
C e n t r u m v o o r W i s k u n d e e n I n f o r m a t i c a

Software ENgineering

Lightweight incremental application upgrade

T. van der Storm

REPORT SEN-R0604 APRIL 2006

SEN
Software Engineering

Centrum voor Wiskunde en Informatica (CWI) is the national research institute for Mathematics and
Computer Science. It is sponsored by the Netherlands Organisation for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2006, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-369X

Lightweight incremental application upgrade

ABSTRACT
I present a lightweight approach to incremental application upgrade in the context of
component-based software development. The approach can be used to efficiently implement an
automated update feature in a platform and programming language agnostic way. A formal
release model is presented which ensures consistency and allows the computation of
incremental updates. Finally I show how this model can be implemented on top of Subversion.

1998 ACM Computing Classification System: D.2.7;D.2.9
Keywords and Phrases: change management; update management; release management; component-based software
engineering; software configuration management
Note: This work carried out under project SEN1 - NWO 638.001.202 Jacquard Deliver.

Lightweight Incremental Application Upgrade

Tijs van der Storm
Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam

The Netherlands
storm@cwi.nl

April 12, 2006

Abstract

I present a lightweight approach to incremental application
upgrade in the context of component-based software devel-
opment. The approach can be used to efficiently implement
an automated update feature in a platform and programming
language agnostic way. A formal release model is presented
which ensures consistency and allows the computation of in-
cremental updates. Finally I show how this model can be
implemented on top of Subversion.

1. Introduction

An important goal in software engineering is to deliver qual-
ity to users frequently and efficiently. Allowing users of
your software to easily take advantage of new functional-
ity or quality improvements can be a serious competitive
advantage. This insight seems to be widely accepted [13].
Software vendors are enhancing their software products with
an automatic update feature to allow customers to upgrade
their installation with a single push of a button. This pre-
vents customers from having to engage in the error-prone and
time consuming task of deploying new versions of a software
product. However, such functionality is often proprietary and
specific to a certain vendor or product, thereby limiting un-
derstanding and broader adoption of this important part of
the software process.

The aim of this paper is to maximize the agility of soft-
ware delivery without sacrificing the requirement that appli-
cations are developed as part of a component-based product
line. While it may not be beneficial to force the user environ-
ment to be component-based, it certainly can be for the de-
velopment environment. One would like to develop software
in a component-based fashion, and at the same time allow
users to transparently deploy an application as a whole.

If certain actions are tedious, error-prone or just too ex-
pensive, they tend to be performed less frequently. If the
effort to package a software product in such a way that it

is ready for deployment is too high, releases will be put out
less frequently. Similarly, if deploying a new release is a
time consuming activity with a high risk of failure, the user
probably will not upgrade every day. Therefore, if we want
to optimize software delivery this can be achieved by, on the
one hand, reducing the cost of release, and on the other hand,
by reducing the cost of deployment.

How would one optimize both release and deployment in
a platform and programming language agnostic way, when
many products composed of multiple shared components
have to be released and deployed efficiently? In this paper
I present a technique, calledbinary change set composition,
which provides an answer to this question. It can be used to
implement lightweight incremental application upgrade in a
fully generic and platform indepedent way. The resulting bi-
nary upgrades are incremental, making the upgrade process
highly efficient.

Contributions The contributions of this paper are summa-
rized as follows:

1. A requirements analysis of application upgrade and a
survey of related work.

2. The design of a lightweight, efficient and platform in-
dependent method for application upgrade.

3. The implementation of this method on top of Subver-
sion.

Organization This paper is organized as follows. Sec-
tion 2 provides some background to the problem of applica-
tion upgrade by identifying the requirements and discussing
related work. Section 3 forms the technical heart of this pa-
per. I describe how to automatically produce releases and
deliver updates in an incremental fashion. The implementa-
tion of the resulting concepts is then discussed in Section 4.
Then, in Section 5, I evaluate the approach by setting it out
against the requirements identified in Section 2. Finally, I
present a conclusion and list opportunities for future work.

1

2. Background

2.1. Requirements for Application Upgrade

Application upgrade consists of replacing a piece of software
that has previously been installed by a user. The aim of an
upgrade for the user is to be able to take advantage of re-
paired defects, increased quality or new functionality. The
business motivation for this is that customer satisfaction is
increased. To achieve this goal, the primary requirement is
that upgradessucceed. Nevertheless, there are additional re-
quirements for application upgrade. In the paragraphs be-
low I discuss four requirements:lightweightness, efficiency,
genericityandsafety.

For an software deployment method to be lightweight,
means that (future) users of a software product should not
be required to change their environment to accomodate the
method of deployment of the product. Reasoning along the
same lines, the method of creating deployable release should
not force a development organization to completely change
their development processes. Furthermore, the effort to cre-
ate a release on the one hand, and the effort to apply an up-
grade on the other hand, should require minimum effort.

Efficiency is the third requirement. If the aim is to opti-
mize software delivery, both release and upgrade should be
implemented efficiently. If deploying an upgrade takes too
much time or consumes too much bandwidth, users will tend
to postpone the possibly crucial update. Again, also the de-
velopment side gains by efficiency: the storage requirements
for maintaining releases may soon become unwieldy, if they
are put out frequently.

To ease the adoption of a release and deployment method,
it should not be constrained by choice of programming lan-
guage, operating system or any other platform dependency.
This genericity requirement mostly serves the development
side, but obviously has consequences for users: if they are
on the wrong platform they cannot deploy the application
they might desire.

The final requirement serves primarily users: safety of
upgrades. Deployment is hard. If it should occur that an
upgrade fails, the user must be able to undo the consequences
quickly and safely. Or at least the consequences of failure
should be local.

2.2. Related Work

Related work exists in two areas: update management and
release management,—both areas belong to the wide rang-
ing field of software deployment. In this field, update man-
agement has a more user oriented perspective and concerns
itself with the question how new releases are correctly and
efficiently consumed by users. Release management, on the
other hand, takes a more development-oriented viewpoint. It
addresses the question of how to prepare software that is to

Lightweight Generic Safe Efficient

APT &c. ◦ ◦
AutoPackage ◦ ◦ ◦
Nix ◦ ◦ ◦
AutoBundle ◦ ◦
Ports &c. ◦
JPloy ◦ ◦
Soft. Dock ◦ ◦

Table 1. Feature matrix of deployment tools

be delivered to the user.
In the following I will discuss how existing update and

release tools for component-based software deployment live
up to the requirements identified in Section 2.1. A summary
of the discussion is displayed in Table 1.

Research on software deployment has mostly focused on
combining both the user and development perspectives. One
example is the Software Dock [14], which is a distributed ar-
chitecture that supports the full software deployment life cy-
cle. Field docks provide an interface to the user’s site. These
docks connect to release docks at producer sites using a wide
area event service. While the software dock can be used to
deploy any kind of software system, and thus satisfies the
genericity requirement, the description of each release in the
Deployable Software Description (DSD) language presents
significant overhead. Moreover, the Software Dock is par-
ticularly good at deploying components from different, pos-
sibly distributed origins, which is outside the scope of this
paper. The same can be said of the Software Release Man-
ager (SRM) [22].

Deployment tools that primarily address the user perspec-
tive fall in the category of software product updaters [15].
This category can be further subdivided into monolithic
product updaters and component-based product updaters.
Whereas product updaters in general do not make assump-
tions on the structure of the software product they are updat-
ing, component (or package) deployment tools are explicitly
component-based.

JPloy [17] is a tool that gives users more control over
which components are deployed. The question is, however,
whether users are actually interested in how applications are
composed. In that sense, JPloy may not be a good match for
application deployment in the strict sense.

Package deployment tools can be further categorized as
based on source packages or binary packages. A typical
example of source-based package deployment tools is the
FreeBSD ports system [18]. Such systems require users to
download source archives that are subsequently built on the
user’s machine. Source tree composition [7] is another ap-
proach that works by composing component source distri-
butions into a so-calledbundle. The tool performing this
task, called AutoBundle, constructs a composite build in-

2

terface that allows users to transparently build the composi-
tion. Source-based deployment, however, is relatively time-
consuming and thus fails to satisfy the efficiency require-
ment.

Binary package deployment tools do, however, satisfy the
efficiency requirement. They include Debian’s Advanced
Package Tool (APT) [19], the Redhat Package Manager
(RPM) [3], and more recently AutoPackage [2]. These tools
download binary packages that are precompiled for the user’s
platform. Both APT and RPM are tied to specific Linux
distributions (Debian/Ubuntu and Redhat/SuSe respectively)
whereas autopackage can be used across distributions. Nev-
ertheless AutoPackage only works under Linux. Although
these deployment tools are independent of programming lan-
guage, they are not generic with respect to operating system.

The deployment system Nix [9] supports both source and
binary deployment of packages in such a way that it is trans-
parent to the user. If no binary package is found it falls
back to source deployment. It features a store for non-
destructively installing packages that are identified by unique
hashes. This allows side-by-side installation of different ver-
sions of the same package. Nix is the only deployment tool
that is completely safe because its non-destructive deploy-
ment model guarantees that existing dependencies are never
broken because of an update. Furthermore, it is portable
across different flavors of Unix and does not require root
access (which is the case for all package deployment tools
except AutoPackage).

One problem in general with package deployment tools is
that they are invasive with respect to the environment of the
user. For instance, the value of these tools is maximum when
all software is managed by it. This explains why most such
tools are so intertwined with operating system distributions,
but it is a clear violation of the lightweightness requirement.

While some systems, such as Nix, AutoPackage and
JPloy, can be used next to the ‘native’ deployment system,
they still have to be able to manage all dependencies in addi-
tion to the component that the user actually wants to install.
In the worst case this means that a complete dependency tree
of packages is duplicated, because the user deployed her ap-
plication with a deployment tool different from the standard
one. Note that this is actually unavoidable if the user has no
root access. Note also that the user is at least required to in-
stall the deployment system itself, which in turn may not be
an easy task.

2.3. Overview of the Approach

The motivations for component-based development are
manyfold and well-known. Factoring the functionality of
an application in separate components, creates opportunities
for reuse,—both within a single product or across multiple
products [20]. Similarly, productivity is increased because
components can be developed in parallel. In this paper com-

ponents are interpreted as groupings of files that can be ver-
sioned as a whole.

Components are not stand-alone applications. This means
that a component may require the presence of other com-
ponents to function correctly. Such dependencies may be
bound either at build-time or at runtime. Applications are
then derived by composing constituent components.

In the following I assume a very liberal notion of depen-
dency, and consequently of composition. When one compo-
nent requires another component it is left unspecified what
the concrete relation between the two components amounts
to. Abstract dependencies thus cover both build-time and
runtime dependencies. Under this interpretation, composi-
tion is loosely defined as merging all files of all related com-
ponents into a single directory/archive.

When a component has been built, some of the resulting
object files will contribute to the composed application. This
set of files is called the (component) distribution. To dis-
tribute an application to users, the relevant component dis-
tributions are composed before release, resulting in a single
application distribution. Thus, an application is identified
with a certain root node in the component dependency graph
and its distribution consists of the transitive-reflexive closure
of the dependencies below the root.

In the next section I will present a technique to efficiently
create and deliver such application releases, calledbinary
change set composition. We will see that continuous inte-
gration of component-based software extends naturally to a
process of automatic continuous release. A component will
only be built if it has changed or if one of its dependencies
has changed. If a component has been built it is released
automatically. The results of a build are stored persistently
so that components higher up in the dependency graph may
reuse previous builds from components lower in the depen-
dency graph.

Apart from the files belonging to a single component, the
composition of these sets of files is also stored. The space
requirements for this can quickly become unwieldy, there-
fore these application distributions are stored differentially.
Differential storage works by saving the changes between
files. Instead of composing sets of files, one can now com-
pose sets of change sets. In addition to storing many releases
efficiently, binary change set composition yields an efficient
way of updating user installations.

3. Binary Change Set Composition

3.1. Incremental Integration

Tools likemakeoptimize software builds because it only up-
dates targets when they are out of date. It is possible to lift
this paradigm from the level of files to the level of compo-
nents. Hence, a component is only built if it is out of date

3

toolbuslib

toolbus toolbus toolbus

toolbuslib

toolbus

aterm

toolbuslib

aterm

0 1 2 3

Figure 1. Incremental integration

with respect to some saved state, or when one of its depen-
dencies is out of date. If built artifacts are stored persistently
they can be reused. Sharing of builds is particularly valu-
able when a software product is continuously integrated [12].
Traditionally this involves building the complete application
as soon as someone commits changes to the source control
system. However, building large systems from scratch may
not scale.

Consider an example that derives from three real-world
components,toolbus, toolbuslibandaterm. The Toolbus is a
middleware component that allows components (“tools”) to
communicate using a centralized software bus [4]. Tools im-
plemented in C use thetoolbuslibcomponent for this. Using
the Toolbus, tools exchange data in a tree-like exchange for-
mat called Annotated Terms (ATerms) [21]; this datastruc-
ture is implemented by theaterm component. Obviously,
toolbusrequires both the connection and the exchange for-
mat libraries, whereas the connection library only requires
the exchange format.

Figure 1 shows four build iterations. The dashed boxes
indicate changes in that particular component. In the first it-
eration every component has been built. At the time of the
second iteration, however, only the top-level toolbus compo-
nent has changed, so it is built again but this time reusing
the previous builds oftoolbuslibandaterm. Similarly, in the
third iteration there has been a change in thetoolbuslibcom-
ponent. Sincetoolbusdepends ontoolbusliba new build is
triggered for bothtoolbuslibandtoolbus. Finally, in the last
iteration changes have been committed to theatermcompo-
nent and as a result all components are rebuilt.

An implementation of incremental continuous integra-
tion, called Sisyphus, has been described in [23]. This sys-
tem works as follows. Every time a commit to the source
control system occurs, Sisyphus checks out all components.
It does this by starting with a root component, and reading
a special file contained in the source tree that describes the
dependencies of this component. This process is repeated
for each of the dependencies. Meanwhile, if the current ver-
sion of a component has not been built before, or one of its
dependencies has been built in the current iteration, a build

Component

Build

Release

File
*

*

*
*

Version

Use

Figure 2. Build and release model

is triggered. Results are stored in a database that serves as
saved state.

3.2. Build and Release Model

The build and release model presented in this section is
loosely based on the model presented in [23]. It can be seen
as the data model of a database for tracing change, build and
release processes. An overview is depicted in Figure 2. The
state of a component at a certain moment in time is identi-
fied with its version obtained from the source control system.
Each version may have been built multiple times. The model
records for every build of a component version which builds
were used as dependencies. A set of built artifacts is asso-
ciated to each build. Finally, a release is simply the labeling
of a certain build; the set of releases is a subset of the set of
builds.

The diagram displayed in Figure 2 can be formalized
in the relational calculus. In the context of this paper two
sets are important:Build, the set that represents component
builds, andUsedefined as a binary relation between builds
(i.e. Use⊆ Build×Build). The set of built artifacts con-
tributed by a buildb is given by files(b).

The extent of a build is defined as the set of builds that
have participated in a build. The extent of a buildb is com-
puted by taking right image ofb in the transitive-reflexive
closure of theUserelation:

extent(b) = Use∗[b]

The extent of a build contains all builds that will make up
an application release. The set of files that will be part of a
release is derived from the set of files that each component in
the extent contributes. This is discussed in the next section.

4

lib

bin

include

lib
libtoolbus.a
libATerm.so

bin
toolbus
atdiff

include
toolbus.h
aterm.h

toolbus
bin

toolbus
toolbuslib

lib

include

aterm

libtoolbus.a

toolbus.h

libATerm.so

atdiff

aterm.h

Figure 3. Prefix composition

3.3. Prefix Composition

When a component has been built some of the resulting ob-
ject files will contribute to the composed application. The set
of files that is distributed to the user is called the application
distribution, and it is composed of component distributions.

Figure 3 shows how the files contributed by each compo-
nent to the toolbus application are taken together to form a
single application distribution. On the left is shown that all
installable files of each component first end up in a compo-
nent specific directory,—in the example this could have been
the result of issuingmake install. To release thetoolbusas
an application, these sets of files and directories are merged,
resulting in a single application distribution, as shown on the
right.

I call this way of composing components “installation
prefix composition” since the component directories on the
left correspond to path prefixes passed to./configurescript
that is generated by AutoConf [1], a tool to configure build
processes that is widely used in open source projects. Among
other things, it instructsmake installto install files to a Unix
directory hierarchy below the prefix.

Since components are composed by merging sets of files
and directories we must ensure that no component overwrites
files of another component. Formally, this reads:

∀b∈ Builds:
\

b′∈extent(b)

files(b′) = /0

In other words, this ensures that making a distribution is
compositional. Instead of explicitly creating a global appli-
cation distribution one can compose individual component
distributions to achieve the same effect. What the property
effectively states is that building a component, viewed as a
function, distributes over composition.

There is one technicality which has to be taken care of:

Upgrade Change set delivered to user

0→ 1 {∆0
1bin/toolbus}

1→ 2 {∆1
2bin/toolbus,∆0

2lib/libtoolbus.a}
2→ 3 {−bin/atdiff}

Table 2. Change set delivery

the distributed files should be relocatable. Because builds
happen at the developer’s site one must ensure that no (im-
plicit) dependencies on the build environment are bound at
build time. For instance, if a Unix executable is linked to a
dynamic library that happens to be present at build time, then
this library should also be present on the user’s machine,—
even on the same location. Since we do not want to require
that users should reproduce the complete build environment,
care must be taken to avoid such “imported” dependencies. I
elaborate on this problem in Section 4.3.

3.4. Change Set Delivery

If the compositionality property holds the composition is de-
fined by collecting all files that are in the extent of a build:

files∗(b) =
[

b′∈extent(b)

files(b′)

The function files∗ computes the set of files that eventually
has to be distributed to users. An update tool could trans-
fer these files for every build that is released to the users of
the application. If a user already has installed a certain re-
lease, the tool could just transfer the difference between the
installed release and the new release. LetF1,2 = files∗(b1,2).
Then, the change set between two releasesb1 andb2 is de-
fined as:

{∆(F1∩F2),+(F2\F1),−(F1\F2)}

Change sets have three parts. The first part, indicated by∆
contains binary patches to update files that are in both re-
leases. The second and third part add and remove the files
that are absent in the first or second release respectively.

If we turn our attention once again to Figure 3, we see
on the right the composed prefix for thetoolbusapplication.
Let’s assume that this is the initial release that a typical user
has installed. In the meantime, development continues and
the system goes through three more release cycles, as dis-
played in Figure 1. The sequence of change sets transferred
to our user, assuming she upgrades to every release, is listed
in Table 2.

The second iteration only contains changes to thetool-
buscomponent itself. Since the only installable file in this
component isbin/toolbus, a patch is sent over updating this
file at the user’s site. In the next iteration there is a change
in toolbusliband as a consequencetoolbushas been rebuilt.

5

〈1, toolbus〉:
{∆0

1bin/toolbus}

���
�
�

��

�

�

�
�

'

0

〈2, toolbus〉:
{∆1

2bin/toolbus}

���
�

�
�

�
�

�
�

�
�

�

���
�
�

〈3, toolbus〉:{}

��

�

�

�
�

'

/

7

���
�
�
�

〈0, toolbuslib〉:
{+lib/libtoolbus.a,
+include/toolbus.h}

��

〈2, toolbuslib〉:
{∆0

2lib/libtoolbus.a}

{{wwwwwwwwww

〈3, toolbuslib〉:{}

���
�
�
�
�

〈0,aterm〉:
{+bin/atdiff,
+lib/libATerm.so,
+include/aterm.h}

〈3,aterm〉:
{−bin/atdiff}

Figure 4. Change set composition

Updating to this release involves transferring patches for
bothbin/toolbusandlib/libtoolbus.a. There must have been
a change in thebin/toolbussince libtoolbus.a is statically
linked. In the final iteration the changes were in theaterm
component. However, this time neithertoolbuslibnor tool-
busare affected by it—even though they have been rebuilt—
because the change involved the removal of a target: the
bin/atdiff program appears to be no longer needed. Nei-
thertoolbus, nor toolbuslibreferenced this executable, hence
there was no change in any of the built files with respect to
the previous release. As a result, the change set only contains
the delete action forbin/atdiff. Note that these change sets
can be easily reverted in order to support downgrades.

3.5. Change Set Composition

Until now we have assumed that every application release
was completely available and the change sets were only used
to optimize the update process. From the use of change
sets to update user installations, naturally follows the use of
change sets for storing releases. Figure 4 shows how this can
be accomplished.

Once again, the three integration iterations are shown. In
the first iteration, only thetoolbushad changed and had to be
rebuilt. This resulted in an updated filebin/toolbus. The fig-
ure shows that we only have to store the difference between
the updated file and the file of the previous iteration. Note
that initial builds ofatermand toolbuslib(from iteration 0)
are stored as change sets that just add files.

The second iteration involves a change intoolbuslib;
again, patches fortoolbusand toolbuslibare stored. How-
ever, in the third iteration, the change in theatermcompo-
nent did not affect any files intoolbusor toolbuslib, so no
change sets need to be stored for these components. But if
users should be able to update their installation of the tool-
bus application, still the toolbus should be released. So there
really are four toolbus releases in total, but the last one only

+bin/atdiff
+lib/libATerm.so
+include/aterm.h

3
lib

libATerm.so
include

aterm.h

3
0 ...

...

bin
atdiff

lib
libATerm.so
libtoolbus.a

include
aterm.h
toolbus.h

libATerm.so
libtoolbus.a

include
aterm.h
toolbus.h

lib

latest

−bin/atdiff
component

aterm toolbuslib
latest

0

lib
libATerm.so

bin
atdiff

include
aterm.h

+lib/libtoolbus.a
+include/toolbus.h

lib/libtoolbus.a

composition

component ...
0
2
3 ...

...

...

composition
0

2
3

...

Figure 5. Composition by shallow copying

contains changes originating fromaterm.
I will now describe how this scheme of binary change set

composition can be implemented on top of Subversion.

4. Implementation using Subversion

4.1. Composition by Shallow Copying

Subversion [6] is a source control system that is gaining
popularity over the widely used Concurrent Version System
(CVS). Subversion adds many features that were missing
in CVS, such as versioning of directories and a unified ap-
proach to branching and tagging. Precisely these features
prove to be crucial in the implementation of binary change
set composition on top of Subversion.

Next, I will describe how Subversion repositories can be
used as release repositories that allow the incremental deliv-
ery of updates to users. The release process consists of com-
miting the component distributions to a Subversion reposi-
tory, and then use branching to identify component releases.
Such component-release branches are the unit of composi-
tion, which is also implemented by branching.

The crucial feature of Subversion that makes this work,
is that branching is implemented by copying. So, for in-
stance a branch is created for some repository location—file

6

or directory—by copying the tree to another location. At the
new location, Subversion records areferenceto the source of
the copy operation. The copy operation is a constant-space
operation and therefore a feasible way to implement sharing.

Figure 5 shows a snapshot of a Subversion repository con-
tainingatermandtoolbuslibreleases based on the change set
graph displayed in Figure 4. For the sake of presentation re-
leases of thetoolbushave been omitted. On the left we see
the Subversion tree foraterm, and on the left the tree fortool-
buslib. The trees have subtrees indicatedlatest, component
andcomposition. The latesttree is where component distri-
butions are stored. The rounded boxes contain the change
sets from Figure 4. Thecomponenttree and thecomposi-
tion tree contain shallow copies of versions of the latest tree;
these are the releases proper. Solid arrows indicate copy re-
lations the context of a single component,—dotted arrows in-
dicate cross component copying (i.e. composition relations).

After every build the changes in the distributions are com-
mited to thelatesttree. The state of thelatesttree at that time
is then copied to a branch identifying this particular build;
such branches are created by copying the files from latest to
a separate directory undercomponent. Note that since the
change set fortoolbuslibin iteration 3 was empty,toolbuslib
release 3 is created from the state of the latest tree at iteration
2.

The tree belowcompositioncontains releases for compo-
sitions. This works by, instead of just copying the files be-
longing to a single build, copying the files in the extent of the
build. In the example, this means that, next to the files con-
tained intoolbuslib releases also the files inaterm releases
are copied. If we comparetoolbuslibcomposition 0 and 3,
one can see in the figure that composition 0 is composed with
release 0 ofaterm, whereas composition 3 is composed with
release 3 ofaterm, exactly as in Figure 4.

4.2. Upgrade is Workspace Switch

Assuming the proper access rights are in place, the Subver-
sion repository can be made publicly accessible for users. A
user can nowcheck outthe desired subtree ofcompositions;
this can easily be performed by a bootstrap script if it is the
initial installation. She then obtains the composed prefix of
the application.

Now that the user has installed the application by check-
ing out a repository location, it is equally easy to down-
or upgrade to a different version. Since the subtrees of the
compositiontree contain all subsequent releases of the appli-
cation, and the user has checked out one of them, up- and
downgrading is achieved by updating the user’s local copy
of the composed prefix to another release branch. Subver-
sion provides the commandsvn switchfor this. Subversion
will take care adding, removing or patching where necessary.

Note that the sharing achieved in the repository also has
an effect on how local checkouts are updated. For instance,

recall that the third release oftoolbus in the example in-
volved the removal ofbin/atdiff. If we assume that the user
has installed the second release, and decides to upgrade, the
only action that takes place at the user site is the removal
of bin/atdiff, since the third release of bothtoolbusandtool-
buslibcontain the same change sets as second release of both
these components.

4.3. Techniques for Relocatability

Installed application releases are ready to use with the excep-
tion of one technicality that was mentioned before, which is:
relocation. Since the released files may contain references to
locations on the build server at the side of development, these
references become stale as soon as the users installed them.
We therefore require that applications distributed this way
should be binary relocatable. There are a number of ways to
ensure that distributions are relocatable. Some of these are
briefly discussed below.

There are ways to discover dynamically what the loca-
tions are of libraries/executables that are required at runtime.
For instance, AutoPackage [2] provides a (Linux-only) li-
brary that can be queried at runtime to obtain ‘your’ location
at runtime. Since the files contributed by each component
are composed into a single directory hierarchy, dependencies
can be found relative to the obtained location.

Another approach is to use wrapper scripts. As part of
the deployment of an application a script could be gener-
ated that invokes the deployed application. This script would
then set appropriate environment variables (e.g. PATH or
LD LIBRARY PATH on Unix) or pass the location of the
composed prefix on the commandline.

Finally, we could use string rewriting to effectively relo-
cate unrelocatable files just after deployment. This amounts
to replacing build time paths with their runtime counter-parts
in every file. Special care must be taken in the case of binary
files, since it is very easy to destroy their integrity. This trick,
however, has been applied successfully.

5. Evaluation

5.1. Experimental Validation

A prototype implementation has been developed as part of
the Sisyphus integration framework [23]. It has been used
to deliver updates for a semi-large component-based system,
consisting of around 30 components: the ASF+SDF Meta-
Environment [5]. All built artifacts were put under Subver-
sion, as described in the previous section. As expected, the
repository did not grow exponentially, although all 30 com-
ponent compositions were stored multiple times.

The ASF+SDF Meta-Environment is developed in the
style of package-based development [8]. This entails that
every component has an abstract build interface based on

7

AutConf. The prefixes passed using--prefix during build
are known at the time of deployment so could be substituted
quite safely. In order to keep binary files consistent, the pre-
fixes passed to the build interface were supplanted with su-
perfluous ‘/’ characters to ensure enough space for the sub-
tituted (user) path. This trick has not posed any problem as
of yet, probably because package-based development require
that every dependency is always passed explicitly to the Au-
toConf generated./configurescript.

A small Ruby script served as update tool. It queries the
repository, listing all available releases. If you select one,
the tree is checked out to a certain directory. After relocation
the Meta-Environment is ready to use. Before any upgrade or
downgrade however, the tool undoes the relocation to prevent
Subversion from seeing them as “local modifications”.

5.2. Release Management Requirements

The subject of lightweight application upgrade belongs to the
field of software release management. In [22], the authors
list a number of requirements for effective release manage-
ment in the context of component-based software. I discuss
each of them briefly here and show that our approach satis-
fies them appropriately.

Dependencies should be explicit and easily recorded
Incremental integration of components presumes that
dependencies are declared as meta data within the
source tree of the component. Thus, this requirement is
satisfied.

Releases should be kept consistentThis requirement en-
tails that releases are immutable. The incremental con-
tinuous integration approach discussed in this paper
guarantees this.

The scope of the release should be controllableScope
determines who is allowed to obtain a software release.
The release repository presented in this paper enables
the use of any access control mechanism that is
provided by Subversion.

A history of retrievals should be kept Although I do not
address this requirement directly, if the Subversion re-
lease repository is served over HTTP using Apache, it is
easily implemented by consulting Apache’s access logs.

With respect to release management the implementation
of change set composition using Subversion has one apparent
weakness. Since Subversion does not allow cross-repository
branching it would be hard to compose application releases
using third-party components. However, this can be circum-
vented by using the Subversion dump utility that exports sec-
tions of a repository on file. Such a file can then be trans-
ferred to a different repository.

5.3. Update Management Requirements

In Section 1 I listed the requirements for application upgrade
from the user perspective. Let’s discuss each of them in
turn to evaluate whether application upgrade using Subver-
sion satsifies them.

Lightweightness No invasive software deployment tool has
to be installed to receive updates. Many language bind-
ings exist for subversion, enabling self-updating func-
tionality to be easily bundled with the application itself.

Genericity Change set composition, and Subversion too,
works with files of any kind; there is no program-
ming language dependency. Moreover, Subversion is
portable across many platforms, thereby imposing no
constraints development environment.

Safety The Subversionswitchcommand is used for both up-
grade and downgrade. A failed upgrade can thus be
quickly rolled back. Another contribution to safety is
the fact that Subversion repository modifications are
atomic, meaning that the application user is shielded
from inconsistent intermediate states, and that releases
put out in parallel do not interfere.

Efficiency Efficiency is achieved on two accounts. First the
use of Subversion as delivery protocol ensures that an
upgrade involves the transfer of just the differences be-
tween the old version and the new version. Secondly,
while the unit of delivery is a full application, only
the files per component are effectively stored, and even
these are stored differentially.

Although all requirements are fulfilled satisfactory, the
primary weakness of binary change set composition remains
the fact that distributed files have to be relocatable. Solving
this problem is left as future work.

6. Conclusion and Future Work

In this paper I have discussed the requirements that have to
be fulfilled so that application upgrade is a burden neither for
the development side, nor for the user side. Related work in
the area of software release management did not live up to
these requirements.

The binary change set composition technique does live up
to these requirements, and can be used to deliver new appli-
cation releases accurately, frequently and quickly. The im-
plementation on top of Subversion shows that the approach
is feasible and may serve as a low impact adoption path.

However, ample opportunities for future work remain.
First of all, the relocatability requirement of distributed files
should be investigated. Further research will have to show
whether it is possible to make the binding of dependencies a

8

first-class citizen in the model. For instance, one could envi-
sion a kind of service where components register themselves
in order for them to be found by other components. This sub-
ject is closely related to the notions inversion of control and
dependency injection [11].

Another direction of future work concerns the integration
of deployment functionality with the released application it-
self. Nowadays, many applications contain functionality to
check for new updates. If they are available they are installed
and the application is restarted. It would be interesting if us-
ing the approach of this paper one could design such “update
buttons” in a reusable and generic way. Similarly, it should
be investigated how such self-updating applications could be
enhanced with functionality for reporting bugs or other kinds
of feedback.

Finally, the notion of application state has been com-
pletely disregarded in this paper. Application state has many
faces, from configuration parameters set by the user, to com-
plete databases. The deployment method must ensure that
this data is preserved across upgrades. Moreover, if an up-
grade involves a change in the data format of this state, for
instance, the database schema, XML schema, or grammar,
then the data has to be migrated. Further research is required
to see if results from the areas of, for instance, schema evolu-
tion [16] or data synchronization [10] can applied in this con-
text. In this scenario the data should not only be preserved
but converted to the new format. It is as of yet unclear how
to do this in a sufficiently generic way.

References

[1] AutoConf. Online: http://www.gnu.org/
software/autoconf .

[2] AutoPackage. Online:http://www.autopackage.
org .

[3] E. C. Bailey. Maximum RPM. Taking the Red Hat Package
Manager to the Limit. Red Hat, Inc., 2000. Online:http:
//www.rpm.org/max-rpm .

[4] J. Bergstra and P. Klint. The discrete time ToolBus – a soft-
ware coordination architecture.Science of Computer Pro-
gramming, 31(2-3):205–229, July 1998.

[5] M. Brand, A. Deursen, J. Heering, H. Jong, M. Jonge,
T. Kuipers, P. Klint, L. Moonen, P. Olivier, J. Scheerder,
J. Vinju, E. Visser, and J. Visser. The ASF+SDF Meta-
Environment: a Component-Based Language Development
Environment. In R. Wilhelm, editor,Compiler Construction
(CC ’01), volume 2027 ofLecture Notes in Computer Sci-
ence, pages 365–370. Springer-Verlag, 2001.

[6] B. Collins-Sussman, B. W. Fitzpatrick, and C. M. Pilato.Ver-
sion Control with Subversion. O’Reilly Media, 2004. Online:
http://svnbook.red-bean.com/ .

[7] M. de Jonge. Source tree composition. In C. Gacek, editor,
Proceedings: Seventh International Conf. on Software Reuse,
volume 2319 ofLNCS, pages 17–32. Springer-Verlag, Apr.
2002.

[8] M. de Jonge. Package-based software development. InProc.:
29th Euromicro Conf., pages 76–85. IEEE Computer Society
Press, 2003.

[9] E. Dolstra, M. de Jonge, and E. Visser. Nix: A safe and
policy-free system for software deployment. In L. Damon,
editor, 18th Large Installation System Administration Con-
ference (LISA ’04), pages 79–92, Atlanta, Georgia, USA,
November 2004. USENIX.

[10] J. N. Foster, M. B. Greenwald, C. Kirkegaard, B. C. Pierce,
and A. Schmitt. Exploiting schemas in data synchronization.
In Database Programming Languages (DBPL), Aug. 2005.

[11] M. Fowler. Inversion of control containers and the de-
pendency injection pattern. Online:http://www.
martinfowler.com/articles/injection.html ,
January 2004.

[12] M. Fowler and M. Foemmel. Continuous integration. On-
line: http://www.martinfowler.com/articles/
continuousIntegration.html .

[13] E. Grossman. An update on software updates.ACM Queue,
March 2005.

[14] R. S. Hall, D. Heimbigner, and A. L. Wolf. A cooperative
approach to support software deployment using the software
dock. In Proceedings of the 1999 International Conf. on
Software Engineering (ICSE’99), pages 174–183, New York,
May 1999. Association for Computing Machinery.

[15] S. Jansen, G. Ballintijn, and S. Brinkkemper. A process
framework and typology for software product updaters. In9th
European Conference on Software Maintenance and Reengi-
neering (CSMR), 2005.

[16] P. Klint, R. Lämmel, and C. Verhoef. Toward an engineer-
ing discipline for grammarware.ACM Trans. Softw. Eng.
Methodol., 14(3):331–380, 2005.

[17] C. Lüer and A. van der Hoek. JPloy: User-centric deployment
support in a component platform. InSecond International
Working Conference on Component Deployment, pages 190–
204, May 2004.

[18] FreeBSD Ports. Online:http://www.freebsd.org/
ports .

[19] G. N. Silva. APT HOWTO. Debian, 2004. On-
line: http://www.debian.org/doc/manuals/
apt-howto/index.en.html .

[20] C. Szyperski, D. Gruntz, and S. Murer.Component Soft-
ware: Beyond Object-Oriented Programming. ACM Press
and Addison-Wesley, New York, NY, 2nd edition, 2002.

[21] M. van den Brand, H. de Jong, P. Klint, and P. Olivier. Ef-
ficient annotated terms.Software—Practice and Experience,
30(3):259–291, 2000.

[22] A. van der Hoek and A. L. Wolf. Software release manage-
ment for component-based software.Software—Practice and
Experience, 33(1):77–98, 2003.

[23] T. van der Storm. Continuous release and upgrade of
component-based software. In J. Whitehead and A. P.
Dahlqvist, editors,Proceedings of the 12th International
Workshop on Software Configuration Management (SCM-
12), 2005.

9

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.268 x 11.693 inches / 210.0 x 297.0 mm
 Shift: none
 Normalise (advanced option): 'improved'

 32

 D:20060410102358
 841.8898
 a4
 Blank
 595.2756

 Tall
 1
 0
 Full
 1106
 333
 None
 Up
 2.8346
 0.0000

 Both
 5
 AllDoc
 10

 CurrentAVDoc

 Uniform
 14.1732
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0c
 Quite Imposing Plus 2
 1

 0
 9
 8
 9

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.268 x 11.693 inches / 210.0 x 297.0 mm
 Shift: move right by 5.67 points
 Normalise (advanced option): 'improved'

 32

 D:20060410102358
 841.8898
 a4
 Blank
 595.2756

 Tall
 1
 0
 Full
 1106
 333

 Fixed
 Right
 5.6693
 0.0000

 Both
 5
 AllDoc
 10

 CurrentAVDoc

 Uniform
 14.1732
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0c
 Quite Imposing Plus 2
 1

 3
 9
 8
 9

 1

 HistoryList_V1
 qi2base

