
C e n t r u m v o o r W i s k u n d e e n I n f o r m a t i c a

Software ENgineering

SPIAR: An architectural style for single page internet
applications

A. Mesbah, K. Broenink, A. van Deursen

REPORT SEN-R0603 APRIL 2006

SEN
Software Engineering

Centrum voor Wiskunde en Informatica (CWI) is the national research institute for Mathematics and
Computer Science. It is sponsored by the Netherlands Organisation for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2006, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-369X

SPIAR: An architectural style for single page internet
applications

ABSTRACT
A new breed of Web application, dubbed AJAX, is emerging in response to a limited degree of
interactivity in large-grain stateless Web interactions. At the heart of this new approach lies a
single page interaction model that facilitates rich interactivity. In this paper, we examine the
architectural properties of such applications and introduce the SPIAR architectural style. We
describe the guiding software engineering principles and the constraints chosen to induce the
desired properties. The style emphasizes single page interfaces, user interface component
development, and intermediary delta-communication between client/server components, to
improve user interactivity and reduce user-perceived latency. In addition, SPIAR is used as an
abstract model to present and discuss the architecture of Backbase, one of the most mature
single page Internet application development frameworks available to date.

2000 Mathematics Subject Classification: 2000
1998 ACM Computing Classification System: C.2.4 D.2.11
Keywords and Phrases: web engineering; software architecture; architectural style; single page interaction; web
application
Note: This work was carried out under project SEN1 - Single Page Computer Interaction

SPIAR: An Architectural Style
for Single Page Internet Applications

Ali Mesbah
Delft University of Technology

& CWI
The Netherlands

A.Mesbah@ewi.tudelft.nl

Kees Broenink
Backbase

The Netherlands

Kees.Broenink@backbase.com

Arie van Deursen
Delft University of Technology

& CWI
The Netherlands

Arie.van.Deursen@cwi.nl

ABSTRACT
A new breed of Web application, dubbed AJAX, is emerging in re-
sponse to a limited degree of interactivity in large-grain stateless
Web interactions. At the heart of this new approach lies a single
page interaction model that facilitates rich interactivity. In this pa-
per, we examine the architectural properties of such applications
and introduce the SPIAR architectural style. We describe the guid-
ing software engineering principles and the constraints chosen to
induce the desired properties. The style emphasizes single page
interfaces, user interface component development, and intermedi-
ary delta-communication between client/server components, to im-
prove user interactivity and reduce user-perceived latency. In ad-
dition, SPIAR is used as an abstract model to present and discuss
the architecture of Backbase, one of the most mature single page
Internet application development frameworks available to date.

1. INTRODUCTION
Over the course of the past decade, the move from desktop ap-

plications towards web applications has gained much attention and
acceptance. Within this movement, however, a great deal of the
user interactivity has been lost. Classical web applications are
based on a multi page interface (MPI) model, in which interactions
are based on a page-sequence paradigm. While simple and ele-
gant in design for exchanging documents, the MPI model has many
limitations for developing modern web applications with desirable
human-computer interaction.

Recently, there has been a shift in the direction of web devel-
opment. A new breed of web application, dubbed AJAX (Asyn-
chronous JavaScript And XML) [11], is emerging in response to
the limited degree of interactivity in large-grain stateless Web in-
teractions. At the heart of this new approach lies a single page inter-
face (SPI) model that facilitates rich interactivity. In SPI, changes
are made to individual components that compose the interface, as
opposed to refreshing the entire page.

The current efforts in this field are mainly focusing on the rich-
ness of the client. Implications to the design and implementation
within this model is a research area that needs more attention.

Software architecture research investigates how system compo-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

nents are identified, how information is communicated, how ele-
ments of a system can evolve independently, and how all of the
above can be described in comprehensive notations in order to un-
derstand and evaluate the impact of design choices [9]. A set of ar-
chitectural constraints inducing the architectural properties desired
of a system, when given a name, becomes an architectural style.

The objective of this paper is to come up with an architectural
style for single page Internet applications. Such a style should
make it possible to describe the design of particular single page
frameworks concisely, to assess the impact of modifications to these
frameworks, and should help to compare properties of these frame-
works.

To arrive at such a style, this paper first of all answers the ques-
tion what architectural properties a single page Internet application
should comply with (Section 2). Secondly, the paper investigates
which architectural constraints, some new, some taken from exist-
ing styles, induce these properties (Section 3). The resulting prop-
erties and constraints lead to SPIAR, our Single Page Internet Ap-
plication aRchitecture.

To evaluate the resulting style, we use SPIAR to present and dis-
cuss the architecture of the Backbase1 development framework, one
of today’s leading commercial AJAX products. Furthermore, we
use the style to discuss various tradeoffs involved in the design of
single page applications in Section 5.

The paper concludes with a brief summary of related work, a list
of key contributions, and an outlook to future research.

2. SINGLE PAGE APPLICATIONS
Generally, web applications have client, application server and

back-end server components, which suggests a three tiered archi-
tecture [23]. Our work focuses on the client tier and the portion of
the middle tier that communicates with the client.

We define a Single Page Internet Application (SPIA) as a web
application based on the single page interface model consisting of
a single page web client and a server application. The client code
runs in a universal client, providing the user with an interactive
standard-based single page user interface. This universal client is
the web browser and the various standards that allow browsers to
run on almost any computing device. Contrary to a classic server
application, a single page server application does not process a
whole page for responding to each request. The interaction is based
merely on state changes.

SPIA can be seen as a hybrid of web- and desktop-applications,
inheriting characteristics from both worlds.

The architectural properties of a software architecture include

1
www.backbase.com

both the functional properties achieved by the system and non-
functional properties, often referred to as quality attributes [2]. We
will only focus on the architectural properties which we believe are
of great importance for SPIA. Some of these properties are related;
for instance, user interactivity is influenced by user-perceived la-
tency, which in turn is affected by network and server performance.

User Interactivity
Human-computer interaction literature defines interactivity as the
degree to which participants in a communication process have con-
trol over, and can exchange roles in their mutual discourse. User
interactivity is closely related to usability [10], the term used in
software architecture literature. Teo et al. [22] provide a thorough
study of user interactivity on commercial web applications. Their
results suggest that an increased level of interactivity has positive
effects on user’s perceived satisfaction, effectiveness, efficiency,
value, and overall attitude towards a Web site.

User-perceived Latency
User-perceived latency is defined as the period between the mo-
ment a user issues a request and the first indication of a response
from the system. Generally, there are two primary ways to improve
user-perceived performance. First, by reducing the round-trip time
and second, by allowing the user to interact asynchronously with
the system.

Network Performance
Network performance is influenced by throughput which is the rate
of data transmitted on the network and bandwidth i.e., a measure
of the maximum available throughput. Network performance can
be improved by means of reducing the amount and granularity of
transmitted data.

Server Performance
Server performance represents the elapsed time for the server to
respond to a user request, with the exclusion of network delay. It
is the period between the moment a server receives the request till
the moment a response can be sent back to the user. One way to
improve server performance is by reducing the amount of needed
processing (workload) for user requests on the server. Another ap-
proach is decreasing the number of requests from the clients which
results in an increase in the amount of resources on the server to
handle the remaining requests.

Development Effort
Development effort is defined as the total number of hours that is
needed to design, implement, analyze, and repair a web applica-
tion. Development effort is an important factor for the usage and
acceptability of any new approach.

Portability
Software that can be used in different environments is said to be
portable. On the Web, being able to use the universal client (Web
browser) without the need for any extra actions required from the
user (e.g., downloading plugins) induces the property of portabil-
ity.

3. SPIAR
Fielding [9] defines a software architecture as a configuration of

architectural elements - components, connectors, and data - con-
strained in their relationships in order to achieve a desired set of
architectural properties. An architectural style is in turn defined as
a coordinated set of architectural constraints that restricts the roles
of architectural elements and the allowed relationships among those
elements within any architecture that conforms to that style.

3.1 Motivation
Many different network-based architectural styles, such as client-

server [20] and n-tier [23], exist but perhaps the most complete and
appropriate style for the Web is the REpresentational State Trans-
fer (REST) [8]. Single page architectures, however, are not so easily
captured in REST, due to the following differences:

• While REST is suited for large-grain hypermedia data trans-
fer, it is not optimal for small data interactions required in
single page applications.

• REST focuses on a hyper-linked resource-based interaction
in which the client requests a specific resource. In contrast,
in single page applications the user interacts with the system
much like in a desktop application, requesting a response to
a specific action.

• All interactions for obtaining a resource’s representation are
performed through a synchronous request-response pair in
REST. Single page applications, however, require a model
for asynchronous communication. REST explicitly constrai-
ns the server to be stateless. While this constraint can im-
prove scalability, the tradeoffs with respect to network per-
formance and user interactivity are of greater importance wh-
en designing a single page architecture.

These requirement mismatches imply a need for a new architectural
style capable of meeting the desired properties.

3.2 Architectural Style
In this paper, we use the framework and terminology of Field-

ing [9] which is based on the work of Perry and Wolf [19]. We be-
lieve the framework is an appropriate approach for understanding
and describing the architecture through architectural styles. This
choice also makes a comparison of our architectural style with other
styles such as REST more convenient.

The SPIAR (Single Page Internet Application aRchitecture) ar-
chitectural style is an abstraction of the architectural elements with-
in single page Internet applications. The style consists of a set of
architectural constraints some of which are derived from common
architectural styles. Table 1 presents an overview of the constraints
and induced properties.

Single Page Interface
SPIAR is based on the client-server [20] style which is presumably
the best known architecture for distributed applications, taking ad-
vantage of the separation of concerns principle in a network en-
vironment. The main constraint that distinguishes the SPIAR style
is its emphasis on a single page interface. This constraint induces
the property of user interactivity. User interactivity is improved be-
cause the interaction is on a component level and the user does not
have to wait for the entire page to be rendered again as a result of
each action.

Asynchronous Interaction
The client-server interaction can be realized in both a push- or
pull-based style. In a push-based style [12], the server broadcasts
the state changes to the clients asynchronously every time its state
changes. Event-based Integration [1] and Asynchronous REST [13]
are event-based styles allowing asynchronous notification of state
changes by the server. The current HTTP protocol [7], however,
does not allow the implementation of this style and it is only sup-
ported in peer-to-peer architectural environments.

In a pull-based style, client components actively request state
changes. Event-driven [18] architecture is a pull-based style. Event

Table 1: Constraints and induced properties

U
se

r
In

te
ra

ct
iv

it
y

U
se

r-
pe

rc
ei

ve
d

L
at

en
cy

N
et

w
or

k
P

er
fo

rm
an

ce

Se
rv

er
P

er
fo

rm
an

ce

D
ev

el
op

m
en

tE
ff

or
t

P
or

ta
bi

lit
y

Single Page Interface X

Asynchronous Interaction X X

Delta Communication X X X X

Client-side processing X X X

UI Component-based X X

Web standard-based X X

connectors are found in distributed applications that require asyn-
chronous communication, for instance, a desktop application, whe-
re user initiated UI inputs serve as the events that activate a process.

The SPIAR interaction is designed to have a high user interac-
tivity and a low user-perceived latency. In an asynchronous inter-
action the user can, subsequently, initiate a request to the server
at any time, and receive the control back from the client instantly.
The requests are handled by the client at the background and the
interface is updated according to server responses. This model of
interaction is substantially different from the classic synchronous
request, wait for response, and continue model.

Delta-communication
Redundant data transfer which is mainly attributed to retransmis-
sions of unchanged pages is one of the limitations of classic web
applications. Many techniques such as caching, proxy servers and
fragment-based resource change estimation and reduction [3], have
been adopted in order to reduce data redundancy. Delta-encoding
[16] uses caching techniques to reduce network traffic, however, it
does not reduce the computational load since the server generates
the entire page for each request [17].

SPIAR uses a delta-communication style of interaction, in which
merely the state changes are interchanged between the client and
the server as opposed to the full-page retrieval approach in classic
web applications. Delta-communication uses delta-encoding archi-
tectural principles but is different i.e., delta-communication does
not rely on caching and as a result, the server and client only need
to process the deltas.

This constraint induces the properties of network and server per-
formance directly and as a consequence user-perceived latency and
user interactivity. Network performance is improved because there
are less redundant data (merely the delta) being transported. Server
performance is improved because the load per request is reduced.

Client-side Processing
Client-side processing improves user interactivity and user-percei-
ved latency through round-trip reduction. For instance, client-side
form validation reduces unnecessary server-side error reports and
reentry messages. Additionally, some server-side processing (e.g.,
sorting items) can be off-loaded to clients using mobile code that
will improve server performance and increase the availability to
more simultaneous connections. As a tradeoff, client performance
can become an issue if many widgets need processing resources on
the client.

User Interface Component-based
SPIAR relies on a user interface (UI) component model similar to
that of desktop applications (e.g., AWT’s UI component model).
This model defines the state and behavior of UI components and the

way they can interact. SPIAR’s component model is similar to C2
[21], a component-based style that relies on asynchronous notifica-
tion of state changes and request messages that handle component
interactions.

UI component programming improves development effort be-
cause developers can use reusable components to assemble a Web
page. User interactivity is improved because the user can interact
with the application on a component level, similar to desktop ap-
plications.

Web standard-based
Constraining the Web elements to a set of standardized formats is
one way of inducing portability on the Web. This constraint ex-
cludes approaches that need extra functionality (e.g., plug-ins, vir-
tual machine) to run on the Web browser, such as Flash and Java
applets, and makes the client cross-browser compatible.

3.3 Architectural Elements
Inspired by [9, 19] the key architectural elements of SPIAR are

divided into three categories namely processing, data, and connect-
ing elements.

Processing Elements
The processing elements are defined as those components that sup-
ply the transformation on the data elements.

The Client Browser offers a set of standards such as HTTP, HT-
ML, Cascading Style Sheets (CSS), JavaScript and Document Ob-
ject Model (DOM)2. It processes the representational model to pro-
duce the user interface. The user interface is called Single Page
User Interface (SPUI) which is the point of presentation to and in-
teraction with the user. All the visual transitions and effects are
presented to the user through this interface. Just like a desktop
client application, it consists of a single main page with a set of
identifiable widgets. The properties of widgets can be manipulated
individually while changes are made immediately without requir-
ing a page refresh.

The Single Page Engine (SPENGINE) is a zero-install engine that
loads and runs in the client browser. The engine is responsible for
the initialization and manipulation of the representational model.
It handles the events initiated by the user, communicates with the
server, and has the ability to perform client-side processing.

The Server Application resides on the origin server and operates
by accepting HTTP-based requests from the network, and provid-
ing responses to the requester. All server-side functionality resides
in server application.

The Server Processor represents the logic engine of the server
and processes state changes and user requested actions. It is capa-
ble of accessing any resource (e.g., database, Web Services) needed
to carry out its action. A processor’s function is invoked by event
listeners, attached to server-side components, initiated by incoming
requests.

The Delta Encoder/Decoder processes outgoing/incoming delta
messages. It is at this point that the communication protocol be-
tween the client and the server is defined. Although, the protocol
might be specific, the implementation details are hidden behind this
interface.

Data Elements
The data elements contain the information that is used and trans-
formed by the processing elements. The key abstraction in SPIAR is
a UI component. Each component has a unique persistent identifier
on both the client and server while having a different representation

2
http://www.w3.org/DOM/

Server App.Client Browser

SP
Engine

update

HTTP

Encoder

Decoder

Processor

update
 C

 S

 update invoke

Rep. Model Com. Model

 update

SPUI

 event

Figure 1: Processing View of an SPIAR-based architecture.

on each side. SPIAR allows the client and server to synchronize
state using the unique identifier of the components.

The Single Page Language (SPL) is a domain specific language
that can be utilized in a declarative way to define the structure of
a single page interface. SPL can be seen as a library of identifi-
able widgets. The server can send its state changes enclosed in
this language which will be interpreted by a rendering engine on
the client. Note that the components created in the language form
the data elements and not the language itself. XUL3, XAML4 and
BXML5 are all examples of declarative user interface languages.
This element decreases development effort, once the architecture is
in place, which leads to a shorter time to market. It also improves
user interactivity by providing widgets on a single page interface.

The Representational Model is a run-time abstraction of how a
SPUI is represented on the client. Manipulating this representation
results in a direct (visible) change on the user interface by the client
browser.

The Component Model consists of a set of server-side UI compo-
nents. The component model on the server conceptually resembles
the representational model on the client, although the implemen-
tations will be different. Each server-side component contains the
data and behavior of that part of the corresponding client-side wid-
get which is relevant for state changes; client-side functionality and
visual effects that do not affect the state on the server are not part
of the server-side component model.

Delta communicating messages form the means of the delta com-
munication protocol between client and server. SPIAR makes a
distinction between the client delta data (DELTA-CLIENT) and the
server delta data (DELTA-SERVER). The former is created by the
client to represent the client-side state changes and the correspond-
ing actions causing those changes, while the latter is the response
of the server as a result of those actions on the server components.
The delta communicating data can be in any desired format e.g.,
XML, JSON, XOXO.

Connecting Elements
The connecting elements serve as the glue that holds the compo-
nents together by enabling them to communicate.

Events form the basis of the interaction model in SPIAR. An
event is initiated by each action of the user on the interface, which
propagates to the engine. Depending on the type of the event, a
request to the server, or a partial update of the interface might be
needed. The event can be handled asynchronously, if desired, in
which case the control is immediately returned to the user.

Delta connectors are light-weight communication media con-
necting the engine and the server using a request/response mech-
anism over HTTP.

Delta updates are used to update the representational model on
the client and the component model on the server to reflect the state
3 XML User Interface Language (XUL) 1.0, http://www.mozilla.org/projects/xul/
4 Extensible Application Markup Language (XAML), http://www.xaml.net
5 Backbase Extensible Markup Language (BXML), http://www.backbase.com

Table 2: Processing Elements
SPIAR Backbase
SPUI Single page with widgets
Client browser Mozilla, Firefox, IE, Opera, Safari
SPENGINE Backbase Presentation Client (BPC)
Server application Backbase Java Server (BJS)
Server processor JavaServer Faces lifecycle, Backing Beans
Delta encoder/decoder Client: request encoder/response decoder

Server: component renderer/request decoder

changes. While a delta update of the representational model results
in a direct apparent result on the user interface, an update of the
component model invokes the appropriate listeners.

3.4 Architectural View
Given the processing, data, and connecting elements, we can use

different architectural views to describe how the elements work to-
gether to form an architecture. An architecture can be viewed from
various perspectives. A processing view, for instance, concentrates
on the data flow and some aspects of the connections among the
processing elements with respect to the data [9].

Figure 1 depicts the processing view of an SPIAR-based architec-
ture. The view shows the interaction of the different components
some time after the initial page request (the engine is running on
the client). User activity on SPUI widgets fires off an event to in-
dicate some kind of component-defined action which is delegated
to the engine. If a listener on a server-side component has regis-
tered itself with the event, the engine will make a DELTA-CLIENT

message of the current state changes with the corresponding events
and send it to the server. On the server, the decoder will convert the
message, identify and notify the relevant components in the com-
ponent model. The changed components will ultimately invoke the
event listeners of the processor. The processor, after handling the
actions, will update the corresponding components with the new
state which will be rendered by the encoder. The rendered DELTA-
SERVER message is then sent back to the engine which will be used
to update the representational model and eventually the SPUI. The
engine has also the ability to update the representational model di-
rectly after an event, if no round-trip to the server is required.

4. BACKBASE
Backbase is an Amsterdam based company specialized in rich

Internet applications. It was established in 2003, more than two
years before the term “AJAX” was coined by Garret [11]. Backbase
presently employs approximately 40 people, half of which work on
research and development. The company has won several innova-
tion awards, been profitable since inception, and its clients include
numerous worldwide companies.

Backbase offers an AJAX development framework, developer
tools, and server side support. A key element of the framework
is the Backbase Presentation Client, a standards-based, ultralight
engine that can be programmed via a declarative user interface lan-
guage.

At the time of writing, Backbase is in the process of releasing
its new Backbase Java Server, which together with the presentation
client covers the full SPIA chain. In this section, we will use SPIAR

to discuss the key design decisions in the Backbase architecture,
and assess which tradeoffs were made in its design.

4.1 Processing Elements
The main processing elements of the Backbase framework are

presented in Table 2 against the processing elements of the SPIAR

style. Backbase provides a cross-browser and platform-neutral clie-

Table 3: Data Elements
SPIAR Backbase
Single Page Language (SPL) BXML

Representational model BXML and DOM
Component model BJS components
Delta communicating data DELTA-CLIENT (POST properties)

DELTA-SERVER (BXML message)

nt with a SPUI, supporting the majority of modern client browsers
(e.g., Firefox 1+, IE 5+) by utilizing Web standards.

It has an engine called Backbase Presentation Client (BPC), writ-
ten in JavaScript, corresponding to SPIAR’s SPENGINE element.
BPC’s main functionality can be summarized as creating a single
page interface with widgets by parsing and interpreting the user in-
terface language (BXML), delta-communication with the server and
asynchronous interaction with the user through the manipulation of
the representational model. It also includes many features such as
XSLT and XPath utilization for dynamic data interchange and data
manipulation.

The server application comes in two variants, namely .Net and
Java, both capable of interacting with BPC. We will focus on Back-
base Java Server (BJS) which is built on top of JavaServer Faces
(JSF)6, the new J2EE presentation architecture. JSF provides a user
interface component-based framework following the model-view-
controller pattern. The interaction in JSF is based on the classic
page-sequence model.

BJS provides its own set of UI components and extends the JSF

framework to provide a single page interface implementation. BJS

utilizes all standard JSF mechanisms such as validation, conversion
and event processing through the JSF life-cycle phases. Any Java
class that offers getters and setters for its properties can be directly
assigned to a UI component property. Classes bound to UI compo-
nent properties and events are called Backing Beans. Furthermore,
the method that should be invoked on a certain event can be de-
fined using the J2EE Expression Language (EL). The EL makes
it possible to easily access application data stored in objects from
server-side scripting languages. Within a Backing Bean the devel-
oper has full control over all available UI components. BJS tracks
all changes and sends them as DELTA-SERVER back to the BPC.

Backbase has defined a client/server protocol that allows for syn-
chronization of components (e.g., input field values, attributes, style
and structural changes) through decoding and encoding elements.
Every component has the ability to tell the BPC which changes
should be tracked and reported to the server. The encoded DELTA-
CLIENT will be posted to the server on certain defined events. These
can be action events like clicking a button, or value change events
such as checking a radio button. The server-side decoder translates
the DELTA-CLIENT and identifies the corresponding component(s)
in the BJS component tree. The encoder renders a DELTA-SERVER

of the changes to be responded to BPC.

4.2 Data Elements
Table 3 presents the Backbase data elements. Backbase has de-

veloped a declarative single page language called Backbase Exten-
sible Markup Language (BXML) which relieves developers from
having to code rich effects in client-side scripting languages. BXML

is an extension to HTML and is interpreted on the client by the
BPC. It offers support for user interface declaration, such as wid-
gets (e.g., windows, menus, decks, tabs) and their behaviors (e.g.,
open, close, collapse, drag-drop) and can be used in combination
with other W3C standards such as CSS.

6 JavaServer Faces Specification v1.1, http://java.sun.com/j2ee/javaserverfaces/

The representational model of BPC is constructed by utilizing
DOM, which is a platform and language neutral standard model,
with a set of objects for representing HTML and XML documents,
a model of how these objects can be combined, and an interface
for accessing and manipulating them. It is used by the engine to
dynamically access and update content, structure and style of the
SPUI; BXML is parsed and transformed to DOM.

On the server, BJS Components are a set of well-defined UI com-
ponents. Each component resembles a client-side widget and is ca-
pable of rendering the corresponding BXML code; i.e., there is a
one-to-one relation between the component on the server and the
one on the client for components that need state synchronization.
The client can also consist of visual widgets that do not take part in
the state management of the application. For such widgets there is
no need for server-side components.

Backbase delta communicating data are the synchronizing medi-
um between the client and server. Backbase uses HTTP POST
properties for the DELTA-CLIENT:

clientDelta:[evt=COMPONENT-ID|EVENT-NAME|EVENT-TYPE]?
|[att=COMPONENT-ID|ATTRIBUTE-NAME|ATTRIBUTE-VALUE]+

where clientDelta is the name of the HTTP parameter with its
value being a list of items. There are two types of items: the event
item captures the data about the event triggered on the compo-
nent, where as, an attribute item encapsulates information about
the state changes of the client component itself. Each attribute
item has three parts, namely, the unique identifier of the compo-
nent (COMPONENT-ID), the name (ATTRIBUTE-NAME) and the
new value (ATTRIBUTE-VALUE) of the affected attribute (e.g.,
[att=city1|value|amsterdam]). Similarly, the event item
contains the identifier of the component, the event name and the
type of the event.

The DELTA-SERVER is in BXML format. All the BXML elements
and functions can be accessed through the b and s namespaces.

4.3 Connecting Elements
The connecting elements provide an interface for interaction, en-

hancing simplicity and clean separation of resources and commu-
nication mechanisms. The connecting elements can be seen in Ta-
ble 4.

Backbase uses DOM events to delegate user actions to the BPC

which handles the events asynchronously. The events can initiate
a client-side (local) change in the representational model but at the
same time these events can serve as triggers for server-side event
listeners.

The delta connectors connect BPC to BJS through a HTTP re-
quest and response in BXML format as presented in the previous
subsection. Each request contains the necessary information (about
the components changed on the client) for the server to carry out
the actions on the server-side components and respond. The delta
connectors serve to reduce user-perceived latency by increasing the
network performance.

Delta updates are local connectors that can be seen as procedural
invocations updating the state of components. BPC is connected to
DOM, for instance, through JavaScript functions and on the server,
the components are updated by the decoder and processor through
method calls.

4.4 Processing View
The Backbase Java Server Edition ships with a demo application

to manage contacts, similar to e.g., Outlook contacts functionality
by implementing the Versit Vcard7 specification. For all practical
7 The Electronic Business Card, version 2.1, http://www.imc.org/pdi/vcard-21.rtf

Table 4: Connecting Elements
SPIAR Backbase
Events DOM events
Delta connectors DELTA-CLIENT, DELTA-SERVER

Delta updates procedural invocation passing parameters

purposes, we focus on a simple input component (email) to present
the processing view of this demo application. Note that we are only
presenting the code concerning the input component which is only
a small part of the whole application.

On the server, Backbase provides the bjs tag library to create
the needed components for a user to provide the email address of a
contact:

<bjs:inputText id="email" required="true"
value="#{contact.email}">
<f:validator validatorId="Email"/>
<f:valueChangeListener
type="DefaultValueChangeListener"/>

</bjs:inputText>
<bjs:message id="message-email" for="email"
errorClass="error"/>

On the initial request of the user, this code initializes the com-
ponent tree for the two components (inputText and message) each
having a unique identifier. The value of the input component is re-
quired not to be empty. There is also an email validator connected
to the component to check the email address. Because we want
the email to be checked separately as a component (while it is be-
ing filled in), a valueChangeListener is also registered on
the component. After initialization, these two components are ren-
dered to generate the following code to be transmitted to the client:

<input id="email" b:attsync="value">
<s:event b:on="change">
<s:task b:action="settext"
b:target="id(’message-email’)" b:value=""/>

<s:task b:action="serversync" b:event="change" />
</s:event>
</input>

The client code represents an input widget with a placeholder for
eventual server-side notification messages. The b:attsync at-
tribute indicates that the server-side component is interested in any
value change of this widget for synchronization. It is also possible
for the server component to register its interest for other attribute
changes (e.g., style) as well. The s:event element commands
the engine to reset the value of the message widget on any value
change of the input. The serversync action orders the BPC to
synchronize the changes with the server.

Now imagine that the user inserts an invalid email address e.g.,
sara@nl. The engine then automatically creates the following
DELTA-CLIENT code to be submitted as a HTTP parameter to the
server:

[att=email|value|sara@nl][evt=email|b:event|change]

As it can be seen, the DELTA-CLIENT indicates that the value of
the email component has changed. Upon arrival at the server, the
decoder will translate the message and notify the corresponding
server-side component with the new value. The change in the value
of the component goes through the validation process and since
the value is not a valid email address, the violation causes a mod-
ification of the message component with an explanatory message.
Since the message component has changed, the encoder, renders it
and sends the following DELTA-SERVER to the client engine:

<b:serverdelta
xmlns:s=’http://www.backbase.com/s’
xmlns:b=’http://www.backbase.com/b’>
<s:execute>
<s:task b:action="settext"
b:target="id(’message-email’)"
b:value="The given value (sara@nl) is
not a correct email-address."/>
<s:with b:target="id(’message-email’)">
<s:setatt class="error"/>
</s:with>

</s:execute>
</b:serverdelta>

Back on the client, this DELTA-SERVER is executed by the BPC

to make an in-place update of the message-widget’s value and style
sheet class.

4.5 Evaluation
Backbase uses an event-driven, component-based programming

model which played an important role in success and acceptability
of desktop applications. This model is believed to be easy to learn
and develop, and the most convenient way to handle interactive user
interfaces to date.

The Backbase architecture uses a well defined protocol for small
interactions among known components. Data needed to be trans-
ferred over the network is significantly reduced in the architec-
ture using delta-communication. This can result in faster response
data transfers. On the other hand, number of requests sent to the
server can increase if the system is not designed well. Backbase
takes advantage of client-side processing by utilizing its engine
and SPL functionality. While client-side processing reduces round-
trips, client performance can become an issue if too many widgets
are used.

The server application does not need to render whole pages,
hence number of CPU cycles needed for each request can be re-
duced. Note, however, that because of the way the component
tree is handled in JSF, the full component tree is traversed multi-
ple times for each request.

The client is portable because of the Web standards-based ap-
proach. Note that, although the BXML language is not a standard
itself, it is parsed to DOM (a standard) and processed by the engine
using JavaScript, a language supported by all modern browsers.

5. DISCUSSION
In this section we discuss the various decisions and tradeoffs

made in SPIAR by placing it in relation to other approaches and
evaluate the overall architecture.

Resource-based versus Component-based
The architecture of the World Wide Web [25] is based on resources
identified by Uniform Resource Identifiers (URI), and on the pro-
tocols that support the interaction between agents and resources.
Using a generic interface and providing identification that is com-
mon across the Web for resources has been one of the key success
factors of the Web.

The nature of Web architecture which deals with Web pages as
resources causes redundant data transfers [3]. The delta-communi-
cation way of interaction in SPIAR is based on the component level
and does not comply with the Resource/URI constraint of the Web
architecture. The question is whether this choice is justifiable. To
be able to answer this question we need to take a look at the nature
of interactions within single page applications.

Generally, client/server interactions in a Web application can be
divided into two categories of Safe and Unsafe interactions [24]. A
safe interaction is one where the user is not to be held accountable

for the result of the interaction e.g., simple queries. An unsafe
interaction is one where a user request has the potential to change
the state of the resource.

In single page Internet applications, where interaction becomes
more and more desktop-like, where eventually Undo/Redo replaces
Back/Forward, the safe interactions remain using URIs while the
unsafe ones can be safely carried out at the background using delta-
communication in which neither the data transmitted nor the data
received in the response necessarily correspond to any resource
identified by a URI. This implies the engine should also provide the
means of linking to safe operations as well as hyper-linked docu-
ments. The URI’s fragment identifier can be used for this purpose.
Interpretation of the fragment identifier is then performed by the
engine that dereferences a URI to identify and represent a state of
the application.

Stateless versus Stateful
A stateless server is one which treats each request as an indepen-
dent transaction, unrelated to any previous request, i.e., each re-
quest must contain all of the information necessary to understand it,
and cannot take advantage of any stored context on the server [8].
Even though the Web architecture and HTTP are designed to be
stateless, it is difficult to think of stateless Web applications. Within
a Web application, the order of interactions is relevant, making in-
teractions depend on each other, which requires an awareness of
the overall component topology. The statefulness is imitated by a
combination of HTTP, client-side cookies, and server-side session
management.

SPIAR does not constrain the nature of the state explicitly. Nev-
ertheless, since a stateless approach may decrease network per-
formance (by increasing the repetitive data), and because of the
component-based nature of the user interactions, a stateful solution
might become favorable at the cost of scalability.

Asynchronous Synchronization
The asynchronous interaction constraint of SPIAR may cause race
conditions if not implemented with care. The user can send a re-
quest to the server before a previous one has been responded. In
a server processor that handles the requests in parallel, the second
request can potentially be processed before the first one. This be-
havior could have drastic effects on the synchronization and state
of the entire application. A possible solution would be handling the
event-triggered requests for each client sequentially at the cost of
server performance.

Separation of Concerns
SPIAR emphasizes the possibility of client-side processing to im-
prove responsiveness and latency. This could result in a tendency to
replicate business logic to the client, which in a distributed client/s-
erver application would increase the cost of development and main-
tenance.

In SPIAR, however, the user interface can be deployed from the
server to the client browser, removing the need to install the client
separately. This typically entails defining the user interface in one
location, e.g., in a server-side scripting language, and generating
the logic for both the client and server from a single definition.

6. RELATED WORK
While the attention for rich Internet applications in general and

AJAX in particular in professional magazines and Internet technol-
ogy related web sites has been overwhelming, few research papers
have been published on the topic so far. As far as we know, the clos-
est appears to be the work by Mac-Vicar et al. [14], who present
a simple model based on the model-view-controller pattern for ex-
tensibility of rich clients using a plugin-based approach.

The SPIAR style itself draws from many existing styles [20, 18,
21] and software fields [19, 8, 16], discussed and referenced in
the paper. Our work relates closely to the software engineering
principles of the REST style [9] which focuses on the architecture
of the Web [25] as a whole.

Fragment-based Approach
The page-sequence model of the Web makes it difficult to treat por-
tions of Web pages (fragments), independently. Fragment-based
research [5, 4, 3] aims at providing mechanisms to efficiently as-
semble a Web page from different parts to be able to cache the
fragments. Recently proposed approaches include several server-
side and cache-side mechanisms. Server-side techniques aim at
reducing the load on the server by allowing reuse of previously
generated content to serve user requests. Cache-side techniques at-
tempt to reduce the latency by moving some functionality to the
edge of the network. These fragment-based techniques can im-
prove network and server performance, and user-perceived latency
by allowing only the modified or new fragments to be retrieved.

Although the fragments can be retrieved independently, these
techniques lack the user interface component interactivity required
in interactive applications. The UI component-based model of the
SPIAR style in conjunction with its delta-communication provides
a means for a client/server interaction based on state changes that
does not rely on caching.

Applicability
Lately, a number of frameworks have been emerging that aim at
making the development of single page applications easier. In this
section, we briefly discuss three of these frameworks. The SPIAR

style can be applied to such frameworks not only for their evalu-
ation, but also for analzying the presence or absence of desirable
properties.

ICEFaces8 is based on JSF, which is also used in the Backbase
framework. ICEFaces utilizes the JSF component model but lacks a
Single Page Language (SPL) and client-side components. Instead,
any state change on the server is directly rendered to DOM and
transmitted as DELTA-SERVER to its SPENGINE. As mentioned be-
fore, because of the way the component tree is handled in JSF (and
its natural page-sequence character) not much server performance
improvement can be gained when relying on JSF. Furthermore, fol-
lowing the SPIAR principles, it can be seen that ICEFaces does not
support client-side processing as a result of its Direct-to-DOM ap-
proach. Looking at Table 1, we can conjecture that ICEFaces does
not benefit from the advantages of improvements in user interac-
tivity, user-perceived latency and server performance induced by
client-side processing.

Echo29 has an event-driven server application which monitors
the state of the component model. The component model consists
of independent components which complies with the UI component
constraint of SPIAR. It uses delta connectors for the client/server
communication. Echo2 does not provide a SPL; state changes on
the server-side components are rendered to HTML elements which
are processed by its SPENGINE to update the interface. Further, all
the visual effects are implemented in the components and hidden
from the developer.

Another interesting framework to look at is ZK10. ZK provides
a set of XUL-based components and a markup language called
ZUML for describing the SPUI. It includes a SPENGINE, and re-
lies on delta connectors. ZK does not, however, produce client-side

8 ICEFaces 0.3.0, http://www.icesoft.com
9 Echo2 2.0.0, http://www.nextapp.com/platform/echo2/echo/

10 ZK 1.0.0, http://zk1.sourceforge.net

XUL widgets which means that this framework, like the other two,
lacks a client-side SPL.

It is worth noting that the three frameworks conform to the sin-
gle page interface, delta-communication, asynchronous interaction,
UI component, and Web standards-based constraints of the SPIAR

style. Client-side processing is the only constraint not met by the
frameworks. The main differences between the frameworks remain
in the set of architectural elements they provide; nevertheless, they
can all be described and evaluated by SPIAR, because of their com-
mon architectural interaction characteristics.

7. CONCLUDING REMARKS
We consider the following as our main contributions:

1. We offer a definition of single page Internet applications and
an analysis of their key architectural properties.

2. We propose SPIAR, an architectural style consisting of con-
straints that induce these properties.

3. We present and evaluate the architecture of the Backbase de-
velopment framework, one of today’s leading AJAX prod-
ucts, and illustrate how the concepts of SPIAR recur in the
Backbase architecture.

4. We demonstrate how SPIAR can be used to discuss design
tradeoffs in single page architectures, and use SPIAR to com-
pare different existing frameworks.

Future work encompasses the in-depth application of SPIAR to
other frameworks, such as the .NET variant of the Backbase ar-
chitecture, or the open source Echo2 framework. Furthermore, we
consider SPIAR as a starting point for enriching existing web ap-
plications with the single page user experience. In particular, we
intend to use our Symphony software architecture reconstruction
approach [6] to recast legacy web architectures in terms of SPIAR

concepts. Finally, we will use SPIAR to analyze how domain-
specific languages (such as BXML) and code generation techniques
can be used to deal with crosscutting concerns in (single page) web
applications [15].

Acknowledgments Partial support was received from SenterNo-
vem, project Single Page Computer Interaction (SPCI). We thank
Bas Graaf (TU Delft), Tijs van der Storm (CWI) and Mark Schief-
felbein (Backbase) for their feedback on our paper.

8. REFERENCES
[1] D. J. Barrett, L. A. Clarke, P. L. Tarr, and A. E. Wise. A

framework for event-based software integration. ACM Trans.
Softw. Eng. Methodol., 5(4):378–421, 1996.

[2] L. Bass, P. Clements, and R. Kazman. Software architecture
in practice, 2nd ed. Addison-Wesley, 2003.

[3] C. Bouras and A. Konidaris. Estimating and eliminating
redundant data transfers over the Web: a fragment based
approach: Research articles. Int. J. Commun. Syst.,
18(2):119–142, 2005.

[4] D. Brodie, A. Gupta, and W. Shi. Accelerating dynamic web
content delivery using keyword-based fragment detection. J.
Web Eng., 4(1):079–099, 2005.

[5] J. Challenger, P. Dantzig, A. Iyengar, and K. Witting. A
Fragment-based approach for efficiently creating dynamic
Web content. ACM Trans. Inter. Tech., 5(2):359–389, 2005.

[6] A. van Deursen, C. Hofmeister, R. Koschke, L. Moonen, and
C. Riva. Symphony: View-driven software architecture
reconstruction. In Working IEEE/IFIP Conference on
Software Architecture (WICSA), pages 122–134. IEEE
Computer Society, 2004.

[7] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach, and T. Berners-Lee. Hypertext Transfer Protocol –
HTTP/1.1, 1999.

[8] R. Fielding and R. N. Taylor. Principled design of the
modern Web architecture. ACM Trans. Inter. Tech. (TOIT),
2(2):115–150, 2002.

[9] R. T. Fielding. Architectural styles and the design of
network-based software architectures. PhD thesis, UC,
Irvine, Information and Computer Science, 2000.

[10] E. Folmer. Software Architecture analysis of Usability. PhD
thesis, Univ. of Groningen, Mathematics and Computer
Science, 2005.

[11] J. Garrett. AJAX: A new approach to web applications.
Adaptive path, 2005.

[12] M. Hauswirth and M. Jazayeri. A component and
communication model for push systems. In 7th European
Software Engineering Conference (ESEC/FSE-7), pages
20–38. Springer-Verlag, 1999.

[13] R. Khare and R. N. Taylor. Extending the Representational
State Transfer (REST) architectural style for decentralized
systems. In 26th International Conference on Software
Engineering (ICSE), pages 428–437. IEEE Computer
Society, 2004.

[14] D. Mac-Vicar and J. Navon. Web applications: A simple
pluggable architecture for business rich clients. In 5th
International Conference on Web Engineering (ICWE),
pages 500–505. Springer-Verlag, 2005.

[15] A. Mesbah and A. van Deursen. Crosscutting concerns in
J2EE applications. In 7th Int. Symp. on Web Site Evolution
(WSE), pages 14–21. IEEE Computer Society, 2005.

[16] J. C. Mogul, F. Douglis, A. Feldmann, and
B. Krishnamurthy. Potential benefits of delta encoding and
data compression for HTTP. In ACM SIGCOMM Conf. on
Applications, technologies, architectures, and protocols for
computer communication, pages 181–194. ACM, 1997.

[17] M. Naaman, H. Garcia-Molina, and A. Paepcke. Evaluation
of ESI and class-based delta encoding. In 8th International
Workshop Web content caching and distribution, pages
323–343. Kluwer Academic Publishers, 2004.

[18] W. M. Newman and R. F. Sproull. Principles of Interactive
Computer Graphics. McGraw-Hill, 1979. 2nd Edition.

[19] D. E. Perry and A. L. Wolf. Foundations for the study of
software architecture. SIGSOFT Softw. Eng. Notes,
17(4):40–52, 1992.

[20] A. Sinha. Client-server computing. Communications of the
ACM, 35(7):77–98, 1992.

[21] R. N. Taylor, N. Medvidovic, K. M. Anderson,
J. E. J. Whitehead, J. E. Robbins, K. A. Nies, P. Oreizy, and
D. L. Dubrow. A component- and message-based
architectural style for GUI software. IEEE Trans. Softw.
Eng., 22(6):390–406, 1996.

[22] H.-H. Teo, L.-B. Oh, C. Liu, and K.-K. Wei. An empirical
study of the effects of interactivity on web user attitude. Int.
J. Hum.-Comput. Stud., 58(3):281–305, 2003.

[23] A. Umar. Object-oriented client/server Internet
environments. Prentice Hall Press, 1997.

[24] W3C. URIs, Addressability, and the use of HTTP GET and
POST, Mar. 21 2004. W3C Tag Finding.

[25] W3C Technical Architecture Group. Architecture of the
World Wide Web, Volume One, Dec. 15, 2004. W3C
Recommendation.

