , T ∗M ) which maximizes
the aggregate utility over the achievable throughput regionA,

i.e.,
M∑
i=1

Ui(T ∗i ) ≥
M∑
i=1

Ui(Ti) for all T ∈ A. In addition, the

limiting vector T ∗ satisfies the set of fixed-point equations

Ti =
∑
S∈S

∑
r∈S

rip(S)I
{

MP
i=1

U ′
i(Ti)ri=max

s∈S

MP
i=1

U ′
i(Ti)si}

, (2)

which follow directly from the above selection rule.
We conclude the section with a brief discussion of the

special case where only a single user is served in each time
slot. In that case, each of the setsS ∈ S consists ofM vectors
r1,S , . . . , rM,S ∈ RM

+ whererm,S
i = 0 for all i 6= m. It will

be convenient to denote byRi(t) := r
i,R(t)
i the feasible rate

of useri in time slott. The selection criterion (1) then implies
that time slott is allocated to useri∗ identified by

Ri(t)U ′
i∗(Wi∗(t)) = max

j=1,...,M
Rj(t)U ′

j(Wj(t)),

and the set of fixed-point equations (2) take the form

Ti =
∑
S∈S

∑
r∈S

rip(S)I{U ′
i(Ti)ri= max

j=1,...,M
U ′

j(Tj)rj}.

III. D YNAMIC USER CONFIGURATION

We now extend the model to accommodate a dynamic
configuration of users. The user dynamics result from finite-
size service demands that arrive randomly over time. We
assume that the duration of the time slots is short relative to the
size and arrival frequency of the service demands. Thus, the
scheduling mechanism operates on a relatively fast time scale
compared to the user dynamics, making it natural to analyze
the user-level performance in continuous rather than discrete
time, and assume that the users are served simultaneously
rather than in a time-slotted fashion. The continuous-time
model naturally inherits its service characteristics from the

discrete-time model. Specifically, we assume that the set of
feasible instantaneous service rate vectors in the continuous-
time context for a given user population coincides with the
set of achievable long-term throughput vectors for that user
population in a discrete-time setting. The above assumptions
ignore the discrete nature of the time slots and neglect the
transient fluctuations in the throughput. However, the law of
large numbers suggests that these effects should be negligible
in some suitable asymptotic sense in a limiting regime where
the duration of the time slots shrinks relative to the time scale
of the user dynamics.

We consider a scenario withK traffic classes. A traffic
class represents a category of statistically identical users in
terms of service requests and rate characteristics. Class-k users
arrive as a Poisson process of rateλk, and have exponentially
distributed service requirements with mean1/µk. Denote by
ρk := λk/µk the traffic intensity associated with classk, and
defineρ := (ρ1, . . . , ρK).

For a given user population (n1, . . . , nK), let
A(n1, . . . , nK) ⊆ RK

+ be the set of feasible service
rate vectors for the various classes. Formally, a service rate
vector a ∈ RK

+ belongs to the setA(n1, . . . , nK) if there
exists a vectorT = (T1,1, . . . , T1,n1 , . . . , TK,1, . . . , TK,nK

)
that belongs to the achievable throughput regionA ⊆ RM

+

with M =
K∑

k=1

nk as defined in the previous section for a

static scenario withnk class-k users,k = 1, . . . ,K, such that

ak =
nk∑
i=1

Tk,i.

The users are served according to a utility-based scheduling
strategy. Thus, for a given user populationn = (n1, . . . , nK),
the throughputs for the various users are selected so as to

maximize the aggregate weighted utility
K∑

k=1

nk∑
i=1

θkU(Ti,k),

with U(·) some concave utility function andθ ∈ RK
+ . Be-

cause of the concavity, equal weights, and symmetry among
users within classes, optimality requires thatTk,i = Tk

for all i = 1, . . . , nk. Thus, the service ratess(n) :=
(s1(n), . . . , sK(n)) for the various classes are selected such

that
K∑

k=1

θknkU(sk(n)/nk) ≥
K∑

k=1

θknkU(sk/nk) for all s :=

(s1, . . . , sK) ∈ A(n1, . . . , nK).
The sets A(n1, . . . , nK) have two crucial properties.

First of all, a simple time-sharing argument implies that
each set A(n1, . . . , nK) is convex as observed before.
Second, the setsA(n1, . . . , nK) are monotone increas-
ing in the user population, i.e., if(m1, . . . ,mK) ≤
(n1, . . . , nK), then A(m1, . . . ,mK) ⊆ A(n1, . . . , nK).
The latter property follows from the fact that additional
users may simply be excluded from service without af-
fecting the feasible service rates of the remaining users.
Since the setsA(n1, . . . , nK) are monotone increasing,
we may define A∗ := lim

n1,...,nK→∞
A(n1, . . . , nK) =

sup
(n1,...,nK)∈NK

A(n1, . . . , nK). It is easily verified that the

setA∗ is convex.



While the setA∗ may have a complicated structure in
general, it has a rather simple form in the special case where
only a single user is served in each time slot. DefineR∗

k :=
inf{r : P{Rk > r} = 0} as the maximum possible value
of the rate of class-k users. Then, assuming independence
among users, for anyr < R∗

k, it is easily verified that
rek ∈ A(n1, . . . , nK) for nk large enough, withek denoting
the k-th unit vector, which impliesrek ∈ A∗. By convexity,
it follows that A∗ = conv({R∗

1e1, . . . , R
∗
KeK}) = {x ∈ RK

+ :
K∑

k=1

xk

R∗
k
≤ 1}.

If in addition the relative variations around the time-average
rates are identically distributed for all classes, i.e.,Rk

d= CkY
for all k = 1, . . . ,K, with Ck representing the time-average
rate of class-k users, thenR∗

k = CkG∗ with G∗ := inf{y :

P{Y > y} = 0}. In that case,A∗ = {x ∈ RK
+ :

K∑
k=1

xk

Ck
≤

G∗}.

IV. STABILITY CONDITION

The next proposition provides a simple necessary stability
condition.

Proposition 4.1:No scheduling strategy achieves stability
for ρ 6∈ A∗.

Proof
If r is the long-term mean service rate vector, then it must

be the case thatr ∈ conv(A∗) = A∗. In order for the system
to be stable, we must haver = ρ. Hence,ρ 6∈ A∗ precludes
stability of the system.

2

For any n = (n1, . . . , nK), define Gn(s1, . . . , sK) :=
K∑

k=1

θknη
ksγ

k , with θ, η, γ > 0. A scheduling strategy that

selects service rate vectors(n) = (s1(n), . . . , sK(n)) as
function of the user populationn = (n1, . . . , nK) is said to
be B-strong if for all δ > 0, there exists a finite setVδ ⊆ NK

such thatGn(s(n)) ≥ (1 − δ) sup
s∈B

Gn(s) for all n 6∈ Vδ.

Note that a scheduling strategy that selects the service rate
vectors(n) so as to maximizeGn(s) over A(n1, . . . , nK) is
A∗-strong, which may be checked as follows. SinceA∗ =

lim
n1,...,nK→∞

A(n1, . . . , nK), there exists for allδ > 0 a

finite setVδ such that(1 − δ)1/γs ∈ A(n1, . . . , nK) for all
s ∈ A∗, n 6∈ Vδ. Hence,Gn(s(n)) = sup

s∈A(n1,...,nK)

Gn(s) ≥

sup
s∈A∗

Gn((1− δ)1/γs) = (1− δ) sup
s∈A∗

Gn(s) for all n 6∈ Vδ.

In particular, a utility-based scheduling strategy with
U(x) = xγ is A∗-strong,η = 1−γ. A queue-based scheduling
strategy isA∗-strong as well, withη = 1, γ = 1.

The next proposition (takingB = A∗) shows that the
condition identified in Proposition 4.1 is also (nearly) sufficient
for stability.

Proposition 4.2:A B-strong scheduling strategy achieves
stability for ρ ∈ int(B) andθ, η > 0, 0 < γ ≤ 1.

Proof

The proposition may be established in a similar fashion as
the stability ofα-fair strategies in wireline bandwidth-sharing
networks [8]. The main difference is the fact that the rate
region varies with the user population and only approaches
the stated capacity region as the user population grows suitably
large.

Specifically, let n(t) := (n1(t), . . . , nK(t)), with nk(t)
denoting the number of class-k users at timet, and consider
the set of fluid limits defined by

N(t) = lim
ω→∞

n(ωt)
ω

,

with
K∑

k=1

nk(0) = ω.

Given an initial stateN(0), it follows from the strong law of
large numbers that the evolution of the fluid limits is uniquely
described by the set of differential equations:

d
dt

Nk(t) = λk − µkSk(t) (3)

for all k, t such thatNk(t) > 0, whereS(t) := lim
ω→∞

S(ωt),
assuming the limit exists, andS(ωt) := s(n(ωt)).

We now prove thatGN(t)(S(t)) ≥ sup
s∈B

GN(t)(s).

It may be assumed thatN(t) 6= 0 because otherwise the
assertion is trivially true.

Then there exists someωδ such thatn(ωt) 6∈ Vδ for all
ω > ωδ.

Hence,Gn(ωt)(s(n(ωt))) ≥ (1 − δ) sup
s∈B

Gn(ωt)(s) for all

ω > ωδ, which impliesGN(t)(S(ωt)) ≥ (1− δ) sup
s∈B

GN(t)(s)

for all ω > ωδ.
Since δ > 0 is arbitrary, it readily follows that

GN(t)(S(t)) ≥ sup
s∈B

GN(t)(s) as asserted.

The concavity of the functionGN(t)(·) then implies that
G′

N(t)(s)(s− S(t)) ≤ 0 for any s ∈ B, which gives

K∑
k=1

θksγ−1
k Nk(t)η(sk − Sk(t)) ≤ 0.

Since ρ ∈ int(B), it follows that ρ(1 + ε) ∈ int(B) for
someε > 0.

Hence, in particular we have

K∑
k=1

θkργ−1
k Nk(t)η(ρk(1 + ε)− Sk(t)) ≤ 0. (4)

Consider the Lyapunov function

F (x1, . . . , xK) =
K∑

k=1

θk

µk
ργ−1

k

x1+η
k

1 + η
.

From (3), we obtain

d
dt

F (N(t)) =
K∑

k=1

θkργ−1
k Nk(t)η(ρk − Sk(t)). (5)



Substituting (4) into (5),

d
dt

F (N(t)) < −ε
K∑

k=1

θkργ
kNk(t)η.

As in [8], it may then be deduced thatF (N(t)) = 0, and
henceN(t) = 0, for all t ≥ τ for someτ < ∞, which implies
that the system is stable.

2

In the special case where only a single user is served in each

time slot so thatA∗ = {x ∈ RK
+ :

K∑
k=1

xk

R∗
k
≤ 1}, the stability

condition of Proposition 4.2 reduces to
K∑

k=1

ρk/R∗
k < 1. Thus,

an A∗-strong strategy achieves stability as long as the system
is stable if every class were served at the maximum possible
rate all the time, which is also a necessary condition, as shown
by Proposition 4.1. This may be explained by the observation
that under anA∗-strong strategy every class will either be
served at the maximum possible rate or not at all whenever
any of the classes drifts into instability.

If in addition the relative variations around the time-average
rates are identically distributed for all classes, so thatA∗ =

{x ∈ RK
+ :

K∑
k=1

xk

Ck
≤ G∗}, then the stability condition may

be written asρ̃ < G∗ as in [12], with ρ̃ :=
K∑

k=1

ρ̃k and ρ̃k :=

ρk/Ck.

V. EXTENSIONS

We now discuss some extensions of the stability results.
First we consider a scenario where an admission control
procedure determines which users are admitted into the
system. Users that cannot instantaneously be accommodated
are denied access and lost. We make the natural assumption
that the admissible regionP ⊆ NK is monotone, i.e., if
(m1, . . . ,mK) ≤ (n1, . . . , nK), and (n1, . . . , nK) ∈ P ,
then (m1, . . . ,mK) ∈ P . Observe that otherwise a service
completion might potentially cause the user population to
become inadmissible. DenoteN∗

k := max
(n1,...,nK)∈P

nk, and

defineK∗ := {1 ≤ k ≤ K : N∗
k = ∞} as the set of classes

which are not subject to admission control. Without loss
of generality we assume that the classes are indexed such
thatK∗ := {1, 2, . . . ,K∗}. DenoteĀ(n1, . . . , nK∗) := {x ∈
RK∗

+ : (x1, . . . , xK∗ , 0, . . . , 0) ∈ A(n1, . . . , nK∗ , 0, . . . , 0)}.
Define Ā∗ := lim

n1,...,nK→∞
Ā(n1, . . . , nK) =

sup
(n1,...,nK)∈NK

Ā(n1, . . . , nK). It is easily verified that

the setĀ∗ is convex.
Proposition 5.1:An A∗-strong scheduling strategy achieves

stability for (ρ1, . . . , ρK∗) ∈ int(Ā∗) andη > 0, 0 < γ ≤ 1.
Observe that the classesk 6∈ K∗ which are subject to

admission control do not play any role in the above stability
condition. The explanation is that the fraction of resources
consumed by these classes becomes negligible as the system

saturates with traffic from non-controlled classes.

The stability results also extend to an integrated system with
both elastic flows and streaming users as considered in [9],
[18], [19]. The explanation is that the holding times of the
streaming users are random but independent of the amount of
service received. Hence, the population of streaming users is
simply that in an infinite-server queue, and not affected by the
degree of congestion. The fraction of resources consumed by
the streaming users therefore vanishes as the load imposed by
the elastic flows approaches the capacity limit.

APPENDIX

We now present an alternative proof of Proposition 4.2
which uses Foster’s criterion with a Lyapunov function in
terms of the original process rather than the fluid limits.

Proof
Consider the Lyapunov function

F (n1, . . . , nK) =
K∑

k=1

θk

µk
ργ−1

k

n1+η
k

1 + η
.

When the user population isn = (n1, . . . , nK), transitions
may occur to staten + ek at rateλk or to staten− ek at rate
µksk(n).

Hence, given that the current user population isn =
(n1, . . . , nK), the drift in the Lyapunov function is

∆(n) =
K∑

k=1

θkργ−1
k nη

k(ρk − sk(n)) + o(
K∑

k=1

nη
k). (6)

It thus suffices to show that∆(n) < 0 whenevern 6∈ W
for some finite setW ⊆ NK .

For all δ > 0, there exists a finite setVδ ⊆ NK such that
Gn(s(n)) ≥ (1− δ) sup

s∈B
Gn(s) for all n 6∈ Vδ.

The concavitity of the functionGn(·) then implies that
G′

n(s)(s− S(n)) ≤ F (δ) for any s ∈ B, which gives

K∑
k=1

θksγ−1
k nη

k(sk − sk(n)) ≤ F (δ)

for all n 6∈ Vδ.
Since ρ ∈ int(B), it follows that ρ(1 + ε) ∈ int(B) for

someε > 0.
Hence, in particular we have

K∑
k=1

θkργ−1
k nη

k(ρk(1 + ε)− sk(n)) ≤ F (δ) (7)

for all n 6∈ Vδ.
Substituting (7) into (6),

∆(n) < −ε
K∑

k=1

θkργ−1
k nη

k + F (δ) + o(
K∑

k=1

nη
k),

for all n 6∈ Vδ, and thus∆(n) < 0 whenevern 6∈ W for some
finite setW , which completes the proof.
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