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Flow-level stability of channel-aware scheduling
algorithms

ABSTRACT

Channel-aware scheduling strategies provide an effective mechanism for improving the
throughput performance in wireless data networks by exploiting channel fluctuations. The
performance of channel-aware scheduling algorithms has mainly been examined at the packet
level for a static user population, often assuming infinite backlogs. Recently, some studies have
also explored the flow-level performance in a scenario with user dynamics governed by the
arrival and completion of random service demands over time. Although in certain cases the
performance may be evaluated by means of a Processor-Sharing model, in general the flow-
level behavior has remained largely intractable, even basic stability properties. In the present
paper we derive simple necessary stability conditions, and show that these are also sufficient
for a wide class of utility-based scheduling policies. This contrasts with the fact that the latter
class of strategies generally fail to provide maximum-throughput guarantees at the packet level.
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Abstract—Channel-aware scheduling strategies provide an to assume that the user population is independent of the
effective mechanism for improving the throughput performance  specific properties of the scheduler. For example, a scheduling
in wireless data networks by exploiting channel fluctuations. The strategy that provides high throughput to users with favorable

performance of channel-aware scheduling algorithms has mainly " . . .
been examined at the packet level for a static user population, channel conditions, will tend to satisfy the service demands

often assuming infinite backlogs. Recently, some studies have alsdf these users sooner. As a result, the scheduler would be left
explored the flow-level performance in a scenario with user dy- facing a user population with a higher fraction of users with

namics governed by the arrival and completion of random service poor channel conditions. Conversely, a scheduling strategy
demands over time. Although in certain cases the performance that grants reasonable throughput to users with poor channel

may be evaluated by means of a Processor-Sharing model, in S . .
general the flow-level behavior has remained largely intractable, conditions, should to a certain degree benefit from that by

even basic stability properties. In the present paper we derive S€€ing fewer of these users.
simple necessary stability conditions, and show that these are also Recently, some studies have explored the flow-level perfor-

sufficient for a wide class of utility-based scheduling policies. This mance in a scenario as described above with user dynamics
contrasts Wlth the fe_lct that the latter class of strategies generally governed by the arrival and completion of random service
fail to provide maximum-throughput guarantees at the packet ; . . .
level. demands over time. In particular, it has been shown that in

certain cases the flow-level performance may be described

. INTRODUCTION by means of a multi-class Processor-Sharing model where

Channel-aware scheduling strategies provide an effecting total service rate varies with the total number of active

e forimproving e troughput perfomance mwird 12 1121 The later mode provides expct formuae o
less data networks by harnessing channel variations. A pri

example is the Proportional Fair algorithm, which has bedipoSes: the mean response times, the blocking probabilities,

adopted as the default scheduler for the CDMA 1xEV-D nd the throughputs. Similar Processor-Sharing type models

system [7], [14], [16], and is also considered for implement _a\ae [t;(]en[grztiposed for various types of wireless systems [10],

tion in HSDPA. The performance of channel-aware scheduli . .
P Despite the above results, the flow-level performance in

algorithms has mainly been investigated at the packet level : . . .
9 y g P neral has remained largely elusive, even basic stability

for a static user scenario, sometimes including packet-sc%fre%pertieS In the present paper, we derive simple necessary
dynamics [4], [28], but often assuming infinite backlogs [1 iy L ! X
Y 4], [28] 9 gs [ ]établhty conditions, and show that these are in fact also

[13], [23], see also [24], [25], [31], [33] for related results. ... . . . -
The assumption of a static user population is a reasonag‘%mc'em for a wide class of utility-based scheduling policies.

modeling convention because of the separation of time Scalcghggu;stﬁét(::rgr?;%?”c;%/cj irtloar?l af:fgzlg se;;,trinctjuaet: ttg ch)jrnitils?sa}!)n
the scheduling mechanism operates at the packet level on b . y o

. . : and flow control mechanisms and the inherent finiteness of
which the user population evolves only relatively slowly,

However, when examining the throughput performance, andtfHﬁerS' However, it is plausible that instability effects will

particular comparing the throughput allocation among elas%?((,3 rgflectgd in poor performance in terms of long delays in
ractical circumstances as well.

traffic users under various strategies, it is not satisfactofy2c2 . -
g Vit is interesting to observe that the above stability result

IWork done while second author was with France Telecom R&D, 3g-fgontrasts Wi_th the fa(ft that Ut_”ity'baSEd scheduling strategies
rue du Geréral Leclerc, 92794 Issy-les-Moulineaux, France. generally fail to provide maximum-throughput guarantees at



the packetlevel, see for instance [3], [24]. Various simpleors A may be characterized as

gueue-length-based strategies on the other hand do achieve M

stability at the packet level whenever possible [4], [17], A={TeRy:Te ZP(S)CODV(S)}’

[30], [31]. In order to reconcile these paradoxical facts, it . 5€s

is worth observing that while utility-based strategies opera@ equivalently,

agnostically of the queue lengths at the packet level, tey A=1{Te Ri{ :2(T) > 1},

respond to congestion that occurs at the flow level. Thus, from

a stability perspective, the behavior of a utility-based strateggherez(T') is the optimal value of the linear program

at the flow level shows resemblance to that of a queue-length-
. . I

based strategy at the packet level. A somewhat related finding )

in the context of ‘imperfect’ scheduling in multi-hop wireless SUP 2 <z = Z ZP(S)IUE S)ri/T; i=1,....M

nax =z

networks is reported in [21]. Sesres

However, a crucial distinction is that at thEacketlevel Zfﬁ(ﬂ S)<1 Ses
channel fluctuations give rise randomtime-varying service res
rates for the various users, which aiedependentof the z(r,S) =20 res,ses.

number of packets stored in the buffer. In contrast, the feasibleThe variable z(r, S) in the above linear program may
service rates for the various classes at ftav level are be interpreted as the fraction of time that the rate vector
deterministicas the channel fluctuations ‘average out’, but thely € .5 is selected given that the set of feasible rate vectors
vary with the number of users because the scheduling gaifisS € S. Thus, > z(r, S)r € conv(S) is the average rate

increase with the degree of multi-user diversity. In that senSgyctor selected Tgﬁ\%h that the set of feasible rate vectors is

the stability results in the present paper differ from those faf - s and S S p(S)x(r, S)r is the throughput vector.

gueue-length-based strategies at the packet level [4], [30], [31] Sesres

and extend results for state-independent rate sets as obtalfe@articular, the term ZS ZSP(S)CE(T, S)ri represents the

in [5], [6], [8]. throughput received bieugegr and the variable;; measures
The remainder of the paper is organized as follows. ke throughput as a fraction of the target throughput

Section Il we recapitulate some relevant results for a static

user population and state some preliminary facts. We extendrhe next proposition provides a characterization of the

the model to accommodate a dynamic user configuration gptimal solution to the above linear program based on the

Section Ill. In Section IV we establish necessary stabilityomplementary slackness conditions [4], [13].

conditions, and prove that these are in fact also sufficient for aProposition 2.2: There exists a vectar* € R} such that

wide class of utility-based scheduling strategies. In Sectionafy optimal solutionz*(r, S) to the above linear program

we discuss some extensions. satisfies

M M
* * * .
[l. STATIC USER POPULATION @*(r,5) Z“’ZT’ ’I?é’gizwi si| =0,
=1 =1

We first review some relevant results for a system with far all » € S, S € S.
static population of\/ data users. For convenience, we assume The above proposition shows that any feasible (non-
that the system operates in a time-slotted fashion. The feasi@@minated) throughput vector can be achieved by some
rates for the various users vary over time according to someight-based strategy which selects in time siahe rate
stationary and ergodic discrete-time stochastic prof&%s)}, vectorr € R(t) identified by

with R(t) C R representing the set of feasible rate vectors to M M
be selecte_d from in time sI@tandR_ CRY Qeqqting the set Zw;ri = max Zw;si,
of all possible rate vectors. To avoid technicalities, we assume =1 s€R(1) *—

that the setR is finite. With minor modifications, the res““saugmented with a suitable tie-breaking rule. In particular,

extend to scenarios where the getis infinite. Let R be a any component-wise increasing function of the throughput
random set with as distribution the stationary distribution Qfactor is maximized by some weight-based strategy. (This
the set of feasible rate vectors, and)¢6) := P{R = S} be 3y 450 be deduced from the observation that the achiev-
Fhe stat|one_1ry probability that the set of feasible rate vectogg)q throughput region is convex by a simple time-sharing
is S € 8, with S := 2%. argument.) However, determining the weights that maximize a
Denote by A C R} the set of all achievable (long-term)given objective function directly is a formidable task, requiring
throughput vectors. detailed information on the channel statistics. Instead, one
may maximize a given objective function by using adaptive
The next proposition provides a characterization of thedsetweights, without the need for explicit knowledge of the rate
[4], [13], [15], [26]. characteristics. Specifically, 1€f;(-) be the strictly concave
Proposition 2.1: The set of achievable throughput vecutility function of useri. A gradient-based strategy selects in



slot ¢ a rate vector € R(t) that maximizesy_ r; U’ (W;(t)), discrete-time model. Specifically, we assume that the set of
i feasible instantaneous service rate vectors in the continuous-

=1
i.e., it selects in time slot a rate vector € R(t) identified (ime context for a given user population coincides with the

by N " set of achievable long-term throughput vectors for that user
ZWU{(Wi(t)) — max s UL (Wi(D)), @ _populaﬂon in a discrete-time settlng. The above assumptions
~ SER(t) — ignore the discrete nature of the time slots and neglect the

transient fluctuations in the throughput. However, the law of

where IW;(t) denotes the exponentially smoothed throughpy,se numbers suggests that these effects should be negligible
of users at time . The exponentially smoothed throughpuf, some suitable asymptotic sense in a limiting regime where
is updated n each time slqt ag; (¢ + D = (1= )Wi(t) + the duration of the time slots shrinks relative to the time scale
6X (r,t)r;, with 6 a smoothing coefficient and'(r,t) a 0-1 ¢ the user dynamics.

variable indicating whether rate vecteris selected in time We consider a scenario with traffic classes. A traffic
slot ¢ or not. A prime example of a gradient-based strate%\f '

5 te Proporonal i algorim o T CDMA 15EVADO oo 7511 2 Caegon of siatstialy ente sers i
system [7], [14], [16] which involves a utility functioli; () = q ’

arrive as a Poisson process of raje and have exponentiall
log(-) as the name suggests. P & y y

. . distributed service requirements with mebfy;. Denote by
Note that the above selection rule may be interpreted as a_ i/ jix the traffic intensity associated with clagsand

stochastic gradient ascent scheme. It has been shown in finep i ( )
[20], [29], [34] that under mild assumptions the gradient-base P pl_’ P )
strategy indeed maximizes the aggregate utility as the timem©" & given uSer population (ny,....nk), let
constantT = 1/6 in the exponential smoothing grows large”\("1---.nx) S R be the set of feasible service
Specifically, ag) | 0, the exponentially smoothed throughputéate vectors fgr the various classes. Formally, a service rate
approach a limit poin™* = (T}, ..., T;,;) which maximizes vectora € R belongs to the seti(ny,...,nk) if there
the aggregate utility over the achievable throughput reglon €XiSts @ vectorl” = (Th 1., Tiys o Tions oo T )

M M that belongs to the achievable throughput regiénC R%/
ie, Y Ul(TF) > > U(T;) for all T € A. In addition, the

i=1 i=1
Iimitfng vector T* satisfies the set of fixed-point equations

K
with M = > ny as defined in the previous section for a

k=1
Z Z static scenario with classk users,k =1,..., K, such that
T; = rip(S)1 ;@ _ &
fory oyt {é U/ (T:)ri=max é U/(Ti)s:} ay = ;::1 Th,i-
which follow directly from the above selection rule The users are served according to a utility-based scheduling
We conclude the section with a brief discussion of thairatedy. Thus, for a given user population= (n1,. .., nx),

special case where only a single user is served in each tifg throughputs for the various users a}ze selected so as to

. Nk
slot. In that case, each of the séts S consists ofM vectors maximize the aggregate weighted utility" > 6,U(T; 1),
rbS L rMS e RM wherer® = 0 for all i # m. It will k=11=1 ’
AR + i . i ili i K
i, R(t) with U(-) some concave utility function and < R’. Be-

be convenient to denote b;(t) := r; the feasible rate cause of the concavity, equal weights, and symmetry amon
of useri in time slot¢. The selection criterion (1) then implies Y. €q gnis, y y 9

that time slott is allocated to usei* identified by ;Jsers W'thm classes, optimality requires HiEt; = T
or all ¢ = 1,...,n, Thus, the service rates(n) :=
R,()U]. (W (t)) = jpax R;(H)U(W;(1)), (sl(nzé ...,sk(n)) for the va;i{ous classes are selected such
and the set of fixed-point equations (2) take the form that k; Ol (s (n) /) = kzzzl OrrneU (si/mue) for all s =
(s1,-.-,8K) € A(nq,...,nK).
TZ_%TEZ;TT’p(S)I{UZ‘/(Ti)”:JaT?’F.MUf(TJ)TJ}' The sets A(ny,...,nx) have two crucial properties.
First of all, a simple time-sharing argument implies that
I1l. DYNAMIC USER CONFIGURATION each setA(ni,...,ng) is convex as observed before.
We now extend the model to accommodate a dynam@econd, the setsA(ni,...,nyx) are monotone increas-
configuration of users. The user dynamics result from finitthg in the user population, i.e., if(mi,...,mg) <
size service demands that arrive randomly over time. W, ... ng), then A(my,...,mg) C A(ni,...,ng).

assume that the duration of the time slots is short relative to thee latter property follows from the fact that additional

size anql arrival frequency of the service d_emands. Thus, ilsers may simply be excluded from service without af-
scheduling mechanism operates on a relatively fast time scideting the feasible service rates of the remaining users.

compared to the user dynamics, making it natural to analygice the setsA(ni,...,nx) are monotone increasing,
the user-level performance in continuous rather than discrgé@ may define A* := lim Alny,...,ng) =

. . Mn1,...,;NK—00

time, and assume that the users are served simultaneously sup A(ny,...,nx). It is easily verified that the

rather than in a time-slotted fashion. The continuous-timg, .. enx
model naturally inherits its service characteristics from theet A* is convex.



While the setA* may have a complicated structure in The proposition may be established in a similar fashion as
general, it has a rather simple form in the special case whdhe stability ofa-fair strategies in wireline bandwidth-sharing
only a single user is served in each time slot. DefiRfe:= networks [8]. The main difference is the fact that the rate
inf{r : P{Rr > r} = 0} as the maximum possible valueregion varies with the user population and only approaches
of the rate of clasg users. Then, assuming independendée stated capacity region as the user population grows suitably
among users, for any: < Ry, it is easily verified that large.
rei € A(ni,...,nk) for ng large enough, witre, denoting  Specifically, letn(t) = (ni(t),...,nk(t)), with ng(¢)
the k-th unit vector, which impliesre,, € A*. By convexity, denoting the number of clagsusers at time, and consider
it follows that A* = conv({Rje1,..., Rjcex}) = {x € RE : the set of fluid limits defined by

n(wt)

Z ry < 1 N(t) = lim
If in addition the relative variations around the t|me -average wTmee W

rates are |dent|cally distributed for all classes, iR,,—= CkY

forall k =1,..., K, with C, representing the time- average with Z n(0) =

rate of class: users, thenR; = C,G* with G* := inf{y : G|ven an initial stateN( ), it follows from the strong law of

K large numbers that the evolution of the fluid limits is uniquely
= * = K . e <
P{Y >y} = 0}. In that caseA {v e Ry k; ¢ = described by the set of differential equations:
G*}.

d

IV. STABILITY CONDITION &Nk( ) = A= /ikSk(t) 3)

The next proposition provides a simple necessary stabiliigr all k,¢ such thatN(¢) > 0, where S(¢t) := lim S(wt),

condition. assuming the limit exists, anfl(wt) := s(n(wt)).

f Progefmon 4.1:No scheduling strategy achieves stability \we now prove thati y; (S(t)) > sup Gy (s).

or p * sEB
Proof It may be assumed thaVv(¢) # 0 because otherwise the
If r is the long-term mean service rate vector, then it mu@gSertion is trivially true.

be the case that € conv(A*) = A*. In order for the system Then there exists somes such thatn(wt) ¢ Vs for all

to be stable, we must have= p. Hence,p ¢ A* precludes ¥ = s-

stability of the system. Hence, G, 1) (s(n(wt))) = (1 —6) sup G (wt)(s) for all

5w > ws, which impliesG ) (S(wt)) > (1 —8) sup G () ()
SEB

for all w > ws.
Since § > 0 is arbitrary, it readily follows that

Z Oxnys), with 6,7, > 0. A scheduling strategy thatGN(t)(s( )) > SquN(t)( s) as asserted.
=1

selects service rate vectar(n) = (si(n),...,sk(n)) as  The concawty "of the functiorG ) (-) then implies that
function of the user population = (nq,.. nK) is said to ¢

)(8)(s — S(t)) < 0 for any s € B, which gives
be B-strong if for allé > 0, there exists a f|n|te séfy C NX N
such thatG,(s(n)) > (1 —6)squ (s) for all n & V.

Note that a scheduling strategy that selects the service rate

For anyn = (ny,...,ng), define G,(s1,...,8x) =

K
> Oks] T ENK(E) (s — Sk(t)) < 0.

vector s(n) so as to maximize,,(s) over A(nq,...,nk) is
A*-strong, which may be checked as follows. Simte =  Sincep € int(B), it follows that p(1 + €) € int(B) for
lim  A(ni,...,nx), there exists for all§ > 0 a Somee> 0.
N1 yeee, MK — 00 . .
finite setVs such that(1 — 6)'/7s € A(ni,...,ng) for all Hence, in particular we have
s € A*, n ¢ Vs. Hence,Gy,(s(n)) = sup Gr(s) > K
s€A(n1,..ni) Z9kﬂz_lNk(t)"(Pk(1 +€) — Sk(t)) <0. (4)
sup G ((1 —86)Y7s) = (1 —6) sup Gr(s) for all n & V5.
SEA* EA*

In particular, a utility- based scheduling strategy with Consider the Lyapunov function
U(x) = a7 is A*-strong,n = 1—~. A queue-based scheduling

strategy isA*-strong as well, withh =1, v = 1. 2 _ X 3 7,1ﬂ
The next proposition (takingg = A*) shows that the (@1, wi) = Z Mkp’“ 1+7n

condition identified in Proposition 4.1 is also (nearly) sufficient b=l

for stability. From (3), we obtain
Proposition 4.2: A B-strong scheduling strategy achieves K

stability for p € int(B) andd,n > 0,0 <~y < 1. EF(N(t)) _ Z9kpz_1Nk(t)"(Pk — Su(®).  (5)
Proof de



Substituting (4) into (5), saturates with traffic from non-controlled classes.

iF(N(t)) < ¢ f: Orp) Ny (t)". The stapility results also extgnd to an integrated_ system with
dt both elastic flows and streaming users as considered in [9],
[18], [19]. The explanation is that the holding times of the
streaming users are random but independent of the amount of
service received. Hence, the population of streaming users is
simply that in an infinite-server queue, and not affected by the
degree of congestion. The fraction of resources consumed by
, , i . the streaming users therefore vanishes as the load imposed by
In the special case where only a single user is served in eqxﬁg elastic flows approaches the capacity limit.

K
time slot so thatd* = {z € RY : 3 Z& < 1}, the stability
k=1 k

k=1
As in [8], it may then be deduced th&t(N(¢)) = 0, and
henceN (t) = 0, for all ¢ > 7 for somer < oo, which implies

that the system is stable.
O

R APPENDIX

We now present an alternative proof of Proposition 4.2
=1 which uses Foster’'s criterion with a Lyapunov function in
an A*-strong strategy achieves stability as long as the systésims of the original process rather than the fluid limits.
is stable if every class were served at the maximum possible
rate all the time, which is also a necessary condition, as showrproof
by Proposition 4.1. This may be explained by the observationConsider the Lyapunov function
that under anA*-strong strategy every class will either be

K
condition of Proposition 4.2 reduces {0, p;/R; < 1. Thus,

. . K 1+
served at the maximum possible rate or not at all whenever F(ni,...,ng) = Z O 17y n.
any of the classes drifts into instability. Y ot 14
If in addition the relative variations around the time-average L .
When the user population is = (n,...,nk), transitions

rates are identically distributed for all classes, so that= May OCCUT to State + e, at rate)y or to staten — e, at rate

K
{z e RE : 3 & < G}, then the stability condition may ju;s(n). _ o
= K Hence, given that the current user populationnis=
be written asp < G* as in [12], withj := > pp andjy := (n1,...,nk), the drift in the Lyapunov function is
k=1
K K
pr/Ck. _
A(n) =Y 0kp) 'nl(px — sk(n)) +0(>_ni).  (6)
V. EXTENSIONS k=1 k=1
We now discuss some extensions of the stability results.It thus suffices to show thah(n) < 0 whenevern ¢ W
First we consider a scenario where an admission contfol some finite setV C NX.
procedure determines which users are admitted into theFor all § > 0, there exists a finite sdt; C N¥ such that
system. Users that cannot instantaneously be accommoddteds(n)) > (1 — 6) sup G, (s) for all n € V;.
i ; sEB
are denied access and lost. We make the natural assumptiog,, concavitity of the functioni,,(-) then implies that

that the admissible regio® C N* is monotone, ie., if - (s)(s — S(n)) < F(5) for any's € B, which gives

(my,...,mg) < (n1,...,ng), and (ny,...,ng) € P,

then (my,...,mg) € P. Observe that otherwise a service K =1

completion might potentially cause the user population to Zeksk ni(sk = su(n)) < F(9)
become inadmissible. Denot&} := max  ny, and k=1

o . (n1,....,nK)EP for all n & V;.
defineC* := {1 < k < K : Ni = oo} as the set of classes gjnce ) ¢ int(B), it follows that p(1 + ¢) € int(B) for
which are not subject to admission control. Without |°5§omee> 0.
of generality we assume that the classes are indexed sucfjance. in particular we have

that C* := {1,2,..., K*}. DenoteA(ny,...,ng~) := {x €

* K

RE" ¢ (21,...,2K+,0,...,0) € A(ny,...,nk-,0,...,0)} N—1 1

Define  A* :: im  A(ne.... ) n kz_:lﬁkpk n} (pr(1+€) — sp(n)) < F(9) (7
sup  A(m,...,ng). It is easily verified that for gl 5 & V.

(n1,...,nK)ENK

the setA* is convex.
Proposition 5.1: An A*-strong scheduling strategy achieves K K

stability for (p1, ..., px+) € int(A*) andn >0, 0 < v < 1. A(n) < —€> Oxpl 0+ F(8) + 0> _n}),
Observe that the classds ¢ K* which are subject to k=1 k=1

admission control do not play any role in the above stabilifipr all n ¢ V5, and thusA(n) < 0 whenevem ¢ W for some

condition. The explanation is that the fraction of resourcémite set’V, which completes the proof.

consumed by these classes becomes negligible as the system O

Substituting (7) into (6),



(1]

(2]

(3]
(4]

(5]

(6]
(7]

(8]
(9]

[20]

[11]

[12]
[13]

[24]

[15]

[16]

[17]

[18]

[29]

[20]

[21]

[22]

[23]

[24]

REFERENCES [25]
Agrawal, R., Bedekar, A., La, R.J., Subramanian, V. (2001). Class
and channel condition based weighted proportional fair scheduler. [#6]
Teletraffic Engineering in the Internet Era, Proc. ITC;1Salvador da
Bahia, eds. J.M. de Souza, N.L.S. da Fonseca, E.A. de Souza e SIRé
(North-Holland, Amsterdam), 553-565.

Agrawal, R., Subramanian, V. (2002). Optimality of certain channel-
aware scheduling policies. Ifroc. 40th Annual Allerton Conf. Com- [28]
mun. Control.,, Comp.1532-1541.

Andrews, D.M. (2004). Instability of the Proportional Fair scheduling
algorithm for HDR.IEEE Trans. Wireless Commu8, 1422-1426.
Andrews, D.M., Kumaran, K., Ramanan, K., Stolyar, A.L., Vijayaku-
mar, R., Whiting, P.A. (2004). Scheduling in a queueing system wit?®]
asynchronously varying service ratésob. Eng. Inf. Sc18, 191-217.

M. Armony, N. Bambos (1999). Queueing networks with interactingﬁ30
service resources. InProc. 37th Annual Allerton Conf. Commun., |
Control, Comp, 42-51.

N. Bambos, G. Michailidis (2004). Queueing and scheduling in randOﬁll
environmentsAdv. Appl. Prob.36, 293-317.

Bender, P., Black, P., Grob, M., Padovani, R., Sindhushayana, N., Viterbi,
A. (2000). CDMA/HDR: a bandwidth-efficient high-speed wireless dat?32]
service for nomadic usertEEE Commun. Mag38 (7), 70-77.

Bonald, T., Massoué, L. (2001). Impact of fairness on Internet perfor-
mance. In:Proc. ACM Sigmetrics / Performance 2001 CogR2-91. 33]
Bonald, T., Prougre, A. (2004). On performance bounds for thé
integration of elastic and adaptive streaming flows. Froc. ACM
Sigmetrics / Performance 2004 Cqrit35-245. 34]
Bonald, T., Proutire, A. (2003). Wireless downlink data channels: use[r
performance and cell dimensioning. Proc. ACM Mobicom 2003839—

352.

Bonald, T., Prougire, A., Regnie, G., Roberts, J.W. (2001). Insensitivity
results in statistical bandwidth sharing. Ifeletraffic Engineering in

the Internet Era, Proc. ITC-17Salvador da Bahia, eds. J.M. de Souza,
N.L.S. da Fonseca, E.A. de Souza e Silva (North-Holland, Amsterdam),
125-136.

Borst, S.C. (2003). User-level performance of channel-aware scheduling
algorithms in wireless data networks. IRroc. Infocom 2003

Borst, S.C., Whiting, P.A. (2001). Dynamic rate control algorithms for
HDR throughput optimization. InProc. Infocom 2001976—-985.
Chaponniere, E.F., Black, P.J., Holtzman, J.M., Tse, D.N.C. (2002).
Transmitter directed code division multiple access system using path
diversity to equitably maximize throughput. US Patent 6,449,490.

Cruz, R.L., Santhanam, A.V. (2003). Optimal routing, link scheduling
and power control in multi-hop wireless networks. Proc. Infocom

2003

Jalali, A., Padovani, R., Pankaj, R. (2000). Data throughput of CDMA-
HDR a high efficiency-high data rate personal communication wireless
system. In:Proc. IEEE VTC 2000 Spring Confl854—1858.

Kahale, N., Wright, P.E. (1997). Dynamic global packet routing in
wireless networks. InProc. IEEE Infocom '97 1416-1423.

Key, P.B., Massoud, L., Bain, A., Kelly, F.P. (2003). A network flow
model for mixtures of file transfers and streaming traffic. Pmoviding

QoS in Heterogeneous Environments, Proc. ITC-B@rlin, eds. J.
Charzinski, R. Lehnert, P. Tran Gia (North-Holland, Amsterdam), 1021—
1030.

Key, P.B., Massoué, L., Bain, A., Kelly, F.P. (2004). Fair Internet
traffic integration: network flow models and analysénnales des
TelecommunicationS9, 1338-1352.

Kushner, H.J., Whiting, P.A. (2004). Convergence of Proportional-
Fair sharing algorithms under general conditioi2£E Trans. Wireless
Commun 3, 1250-1259.

Lin, X., Shroff, N.B. (2005). The impact of imperfect scheduling on
cross-layer rate control in wireless networks. Broc. Infocom 2005
Litiens, R., Roijers, F., Van den Berg, J.L., Boucherie, R.J., Fleuren,
M.J. (2003). Performance analysis of wireless LAN’s: an integrated
packet/flow level approach. IProviding QoS in Heterogeneous Envi-
ronments, Proc. ITC-18Berlin, eds. J. Charzinski, R. Lehnert, P. Tran
Gia (North-Holland, Amsterdam), 931-940.

Liu, X., Chong, E.K.P., Shroff, N.B. (2003). A framework for oppor-
tunistic scheduling in wireless networkSomp. Netw41, 451-474.

Neely, M.J., Modiano, E., Li, C.-P. (2005). Fairness and optimal stochas-
tic control for heterogeneous networks. Proc. Infocom 2005

Neely, M.J., Modiano, E., Rohrs, C.E. (2002). Power and server allo-
cation in a multi-beam satellite with time-varying channels. Pnoc.
Infocom 2002 1451-1460.

Neely, M.J., Modiano, E., Rohrs, C.E. (2003). Dynamic power allocation
and routing for time-varying wireless networks. FProc. Infocom 2003
Prakash, R., Veeravalli, V.V. (2002). A time-scale separation technique
for the analysis of random access systems with incremental redundancy.
In: Proc. ISIT 2002

Shakkottai, S., Stolyar, A.L. (2001). Scheduling algorithms for a mixture
of real-time and non-real time data in HDR. [Feletraffic Engineering

in the Internet Era, Proc. ITC-17%Salvador da Bahia, eds. J.M. de Souza,
N.L.S. da Fonseca, E.A. de Souza e Silva (North-Holland, Amsterdam),
793-804.

Stolyar, A.L. (2005). On the asymptotic optimality of the gradient
scheduling algorithm for multi-user throughput allocati@per. Res.

53, 12-25.

Tassiulas, L., Ephremides, A. (1992). Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networkslEEE Trans. Aut. Contr37, 1936-1948.
Tassiulas, L., Ephremides, A. (1993). Dynamic server allocation to
parallel queues with randomly varying connectivit¢EE Trans. Inf.
Theory30, 466-478.

Telatar, I.E., Gallager, R.G. (1995). Combining queueing theory with
information theory for multi-acces$EEE J. Sel. Areas Commui3,
963-969.

Tsibonis, V., Georgiadis, L., Tassiulas, L. (2003). Exploiting wireless
channel state information for throughput maximization. Pmoc. Info-

com 2003

Viswanath, P., Tse, D.N.C., Laroia, R. (2002). Opportunistic beamform-
ing using dumb antennatEEE Trans. Inf. Theory8, 1277-1294.




 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: fix size 8.268 x 11.693 inches / 210.0 x 297.0 mm
     Shift: none
     Normalise (advanced option): 'improved'
      

        
     32
            
       D:20060308151815
       841.8898
       a4
       Blank
       595.2756
          

     Tall
     1
     0
     Full
     600
     308
    
     None
     Down
     34.0157
     0.0000
            
                
         Both
         5
         AllDoc
         10
              

       CurrentAVDoc
          

     Uniform
     14.1732
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2 2.0c
     Quite Imposing Plus 2
     1
      

        
     0
     6
     5
     6
      

   1
  

 HistoryList_V1
 qi2base



