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Abstract

In Rutten [16] the theoretical basis was given for the synthesis of binary Mealy
machines from specifications in 2-adic arithmetic. This construction is based on
the symbolic computation of the coalgebraic notion of stream function derivative,
a generalisation of the Brzozowski derivative of regular expressions. In this paper
we complete the construction of Mealy machines from specifications in both 2-adic
and modulo-2 arithmetic by describing how we decide equivalence of expressions
via reduction to normal forms; we present a Haskell implementation of this Mealy
synthesis algorithm; and a theoretical result which characterises the (number of)
states in Mealy machines constructed from rational 2-adic specifications.

Key words: Mealy machine, synthesis, derivatives, streams,
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1 Introduction

Mealy machines are finite state transducers used in the modelling and spec-
ification of systems performing synchronous, ongoing computations such as
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sequential digital circuits (cf. [9]), and more generally, reactive systems (see
e.g. [17]). Synthesis of Mealy machines refers to an automated process of
constructing from a formal specification a Mealy machine whose behaviour
satisfies or realises the specification.

In Rutten [16] the theoretical basis was given for the synthesis of binary
Mealy machines from specifications in 2-adic arithmetic: Mealy machines can
be seen as coalgebras for the Set-functor M(S) = (B×S)A, and their behaviour
as causal stream functions f : Aω → Bω. The set of causal stream functions
becomes a final M-coalgebra under the operations of initial output and stream
function derivative, and a minimal Mealy coalgebra with behaviour f is ob-
tained from the subcoalgebra 〈f〉 generated by f in the final Mealy coalgebra.
Based on this result, a synthesis method is sketched for bitstream functions
(i.e., A = B = 2 = {0, 1}) specified in 2-adic arithmetic. The method relies
on the symbolic computation of initial output and stream function derivative,
and is similar to Brzozowski’s construction of finite deterministic automata
from regular expressions.

In this paper we complete the construction of Mealy machines from bit-
stream function specifications in both 2-adic and modulo-2 arithmetic. Our
present contributions are (i) a description of how we compute normal forms in
the algebras of 2-adic and modulo-2 arithmetic in order to determine whether
two expressions specify the same behaviour; this is crucial for the termina-
tion of the synthesis algorithm, and was not fully addressed in [16]; (ii) an
implementation in the functional programming language Haskell [8] of Mealy
synthesis from specifications in both 2-adic and modulo-2 arithmetic; (iii) a
characterisation of the states in the minimal Mealy machine constructed from
a rational 2-adic specification (Theorem 3.3). This result provides us with
an alternative proof of the fact that rational 2-adic bitstream functions have
finitely many derivatives, and moreover an upper bound on their number can
be expressed in terms of the specification (Corollary 3.4). We point out that
these results on rational 2-adic functions were conjectured based on data gen-
erated by our Haskell program.

In section 2 we introduce basic notions together with the coalgebraic view
on Mealy machines (cf. [15,16]), and in section 3 we present the bitstream
algebras that we use as specification languages. Parts of these preliminary
sections are already contained in [16], but in the current presentation we
are motivated by implementation concerns and hence more careful about the
distinction between syntax and semantics. The new results on rational 2-
adic functions are found in subsection 3.2. In section 4, we describe how
we compute stream function derivatives symbolically, and how we determine
equivalence via normal forms. In section 5 the actual construction of Mealy
machines using these symbolic derivatives is described. A brief, user-oriented
description of our Haskell program is found in section 6, and finally, we discuss
related work in section 7.
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2 Preliminaries

The natural numbers are denoted by N, the integers by Z, and the rational
numbers by Q. The absolute value of a rational number x is written |x|, and
the sign of rational numbers is given by the function sgn : Q → {−1, 0, 1}
with the usual definition.

We denote by Set the category of sets and functions, and a Set-functor
F is then a functor from Set to Set. Given a Set-functor F, an F-coalgebra
(X, γ) consists of a set X together with a function γ : X → F(X). A function
f : X → Y is an F-coalgebra homomorphism between F-coalgebras (X, γ) and
(Y, δ) if δ ◦ f = F(f) ◦ γ. An F-coalgebra (Z, φ) is final if for any F-coalgebra
(X, γ) there is a unique F-coalgebra homomorphism h : (X, γ) → (Z, φ), also
referred to as the final map.

2.1 Streams and stream differential equations

Let A be an arbitrary set, then A∗ is the set of (finite) words over A, ε is
the empty word, and Aω = {α | α : N → A} is the set of streams over A.
For α ∈ Aω we will also write α = (α(0), α(1), α(2), . . .), and for a ∈ A and
α ∈ Aω, we will use the notation a :α for the stream (a, α(0), α(1), . . .). The
initial value of α ∈ Aω is defined as α(0), and the stream derivative of α is
the stream α′ = (α(1), α(2), α(3), . . .). Defining the map γ : Aω → A × Aω

by α 7→ 〈α(0), α′〉, it is well-known that (Aω, γ) is a coalgebra for the Set-
functor SA defined by SA(X) = A × X. We will also refer to S-coalgebras
as stream automata. Moreover, (Aω, γ) is a final S-coalgebra which means
that for any S-coalgebra (X,χ : X → A × X) there is a unique S-coalgebra
homomorphism hS : (X,χ) → (Aω, γ). This can easily be proved if we write
χ(x) = 〈o(x), t(x)〉, and then let hS(x) = (o(x), o(t(x)), o(t(t(x))), . . .) for all
x ∈ X. The map hS can be seen to assign each x ∈ X with its (stream)
behaviour.

In particular, the behaviour of a stream is simply the stream itself, thus
if two streams have the same behaviour, then they must be equal. This proof
principle is called stream coinduction, and is formally defined via stream bisim-
ulations: A relation R ⊆ Aω×Aω is a stream bisimulation if for all (α, β) ∈ R,
(i) α(0) = β(0) and (ii) (α′, β′) ∈ R.

Theorem 2.1 (Stream coinduction) For all α, β ∈ Aω, if there is a bisim-
ulation R ⊆ Aω × Aω such that (α, β) ∈ R, then α = β.

We omit the straightforward proof of the above theorem, which may be
found in [15]. One way of applying the coinduction proof principle is to specify
streams or stream operations by defining their behaviour in terms of initial
value and stream derivative. For example, we can define the bitstream repre-
sentations of rational numbers with odd denominator. Let Q̂ = {n/2m + 1 |
n,m ∈ Z} denote the set of rational numbers with odd denominator, and let
2ω be the set of bitstreams (i.e., streams over 2 = {0, 1}), then we can turn Q̂
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into a bitstream automaton as follows:

q(0) = odd(q) and q′ =
q − odd(q)

2
, (1)

where odd(n/2m+1) = n mod 2. The final (bitstream) map B : Q̂→ 2ω now
associates a bitstream with every q ∈ Q̂, and using stream coinduction one can
show that B(n/2m+1) = B(k/2l+1) iff n(2l+1) = (2m+1)k. In particular,
it can easily be checked that for a natural number n ∈ N, B(n) is simply the
binary expansion of n (followed by a tail of zeros). We will return to this
example in section 3.1. Equations such as those used in (1) are called stream
differential equations (cf. [15]), and under certain well-formedness conditions
they have a unique stream solution given by the final map. In section 3, we
will define operations on bitstreams using stream differential equations.

2.2 Mealy machines and coalgebras

Assume the sets A and B are given. A Mealy coalgebra with input in A and
output in B is a coalgebra for the Set-functor M defined by M(X) = (B×X)A.
If Q is a set (of states) and (Q, φ) is a Mealy coalgebra, then the transition
structure φ : Q → (B × Q)A associates with every state q ∈ Q an output
function oq : A → B and a next-state function dq : A → Q defined by
φ(q)(a) = (oq(a), dq(a)) for all a ∈ A. For φ(q)(a) = (b, r) we will also use the
notation:

q a|b // r .

If (Q, φ) and (T, ψ) are Mealy coalgebras, then a function g : Q → T is a
Mealy homomorphism if g respects the transition structure: for all q ∈ Q, and
all a ∈ A, oq(a) = og(q)(a) and dg(q)(a) = g(dq(a)):

q a|b // r ⇐⇒ g(q)
a|b // g(r) .

An initialised Mealy coalgebra is a triple (Q, φ, q) where (Q, φ) is a Mealy coal-
gebra and q ∈ Q is the initial state. A Mealy machine is an initialised Mealy
coalgebra (Q, φ, q0) in which the set of states Q, and the input/output sets A
and B are finite. Mealy machines are also referred to as sequential machines
(cf. [4]), and rather than being a language recognition device, a Mealy machine
is a so-called deterministic transducer, i.e., it transform input streams to out-
put streams in a deterministic manner. This input-output behaviour coincides
with the coalgebraic notion of behaviour. Given a Mealy coalgebra (Q, φ), the
(Mealy) behaviour of a state q0 ∈ Q is the stream function Beh(q0) : Aω → Bω

which maps α ∈ Aω to the stream (b0, b1, b2, . . .) ∈ Bω of outputs observed on
input α starting in q0:

q0
α(0)|b0 // q1

α(1)|b1 // . . .
α(k−1)|bk // qk

α(k)|bk // qk+1 . . .

4
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More precisely, Beh(q0)(α)(k) is defined inductively for all k ≥ 0 by:

Beh(q0)(α)(k) = oqk
(α(k)), where qk+1 = dqk

(α(k)). (2)

It is well-known (and easy to check) that Mealy behaviours f : Aω → Bω

have the property of being causal, meaning that the n-th element of f(α) only
depends on the first n elements of the input α. Formally, f : Aω → Bω is
causal if for all α, β ∈ Aω and for all n ∈ N,

if ∀k ≤ n. α(k) = β(k) then f(α)(n) = f(β)(n).

Thus with every state in a Mealy coalgebra we can associate a causal stream
function via the behaviour map Beh. Moreover, the set of causal stream
functions can itself be viewed as a Mealy coalgebra via the notion of initial
output and stream function derivative.

Definition 2.2 Let f : Aω → Bω be a causal stream function and a ∈ A.
The initial output of f (on input a) is defined (for arbitrary α ∈ Aω) by

f [a] := f(a :α)(0).

The stream function derivative of f (on input a) is the function fa : Aω → Bω

defined by
fa(α) := f(a :α)′.

We extend the above notions from letters to words over A, in the expected
manner. Let w ∈ A∗, a ∈ A and fε = f , then

f [wa] := (fw)[a], and fwa := (fw)a.

Note that in Definition 2.2, f [a] is well-defined because f is causal, and it
is easy to show that the derivative of a causal stream function is again causal.
When we speak of the derivatives of a stream function f : Aω → Bω, then we
generally refer to the set {fw | w ∈ A∗}.

The operations of initial output and stream function derivative are univer-
sal in the sense that they make the set of causal stream functions into a final
Mealy coalgebra.

Theorem 2.3 Let Γ = {f : Aω → Bω | f is causal} and define π : Γ →
(B × Γ)A by π(f)(a) = (f [a], fa). Then (Γ, π) is a final Mealy coalgebra: for
every Mealy coalgebra (Q, φ), the behaviour map Beh : Q → Γ as defined in
(2) is the unique Mealy homomorphism from (Q, φ) to (Γ, π).

Proof. The proof is straightforward, but we include it for completeness’ sake.
Let (Γ, π) be as stated, and let (Q, φ) be an arbitrary Mealy coalgebra. We
first verify that Beh : Q → Γ is a Mealy homomorphism. So let q ∈ Q and
α ∈ Aω be arbitrary. Then by definition

oBeh(q)(a) = Beh(q)[a] = Beh(q)(a :α)(0) = oq(a),
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and by letting q0 = dq(a) and qi+1 = dq(α(i)) for all i ≥ 0, we have

dBeh(q)(a)(α) = Beh(q)a(α) = Beh(q)(a :α)′

= (oq(a), odq(a)(α(0)), oq1(α(1)), . . .)′

= (odq(a)(α(0)), oq1(α(1)), . . .)

= Beh(dq(a))(α).

To see that Beh is unique suppose g : Q→ Γ is also a Mealy homomorphism.
That is, for all q ∈ Q and all α ∈ Aω,

og(q)(a) = oq(a) = oBeh(q)(a)

dg(q)(a) = g(dq(a)) = dBeh(q)(a).

We show by coinduction (on streams in Bω) that for all q ∈ Q and all α ∈ Aω,
g(q)(α) = Beh(q)(α). Let R ⊆ Bω ×Bω be defined by

R := {〈g(q)(α), Beh(q)(α)〉 | q ∈ Q,α ∈ Aω}.

We claim that R is a bisimulation. The initial values of g(q)(α) and Beh(q)(α)
agree, since

g(q)(α)(0) = og(q)(α(0)) = oBeh(q)(α(0)) = Beh(q)(α)(0).

Similarly, by the assumption that g and h are Mealy homomorphisms, we see
that the derivatives are again R-related:

g(q)(α)′ = g(q)α(0)(α
′) = dg(q)(α(0))(α′)

= g(dq(α(0)))(α′)

R Beh(dq(α(0)))(α′) = dBeh(q)(α(0))(α′)

= Beh(q)(α)′.

qed

The final Mealy coalgebra (Γ, π) thus characterises all behaviours of Mealy
coalgebras via the behaviour map Beh. We will need the following notions.
Two states q, r ∈ Q in some Mealy coalgebra (Q, φ) are called (behaviourally)
equivalent if Beh(q) = Beh(r). An initialised Mealy coalgebra (Q, φ, q) im-
plements, or is an (abstract) implementation of, a causal stream function f
if Beh(q) = f , and f is called a realisable (or finite-state) behaviour, if f
can be implemented by a Mealy machine. Given a state q in a Mealy coalge-
bra (Q, φ), we denote by 〈q〉 the Mealy subcoalgebra of (Q, φ) generated by q.
That is, 〈q〉 is the restriction of (Q, φ) to the least subset of Q which contains
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q and is closed under the transition map φ. It should be clear that if (Q, φ, q)
implements f : Aω → Bω, then so does 〈q〉.

As it was shown in [16](Corollary 2.3), the existence of the final Mealy
coalgebra now guarantees that any f ∈ Γ has an (abstract) implementation,
namely 〈f〉, and 〈f〉 is the minimal Mealy coalgebra to implement f , in the
sense that any other implementation will have at least as many states as 〈f〉.
In general 〈f〉 can have infinitely many states, but for synthesis purposes we
are mainly interested in realisable behaviours.

Remark 2.4 The notion of stream function derivative was considered already
in 1958 by Raney [11], but Raney simply referred to the derivatives of a stream
function f as the states of f . This notion of derivative of stream functions
was later adapted by Brzozowski [2] to become the better known derivative
of regular languages. Other work by Raney [12,13] on formal power series,
generating functions, and automata is closely related to the stream calculus
described in Rutten [15].

3 Bitstream Algebras

We will now describe the two algebraic structures we use in specifying causal
bitstream functions. The semantic domain of both algebras is the set of bit-
streams 2ω, i.e., streams over 2 = {0, 1}, and the operations are defined using
stream differential equations and Boolean operations on bits. The Boolean
operations on 2 of ∨ (or), ∧ (and), ¬ (negation) and ⊕ (exclusive-or) are de-
fined as usual: for a, b ∈ 2, a ∨ b = max{a, b}, a ∧ b = min{a, b}, ¬a = 1− a
and a⊕ b = (a∧¬b)∨ (¬a∧ b). In what follows, we will use the notation 2 to
denote both the set {0, 1} as well as the integer 2. The context should make
clear which reading is intended.

The first bitstream algebra to be represented is based on the arithmetic
operations on 2-adic numbers [5]. The motivation for studying this structure
is its relevance for sequential binary arithmetic and digital circuits. Not much
literature seems to be available on this subject, with the exception of the work
by Vuillemin, see e.g. [19]. The other bitstream algebra is based on addition
modulo-2, and it is also motivated by its connection to digital circuits, and
switching theory [9], in particular, to the theory and design of linear circuits.

In section 4 we will describe the syntax in more detail, and explain how we
determine equivalence of expressions. Before we describe the two bitstream
algebras, we first introduce some notation and conventions. Syntactically, the
expressions of each bitstream algebra are generated over a single bitstream
variable σ by an arithmetic signature which contains binary function sym-
bols for addition, multiplication and division, a unary function symbol for
minus, and constants [0], [1], Xn for n ∈ N. The constants are in both cases
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interpreted as the following bitstreams:

[0] = (0, 0, 0, . . .), [1] = (1, 0, 0, . . .), Xn = (0, . . . , 0︸ ︷︷ ︸
n times

, 1, 0, 0, . . .).

Thus as is standard, X0 and [1] denote the same object. To save notation,
we do not explicitly include the constants Xn, n ∈ N, in the signature, but
they are tacitly assumed to be part of it. We note that the notation Xn is not
ambiguous in the presence of the two definitions of multiplication × (2-adic)
and ⊗ (mod-2). After seeing the definitions of × and ⊗ in the subsections
below, the reader can easily prove that for all α ∈ 2ω, X × α = X ⊗ α = 0:α.
Hence

X × . . .×X︸ ︷︷ ︸
n times

= X ⊗ . . .⊗X︸ ︷︷ ︸
n times

= Xn.

We will use a number of standard arithmetic conventions in our meta-notation.
For the sake of illustration, suppose {+,−, ·, /, [0], [1]} is an arithmetic signa-
ture. We will write X instead of X1, and sometimes write x − y instead of
x + (−y), and x

y
instead of x/y. The x

y
-notation will be used for both 2-adic

and mod-2 expressions, but only as meta-notation, and it will always be clear
from the other operations whether the expression is a 2-adic fraction or a mod-
2 fraction. Due to the fact that fractions, rather than inverses, are the basic
form of expression manipulated by our algorithm, we have chosen to treat / as
a primitive constructor, rather than define x/y as shorthand for x · (1/y) (as
in [16]) where 1/y is defined as the (multiplicative) inverse of y. The inverse
1/y can be defined as the fraction [1]/y, and when we consider the algebraic
properties, of the two bitstream algebras, we implicitly use this definition of
inverse.

Finally, brackets are used to disambiguate expressions in the text, but they
are not part of the syntax, and in order to minimise the use of them we assume
that the binding strength of the operations in descending order is −, ·, /,+,
and that + and · associate to the right. We also point out that we use σ
strictly to denote a bitstream variable, i.e., a syntactic object, whereas α and
β will be used as our meta-notation for bitstreams or expressions.

3.1 The 2-adic operations

The 2-adic bitstream algebra is the structure

A2adic = (2ω,+,−,×, /, [0], [1])

where the operations are interpreted as addition, minus, multiplication and
division of bitstreams viewed as 2-adic integers. Briefly described, for any
prime number p, the p-adic integers are obtained as power series of the form
Σ∞

i=0aip
i, where ai ∈ {0, . . . , p− 1} for all i ∈ N, and the limit of such a series

is defined with respect to the p-adic norm. The p-adic integers Zp form a
subring of the field Qp of p-adic numbers [5] in which the index of the power
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series may start at some negative integer rather than at 0. The usual integers
Z are (strictly!) included in Zp by writing a positive integer in its finite base
p expansion; negative integers are represented by taking the infinitary version
of p’s complement of its positive counterpart. A bitstream α = (a0, a1, a2, . . .)
thus represents the 2-adic integer Σ∞

i=0ai2
i, and in particular, positive inte-

gers are represented by bitstreams which contain only finitely many 1’s, and
negative integers are represented by bitstreams containing finitely many 0’s.

The addition of 2-adic integers is an infinitary version of binary addition,
that is, carry bits may be propagated indefinitely. For example, (1, 1, 1, . . .) +
(1, 0, 0, . . .) = (0, 0, 0, . . .), which shows that −[1] = (1, 1, 1, . . .). 2-adic multi-
plication is the Cauchy product of 2-adic addition, i.e., for bitstreams α and
β, (α× β)(n) = Σn

i=0α(i) ∧ β(n− i), where Σ denotes 2-adic summation, and
it may be computed in the add-and-shift manner, analogously to how one
multiplies the usual integers. The 2-adic integers form a commutative ring
and integral domain, as there are no zero divisors, i.e., α × β = [0] implies
α = [0] or β = [0]. This means that the arithmetic operations have the famil-
iar properties of associativity, commutativity and distributivity, and we will
use these properties freely in what follows. However Z2 is not a field, since
2-adic integers with initial value a0 = 0 do not have a (multiplicative) inverse.
This is clear since α× β = [1] implies α(0) = β(0) = 1, and in fact, it suffices
that a0 has an inverse in the underlying structure, which in the 2-adic case
means that a0 = 1/a0 = 1. The 2-adic operations are defined on bitstreams
by the stream differential equations in Figure 1.

derivative initial value condition

(α+ β)′ = α′ + β′ + [α(0) ∧ β(0)] (α+ β)(0) = α(0)⊕ β(0)

(−α)′ = −(α′ + [α(0)]) (−α)(0) = α(0)

(α× β)′ = α′ × β + [α(0)]× β′ (α× β)(0) = α(0) ∧ β(0)

(α/β)′ = (α′ − [α(0)]× β′)/β (α/β)(0) = α(0) β(0) = 1

Fig. 1. 2-adic operations

The stream differential equations for + and× should be easy to understand
from the above description of the 2-adic integers. The defining equation for
− is simply derived from that of + and the requirement that α + (−α) = [0]
by taking initial value and derivative on both sides. For the initial value we
get that α(0)⊕ (−α)(0) = 0, hence (−α)(0) = α(0). By taking derivatives we
get α′ + (−α)′ + [α(0)] = [0], and hence (−α)′ = −([α(0)] + α′). The stream
differential equations for α/β can be derived similarly.

In section 2.1 we have already seen how members of the set Q̂ of rationals
with odd denominator can be viewed as bitstreams, and in fact, the final

9



Hansen, Costa, Rutten

stream map B : Q̂→ A2adic is a homomorphism of integral domains, thus the
2-adic operations applied to bitstreams that represent integers and rationals
with odd denominator correspond with the usual arithmetic operations. In
particular, since the constant stream X = (0, 1, 0, 0, . . .) represents the base
2, we have the identity of bitstreams α+ α = X × α.

3.2 Rational 2-adic stream functions

In this section we will use the correspondence induced by the homomorphism
B : Q̂ → A2adic to provide a numeric interpretation of taking derivatives of
rational 2-adic stream functions (to be defined shortly), which in turn leads to
a result on the size of their minimal implementing automata (Corollary 3.4),
and an alternative proof of the fact that rational 2-adic stream functions have
finite implementations (cf. [16]).

Since we are interested in the numeric semantics of bitstreams and 2-adic
operations, we will identify q with B(q) for q ∈ Q̂, and simply use integers
and rationals in our meta-notation.

Definition 3.1 A bitstream function f : 2ω → 2ω is a rational 2-adic stream
function, if f is of the form:

f(σ) =
m

n
× σ

where m and n are integers, n is odd, and σ is a stream variable.

From the definition of the 2-adic operations, it should be clear that rational
2-adic stream functions are causal. As an example, the rational 2-adic stream
function f(σ) = 6

−9
×σ can be expressed in 2-adic notation by f(σ) = X+X2

−[1]−X3×
σ. Moreover, we note that f(σ) is equivalent with −2

3
×σ, but not with −12

18
×σ,

since only fractions with odd denominator are well-defined.

Lemma 3.2 (Numeric 2-adic derivatives) Let f : 2ω → 2ω be a 2-adic
stream function of the form

f(σ) =
d+m× σ

n

for integers d,m and n (odd). For a ∈ 2, the stream function derivative fa is
given by:

fa(σ) =
da +m× σ

n
where (in the numeric interpretation)

d0 =

 1
2
d if d even

1
2
(d− n) if d odd

d1 =

 1
2
(d+m) if d(0) = m(0)

1
2
(d+m− n) if d(0) 6= m(0)

10
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Proof. Applying the inductive definitions in Figure 1 on page 9 to determine
f(0 :σ)′ and f(1 :σ)′, we get

d0 = d′ − [d(0)]× n′ and

d1 = d′ +m′ + [d(0) ∧m(0)]− [d(0)⊕m(0)]× n′.

The rest of the proof is now straightforward using (1), and we only give the
details of some cases. In the case d is odd, we get for d0:

d0 = d′ − n′ =
1

2
(d− 1)− 1

2
(n− 1) =

1

2
(d− n).

When d and m are both odd, i.e. d(0) = m(0) = 1, we have

d1 = d′ +m′ + 1 =
1

2
(d− 1) +

1

2
(m− 1) + 1 =

1

2
(d+m).

Finally, if d is odd, and m is even, then

d1 = d′ +m′ − n′ =
1

2
(d− 1) +

1

2
m− 1

2
(n− 1) =

1

2
(d+m− n).

qed

Using the numeric interpretation of taking derivatives we can prove that
rational 2-adic functions have a finite number of derivatives.

Theorem 3.3 (Derivatives of rational functions) Let f(σ) = m
n
× σ be

a rational 2-adic stream function where m 6= 0 and n > 0 is odd, then for all
stream function derivatives fw, w ∈ 2∗, of f , fw is of the form

fw(σ) =
dw +m× σ

n
(3)

where dw is an integer such that

1) −n+ 1 ≤ dw ≤ m− 1 if m > 0,

2) −n+m+ 1 ≤ dw ≤ 0 if m < 0.

Proof. It is a direct consequence of Lemma 3.2 that the derivatives of f have
the format (3), since f is itself of the form required in Lemma 3.2 (take dε = 0),
and hence so are all derivatives of f . We prove by induction on the length
of w ∈ 2∗ that the numeric value dw is in the given range. We distinguish
between the cases m > 0 and m < 0. The base case (w = ε) is clear To prove
the inductive step we use the numeric interpretation of derivatives of rational
2-adic functions given in Lemma 3.2.

Case m > 0: Assume that 1) holds for dw and consider dw0. Suppose
first that dw is even. Then dw0 = 1

2
dw, and in the case dw > 0, we have by

11
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induction hypothesis and n > 0 that −n + 1 ≤ 0 ≤ 1
2
dw ≤ dw ≤ m − 1. If

dw ≤ 0, then we have −n + 1 ≤ dw ≤ 1
2
dw ≤ 0 ≤ m − 1. Now if dw is odd,

then dw0 = 1
2
(dw − n). For the upper bound, we note that if dw < n then

1
2
(dw − n) < 0 ≤ m − 1. If dw ≥ n then 1

2
(dw − n) ≤ dw − n, and from the

induction hypothesis and n > 0, it follows that dw − n ≤ dw ≤ m − 1, and
hence that 1

2
(dw−n) ≤ m−1. To see that dw0 ≥ −n+1, we have by induction

hypothesis that −n+ 1− n = −2n+ 1 ≤ dw − n, and since dw − n is even it
follows that −2(n− 1) ≤ dw − n, and hence −n+ 1 ≤ 1

2
(dw − n) = dw0.

We now show that dw1 is in the given range. In the case that dw andm have
the same parity, i.e., dw(0) = m(0), we have dw1 = 1

2
(dw +m). By induction

hypothesis, dw +m ≤ (m− 1) +m = 2m− 1, and since dw +m is even, and
m > 0, it follows that dw + m ≤ 2(m − 1) and hence 1

2
(dw + m) ≤ m − 1.

For the lower bound, we distinguish between dw ≥ 0 and dw < 0. If dw ≥ 0
then −n + 1 ≤ 0 ≤ 1

2
(dw + m), since m > 0. If dw < 0 then by induction

hypothesis −n + 1 ≤ dw < 1
2
(dw + m). Now suppose dw(0) 6= m(0), then

dw1 = 1
2
(dw +m− n). From the induction hypothesis it follows that,

−n+ 1 +m− n ≤ dw +m− n ≤ (m− 1) +m− n,

and since m > 0 and n ≥ 1

−2n+ 1 ≤ dw +m− n ≤ 2(m− 1).

As dw +m− n is even, we obtain

−2(n− 1) ≤ dw +m− n ≤ 2(m− 1).

and hence

−n+ 1 ≤ 1

2
(dw +m− n) ≤ (m− 1).

Case m < 0: Assume now that 2) holds for dw. It is easy to see that
dw ≤ 0, m < 0 and n > 0 imply that both dw0 ≤ 0 and dw1 ≤ 0. It remains
to show that −n+m+ 1 ≤ dw0, dw1. For dw0 in the case dw is even, it follows
immediately from dw ≤ 0 that dw ≤ 1

2
dw = dw0, and hence by induction

hypothesis that −n+m+1 ≤ dw0. If dw is odd, then dw0 = 1
2
(dw−n). Now if

dw ≤ −n, we have 2dw ≤ dw − n and hence −n+m+ 1 ≤ dw ≤ 1
2
(dw − n). If

on the other hand −n < dw, then −2n < dw − n and −n < 1
2
(dw − n). Since

m ≤ −1, we get −n+m+ 1 ≤ −n, and hence −n+m+ 1 < 1
2
(dw − n).

Now consider dw1. If dw(0) = m(0), then dw1 = 1
2
(dw +m). With a similar

reasoning as above we find that dw ≤ m implies dw ≤ 1
2
(dw + m), whence

by induction hypothesis −n + m + 1 < 1
2
(dw − m); and dw > m implies

m < 1
2
(dw + m), which together with −n + m + 1 ≤ m yields the desired

lower bound. If d(0) 6= m(0), then dw1 = 1
2
(dw +m− n). From the induction

hypothesis (−n+m+ 1 ≤ dw) we obtain,

dw +m− n ≥ −2n+ 2m+ 1 = 2(m− n) + 1,

12
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and since dw +m− n is even and negative,

dw +m− n ≥ 2(m− n) + 2,

and hence
1

2
(dw +m− n) ≥ −n+m+ 1.

qed

The derivatives of a rational 2-adic function f(σ) = m
n
× σ are thus cha-

racterised by the different values of dw, which implies that from the above
theorem, we can deduce an upper bound on the number of states in 〈f〉 for
rational 2-adic f .

Corollary 3.4 (Automaton size) Let 〈m
n
× σ〉 be the minimal Mealy coal-

gebra implementing the rational 2-adic function f(σ) = m
n
× σ, where m and

n are integers such that m 6= 0 and n is odd, and let NumStates(〈m
n
× σ〉)

denote the number of states in 〈m
n
× σ〉. Then

NumStates(〈m
n
× σ〉) ≤


|m|+|n|

gcd(m,n)
− 1 if m

n
> 0

|m|+|n|
gcd(m,n)

if m
n
< 0

Proof. Let m and n be as stated, and let m̃ := sgn(m
n
) · |m|/ gcd(m,n) and

ñ := |n|/ gcd(m,n), then numerically m̃
ñ

= m
n
, and 〈 m̃

ñ
× σ〉 is isomorphic with

〈m
n
× σ〉. Hence NumStates(〈 m̃

ñ
× σ〉) = NumStates(〈m

n
× σ〉). As m̃ and

ñ satisfy the condition of Theorem 3.3 it follows that NumStates(〈 m̃
ñ
× σ〉)

equals the number of distinct dw-values ocurring in the stream function deriva-
tives of f . Hence if m̃ > 0, i.e., sgn(m

n
) = 1, then

NumStates(〈m̃
ñ
× σ〉) ≤ (m̃−1)−(−(ñ−1))+1 = m̃+ñ−1 =

|m|+ |n|
gcd(m,n)

−1,

and if m̃ < 0, i.e., sgn(m
n
) = −1, then

NumStates(〈m̃
ñ
× σ〉) ≤ −(−ñ+m̃+1)+1 = ñ−m̃ = |ñ|+ |m̃| = |m|+ |n|

gcd(m,n)
.

qed

Experimental results strongly indicate that the inequality in Corollary 3.4
is in fact an equality. I.e., the number of states in 〈m

n
× σ〉 is exactly given by

the above formula. However, at present we have no formal proof of this.

3.3 The modulo-2 operations

The mod-2 bitstream algebra

Amod2 = (2ω,⊕,	,⊗,�, [0], [1])

13
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is based on addition modulo 2, in other words taking the elementwise exclusive-
or of bitstreams. In the text, we will use the symbol ⊕ to denote the modulo-2
addition on bitstreams as well as on bits. The typing should be clear from the
context.

The mod-2 bitstream operations have no numeric interpretation; rather,
they correspond to the operations on bitstreams seen as formal power series
over the Mod2 ring (and integral domain) (2,⊕,∧, id, 0, 1). Note that addition
modulo 2 is nilpotent, i.e., for any a ∈ 2, a⊕a = 0 and hence −a = a = id(a).
A bitstream α = (a0, a1, a2 . . .) is now interpreted as the coefficients of the
formal power series a0 + a1x + a2x

2 + . . .. From the theory of formal power
series, it follows that Amod2 is also a commutative ring and integral domain in
which ⊕ is nilpotent, and 	 is the identity. In particular, multiplication ⊗ is
the Cauchy product with respect to ⊕; division � is defined to be an inverse
to ⊗, and we again require that β(0) = 1 for fractions α � β. The modulo-2
operations are defined by the stream differential equations in Figure 2.

derivative initial value condition

(α⊕ β)′ = α′ ⊕ β′ (α⊕ β)(0) = α(0)⊕ β(0)

(	α)′ = 	(α′) (	α)(0) = α(0)

(α⊗ β)′ = (α′ ⊗ β)⊕ [α(0)]⊗ β′ (α⊗ β)(0) = α(0) ∧ β(0)

(α� β)′ = (α′ ⊕ [α(0)]⊗ β′)� β (α� β)(0) = α(0) β(0) = 1

Fig. 2. mod-2 operations

We mention that rational mod-2 functions can be defined analogously to
rational 2-adic functions, and one can show that rational mod-2 functions are
causal and realisable.

4 Syntax

4.1 Derivatives of expressions

In section 3 we presented the semantics of the two bitstream algebras we
use to specify causal bitstream functions. We now turn to their syntax, and
describe in detail how we compute initial value and stream function derivatives
symbolically using the expressions generated by the respective signatures. The
idea is to provide the term algebras with Mealy structure; the Mealy behaviour
of an expression θ is then obtained via the behaviour map into the final Mealy
coalgebra, and we will say that θ is a specification of the causal function
Beh(θ).

This construction applies to both bitstream algebras of section 3, so we
will illustrate using a generic integral domain signature Σ = {+, ·,−, /}. Let

14
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TermΣ(σ) be the expressions generated by Σ over the variable σ. Recall
Definition 2.2 of the initial output and stream function derivative of a causal
function f(σ) with respect to a bit a ∈ 2:

f [a] = f(a :σ)(0) and fa = f(a :σ)′

We wish to mimic this semantic definition in the syntax, meaning that given
an expression θ which specifies a causal function fθ, and a bit a ∈ 2, we are
looking for a systematic procedure to obtain a bit θ[a] and an expression θa

such that θ[a] = fθ[a] and Beh(θa) = (fθ)a. We see that the definition of initial
value and derivative consists of two parts. The first being the instantiation of
the bitstream variable σ with the bit a, which turns σ into a :σ. The second is
the taking of initial value and stream derivative of f(a :σ).

The syntactic equivalent of instantiating the bitstream variable σ, is based
on the observation that for any bitstream α ∈ 2ω:

0 :α = X × α = X ⊗ α

1:α = [1] +X × α = [1]⊕X ⊗ α

Thus if θ ∈ TermΣ(σ), then we denote by θ(0 :σ) the expression obtained from
θ by substituting all occurrences of σ with X ·σ; similarly θ(1 :σ) ∈ TermΣ(σ)
is obtained by substituting [1] +X · σ for σ in θ. The expressions θ(0 :σ) and
θ(1 :σ) are called instantiated expressions. It remains to define the initial value
and stream derivative of instantiated expressions. The initial value should be
a bit, and the derivative should be an expression in TermΣ(σ). We define the
stream behaviour of instantiated expressions inductively. For the constants
this is clearly:

initial value derivative

Xn(0) = 0 (Xn)′ = Xn−1 , n ≥ 1

X0(0) = [1](0) = 1 [1]′ = [0]

[0](0) = 0 [0]′ = [0]

For the variable σ, we are not able to determine σ(0) and σ′ due to σ itself
being indeterminate. But this is not a problem, since we only need to consider
instantiated expressions, and we observe that in any instantiated expression
σ always occurs as part of an expression X · σ, which represents the stream
0:σ. We therefore define

(X · σ)(0) = 0 and (X · σ)′ = σ.

The stream behaviour of non-atomic instantiated expressions different from
X ·σ is obtained by taking the stream differential equations in Figures 1 and 2
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as inductive definitions over 2-adic, respectively mod-2, expressions. This
means, however, that (instantiated) expressions of the form α/β in which
β(0) = 0 have no stream behaviour, and hence that not all expressions have
Mealy behaviour. This is, for instance, the case with the 2-adic expression
θ = [1]

[1]+σ
, since θ(1 : σ) = [1]

[1]+([1]+X×σ)
which has a denominator with initial

value 0, and so θ[1] and θ1 are undefined.

To sum up, the initial output and derivative of an expression θ in TermΣ(σ)
on input a ∈ 2, if well-defined, are given by:

θ[a] := θ(a :σ)(0) and θa(σ) := θ(a :σ)′. (4)

Note that if σ does not occur in θ, then θ(a :σ) = θ for a ∈ 2. So, as is usual,
constant expressions can be interpreted as 0-ary functions, and hence they can
have both stream behaviour and Mealy behaviour, whereas expressions that
contain σ can only have Mealy behaviour. Definition (4) can be extended from
bits to bitwords w ∈ 2∗ in the same manner as in Definition 2.2, and when
we speak of derivative expressions then we generally mean all expressions θw,
w ∈ 2∗, for some given specification θ.

Example 4.1 Consider the 2-adic expression θ = X2×σ
[1]+X

. The instantiation
of θ with the bit 1, is

θ(1 :σ) =
X2 × ([1] +X × σ)

[1] +X
.

The intial output on input 1, is θ[1] = X2(0) ∧ ([1] +X × σ)(0) = 0 ∧ 1 = 0,
and the derivative θ1 is

θ(1 :σ)′ =
(

X2×([1]+X×σ)
[1]+X

)′
= (X2×([1]+X×σ))′−[0]×([1]+X)′

[1]+X

= ((X2)′×([1]+X×σ)+[0]×([1]+X×σ)′)−[0]×([1]+X)′

[1]+X

= (X×([1]+X×σ)+[0]×([0]+σ+[0]))−[0]×([0]+[1]+[0])
[1]+X

It is clear that this expression can be simplified using the identities of the 2-adic
bitstream algebra to yield the equivalent expression X+X2×σ

[1]+X
. The computa-

tion of this reduced form for arbitrary expressions from TermΣ(σ) is explained
in the next section.

Apart from the “failure” which can arise when an expression has no Mealy
behaviour, expressions can give rise to infinite Mealy behaviour, i.e., causal
bitstream functions which have no finite-state implementation. Such an ex-
ample is given by the 2-adic expression σ× σ. It is easy to show by induction
on n ∈ N that (σ × σ)0n is equivalent to Xn × (σ × σ). For different n,
these expressions are clearly not equivalent, and hence 〈Beh(θ)〉 has infinitely

many states. Similarly, one can show that [1]
[1]+X×σ

has only infinite Mealy
implementations. However, it is easy to show that specifications of the form
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p+q·σ
r

, for constant polynomial expressions p, q and r, have finite-state Mealy
behaviour, and the above observations suggest that this is the most general
form of realisable specifications.

4.2 Deciding equivalence of expressions

A crucial property of the two bitstream algebras is that we can effectively de-
cide whether two derivative expressions are equivalent. This decision method
relies on the fact that the two bitstream algebras are integral domains. Given
two arbitrary expressions θ and η, we first compute what we call their normal
forms. The normal form of an expression θ is a fraction Nθ/Dθ of two poly-
nomial expressions in distributive normal form, i.e., Nθ and Dθ are sums of
monomials of the form Cn ·σn, where Cn is a constant (polynomial) coefficient.
We will denote the distributive normal form of a polynomial expression p by
PNF(p). In the case θ is already a fraction θ = ρ/δ of polynomial expressions,
then the normal form of θ is PNF(ρ)/PNF(δ). Two expressions θ and η are
then equivalent if PNF(Nθ ·Dη) ≡ PNF(Nη ·Dθ), where ≡ denotes syntactic
equality.

The normal formNθ/Dθ is essentially a normal form with respect to certain
identities of the two bitstream algebras. A part of these identities are common
to all integral domains, but the reduction of constant polynomial expressions
(i.e, the coefficients Cn in the polynomial normal form) is specific to each
bitstream algebra:

Reducing 2-adic coefficients: Due to the numeric interpretation of the 2-
adic constants and operations, we can interpret a constant polynomial 2-adic
expression z (i.e. z is built without variables or divison /) as an integer Val(z).
For example, Val(−X2 + ([1] + X) × X2) = −4 + (1 + 2)4 = 8. Any x in N
can then be written as its symbolic binary expansion BinExp(x), where the
constant X represents the base 2. E.g., BinExp(5) is the expression [1] +X2.
The normal form of a constant polynomial 2-adic expression z is defined as
BinExp(Val(z)) if Val(z) ≥ 0, and −BinExp(−Val(z)) otherwise. For exam-
ple, the normal form of [1]−X3 is −([1] +X +X2).

Reducing mod-2 coefficients: Any constant polynomial mod-2 expression
can be rewritten to a sum of signed powers of the variable X (by applying
distrbutivity and other ring laws). Due to the nilpotency of ⊕ it is relatively
easy to see that such a sum can be reduced to a normal form by applying
the identities α ⊕ α = [0] and 	α = α. This normal form consists of a sum
of unique powers of Xn ordered ascendingly on n. For example, the sum
X2 ⊕X1 ⊕X0 ⊕	X3 ⊕X2, has the normal form [1]⊕X1 ⊕X3.

Example 4.2 Consider the expression θ = [1]
[1]+X

+ σ + [1]. Using the laws

of integral domains, θ is rewritten to ([1]+[1]+X)+([1]+X)·σ
[1]+X

. After reducing the
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coefficients, we obtain:

normal form in 2-adic algebra: X2+([1]+X)×σ
[1]+X

normal form in mod-2 algebra: X⊕([1]⊕X)⊗σ
[1]+X

For an expression θ, we define the size (or length) of θ, denoted by len(θ),
as the number of symbol occurrences in θ. The time complexity of computing
PNF(p) of a polynomial expression p is in the worst case exponential in len(p)
due to the duplication of subexpressions when applying the distributive law
(e.g. a · (b+ c) = a · b+ a · c). That is, T (PNF(p)) = 2O(len(θ)). Consequently,
the time complexity of computing the normal form of an arbitrary expression
θ is also 2O(len(θ)), and checking equivalence of two normalised expressions
also carries an exponential cost: Checking equivalence of θ = Nθ/Dθ and
η = Nη/Dη has a worst case time complexity of 2O(len(θ)+len(η)).

Although efficiency has not been the main concern in our implementa-
tion, we note that the equivalence check can be optimised when the initial
specification θ has a normal form in which the denominator Dθ is constant.
This applies, in particular, to rational functions. Recall the definitions of the
derivative of a fraction in the two bitstream algebras:

2-adic: (α/β)′ = (α′ − [α(0)]× β′)/β

mod-2: (α� β)′ = (α′ ⊕ [α(0)]⊗ β′)� β

From these definitions, and the fact that for constant Dθ, we have Dθ(a :
σ) = Dθ for any a ∈ 2, we see that all derivatives of θ = Nθ/Dθ will also
have denominator Dθ. Hence in order to decide whether two derivatives of
θ, say δ and η, are equivalent, it suffices to check syntactic equality of their
normal forms: Nδ ≡ Nη and Dδ ≡ Dη This can be done in linear time:
O(len(δ) + len(η)). In fact, in the special case of rational functions it suffices
to check syntactic equality of the normal form numerators, but this equivalence
test would not be sound, in general, since then, e.g., [1]/([1] +X) and [1]/[1]
would be considered equivalent. The complexity of this numerator-only check
is still linear in the input, and we have therefore decided to use the (sound)
equality of the entire normal form.

5 The Construction

5.1 Algorithm

Our method for constructing a Mealy machine from a given bitstream spec-
ification θ can be seen as a generalisation of Brzozowski’s [2] method for
constructing deterministic finite automata from regular expressions. Start-
ing from the specification θ, we compute for each bit a ∈ 2, the transitions
corresponding with input a, and iterate this for the derivatives of θ until no
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new transitions are found, i.e., a fixpoint has been reached. We represent a
(partially constructed) Mealy machine as a list of labelled transitions, and
the fixpoint computation is initiated with the list containing the transitions
from the initial specification θ to its immediate derivatives θ0 and θ1. We also
keep track of the current states/derivatives in a list S, which is initialised to
contain (the normal form of) θ. In each iteration, we check for new states,
that is, destinations of the new transitions which are not already contained
in the state list. If new states are found, we compute the transitions starting
from each of these new states. These transitions are necessarily new to the
transition list. We then add the new states to the state list, and add the new
transitions to the transition list, and continue with the next iteration. The
construction is perhaps best illustrated by means of an example.

Example 5.1 Consider the 2-adic specification σ/(X2 − [1]). The numeric
interpretation of this specification is σ/3, and hence its normal form is θ =
σ/([1] +X). We now compute the normalised derivatives of θ:

θ0 = ( X×σ
[1]+X

)′ = σ−[0]×([1]+X)′

[1]+X
= σ

[1]+X
= θ

θ1 = ( [1]+X×σ
[1]+X

)′ = σ−[1]×([1]+X)′

[1]+X
= −[1]+σ

[1]+X

The initial outputs of θ are easily computed: θ[0] = 0 and θ[1] = 1. So the
fixpoint computation is initiated with state list S1, and transition list L1:

S1 = [ σ
[1]+X

],

L1 = [〈 σ
[1]+X

, 0|0, σ
[1]+X

〉; 〈 σ
[1]+X

, 1|1, −[1]+σ
[1]+X

〉].

L1 contains (a representation of) the paths of length 1 in the Mealy imple-
mentation of θ. In the first iteration, the paths of length 2 are computed by
computing the derivatives of the new states. We find that θ1 is the only new
state. The initial outputs of θ1 are θ1[0] = 1 and θ1[1] = 0, and the derivatives:

θ10 = (−[1]+X×σ
[1]+X

)′ = ((−[1])′+σ+[0])−[1]×([1]+X)′

[1]+X
= −X+σ

[1]+X

θ11 = (−[1]+([1]+X×σ)
[1]+X

)′ = ((−[1])′+σ+[1])−[0]×([1]+X)′

[1]+X
= σ

[1]+X
= θ.

We now update our lists by adding θ1 to S1, and the new transitions to L1,
and we obtain:

S2 = [ σ
[1]+X

, −[1]+σ
[1]+X

],

L2 = L1 ++ [〈−[1]+σ
[1]+X

, 0|1, −X+σ
[1]+X

〉; 〈−[1]+σ
[1]+X

, 1|0, σ
[1]+X

〉]

In the next iteration, we compute the transitions from the new state θ10 =
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−X+σ
[1]+X

. The initial outputs are θ10[0] = 0 and θ10[1] = 1, and the derivatives:

θ100 = (−X+X×σ
[1]+X

)′ = ((−X)′+σ+[0])−[0]×([1]+X)′

[1]+X
= −[1]+σ

[1]+X
= θ1

θ101 = (−X+([1]+X×σ)
[1]+X

)′ = ((−X)′+σ+[0])−[1]×([1]+X)′

[1]+X
= −X+σ

[1]+X
= θ10.

We now add θ10 to S2, and add the new transitions to L2 to obtain the list
containing paths of length 3:

S3 = [ σ
[1]+X

, −[1]+σ
[1]+X

, −X+σ
[1]+X

],

L3 = L2 ++ [〈−X+σ
[1]+X

, 0|0, −[1]+σ
[1]+X

〉; 〈−X+σ
[1]+X

, 1|1, −X+σ
[1]+X

〉]

In the next round of the fixpoint computation we find that there were no new
states, hence no new transitions will be found, and the list L3 is returned.
The Mealy machine represented by L3 has the following transition diagram:

θ

0|0

--

1|1
!!
θ1

1|0

__

0|1
##
θ10

1|1

tt

0|0
cc

We note that if θ has no Mealy behaviour then the computation will get
stuck at some point, and if θ has only infinite-state implementations, then
the process will not terminate. In order to deal with the latter problem, we
provide the possibility of pre-specifying the maximum path length (automaton
depth) in our program, see section 6.

5.2 Complexity

The time complexity of the construction can be expressed in the following
quantities: M , the number of states in the constructed Mealy machine M; R,
the time cost of computing and reducing derivatives to normal form; and E,
the time cost of determining equivalence of two derivative expressions.

During the fixpoint computation, for every state s in M, we compute and
reduce the two derivatives s0 and s1 exactly once. This yields a factor M2R.
Furthermore, in each iteration round we remove duplicates (more precisely,
equivalents) from a list of potentially new derivatives (the destinations of new
transitions). The length of this list is bounded by log(M), each equivalence
test between elements of this list can be done in time E, and the duplicates
can be removed in time E(log(M))2. Finally, from the list of duplicate-free,
potentially new derivatives, we remove the ones that are already in the list of
current states. The list of current states has at most length M , hence this can
be done in time EM log(M). Summing up, we obtain an overall complexiy of
O(M2R + EM(log(M))2 + EM2 log(M)) = O(MR + EM2 log(M)).

For rational 2-adic functions, we can express M,R and E in terms of the
size of the reduced input expression θ = p×σ

q
using the numeric interpretation,
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and we can therefore describe the time complexity of our synthesis algorithm
for rational 2-adic functions in terms of the size of theta.

Proposition 5.2 Let θ = p×σ
q

be a rational 2-adic function specification in

normal form. A Mealy machine implementation of Beh(θ) can be constructed
in time 2O(len(θ)) using the algorithm described in this section.

Proof. If we let P = |V al(p)| and Q = |V al(q)|, then from Corollary 3.4,
we know that M ≤ P + Q. Since p and q are in polynomial normal form,
we also know that len(p) = O(log(P )) and len(q) = O(log(Q)) from which
it follows that len(θ) = O(log(P ) + log(Q)), and hence log(M) = O(len(θ)
and M = 2O(len(θ)). Furthermore, one can show that the cost of computing
a derivative expression, as well as the size of all derivative expressions, is
linearly bounded by len(θ). The normal form computation is dominated by
the complexity of computing PNF, which is exponential in the size of the input.
It follows that R = 2O(len(θ)). The equivalence test for derivatives of rational
functions can be carried out in linear time (cf. end of subsection 4.2). Hence
the overall complexity of the construction for the rational 2-adic specification θ
is O(MR+EM2 log(M)) = O((2O(len(θ)))2+O(len(θ))(2O(len(θ)))2O(len(θ))) =
2O(len(θ)). qed

6 Haskell Program

We have written a Haskell program which carries out the symbolic construc-
tion of Mealy machines from 2-adic and mod-2 specifications as described in
section 5. The program produces as output a DOT source file (.dot) and a
LaTeX-document (.tex). The DOT-file contains a graphical representation
of the constructed automaton, and it can be rendered in various formats,
e.g. postscript, using the Graphviz tool (www.graphviz.org). The LaTeX-file
shows the input expression, its normal form, and a symbolic representation
of the states and transitions in the constructed Mealy machine. The source
code, documentation and an executable are available from

URL: http://www.cwi.nl/~costa/diffcal

We briefly explain the functionality of the program executable (called
diffcal). More details can be found at the above URL.

The input to the executable must be supplied by the user by setting a
number of options/flags. The input specification is supplied as a string spec

together with a flag which indicates whether the string should be parsed as a
2-adic or a mod-2 expression: --2adic=‘‘spec’’ or --mod2=‘‘spec’’. The
string should be an expression E over the signature:

E ::= nat | X | X^n | varname | -E | E + E | E*E | E/E

where nat is a natural number, and varname is a string, which is a legal LaTeX
expression when prefixed with a backslash. For example, varname could be
the string sigma, which produces the LaTeX code \sigma. Although mod-2
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expressions have no numeric interpretation, we still allow natural numbers
in specifications by simply parsing them to the mod-2 version of BinExp(n).
E.g., the strings ‘‘5’’ and ‘‘1 + X^2’’ read as mod-2 expressions parse to
the same internal representation.

The second required input is a string fname which is used to name the
output files, and it is supplied as -o ‘‘fname’’. The remaining flags are
optional: For constant expressions, the program allows the construction of
stream automata by setting the flag -s. In order to compute partial imple-
mentations of infinite or very large Mealy machines, the user can specify the
maximum depth DEP of the constructed automaton by setting the option -d

DEP. For 2-adic specifications, the program will produce the numeric interpre-
tation in the LaTeX-output if the flag -n is set. To optimise the equivalence
check for rational function specifications, the user can set the flag -e in which
case equivalence is determined by syntactic comparison of the normal forms
(see end of subsection 4.2).

Below are a few examples of how the executable may be used.

diffcal --2adic=‘‘(1 + X + -X^3)/(1+X)’’ -s -o ‘‘example1’’

diffcal --2adic=‘‘(7*sigma/(-5))’’ -o ‘‘example2’’

diffcal --mod2=‘‘sigma + -(3/9)’’ -e -o ‘‘example3’’

diffcal --2adic=‘‘sigma*sigma’’ -e -d 3 -o ‘‘example4’’

diffcal --2adic=‘‘1/(1 +(X*sigma))’’ -n -d 3 -o ‘‘example5’’

7 Discussion and Related Work

Our synthesis method is based on the, essentially coalgebraic, notion of stream
function derivative, and we have already mentioned the similarity with Brzo-
zowski’s [2] method for constructing DFA’s from regular expressions. Other
related work includes Antimirov [1] in which partial derivatives are used in
constructing nondeterministic finite automata from regular expressions, and
Redziejowski [14] who constructs ω-automata using derivatives of ω-regular
expressions, albeit in a much more complex setting.

Synthesis of Mealy (or Moore) type automata from logic specifications has
a long and well-established history, see e.g. [3,10,18,7]. The main idea here
is that a logic formula ϕ specifies a relation Rϕ between input and output
streams, and from ϕ one can construct an automaton Aϕ which essentially
accepts Mealy machines whose stream function behaviour f satisfies ϕ, mean-
ing that for all input streams σ, (σ, f(σ)) ∈ Rϕ. The actual synthesis step is
realised through a constructive nonemptiness test of Aϕ.

Logic synthesis differs from our approach in the following ways: (i) A
formula ϕ defines a relational requirement which may have several Mealy ma-
chine solutions, whereas bitstream expressions correspond with at most one
solution. (ii) The automaton Aϕ described above has the property that the
finite-state requirement is built in: If Aϕ accepts some Mealy coalgebra, then
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it accepts one with finitely many states, and such a solution is constructed
during the nonemptiness test. In our approach, we need to know that a spec-
ification is realisable before we start our construction, since otherwise our
algorithm may not terminate. We have shown that rational 2-adic functions
are realisable. (iii) The automaton constructions and transformations carried
out during logic synthesis are of a considerable (conceptual and computa-
tional) complexity, whereas the coalgebraic construction of Mealy machines
using derivatives is direct and conceptually simple. Here the complexity arises
from the need to decide equivalence of expressions, i.e., the normal form com-
putation. We mention that the complexity of Mealy synthesis from linear
temporal logic specifications is 2EXPTIME-complete in the size of the input
specification (cf. [10]). We have shown that Mealy synthesis from rational
2-adic specifications is in EXPTIME (cf. Proposition 5.2).

The principles of automaton synthesis using derivatives are clearly of a
universal character, and it would be interesting to see if this technique can
be generalised to other specification languages and automaton types than the
ones already mentioned. Of particular interest, we mention PAR [17] which is a
recently introduced declarative language for the specification of event-pattern
reactive programs, a certain type of Mealy machines. The behaviour of PAR
programs is defined corecursively, and their semantics is obtained via finality.
Hence the main problem which must be solved in order to synthesise PAR
programs is the need for an effective decision procedure to determine equiv-
alence of PAR expressions. In general, this decision requirement seems to be
the most challenging part of realising synthesis using derivatives. Coalgebraic
methods may also be of interest here. See, for example, [6] which provides a
coinductive proof system for the equivalence of regular expressions.
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