Centrum voor Wiskunde en Informatica

REPORTRAPPORT

SIEIN]

Software Engineering

Software ENgineering

SEN Lightweight incremental application upgrade

T. van der Storm

ReporT SEN-R0604 ArriL 2006

Centrum voor Wiskunde en Informatica (CWI) is the national research institute for Mathematics and
Computer Science. It is sponsored by the Netherlands Organisation for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-orienfed structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA|
Software Engineering (SEN)

Modelling, Analysis and Simulation [MAS]

Information Systems (INS)

Copyright © 20006, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 S Amsterdam (NL)

Telephone +31 20 592 9333

Telefax +31 20 592 4199

ISSN 1386-369X

Lightweight incremental application upgrade

ABSTRACT

| present a lightweight approach to incremental application upgrade in the context of
component-based software development. The approach can be used to efficiently implement an
automated update feature in a platform and programming language agnostic way. A formal
release model is presented which ensures consistency and allows the computation of
incremental updates. Finally | show how this model can be implemented on top of Subversion.

1998 ACM Computing Classification System: D.2.7;D.2.9

Keywords and Phrases: change management; update management; release management; component-based software
engineering; software configuration management

Note: This work carried out under project SEN1 - NWO 638.001.202 Jacquard Deliver.

Lightweight Incremental Application Upgrade

Tijs van der Storm
Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam
The Netherlands
storm@cwi.nl

April 12, 2006

Abstract is ready for deployment is too high, releases will be put out

)) , .. less frequently. Similarly, if deploying a new release is a
I present a lightweight approach to incremental application time consuming activity with a high risk of failure, the user

upgrade in the context of component-based software develonapiy will not upgrade every day. Therefore, if we want
opment. The approach can be used to efficiently implement, o imize software delivery this can be achieved by, on the

an automated update feature in a platform and programming,ne hang, reducing the cost of release, and on the other hand,
language agnostic way. A formal release model is presentegy reducing the cost of deployment.

which ensures consistency and allows the computation of in-" |, .. \vould one optimize both release and deployment in

f:remental updates. Finally | show how this model can be, platform and programming language agnostic way, when
implemented on top of Subversion. many products composed of multiple shared components
have to be released and deployed efficiently? In this paper
. | present a technique, callddhary change set compositipn
1. Introduction which provides an answer to this question. It can be used to
implement lightweight incremental application upgrade in a
An important goal in software engineering is to deliver qual-fully generic and platform indepedent way. The resulting bi-

ity to users frequently and efficiently. Allowing users of nary upgrades are incremental, making the upgrade process
your software to easily take advantage of new functionalighly efficient.

ity or quality improvements can be a serious competitive
advantage. This insight seems to be widely accepted [13}4nriputions The contributions of this paper are summa-
Software vendors are enhancing their software products wWith,eq as follows:
an automatic update feature to allow customers to upgrade
their installation with a single push of a button. This pre- 1. A requirements analysis of application upgrade and a
vents customers from having to engage in the error-prone and ~ Survey of related work.
time consuming task of deploying new versions of a software
product. However, such functionality is often proprietary and
specific to a certain vendor or product, thereby limiting un-
derstanding and broader adoption of this important part of 3. The implementation of this method on top of Subver-
the software process. sion.

The aim of this paper is to maximize the agility of soft-
ware delivery without sacrificing the requirement that appli-Organization This paper is organized as follows. Sec-
cations are developed as part of a component-based produin 2 provides some background to the problem of applica-
line. While it may not be beneficial to force the user environ-tion upgrade by identifying the requirements and discussing
ment to be component-based, it certainly can be for the derelated work. Section 3 forms the technical heart of this pa-
velopment environment. One would like to develop softwareper. | describe how to automatically produce releases and
in a component-based fashion, and at the same time alloweliver updates in an incremental fashion. The implementa-
users to transparently deploy an application as a whole. tion of the resulting concepts is then discussed in Section 4.

If certain actions are tedious, error-prone or just too ex-Then, in Section 5, | evaluate the approach by setting it out
pensive, they tend to be performed less frequently. If theagainst the requirements identified in Section 2. Finally, |
effort to package a software product in such a way that ippresent a conclusion and list opportunities for future work.

2. The design of a lightweight, efficient and platform in-
dependent method for application upgrade.

2. BaCkground | | Lightweight | Generic| Safe | Efficient |

APT &c. o o
2.1. Requirements for Application Upgrade ﬁytoPackage ° °
IX o ¢} o
Application upgrade consists of replacing a piece of software | AutoBundle o o
that has previously been installed by a user. The aim of an| Ports &c. o
upgrade for the user is to be able to take advantage of re-| JPloy o o
paired defects, increased quality or new functionality. The [Soft. Dock °

business motivation for this is that customer satisfaction is
increased. To achieve this goal, the primary requirement is
that upgradesucceedNevertheless, there are additional re-

quirements for application upgrade. In the paragraphs be-

low | discuss four requirementtightweightnessefficiency ~ P€ delivered to the user. o
genericityandsafety In the following | will discuss how existing update and

For an software deployment method to be lightweight release tools for component-based software deployment live

means that (future) users of a software product should nd{P t the requirements identified in Section 2.1. A summary
be required to change their environment to accomodate th@f the discussion is displayed in Table 1.

method of deployment of the product. Reasoning along the Research on software deployment has mostly focused on
same lines, the method of creating deployable release shouf@mbining both the user and development perspectives. One
not force a development organization to completely chang&*@mple is the Software Dock [14], which is a distributed ar-
their development processes. Furthermore, the effort to creshitecture that supports the full software deployment life cy-

ate a release on the one hand, and the effort to apply an ufle- Field docks provide an interface to the user's site. These
grade on the other hand, should require minimum effort. ~ docks connect to release docks at producer sites using a wide

Efficiency is the third requirement. If the aim is to opti- area event service. While the software dock can be used to

mize software delivery, both release and upgrade should b&€PIOYy any kind of software system, and thus satisfies the
implemented efficiently. If deploying an upgrade takes tood€Nericity requirement, the Qescrlptlon of each release in the
much time or consumes too much bandwidth, users will tend€Ployable Software Description (DSD) language presents
to postpone the possibly crucial update. Again, also the des_lgmﬁcant overhead. Moreover, the Software_Dock is par-
velopment side gains by efficiency: the storage requirementicularly good at deploying components from different, pos-

for maintaining releases may soon become unwieldy, if they'ﬁibly distributed origins, which is outside the scope of this
are put out frequently. paper. The same can be said of the Software Release Man-

To ease the adoption of a release and deployment metho@9¢" (SRM) [22]. o
it should not be constrained by choice of programming lan-, Deploymenttools that primarily address the user perspec-

guage, operating system or any other platform dependenc}fV® fall in the category of software product updaters [15].
his category can be further subdivided into monolithic

This genericity requirement mostly serves the developmen

side, but obviously has consequences for users: if they afoduct updaters and component-based product updaters.
on the wrong platform they cannot deploy the applicationwhereas product updaters in general do not make assump-
they might desire. tions on the structure of the software product they are updat-

The final requirement serves primarily users: safety oijng’ component (or package) deployment tools are explicitly

upgrades. Deployment is hard. If it should occur that ancomponent-ba_lsed. _
upgrade fails, the user must be able to undo the consequences3P10Y [17] is a tool that gives users more control over

quickly and safely. Or at least the consequences of failurd/nich components are deployed. The question is, however,
should be local. whether users are actually interested in how applications are

composed. In that sense, JPloy may not be a good match for

2 2 Related Work application deployment in the strict sense.
Package deployment tools can be further categorized as

Related work exists in two areas: update management arfiased on source packages or binary packages. A typical
release management,—both areas belong to the wide rangxample of source-based package deployment tools is the
ing field of software deployment. In this field, update man-FreeBSD ports system [18]. Such systems require users to
agement has a more user oriented perspective and concem@vnload source archives that are subsequently built on the
itself with the question how new releases are correctly andiser’s machine. Source tree composition [7] is another ap-
efficiently consumed by users. Release management, on thgoach that works by composing component source distri-
other hand, takes a more development-oriented viewpoint. Ibutions into a so-callethundle The tool performing this
addresses the question of how to prepare software that is task, called AutoBundle, constructs a composite build in-

Table 1. Feature matrix of deployment tools

terface that allows users to transparently build the composiponents are interpreted as groupings of files that can be ver-
tion. Source-based deployment, however, is relatively timesioned as a whole.

consuming and thus fails to satisfy the efficiency require- Components are not stand-alone applications. This means
ment. that a component may require the presence of other com-

Binary package deployment tools do, however, satisfy thgonents to function correctly. Such dependencies may be
efficiency requirement. They include Debian’s Advancedbound either at build-time or at runtime. Applications are
Package Tool (APT) [19], the Redhat Package Managethen derived by composing constituent components.

(RPM) [3], and more recently AutoPackage [2]. These tools In the following | assume a very liberal notion of depen-
download binary packages that are precompiled for the usergency, and consequently of composition. When one compo-
platform. Both APT and RPM are tied to specific Linux nent requires another component it is left unspecified what
distributions (Debian/Ubuntu and Redhat/SuSe respectivelythe concrete relation between the two components amounts
whereas autopackage can be used across distributions. New@: Abstract dependencies thus cover both build-time and
ertheless AutoPackage only works under Linux. Althoughruntime dependencies. Under this interpretation, composi-
these deployment tools are independent of programming lartion is loosely defined as merging all files of all related com-
guage, they are not generic with respect to operating systemonents into a single directory/archive.

The deployment system Nix [9] supports both source and When a component has been built, some of the resulting
binary deployment of packages in such a way that it is transebject files will contribute to the composed application. This
parent to the user. If no binary package is found it fallsset of files is called the (component) distribution. To dis-
back to source deployment. It features a store for noniribute an application to users, the relevant component dis-
destructively installing packages that are identified by uniqueributions are composed before release, resulting in a single
hashes. This allows side-by-side installation of different ver-application distribution. Thus, an application is identified
sions of the same package. Nix is the only deployment toolith a certain root node in the component dependency graph
that is completely safe because its non-destructive deployand its distribution consists of the transitive-reflexive closure
ment model guarantees that existing dependencies are newvsfrthe dependencies below the root.
broken because of an update. Furthermore, it is portable |n the next section | will present a technique to efficiently
across different flavors of Unix and does not require roofcreate and deliver such application releases, cdliadry
access (which is the case for all package deployment toolshange set compositiorwe will see that continuous inte-
except AutoPackage). gration of component-based software extends naturally to a

One problem in general with package deployment tools issrocess of automatic continuous release. A component will
that they are invasive with respect to the environment of thexnly be built if it has changed or if one of its dependencies
user. For instance, the value of these tools is maximum whehas changed. If a component has been built it is released
all software is managed by it. This explains why most suchautomatically. The results of a build are stored persistently
tools are so intertwined with operating system distributionsso that components higher up in the dependency graph may
but it is a clear violation of the lightweightness requirement.reuse previous builds from components lower in the depen-

While some systems, such as Nix, AutoPackage andlency graph.

JPloy, can be used next to the ‘native’ deployment system, Apart from the files belonging to a single component, the
they still have to be able to manage all dependencies in addeomposition of these sets of files is also stored. The space
tion to the component that the user actually wants to installrequirements for this can quickly become unwieldy, there-
In the worst case this means that a complete dependency tr@sre these application distributions are stored differentially.
of packages is duplicated, because the user deployed her apifferential storage works by saving the changes between
plication with a deployment tool different from the standardfiles. Instead of composing sets of files, one can now com-
one. Note that this is actually unavoidable if the user has n@ose sets of change sets. In addition to storing many releases
root access. Note also that the user is at least required to iefficiently, binary change set composition yields an efficient
stall the deployment system itself, which in turn may not beway of updating user installations.

an easy task.

2.3. Overview of the Approach 3. Binary Change Set Composition

The motivations for component-based development ar& 1 |ncremental Integration

manyfold and well-known. Factoring the functionality of

an application in separate components, creates opportunitid®ols like makeoptimize software builds because it only up-
for reuse,—both within a single product or across multipledates targets when they are out of date. It is possible to lift
products [20]. Similarly, productivity is increased becausethis paradigm from the level of files to the level of compo-
components can be developed in parallel. In this paper corments. Hence, a component is only built if it is out of date

‘ | ‘ Component
‘ toolbus ‘ ‘ toolbus
%k
[‘ V A
L toolbuslib ersion

| aterm | Use C Build — File

Figure 1. Incremental integration ‘

Release

with respect to some saved state, or when one of its depen-
dencies is out of date. If built artifacts are stored persistently
they can be reused. Sharing of builds is particularly valu-
able when a software product is continuously integrated [12].
Traditionally this involves building the complete application | |)
as soon as someone commits changes to the source contl®triggered. Results are stored in a database that serves as
system. However, building large systems from scratch maygaved state.
not scale.

Consider an example thgt derives from three real_—world3_2. Build and Release Model
componentstoolbus toolbuslibandaterm The Toolbus is a

middleware component that allows components (*t00Is”) 10rhe pyild and release model presented in this section is

communicate using a centralized software bus [4]. Tools im1oosely based on the model presented in [23]. It can be seen

plemented in C use thteolbuslibcomponent for this. Using 45 the data model of a database for tracing change, build and
the Toolbus, tools exchange data in a tree-like exchange f0fs|ease processes. An overview is depicted in Figure 2. The
mat called Annotated Terms (ATerms) [21]; this datastruCiate of a component at a certain moment in time is identi-

ture is implemented by thaterm component. Obviously, = fieq with its version obtained from the source control system.
toolbusrequires both the connection and the exchange forg . version may have been built multiple times. The model
mat libraries, whereas the connection library only requiregecorgs for every build of a component version which builds
the exchange format. were used as dependencies. A set of built artifacts is asso-
Figure 1 shows four build iterations. The dashed boxegiated to each build. Finally, a release is simply the labeling

indicate changes in that particular component. In the first it 5 certain build; the set of releases is a subset of the set of
eration every component has been built. At the time of theyjids.

second iteration, however, only the top-level toolbus compo-

nent has changed, so it is built again but this time reusinggn
the previous builds dibolbuslibandaterm Similarly, in the
third iteration there has been a change inttabuslibcom-
ponent. Sinceoolbusdepends otoolbusliba new build is
triggered for bothoolbuslibandtoolbus Finally, in the last

iteration changes have been committed toatermcompo- h ¢ id i f h f buil h
nent and as a result all components are rebuilt. The extent of a build is defined as the set of builds that

An implementation of incremental continuous integra—have participated in a build. The extent of a bublés com-

tion, called Sisyphus, has been described in [23]. This sys'[—)uuad by taking right image df in the transitive-reflexive

tem works as follows. Every time a commit to the sourceClosure of thaserelation:

control system occurs, Sisyphus checks out all components.

It does this by starting with a root component, and reading extenth) = Use'[b]

a special file contained in the source tree that describes the

dependencies of this component. This process is repeatéithe extent of a build contains all builds that will make up
for each of the dependencies. Meanwhile, if the current veran application release. The set of files that will be part of a
sion of a component has not been built before, or one of itselease is derived from the set of files that each componentin
dependencies has been built in the current iteration, a builthe extent contributes. This is discussed in the next section.

Figure 2. Build and release model

The diagram displayed in Figure 2 can be formalized
the relational calculus. In the context of this paper two
sets are importantBuild, the set that represents component
builds, andUsedefined as a binary relation between builds
(i.e. UseC Build x Build). The set of built artifacts con-
tributed by a buildb is given by filegb).

| Upgrade| Change set delivered to user |
— toolb .
tooLqu_ 0—1 [{ASbin/toolbug
“Lt N [bin 1—2 | {Albin/toolbus AJlib/libtoolbus.g
oolbus I . 0 =
L oolbuslib toofbus 2—-3 {—bin/atdiff}
lib . atdiff
v :
Ibus. . .
L ppeotbus:d E> [lib Table 2. Change set delivery
L — libtoolbus.a
toolbus.h)
— aterm . libATerm.so the distributed files should be relocatable. Because builds
bii “— include happen at the developer’s site one must ensure that no (im-
— atdiff — toolbus.h plicit) dependencies on the build environment are bound at
‘t _ L stermh build time. For instance, if a Unix executable is linked to a
- é‘bATerm-SO 3 dynamic library that happens to be present at build time, then
e) this library should also be present on the user’s machine,—
aterm.

even on the same location. Since we do not want to require
that users should reproduce the complete build environment,
Figure 3. Prefix composition care must be taken to avoid such “imported” dependencies. |
elaborate on this problem in Section 4.3.

3.3. Prefix Composition 3.4. Change Set Delivery

When a component has been built some of the resulting oyt e compositionality property holds the composition is de-
jectfiles will contribute to the composed application. The Sefjneq py collecting all files that are in the extent of a build:
of files that is distributed to the user is called the application

distribution, and it is composed of component distributions. files*(b) = U files(b')

Figure 3 shows how the files contributed by each compo- b/ cextentb)
nent to the toolbus application are taken together to form a
single application distribution. On the left is shown that all The function files computes the set of files that eventually
installable files of each component first end up in a compohas to be distributed to users. An update tool could trans-
nent specific directory,—in the example this could have beeffer these files for every build that is released to the users of
the result of issuingnake install To release théoolbusas the application. If a user already has installed a certain re-
an application, these sets of files and directories are mergetgase, the tool could just transfer the difference between the
resulting in a single application distribution, as shown on thenstalled release and the new release. luet= files*(by 2).
right. Then, the change set between two reledgesndb, is de-

I call this way of composing components “installation fined as:
prefix composition” since the component directories on the
left correspond to path prefixes passed/tnfigurescript {A(RNR),+(R\F1), —(F1\F2) }

that is generated by AutoConf [1], a tool to configure build

processes that is widely used in open source projects. Amonﬁhange sets have three parts. The _first part, indi_cateml by
other things, it instructsake instalto install files to a Unix ~ cOntains binary patches to update files that are in both re-
directory hierarchy below the prefix. leases. The second and third part add and remove the files

Since components are composed by merging sets of filetshat are absent in the first or second release respectively.

and directories we must ensure that no component overwrites If we turn our attention once again to Flgure.3, we see
files of another component. Formally, this reads: on the right the composed prefix for ttmlbusapplication.
Let's assume that this is the initial release that a typical user

vbeBuilds: () files(b))=0 has installed. In the meantime, development continues and
b/ cextentb) the system goes through three more release cycles, as dis-
played in Figure 1. The sequence of change sets transferred
In other words, this ensures that making a distribution isto our user, assuming she upgrades to every release, is listed
compositional. Instead of explicitly creating a global appli- in Table 2.
cation distribution one can compose individual component The second iteration only contains changes tottad-
distributions to achieve the same effect. What the propertypuscomponent itself. Since the only installable file in this
effectively states is that building a component, viewed as @omponent idin/toolbus a patch is sent over updating this
function, distributes over composition. file at the user’s site. In the next iteration there is a change
There is one technicality which has to be taken care ofin toolbusliband as a consequent®lbushas been rebuilt.

(1,toolbug: (2,toolbug: aterm toolbuslib

Oy 1hyi (3,toolbug:{} — latest I latest
{A1bin/toolbug {Azbin/toolbug | O +binfadite [+ibibtoolbus.a
/ | 0 e +lib/libATerm.so +include/toolbus.h
/ v / ! / | +include/aterm.h A lib/libtoolbus.a
- / y 5.
/<O7t_ool_busllb>. 7 (2,to0lbuslib: / Y _ B — componen;;//
| {+lib/libtoolbus.a,/ {A%liblibtoolbus.d | (3,toolbuslib:{} component 0 -
+include/toolbus’h 2 ' I —0 5
\ , / \ | — bin
/ \ ! 3
<6\ ‘ m)z | — 13 — composition
,aterm: A Y libATerm.so - 0
{+bin/atdiff, (3, aterny: L inclulde e bin
+lib/libATerm.so, {—bin/atdiff} L) . atdiff
. | aterm.h ‘ lib
+include/aterm.h 3 —
I lib e t libATerm.so
L libATermso - - libtoolbus.a
‘— include N include
Figure 4. Change set composition Lermn e t atermh
— composmon . . toolbus.h
Updating to this release involves transferring patches for to 2
bothbin/toolbusandlib/libtoolbus.a There must have been 3 -3
a change in thévin/toolbussince libtoolbus.ais statically : tib
linked. In the final iteration the changes were in tterm T t i?EATerm‘SO
component. However, this time neith@olbuslib nor tool- incluldso‘)lbus'a
busare affected by it—even though they have been rebuilt— e t aterm.h
because the change involved the removal of a target: the toolbus.h

bin/atdiff program appears to be no longer needed. Nei-

thertoolbus nortoolbuslibreferenced this executable, hence

there was no change in any of the built files with respect to ~ Figure 5. Composition by shallow copying

the previous release. As aresult, the change set only contains

the delete action fobin/atdiff. Note that these change sets contains changes originating fraaerm

can be easily reverted in order to support downgrades. I will now describe how this scheme of binary change set

o composition can be implemented on top of Subversion.
3.5. Change Set Composition

Until now we have assumed that every application releasé] |mp|ementati0n using Subversion
was completely available and the change sets were only used

to optimize the update process. From the use of changg 1 Composition by Shallow Copying
sets to update user installations, naturally follows the use of
change sets for storing releases. Figure 4 shows how this c&8ubversion [6] is a source control system that is gaining
be accomplished. popularity over the widely used Concurrent Version System
Once again, the three integration iterations are shown. I§CVS). Subversion adds many features that were missing
the first iteration, only théoolbushad changed and had to be in CVS, such as versioning of directories and a unified ap-
rebuilt. This resulted in an updated flin/toolbus The fig- proach to branching and tagging. Precisely these features
ure shows that we only have to store the difference betweeprove to be crucial in the implementation of binary change
the updated file and the file of the previous iteration. Noteset composition on top of Subversion.
that initial builds ofatermandtoolbuslib (from iteration 0) Next, | will describe how Subversion repositories can be
are stored as change sets that just add files. used as release repositories that allow the incremental deliv-
The second iteration involves a change toolbuslib ery of updates to users. The release process consists of com-
again, patches faoolbusandtoolbuslibare stored. How- miting the component distributions to a Subversion reposi-
ever, in the third iteration, the change in thiermcompo- tory, and then use branching to identify component releases.
nent did not affect any files itoolbusor toolbuslih so no Such component-release branches are the unit of composi-
change sets need to be stored for these components. Buttibn, which is also implemented by branching.
users should be able to update their installation of the tool- The crucial feature of Subversion that makes this work,
bus application, still the toolbus should be released. So thers that branching is implemented by copying. So, for in-
really are four toolbus releases in total, but the last one onlgtance a branch is created for some repository location—file

or directory—by copying the tree to another location. At therecall that the third release abolbusin the example in-

new location, Subversion recordsederencdo the source of volved the removal obin/atdiff. If we assume that the user

the copy operation. The copy operation is a constant-spadeas installed the second release, and decides to upgrade, the

operation and therefore a feasible way to implement sharingonly action that takes place at the user site is the removal
Figure 5 shows a snapshot of a Subversion repository corsf bin/atdiff, since the third release of batbolbusandtool-

tainingatermandtoolbuslibreleases based on the change sebuslibcontain the same change sets as second release of both

graph displayed in Figure 4. For the sake of presentation rehese components.

leases of theéoolbushave been omitted. On the left we see) .

the Subversion tree faterm and on the left the tree foool- ~ 4-3. Techniques for Relocatability

buzhb The .ttr_eesTr;]a\{etsutt;tree_s m?:catatdast comptoggr:t_ Installed application releases are ready to use with the excep-
andcomposition Thefatestiree Is where component distrt- 44 of gne technicality that was mentioned before, which is:

butions are stored. The rounded boxes contain the Chanqglocation. Since the released files may contain references to

s_ets from F|gL_|re 4. Theom_ponentree_ and theomposi- locations on the build server at the side of development, these
tion tree contain shallow copies of versions of the latest tree; tarences become stale as soon as the users installed them
these are the releases proper. Solid arrows indicate copy Iy e refore require that applications distributed this way

lations the context of a single component,—dotted arrows "NShould be binary relocatable. There are a number of ways to

dicate cross component copylng' (i-e. CO_mPOS'F'O” reI""t'ons)ensure that distributions are relocatable. Some of these are
After every build the changes in the distributions are COMyriefly discussed below

mited to thelatesttree. The state of tHatesttree at that time There are ways to discover dynamically what the loca-

Is then copied to a branch |dent|fy|pg this partlcular bUIId;tions are of libraries/executables that are required at runtime.
such branches are created by copying the files from latest or instance, AutoPackage [2] provides a (Linux-only) li-

ahseparate]fjlrecl'tl;) ryl_‘g_‘d?"mp_onegm Note that S|||;)ce IFEe brary that can be queried at runtime to obtain ‘your’ location
change set fotoolbuslibin iteration 3 was emptypolbusl at runtime. Since the files contributed by each component

release 3 is created from the state of the latest tree at iteratiotﬂe composed into a single directory hierarchy, dependencies

2. can be found relative to the obtained location.

. i ;) : X Another approach is to use wrapper scripts. As part of
S|t|ops. This yvorks b.y, mstegd of Jus.t copying the files be-y, deployment of an application a script could be gener-
'009'”9 to a single build, copying the files in the exter_1t of theated that invokes the deployed application. This script would
build. In the example, this means that, next to the files CONjhen set appropriate environment variables (e.g. PATH or

tained intoolbuslibreleases also the files atermreleases LD_LIBRARY _PATH on Unix) or pass the location of the
are copied. If we compar®olbuslibcomposition 0 and 3, corﬁposed préfix on the commandline

onle can g e?atm the flrg]]ure that compg)tg,ltlosr)\ 0 IS COMpos ded };Vk"th Finally, we could use string rewriting to effectively relo-
release L oaterm wheréas composition 3 1S COMpOSed With 540 nrelocatable files just after deployment. This amounts

release 3 obterm exactly as in Figure 4. to replacing build time paths with their runtime counter-parts
in every file. Special care must be taken in the case of binary
files, since itis very easy to destroy their integrity. This trick,

Assuming the proper access rights are in place, the Subvefowever, has been applied successfully.
sion repository can be made publicly accessible for users. A
user can noveheck outhe desired subtree gbmpositions 5. Evaluation
this can easily be performed by a bootstrap script if it is the
initial installation. She then obtains the composed prefix of5 1
the application. o
Now that the user has installed the application by checkA prototype implementation has been developed as part of
ing out a repository location, it is equally easy to down-the Sisyphus integration framework [23]. It has been used
or upgrade to a different version. Since the subtrees of the& deliver updates for a semi-large component-based system,
compositiortree contain all subsequent releases of the applieonsisting of around 30 components: theFSDF Meta-
cation, and the user has checked out one of them, up- arfinvironment [5]. All built artifacts were put under Subver-
downgrading is achieved by updating the user’s local copysion, as described in the previous section. As expected, the
of the composed prefix to another release branch. Subverepository did not grow exponentially, although all 30 com-
sion provides the commars¥n switchfor this. Subversion ponent compositions were stored multiple times.
will take care adding, removing or patching where necessary. The Asr+SbF Meta-Environment is developed in the
Note that the sharing achieved in the repository also hastyle of package-based development [8]. This entails that
an effect on how local checkouts are updated. For instanc&very component has an abstract build interface based on

The tree belowcompositiorcontains releases for compo-

4.2. Upgrade is Workspace Switch

Experimental Validation

AutConf. The prefixes passed usirgrefix during build 5.3. Update Management Requirements

are known at the time of deployment so could be substituteﬁi Section 1 1 listed th . (s f licati q
quite safely. In order to keep binary files consistent, the pre-n ection 1 11isted the requirements for appiication upgrace

fixes passed to the build interface were supplanted with Suf_rom the user perspective. L_ets_ discuss each_of them in
perfluous ‘/’ characters to ensure enough space for the sulBL-.’m to evaluate whether application upgrade using Subver-

tituted (user) path. This trick has not posed any problem ag'on satsifies them.

of yet, probably becausg package-based devglqpment reqUilﬁeghtweightness No invasive software deployment tool has
that every dependency is always passed explicitly to the Au- to be installed to receive updates. Many language bind-

toC:nf geilngrak:edco_nflguresc:pt. q L ies th ings exist for subversion, enabling self-updating func-
small kuby script servedas up ate tool. Itqueries the tionality to be easily bundled with the application itself.
repository, listing all available releases. If you select one,

the tree is checked out to a certain directory. After relocatiorGenericity Change set composition, and Subversion too,
the Meta-Environment is ready to use. Before any upgrade or works with files of any kind; there is no program-

downgrade however, the tool undoes the relocation to prevent ming language dependency. Moreover, Subversion is
Subversion from seeing them as “local modifications”. portable across many platforms, thereby imposing no

) constraints development environment.
5.2. Release Management Requirements
Safety The Subversioswitchcommand is used for both up-

The subject of lightweight application upgrade belongstothe grade and downgrade. A failed upgrade can thus be
field of software release management. In [22], the authors quickly rolled back. Another contribution to safety is
list a number of requirements for effective release manage- the fact that Subversion repository modifications are
ment in the context of component-based software. | discuss atomic, meaning that the application user is shielded
each of them briefly here and show that our approach satis- from inconsistent intermediate states, and that releases
fies them appropriately. put out in parallel do not interfere.

Dependencies should be explicit and easily recorded Efficiency Efficiency is achieved on two accounts. First the
Incremental integration of components presumes that use of Subversion as delivery protocol ensures that an
dependencies are declared as meta data within the upgrade involves the transfer of just the differences be-
source tree of the component. Thus, this requirementis tween the old version and the new version. Secondly,

satisfied. while the unit of delivery is a full application, only
))) the files per component are effectively stored, and even
Releases should be kept consisterhis requirement en- these are stored differentially.

tails that releases are immutable. The incremental con-
tinuous integration approach discussed in this paper Although all requirements are fulfilled satisfactory, the

guarantees this. primary weakness of binary change set composition remains
the fact that distributed files have to be relocatable. Solving
The scope of the release should be controllabl€cope this problem is left as future work.

determines who is allowed to obtain a software release.
The release repository presented in this paper enable .
the use of any access control mechanism that is”: Conclusion and Future Work

rovided by Subversion.
P y In this paper | have discussed the requirements that have to

A history of retrievals should be kept Although | do not be fulfilled so that application upgrade is a burden neither for
address this requirement directly, if the Subversion rethe development side, nor for the user side. Related work in
lease repository is served over HTTP using Apache, itighe area of software release management did not live up to

easily implemented by consulting Apache’s access logsthese requirements. - _ .
The binary change set composition technique does live up

With respect to release management the implementatioto these requirements, and can be used to deliver new appli-
of change set composition using Subversion has one apparetdtion releases accurately, frequently and quickly. The im-
weakness. Since Subversion does not allow cross-repositoplementation on top of Subversion shows that the approach
branching it would be hard to compose application releasets feasible and may serve as a low impact adoption path.
using third-party components. However, this can be circum- However, ample opportunities for future work remain.
vented by using the Subversion dump utility that exports secFirst of all, the relocatability requirement of distributed files
tions of a repository on file. Such a file can then be transshould be investigated. Further research will have to show
ferred to a different repository. whether it is possible to make the binding of dependencies a

first-class citizen in the model. For instance, one could envi- [8] M. de Jonge. Package-based software developmeRtoin:
sion a kind of service where components register themselves
in order for them to be found by other components. This sub-

ject is closely related to the notions inversion of control and [©

dependency injection [11].

Another direction of future work concerns the integration
of deployment functionality with the released application it-
self. Nowadays, many applications contain functionality to [10]
check for new updates. If they are available they are installed
and the application is restarted. It would be interesting if us-
ing the approach of this paper one could design such “updatél1]
buttons” in a reusable and generic way. Similarly, it should
be investigated how such self-updating applications could be
enhanced with functionality for reporting bugs or other kinds
of feedback.

Finally, the notion of application state has been com-
pletely disregarded in this paper. Application state has many 3]
faces, from configuration parameters set by the user, to com-
plete databases. The deployment method must ensure thgt4]
this data is preserved across upgrades. Moreover, if an up-
grade involves a change in the data format of this state, for
instance, the database schema, XML schema, or grammar,

then the data has to be migrated. Further research is required

to see if results from the areas of, for instance, schema evol
tion [16] or data synchronization [10] can applied in this con-
text. In this scenario the data should not only be preserved

but converted to the new format. It is as of yet unclear how|1g)
to do this in a sufficiently generic way.

References

[1] AutoConf.

[2] AutoPackage.

(3]

Online: http://www.gnu.org/
software/autoconf

Online: http://www.autopackage.

org .

E. C. Bailey. Maximum RPM. Taking the Red Hat Package
Manager to the Limit Red Hat, Inc., 2000. Onlinéhttp:

[lwww.rpm.org/max-rpm

[4] J. Bergstra and P. Klint. The discrete time ToolBus — a soft-

(5]

(6]

(7]

ware coordination architectureScience of Computer Pro-
gramming 31(2-3):205-229, July 1998.

M. Brand, A. Deursen, J. Heering, H. Jong, M. Jonge,
T. Kuipers, P. Klint, L. Moonen, P. Olivier, J. Scheerder,
J. Vinju, E. Visser, and J. Visser. The ASF+SDF Meta-

(12]

15]

(17]

(18]

(19]

(20]

[21]

[22]

Environment: a Component-Based Language Development

Environment. In R. Wilhelm, editoCompiler Construction
(CC '01), volume 2027 ofLecture Notes in Computer Sci-
ence pages 365-370. Springer-Verlag, 2001.

B. Collins-Sussman, B. W. Fitzpatrick, and C. M. Pilaler-
sion Control with SubversiorO'Reilly Media, 2004. Online:
http://svnbook.red-bean.com/

M. de Jonge. Source tree composition. In C. Gacek, editor,
Proceedings: Seventh International Conf. on Software Reuse
volume 2319 ofLNCS pages 17-32. Springer-Verlag, Apr.
2002.

(23]

] E. Dolstra, M. de Jonge, and E. Visser.

29th Euromicro Conf.pages 76—85. IEEE Computer Society
Press, 2003.

Nix: A safe and
policy-free system for software deployment. In L. Damon,
editor, 18th Large Installation System Administration Con-
ference (LISA '04) pages 79-92, Atlanta, Georgia, USA,
November 2004. USENIX.

J. N. Foster, M. B. Greenwald, C. Kirkegaard, B. C. Pierce,
and A. Schmitt. Exploiting schemas in data synchronization.
In Database Programming Languages (DBPAjg. 2005.

M. Fowler. Inversion of control containers and the de-
pendency injection pattern. Online:http://www.
martinfowler.com/articles/injection.html ,
January 2004.

M. Fowler and M. Foemmel. Continuous integration. On-
line: http://www.martinfowler.com/articles/
continuousintegration.html

E. Grossman. An update on software updat®8M Queue
March 2005.

R. S. Hall, D. Heimbigner, and A. L. Wolf. A cooperative
approach to support software deployment using the software
dock. In Proceedings of the 1999 International Conf. on
Software Engineering (ICSE'99ages 174-183, New York,
May 1999. Association for Computing Machinery.

S. Jansen, G. Ballintijn, and S. Brinkkemper. A process
framework and typology for software product updatertm
European Conference on Software Maintenance and Reengi-
neering (CSMR)2005.

P. Klint, R. LAmmel, and C. Verhoef. Toward an engineer-
ing discipline for grammarware.ACM Trans. Softw. Eng.
Methodol, 14(3):331-380, 2005.

C. Lierand A. van der Hoek. JPloy: User-centric deployment
support in a component platform. Becond International
Working Conference on Component Deploympages 190—
204, May 2004.

FreeBSD Ports. Onlinehttp://www.freebsd.org/

ports .
G. N. Silva. APT HOWTO Debian, 2004. On-
line: http://www.debian.org/doc/manuals/

apt-howto/index.en.html

C. Szyperski, D. Gruntz, and S. MuretComponent Soft-
ware: Beyond Object-Oriented ProgrammingACM Press
and Addison-Wesley, New York, NY, 2nd edition, 2002.

M. van den Brand, H. de Jong, P. Klint, and P. Olivier. Ef-
ficient annotated termsSoftware—Practice and Experience
30(3):259-291, 2000.

A. van der Hoek and A. L. Wolf. Software release manage-
ment for component-based softwagnftware—Practice and
Experience33(1):77-98, 2003.

T. van der Storm. Continuous release and upgrade of
component-based software. In J. Whitehead and A. P.
Dahlgvist, editors,Proceedings of the 12th International
Workshop on Software Configuration Management (SCM-
12), 2005.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.268 x 11.693 inches / 210.0 x 297.0 mm
 Shift: none
 Normalise (advanced option): 'improved'

 32

 D:20060410102358
 841.8898
 a4
 Blank
 595.2756

 Tall
 1
 0
 Full
 1106
 333
 None
 Up
 2.8346
 0.0000

 Both
 5
 AllDoc
 10

 CurrentAVDoc

 Uniform
 14.1732
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0c
 Quite Imposing Plus 2
 1

 0
 9
 8
 9

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.268 x 11.693 inches / 210.0 x 297.0 mm
 Shift: move right by 5.67 points
 Normalise (advanced option): 'improved'

 32

 D:20060410102358
 841.8898
 a4
 Blank
 595.2756

 Tall
 1
 0
 Full
 1106
 333

 Fixed
 Right
 5.6693
 0.0000

 Both
 5
 AllDoc
 10

 CurrentAVDoc

 Uniform
 14.1732
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0c
 Quite Imposing Plus 2
 1

 3
 9
 8
 9

 1

 HistoryList_V1
 qi2base

