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Fortran 90 programs for the computation of real parabolic cylinder functions are presented. The
code computes the functions U(a, x), V (a, x) and their derivatives for real a and x (x ≥ 0). The
code also computes scaled functions. The range of computation for scaled PCFs is practically
unrestricted. The aimed relative accuracy for scaled functions is better than 5 10−14. Exceptions
to this accuracy are the evaluation of the functions near their zeros and the error caused by the
evaluation of trigonometric functions of large arguments when |a| >> x. The routines always give
values for which the Wronskian relation for scaled functions is verified with a relative accuracy
better than 5 10−14. The accuracy of the unscaled functions is also better than 5 10−14 for
moderate values of x and a (except close to the zeros), while for large x and a the error is
dominated by exponential and trigonometric function evaluations. For IEEE standard double
precision arithmetic, the accuracy is better than 5 10−13 in the computable range of unscaled
PCFs (except close to the zeros).
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Departamento de Matemáticas, Estad́ıstica y Computación, U. de Cantabria, 39005-

Santander, Spain

Javier Segura
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1. INTRODUCTION

The algorithm computes both functions U(a, x) and V (a, x), which constitute a
satisfactory pair of independent solutions [2] of the differential equation

w′′ −

(
x2

4
+ a

)
w = 0, (1)

and their derivatives. Also scaled functions can be computed which can be used for
unrestricted values of a and x.

We refer to [2] for properties of U(a, x) and V (a, x) and for further details of the
analytical and numerical aspects.

The algorithm combines different methods of evaluation in different regions.
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Some of these methods share regions of validity. Comparison between the different
methods, together with the use of the Wronskian relation and the recurrence rela-
tions, has been used to determine the accuracy of the algorithm (see Section 2). The
relative accuracy for scaled functions is better than 5 10−14 except, unavoidably, in
the vicinity of the zeros of the functions, which take place in the oscillatory region
x2/4 + a < 0. Also in the vicinity of the (x, a)-points (0, 2k − 1/2), (0, 2k − 3/2),
k ∈ N, loss of relative precision is unavoidable for V (a, x) and V ′(a, x) respectively
because V (2k − 1/2, 0) = 0, V ′(2k − 3/2, 0) = 0.

For scaled functions the Wronskian relation is verified with a relative accuracy
better than 5 10−14. The accuracy of the unscaled functions is also better than
5 10−14 for moderate values of x and a (except close to the zeros), but for larger
x and a the accuracy decreases mildly and it is dominated by exponential and
trigonometric function evaluations. For IEEE standard double precision arithmetic,
we have verified that the accuracy is better than 5 10−13 in the computable range
of unscaled PCFs (except close to the zeros)

2. REGIONS OF APPLICATION OF THE METHODS AND ACCURACY.

In order to determine the region of applicability of the each methods of computation
described in [2], we have compared power series, asymptotic expansions (Poincaré-
type, Airy-type and expansions in terms of elementary functions) and recurrence
relations with the non-oscillating integral representations [1; 2]. These integrals are
a valid method of computation for most of the (a, x)-plane (except for small a and
for small x and positive a) and therefore they are an important tool in order to
determine the regions of validity for the rest of the methods for a given accuracy.
The selection of one method or another, when alternatives are available, will depend
on the efficiency of each of these methods (see Section 5).

We provide the curves fi, i = 1, ..., 12 appearing in Figure 1 together with the
equations of two additional curves (f13 and f14) which are outside of the represented
domain. We use the notation xi,j to denote the x value for the intersection vertices
of the curves fi and fj which appear in the figure.

f1 : a = −0.23x2 + 1.2x + 18.72, 0 ≤ x ≤ x1,9 = 30
f2 : a = 3.75

x − 1.25, x1,2 ≤ x ≤ x2,3 = 3
f3 : a = −30/(x− 0.3) + 100/9, x3,4 ≤ x ≤ x2,3 = 3
f4 : a = −0.21x2 − 4.5x − 40, 0 ≤ x ≤ x4,10 = 30
f5 : a = x − 14, x5,12 = 4 ≤ x ≤ x5,6

f6 : a = −7 − 0.14(x − 4.8)2, x5,6 ≤ x ≤ x1,6

f7 : a = 2.5x − 30, x1,7 = 12 ≤ x ≤ x7,13 = 72
f8 : a = −2.5x + 30, x1,8 = 12 ≤ x ≤ x8,14 = 72
f9 : a = −0.1692x2, x > x1,9 = 30
f10 : a = −0.295x2 + 0.3x − 107.5, x > x4,10 = 30
f11 : a = 0, x2,3 = 3 ≤ x ≤ x1,7 = x1,8 = 12
f12 : x = 4, x4,12 = −61.26 ≤ a ≤ −10 = x5,12

f13 : a = 150 x > x7,13 = 72
f14 : a = −150 x > x8,14 = 72
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Figure 1. Regions in the (a, x)-plane where different methods of computation are considered.

The curves fi are plotted together with the intersection vertices between curves (black circles).

The regions referred in the text are marked with numbered circles.

The values of x1,2, x3,4, x5,6 and x1,6 are (in double precision)

x1,2 = 0.1857815261497950

x3,4 = 0.8448329848762435

x5,6 = 6.5642426848523139

x1,6 = 17.151539704932772

With three exceptions, the curves shown in Figure 1 are all the curves separating
the regions where different methods are applied. The first exception is related to
the validity of Poincaré asymptotic expansions, which is not used for |a| > 150
(curves f13 and f14 which are outside the region depicted in Figure 1). The second
exception is the rectangular region |a| < 0.7 and x ∈ [2.5, 12.5], which includes
the vertices A and B of Figure 1 (left); we will discuss later this particular case.
The third exception is for positive a and small x (close to zeros of the V functions
for positive a) where, as we describe later, uniform asymptotic expansions will be
replaced by Maclaurin series for the V -functions.

Let us identify which are the methods used in each of the 8 regions in which
the (a, x)-plane is divided by the 14 curves fi. If not stated otherwise, the same
method is applied for both U(a, x) and V (a, x) and their derivatives. Notice that
the numbering of the methods in the following list corresponds to the labelling of
the regions in Figure 1.

(1) Maclaurin series:
(a) Bounded region delimited by the curves f1, f2, f3 and f4. Eqs. (14)-(16)

and (17)-(19) of [2] are considered.
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(2) Asymptotic expansions for large x (Poincaré type):

(a) Unbounded region between f7∪f13 and f8∪f14 (x > x7,8 = 12). We apply
Eqs. (23) and (26) of [2].

(3) Uniform asymptotic expansions in terms of elementary functions:

(a) Unbounded region for positive a above the curves f1, f7 and f13 (f13 is not
shown in Fig. 1). Eqs. (28) and (34) of [2] are applied.

(b) Unbounded region for negative a between f8 ∪ f14 and f1 ∪ f9. Eqs. (28)
and (39) of [2] are used.

(c) Unbounded region for negative values of a below f4 ∪ f10. Eqs. (40) and
(43) of [2] are used.

(4) Uniform Airy-type asymptotic expansion:

(a) Unbounded region for negative a delimited by the curves f5, f6, f1 (x ≥
x1,6), f9, f12, f4 (x ≥ x4,12) and f10. Eqs. (56)-(59) of [2] are applied.

(5) Integral representations:

(a) Bounded region for negative a encircled by the curves f11, f3, f4 (x3,4 ≤
x ≤ x4,12), f12, f5, f6 and f1 (12 ≤ x ≤ x1,6). Eqs. (130)-(133) of [2]
are used when x2/4 + a < 0 with the modifications of Section 9.2.2 near
x2/4 + a = 0 and Eqs. (158)-(161) are considered when x2/4 + a > 0).

(6) Series for V and recurrences for U

(a) Bounded region for positive values of a encircled by the curves f1, f2 and
f11. Maclaurin series are used for V (Eq. (16) of [2]) and recurrence
relations for U (Eqs. (68) and (70) of [2]) with starting values a ∈ [21, 23)
(computed with the uniform asymptotic expansions corresponding to the
region 3).

Exceptions near a = 0: The above mentioned scheme is modified in the strip
|a| < 0.7 and x ∈ [2.5, 12.5] in order to avoid loss of accuracy of the integral
representations when |a| is small. For this purpose we apply recurrence relations
for U in the strip. For the V function, Maclaurin series are considered in the
strip when 2.5 ≤ x ≤ 10.5, while recurrences are applied when 10.5 < x < 12.5.
Of course, the recurrence relation for the U and V functions are applied in the
corresponding stable directions: backward for U and forward for V . The starting
values for the recurrences are a ∈ [21, 23) for U and a ∈ (−22,−20] for V . These
starting values are in the monotonic region x2/4 + a > 0, where no zeros appear,
and the starting values of |a| are moderate, preventing overflow/underflow and bad
conditioning.

Notice that this strip contains the (x, a)-points A(3,0) and B(12,0) in Figure 1.
In this way we avoid the use of the asymptotic expansions in terms of elementary
functions for too small a close to B. It is worth noticing that the uniform asymptotic
expansions in terms of elementary functions are valid even when a is small. This is
not surprising given the double asymptotic property of the asymptotic expansions.

Exceptions near x = 0, a > 0: Because V (2k − 1/2, 0) = V ′(2k − 3/2, 0) =
0 , k ∈ N, loss of accuracy is expected in the vicinity of the points (x, a) = (0, k −
1/2). The loss of accuracy is better under control by considering Maclaurin series
instead of asymptotic expansions for large a and small x. For this reason we consider
series when 0 < a < 1/x2 and 0 ≤ x < 0.005.
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As commented, the regions of application of each method have been selected
by comparing each method with the integral representations, with the exceptions
mentioned before. The next figures show these comparisons for a relative accuracy
of 5 10−14. For a < 0 we test the modulus function

M(a, x) =

√
Ũ(a, x)2 + 2πṼ (a, x)2 (2)

related to M1 (see [2]), but with β(|a|) substituted by 1. Also the analogous modulus
function but with scaled derivatives can be considered:

N(a, x) =

√
Ũ ′(a, x)2 + 2πṼ ′(a, x)2. (3)
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Figure 2. Comparison of McLaurin series against integral representations. The points where

a 5 10−14 relative accuracy is not reached are shown. In both cases, as explained in the text,

integrals fail for small values of |a|. Left: the scaled U -function is tested for a ≥ 0 and the

modulus M(x) for a < 0. The region [0, 5] × [−50, 30] was sampled with 104 test points. Right:

the V -function is tested. The region [0, 15] × [0, 30] was sampled with 104 test points.

0 10 20 30 40 50 60 70 80 90 100
x

0

100

200

300

400

500

600

700

a

f 1

f7

0 5 10 15 20
x

-200

-150

-100

-50

0

a

2
1f

f

f

4

f f
f 5

6
3

Figure 3. Comparison of two types of asymptotic expansions against integral representations.

The points where a 5 10−14 accuracy is not reached are shown. Left: Comparison of asymptotic

expansions of Poincaré-type with integral representations for the scaled U - function. The region

[0, 100] × [0, 1000] was sampled with 104 test points. Only part of the tested region is shown.

Right: Comparison of asymptotic expansions in terms of elementary functions with integral

representations. The region [0, 100] × [−1000, 30] was sampled with 104 test points. Only part of

the tested region is shown.
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expansions fail. The region [0, 100] × [−1000, 0] was sampled with 104 test points. Only part of

the tested region is shown.

When the comparison with the integral representations was not possible, com-
parison with alternative software (Maple and the Fortran 77 code of ref. [2]) was
considered. Also the Wronskian is used as a test. These combined numerical checks
allow us to test the accuracy of the code in all regions of the (x, a)-plane. See Section
4 for further details.

3. OVERFLOW AND UNDERFLOW LIMITS

The scaled functions Ũ , Ṽ , Ũ ′, and Ṽ ′ do not have practical overflow/underflow
limitations, because the dominant exponential factor F (a, x) is scaled out. When
computing plain (that is, unscaled) PCFs, the dominant exponential factor F (a, x)
is the source of overflows and underflows in the function values, the V -function and
its derivative being proportional to F (a, x) and U , and its derivative proportional
to F (a, x)−1.

In particular, we have F (a, 0) = |a|a/2e−a/2 and then F (a, 0) → +∞ as a → +∞

while F (a, 0) → −∞ as a → −∞. In addition, F (0, x) = ex2/4 and F (0, x) → +∞
as x → +∞. This means that V (a, x) will overflow for large positive a >> x and
for large x >> a while it will underflow for negative a when |a| >> x (the contrary
happens for U(a, x)). Because F (a, x) is a continuous function in the (a, x)-plane
for x ≥ 0, we expect that an infinite region should exist for a < 0 where V (a, x)
does not overflow/underflow.

Figure 5 shows the curves for overflow/underflow limits taking O = 10300 as
overflow number and u = 10−300 as underflow number. The curves follow from
solving the equations F (a, x) = O and F (a, x) = u.
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4. NUMERICAL TESTS

We have performed different types of numerical checks: we test Wronskian relations
and recurrence relations and we compare quadrature against the full code and we
also test recurrence relations. Comparison with other existing Fortran and Maple
software has been also used.

4.1 Testing Wronskian relations

We test the Wronskian relation between U(a, x) and V (a, x):

W [U(a, x), V (a, x)] =
√

2/π . (4)

This is a numerically satisfactory test because, in any direction of the (a, x)-plane,
when one of the functions is recessive the other one is dominant.

This expression also holds for the scaled functions Ũ(a, x), Ṽ (a, x) if x > 0
We obtain the maximum relative errors for the Wronskian test using 108 random

points in selected regions of the (x, a)-plane. For scaled functions we obtain:

(1) [0, 10]× [−100, 100]: 3.3 10−14,

(2) [0, 100]× [−10000, 10000]: 2.9 10−14,

(3) [0, 1000]× [−100000, 100000]: 2.2 10−14,

which is consistent with the 5 10−14 accuracy claim. The fact that the errors ob-
tained are smaller as larger regions are considered shows that the asymptotic ex-
pansions tend to be more accurate for large parameter values.

For unscaled functions, we repeat the analysis (but for narrower regions). For
108 random test points we obtain the following maximum relative errors:

(1) [0, 10]× [−25, 25]: 3.7 10−14,
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(2) [0, 30]× [−100, 100]: 7.4 10−14,

(3) [0, 100]× [−800, 300]: 2.5 10−13,

which is consistent with the accuracy claim: 5 10−13.

4.2 Testing quadrature against the full code

As described in [2] quadrature can be applied when |a| is not very small. Also,
when x is small, loss of accuracy is expected in the computation of V -values for
semi-integer values of a. Apart from this, quadrature is a safe testing method
for moderate values of the parameters. We compare the function values Ũ(a, x),

Ũ ′(a, x), Ṽ (a, x), and Ṽ ′(a, x) in the monotonic region and for the oscillatory region
we use the modulus functions M(a, x) (Eq. (2)) and N(a, x) (Eq. (3)).

We test the code against quadrature in the (x, a)region [0, 30]× [−100, 100] with
106 randomly generated points. The following results are obtained:

(1) When the values |a| < 1 are excluded, the maximum relative error for the scaled

U -functions in the monotonic region are 2.4 10−14 for Ũ , 2.8 10−14 for Ũ ′. For
the unscaled functions the maximum errors are 9.3 10−14 for U and 9.3 10−14

for U ′, consistently with the accuracy claims.

(2) When, apart from the values |a| < 1, we also exclude x < 0.05 when a > 0, the

maximum error for the V values in the monotonic region is: 2.7 10−14 for Ṽ ,
2.2 10−14 for Ṽ ′, 8.3 10−14 for V and 8.3 10−14 for V ′.

(3) In the oscillatory region we test the moduli M(a, x) and N(a, x) when a < −1.2
(using the Wronskian relation we observe that the integrals lose some accuracy
for |a| < 1.2 in the oscillatory region). The maximum relative error obtained
is 1.6 10−14 for M and 1.1 10−14 for N .

Naturally, the test gives no information on the accuracy in the regions where
integrals are used in our code. Apart from this and the regions |a| < 1, −1.2 < a <
−1 when x < 2, and x < 0.05 when a > 0, integral representations give a direct
check of function values from which the aimed accuracy can be verified.

In the last of these three regions, loss of accuracy is unavoidable for the V -
functions near semi-integer values of a. However, because the U - functions are
accurately computed and the Wronskian relations are verified, we can be confident
on the accuracy of the code.

The remaining regions can be checked by testing the recurrence relations and by
comparing with available software.

4.3 Testing recurrence relations against the full code

We compare the values of V (a, x) computed directly from the code with the value
obtained by applying the recurrence relation using the values of the contiguous
functions V (a − 1, x) and V (a − 2, x). Also, we compute the V ′(a, x) from V (a, x)
and V (a−1, x) and using Eq. (70) of [2]. We proceed similarly with the recurrence
for U (but in the opposite direction) and with the relation of the derivatives with
the contiguous functions. As before, in the oscillatory region we compute moduli
functions (Eqs. (2) and (3)) for comparison. The recurrence test can only be
applied for plain (unscaled) functions.
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We compare the function values (U(a, x), U ′(a, x), V (a, x), V ′(a, x)) in the mono-
tonic region and the moduli functions M(a, x), N(a, x) in the oscillatory region.
In the (x, a)-region [0, 30]× [−100, 100] and with 108 random test points we obtain
the following results for the maximum relative error:

(1) In the monotonic region:

(a) 1.9 10−13 for U(a, x),

(b) 4.3 10−13 for U ′(a, x),

(c) 2.0 10−13 for V (a, x) when values 0 < x < 0.005 are excluded for a > 0,

(d) 5.9 10−13 for V ′(a, x) when values 0 < x < 0.005 are excluded for a > 0.

(2) In the oscillatory region:

(a) 1.2 10−13 for M(a, x),

(b) 2.5 10−13 for N(a, x).

We observe that the test for V ′(a, x) is slightly over the claimed accuracy. How-
ever, this is due to instabilities in the application of the relation for V ′(a, x) for
large values of x close to the curve a = −x2/4 in the monotonic region. It is ob-
served that the two terms on the right of Eq. (70) of [2] tend to cancel. Let us
recall that the Wronskian check is well below the limit of the accuracy claim.

4.4 Comparison with existing software

We compare the results from our code with the Maple functions CylinderU(a,x),
CylinderV(a,x) and their corresponding derivatives in order to check the accuracy
of our code in the parameter region x ∈ [0, 12], a ∈ [−1, 1], together with −1.2 <
a < −1 when x < 2. For these parameter values, we do not compare our code
against quadrature because they tend to fail for small values of |a|. We use 50
digits in the Maple computations.

The rectangle x ∈ [2, 12], |a| < 1 is inside the monotonic region, where the direct
comparison between functions is a valid test. With 104 tests in this region, the
maximum errors found are: 2.0 10−14 for U(a, x); 2.0 10−14 for U ′(a, x); 6.3 10−16

for V (a, x); 2.7 10−14 for V ′(a, x).
We also test the moduli M(a, x) and N(a, x) in the (x, a)- region [0, 12] ×

[−1.2, 1.2] with 104 test points. Both functions agree with the results from Maple
with a relative precision of 1.9 10−14.

In addition, we compare our code against the codes DINPCF.F and DHAPCF.F
of reference [3], which compute the functions U(a, x), V (a, x) for positive integer
and half- integer values of a. The relative accuracy claim for these routines is better
than 10−12. We have compared the function values U(a, x) and V (a, x) using our
code against DHAPCF.F (which computes U(a, x) and V (a, x) for positive half-
integers values of a). For 106 random points and x ∈ [0, 30] (the range of a being
the maximum available for DHAPCF.F), the maximum error found is 3.4 10−13

for U(a, x) and 1.4 10−13 for V (a, x). For integer values of a, comparison with
DINPCF.F gives the following maximum relative errors: 3.5 10−13 for U(a, x) and
1.4 10−13 for V (a, x). These errors are consistent with the claim of accuracy for
DHAPCF.F and DINPCF.F.
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5. TIMING

In the following we show the CPU times (in seconds) spent by the code in rep-
resentative regions where the different methods used for building the algorithm
are applied. These CPU times refer to a PC with Pentium IV 2.8GHz processor
and 1GB RAM running under Windows; the compiler used was the GNU Fortran
compiler g95.

We provide the CPU-times spent for 106 evaluations in randomly chosen points
of each of the selected regions. The results are:

(1) Series: (x, a) ∈ [0, 1] × [−20, 5], 6.99s.

(2) Uniform asymptotic expansions in terms of elementary functions for positive a:
(x, a) ∈ [10, 20]× [30, 100], 5.78s.

(3) Series (V (a, x)) and recurrences (U(a, x)): (x, a) ∈ [4, 8]× [1, 12], 25.99s.

(4) Poincaré asymptotic expansion: (x, a) ∈ [20, 60]× [−10, 10], 3.05s.

(5) Integrals: (x, a) ∈ [1.5, 3]× [−40,−20], 320.54s.

(6) Uniform asymptotic expansions in terms of elementary functions for negative
a and x2/4 + a > 0: (x, a) ∈ [40, 50]× [−200,−150], 3.52s.

(7) Uniform Airy-type asymptotic expansions: (x, a) ∈ [15, 25] × [−150,−100],
33.63s.

(8) Uniform asymptotic expansions in terms of elementary functions for negative
a and x2/4 + a < 0: (x, a) ∈ [0, 2.5]× [−120,−60], 6.13s.

The following data correspond to CPU times (again for 106 points) spent by the
full code:

(1) (x, a) ∈ [0, 50]× [−100, 100], 22.12s,

(2) (x, a) ∈ [0, 1000]× [−1000, 1000], 8.13s.

The algorithm has been tested in several computers and operating systems (Pen-
tium IV PC under Windows XP and Red Hat Linux; Pentium IV laptop under
Windows XP) and compilers (g95 for Linux and Windows, Digital Fortran for
Windows).
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