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The cluster size distribution for a forest-fire process
onZ

Abstract

Consider the following forest-fire model where trees are located on
sites of Z. A site can be vacant or be occupied by a tree. Each vacant
site becomes occupied at rate 1, independently of the other sites. Each
site is hit by lightning with rate A, which burns down the occupied
cluster of that site instantaneously. As A | 0 this process is believed
to display self-organised critical behaviour.

This paper is mainly concerned with the cluster size distribution in
steady-state. Drossel, Clar and Schwabl [3] claimed that the cluster size
distribution has a certain power law behaviour which holds for cluster
sizes that are not too large compared to some explicit cluster size s,,4;-
The latter can written in terms of A approximately as ;42 In(Smaz) =
1/X. However, Van den Berg and Jarai [1] showed that this claim
is not correct for cluster sizes of order S,,q,., which left the question
for which cluster sizes the power law behaviour does hold. Our main
result is a rigorous proof of the power law behaviour up to cluster
sizes of the order s}?{sx Further, it proves the existence of a stationary
translation invariant distribution, which was always assumed but never
shown rigorously in the literature.
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Abstract

Consider the following forest-fire model where trees are located on
sites of Z. A site can be vacant or be occupied by a tree. Each vacant
site becomes occupied at rate 1, independently of the other sites. Each
site is hit by lightning with rate A, which burns down the occupied
cluster of that site instantaneously. As A | 0 this process is believed
to display self-organised critical behaviour.

This paper is mainly concerned with the cluster size distribution in
steady-state. Drossel, Clar and Schwabl [3] claimed that the cluster size
distribution has a certain power law behaviour which holds for cluster
sizes that are not too large compared to some explicit cluster size s,,qz-
The latter can written in terms of A approximately as S;qz In(Simaz) =
1/A. However, Van den Berg and Jérai [1] showed that this claim
is not correct for cluster sizes of order $,,4., which left the question
for which cluster sizes the power law behaviour does hold. Our main
result is a rigorous proof of the power law behaviour up to cluster
sizes of the order si,{f;’z Further, it proves the existence of a stationary
translation invariant distribution, which was always assumed but never
shown rigorously in the literature.

1 Introduction and background

This paper discusses a forest-fire model in one dimension. In time, trees
can grow, or disappear by fire. Let Q = {0,1}” be the state space. A ‘1’
represents a tree and a ‘0’ represents a vacant space. To each site of Z we
assign a Poisson process with rate 1, independently of the other sites. If such
a Poisson clock rings, there is a birth attempt. If the site is empty, a tree



grows. If a tree is already present, nothing happens. Further, to each site
we assign a Poisson process with rate A, independently of the other sites.
If such a Poisson clock rings, there is a lightning attempt. The lightning
destroys instantaneously all the trees that are in the cluster of the site that
is hit. If the site was vacant, nothing happens. In what follows, a Poisson
event is the ring of a Poisson clock (either a birth attempt or a lightning
attempt). It is expected that this model displays so-called self-organised
critical behaviour as the lightning rate A goes to zero.

If we start from any configuration with infinitely many vacant sites on
both half-lines, then (with probability one), infinitely many of those sites
in 7Z stay vacant during the time interval [0,¢]. This ‘breaks up’ the line
in finite pieces, and hence the process is easily constructed (for example by
using a graphical representation, see [5], [6]). In higher dimensions this is not
evident; recently M. Diirre [2] has made a more abstract construction which
does work for higher dimensions. Although the existence of the process
on Z is relatively easy, it is not immediately clear whether there exists a
stationary translation-invariant measure. We come back to this issue later.
For now, let u) denote any stationary translation-invariant measure.

For any w € Q, we write w = (- - - w_jwowy - - - ) where w; € {0, 1} denotes
the state of the site at position ¢. In short notation, we write u)(0) =
px(wp = 0) for the probability that the origin is empty in the steady-state,
and py(1) for the probability that the origin is occupied. It seems likely
that the probability that a site is empty goes to zero as the lightning rate
goes to zero. This is indeed the case and the speed at which this happens is
known: it has been proved in [1] that there exist positive constants A; and
As such that for A < 1 and any measure u) invariant under the dynamics,

Ao

A
L T (1.1)

In(1/)\)

< pa(0) <

This forest-fire model is closely related to the well-known Drossel-Schwabl
forest-fire model [4]. In that model the state space is large but finite, the
speed of fires is finite and time is discrete. The self-organised critical be-
haviour is expected when the volume and the speed of fires go to infinity, and
the lightning rate to zero in a suitable way. In dimension 1, the behaviour
of this model has been studied in [3] but their results are not rigorous and
some of them need significant correction (see below).

Van den Berg and Jarai [1] have studied our version of the model rig-
orously. For the overall behaviour, it does not matter much which model
we consider. The proof of the main result can easily be adjusted to the
Drossel-Schwabl model.



The forest-fire process has ‘natural scales’. If we consider a string of
length n, there is a non-trivial (i.e. bounded away from zero and one)
probability that all sites grow a tree in a time interval of length Inn. If
the lightning parameter is of order 1/(nlnn), there is also a non-trivial
probability that a lightning attempt occurs in this string. This and other
considerations ( [1], [4]) lead to the following definition of a characteristic
length: Spmaz = Smaz(A) is the integer satisfying

1
Smaz 10 Smaz < X < (Smaz + 1) In(Smaz + 1). (1.2)

Our result concerns p(s), where
p(s) = ,u,)\((x)() = 0"*}1 = =Ws = laws+1 = 0)

The probabilities p(s),s > 0 are called the cluster size distribution in [3],

although strictly speaking, they are not a distribution but the probabilities

of the event that the origin is the left-most site of a cluster of size s. From

p(s), it is easy to recover the true cluster size distribution. By translation

invariance, the probability that a fixed site is in a cluster of size s is sp(s).
In [3] it was shown that for fixed s, the probabilities p(s) satisfy

p(s) ~ ,uA(O)s_Z, (1.3)

where the symbol ‘~’ means that the quotient of the left and right side
is bounded from above and below as A | 0. Further, it is an ‘ansatz’ in
their paper that (1.3) holds for s up to $pqz. Although this ansatz led to a
correct prediction in [3] of the asymptotic behaviour (1.1) of py(0), it was
shown in [1] that (1.3) does not hold for s of the order sy,4,. This raises the
question for which s < $mq, the relation (1.3) does hold. In this paper we
partly answer this question by showing that, loosely formulated, (1.3) holds

for s up to si/3, and hence (by (1.1))

)

p(s) ~ s72/1In(1/X) for all s up to s./3

max*

A precise formulation is stated in the following section. Section 3 handles
some preliminaries and in Section 4 we give the proof of the main result. In
Section 5, we address the issue of the existence of a stationary translation-
invariant measure for the one-dimensional forest-fire process.

2 Statement of the main result

The main result is as follows.



Theorem 2.1. Let o < 1/3. There ezists positive constants By and Ba
such that for all A < 1 and any stationary, translation-invariant measure i)
of the forest-fire model with parameter A on Z,

By
s2In(1/X)

By

< Fmapy @Y

<pa(wo =0,w; =+ =ws = 1,wsy1 =0)

for all s < 8%,

The theorem above is only useful when there is at least one stationary
translation-invariant measure for the one-dimensional forest-fire model. We
will show that this is the case in Section 5.

3 Preliminaries

Note that on a finite interval, the total rate of the Poisson processes assigned
to the sites in this interval is finite. This implies that the probability of two
Poisson events occurring inside this finite space interval in a time interval
of length ¢ is o(t), as t | 0. We repeatedly use this fact when proving
statements about the stationary measure. However, when we consider 7Z,
infinitely many Poisson events occur in any time interval; far away a tree
could be hit by lightning and the fire thus started could travel over a very
large distance, creating long-range dependencies. We have no a priori bound
on these dependencies. Unfortunately, this complicates the argument. In
the rest of this section, we show that in some sense ‘there are enough vacant
sites at all times’, which gives us a bound on the size of clusters, and hence
a bound on the size of fires. We make this precise in Proposition 3.3. We
need an auxiliary model where destructions are local.

The model with local destructions is coupled to the original one by using
the same Poisson clocks. The state space is {0,1}% as before. Each time a
growth clocks rings, a tree tries to grow. As for the lightning attempts: a
lightning attempt destroys a tree (if present) instantaneously. The difference
to the original model is that the rest of its cluster remains intact. This
implies that each site behaves independently of the other sites. Hence the
distribution of the configuration at time t converges to vy, which is the
product measure with density 1/(A 4+ 1), as ¢ — oo. This happens for
any initial configuration. Now suppose that we take a configuration z in
{0,1}% and start both the processes from that configuration. Using the
same Poisson events for both models gives us a natural coupling. Let n®(t)
denote the configuration at time ¢t when we start in configuration z for



the model with local destructions. For the original model we define w®(t)
likewise. Then from the definition of the processes it should be clear that
for all initial configurations = € {0,1}%, and all times ¢ > 0,

WP (1) < 17(D). (3.1)

Consider the interval I = [i1,4,,] C Z. We define for any configuration
z € {0,1}2,

i =4fz] = max{j <41 —2:z;+z;41 =0},
ir =tp[z] = min{j > i, +2:2;_1 +x; =0},
S](CU) = [il,iT]. (3.2)

In words, Sy(z) is the smallest set of consecutive sites containing the interval
[i1,9m], 2 consecutive zeros to the left of 47 and 2 consecutive zeros to the
right of ¢,,. In many of the applications below, I will be the set determining
some cylinder event. We prove the following lemma.

Lemma 3.1. For any A < 1, any stationary measure py and any interval
I = [i1,im], there exists a D = D(\) € (0,1) such that for all s > m +4,

pa(|S1| > s) < 2Dlmml,

Proof. Let I be as in the statement of the lemma. Let u) be a stationary
measure and let z € {0,1}%. Let P, denote the measure governing the
Poisson clocks. By (3.1), for any ¢ > 0,

PAlS1(@®(#))] = s) < PA(IS1(n*(8))] = 3) (3-3)

This inequality remains valid if we integrate over x with respect to py. The
left side of (3.3) is then simply px(|S7| > s). Recall that the n-process
converges to its stationary measure vy for every initial configuration, when
we take the limit £ — oo. Taking this limit, we obtain

pa([Stl = 's) < wa(IS1] = 9). (3-4)

Suppose the size of St is at least s. Then there are at least |(s—m)/2] sites
in St directly to the right of i, (or directly to the left of i1). These sites can
be divided into disjoint pairs, where each pair, apart from the right-most



(or left-most respectively), has at least one occupied site, by definition of
S7. This gives us

A2\ L(s—m)/4]-1
> < — (——
uA(ISi] > 8) < 2(1 (755) ) . (3.5)
Combining (3.4) and (3.5) proves the lemma. O

Note that in the proof above, we did not need translation invariance for pu).

Remark 3.2. An immediate consequence of Lemma 3.1 is that occupied
clusters are a.s. finite.

Lemma 3.1 gives us the tools to bound influences from far away. When
the initial configuration is drawn from u)y, we define P** to be the measure
governing this initial configuration and the Poisson clocks, hence determin-
ing the forest-fire process. Recall that w(t) denotes the state of the model
at time t. To make the statement at the beginning of this section precise we
prove the following;:

Proposition 3.3. Let I be an interval [i1,im] C Z and let t > 0. Recall the
definition of St(w) and let M (I,w(0),t) denote the number of Poisson events
occurring in the set S;(w(0)) in the time-interval [0,t]. For any stationary
measure uy and interval I,

P (M (I,w(0),t) > 1) = o(t),
ast ] 0.

Proof. For fixed sets Sy it is immediately clear that the probability of two
or more Poisson events in S7 is o(t) as ¢ | 0. But now S; is random;
at this point we use that the size distribution of S7 decays exponentially.
Further, we use that for a Poisson process X (t) with EX (t) = at we have
P(X(t) > 1) < (at)?

P (M(I,w(0), 1) > 1)
< Y PRM(T,w(0),t) > 1] [Sr(w(0))] = §)pa(|Sr(w(0))] = 5)

j>m+4
< Y PO+ D u(IS1(w(0)] = 4).
j>m+4
The sum over j is finite by Lemma 3.1, which proves the proposition. O



4 Proof of the main result

The proof of our main result is based on ideas from [7]. We introduce
some notation and state some lemmas first. From now, let A > 0 be fixed
and suppose that u) is a stationary translation-invariant measure. In what
follows, when we write o(t), we implicitly take the limit ¢ | 0.

In the proof of the main theorem, we need to bound the probability of
the event that a tree on the edge of a cluster is burnt. The next lemma shows
that although large clusters may arise, the probability that a boundary tree
is on fire is not that large.

Define for ¢ € Z and t > 0,

B (t) = {wi(0) = 0,wi41(0) = L, wit1(t) = 0},
Bf(t) = {wi(O) = O,Ldi,l(()) = 1,wi,1(t) = 0}.

Note that by translation invariance, the probability of Bi+ (t) does not de-
pend on ¢. The same holds for B; .

Lemma 4.1. Let B} (t), B; (t) be defined as above. Then for all i and all
t>0,

P (B (t)) At +oft),

At + o(t).

Proof. We prove the lemma only for B;"(t). The proof for B; (t) is com-
pletely similar. Note first that we can bound the possibility that more than
one Poisson event influences the event B;" (). This will give us for example,
that the event that the site 7+ 1 is occupied, becomes vacant, again becomes
occupied and again vacant (which is in principle possible by the definition
of B (t)) has probability o(t). We take I = {i + 1} and apply Proposition
3.3:

PBI(1) < PMB () NM({i+1}w(0),t) <1)+o(t). (41)

On {M({i + 1},w(0),t) < 1}, only Poisson events inside Sy; 1} can cause
B;"(t) to occur: the two zeros on the left and right boundary of Stit1y (and
the fact that at most one of these turns into a one) prevents fires from the
outside to reach ¢ 4+ 1. For the same reason,

PR (B (1) N M({i+ 1},w(0),¢) = 0) = 0. (4.2)



Now, using that the cluster of site i is finite a.s. we consider all possibilities
that cause B; (t) to occur. Let L; denote the event that site j is hit by
lightning in the time interval [0, ¢]. We get

P (B}t (t) N M({i + 1}, w(0), ) = 1)

< Y P (wi(0) = 0,wis1(0) = -+ = wis;(0) = 1 and Lj)
=0
= Y mwj=0w 1= =w=1)P"(L)
=0
< pa(D)AE+o(t) < A+ oft). (4.3)

Once more, we have used translation invariance in the equality above. Com-
bining (4.1), (4.2) and (4.3) proves the lemma. O

We now concentrate on what happens in a finite string. Define

n—1
Qnlk] = {weQ:) w =k},
=0

We consider the event that in a string of n consecutive sites there are exactly
k occupied sites, and the ends of the string are empty. We define for k <
n—1,

Af = {w e Qu[k] s wo = w1 = 0}. (4.4)

Note that we are particularly interested in A7, ,. The proof of the main
theorem is based heavily on the following relation for the AX’s.

Lemma 4.2.

() — 2O <, (45)
n—k—1 _ 4)\n
) - Al < (4.6)

Note that the event A contains only configurations that are equal zero
to on [0,n — 1].

Proof. For any measurable A C {0,1}” and any ¢ > 0, we have

PEX(w(0) € A) =P (w(t) € A),



and hence
P w(0) ¢ A w(t) € A) = P (w(0) € A,w(t) ¢ A). (4.7)

The equation (4.7) is called the steady-state equation. We refer to the Lh.s.
of (4.7) as ‘going in’ side and to the r.h.s. as ‘going out’ side, for obvious
reasons.

We first show (4.5). To this end, we apply (4.7) to A = {w € Q :
wp=wy = =wp9 = 0,wp,_1 = 1}. Now on the ‘going in’ side of the
steady-state equation for A we get the following contributions.

e At time 0 we see the configuration {wp(0) = --- =wp_1(0) =0} and a
tree grows at site n — 1 in the time interval [0, t].

e We see a configuration at time 0 where there is a cluster of trees with
rightmost site between 0 and n — 3 and this cluster is burnt during the
time interval [0,¢]. This has probability at most A(n — 2)t + o(¢) by
Lemma 4.1.

All other possibilities have probability o(t) by Proposition 3.3. This gives
us a contribution of at least

pa(wo = -+ = wp—1 = 0)t + o(t)
and at most
pr(wo =+ =wp_1 = 0)t + (n — 2)At + o(t). (4.8)

On the ‘going out’ side of the steady-state equation we get contributions
from growing trees and fires as well.

e A tree grows on one of the vacant sites, which gives us a factor (n —
Dpa(wop =+ =wp—92=0,w,—1 = 1)t + o(t),

e The tree on site » — 1 is burnt. This gives us a contribution of exactly
PHA(B;_4(t)), which is at most At + o(t) by Lemma 4.1.

All other possibilities have probability o(t) by Proposition 3.3. This gives
us a contribution for the ‘going out’ side of at least

(n—=1Dpr(wo =+ =wn—2 =0,wn_1 = 1)t + o(t)
and at most
(n—Dpr(wo =" =wn—2=0,wp—1 = 1)t + At +0(t). (4.9)



Combining (4.7), (4.8) and (4.9) we obtain
‘,LLA(wO = =wp_1=0)t—(n—1Dur(wp =+ =wp_2=0,wp_1 = l)t‘ < Ant+o(t).

We divide by ¢ and subsequently let ¢ | 0:

‘,uk(wo = =wp_1=0)—(n—Dpur(wop =+ =wp—2=0,w,_1 = 1)‘ < \n.
(4.10)
Note that
palwo = =wp 2=0,wp 1 =1) + p(wo=-=wp 1=
= pr(wop =+ =wp_2=0).(4.11)

Now, combining (4.11) with (4.10) we obtain

n—1

pa(A) — pA(An_1)| <A (4.12)
Iterating (4.12) we get (4.5).

Now take n—1 > k > 0. As before, we consider the steady-state equation
(4.7), but now for the event AX to prove (4.6). Again we ignore multiple
Poisson events using Proposition 3.3.

On the ‘going in’ side of the equation we obtain the following contribu-
tions.

n

e A tree grows in a configuration with k—1 trees. There are n—2—(k—1)
possible locations; recall that there are no trees allowed at site 0 or
n — 1 in a configuration in A%.

e The possibility to get into a configuration in A* by a fire is contained
in UP—2(B;"(t) U B;,,(t)) so applying Lemma 4.1 gives a contribution
of at most 2(n — 1)At + o(t).

The total contribution on the ‘going in’ side is at least

(0 — k= Dpa (A + (1)
and at most
(n —k—1Dpx(AF "Dt +2(n — )Mt + o(t). (4.13)
On the ‘going out’ side of the equation we get the following contributions.
e In a configuration in A¥ a tree grows. There are n — k possible loca-

tions.
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e The possibility to leave a configuration in A* by a fire is contained in

UL g (B (U B;_ 4(t)). As before, Lemma 4.1 bounds this probability

by 2(n — 2)At + o(t).
The total contribution on the ‘going out’ side is at least
(n — k)ur(AR)t + o(t)

and at most
(n — k) ux(A5)t + 2(n — 2)Xt + o(t). (4.14)

Combining (4.7), (4.13) and (4.14) and subsequently dividing by ¢ (and
n — k) we obtain as ¢ | 0,

4(n —1)A

_n—k—l
Ea—— U O n—Fk

—k
This proves (4.6). O

pa(A%) (A1) <

Now we are ready for the proof of Theorem 2.1.

Proof. [Thm 2.1] Note that {w € Q : wg = O,w1 = -+ = wyp, = L,wpy1 =
0} = Ay, 5. We apply (4.5) and (4.6) repeatedly to obtain
12 n  ux(0) nA SR 4n
AP 2 A ‘ <
‘“A( n+2) 23 n+1ln+2 _n+1+j§_:1 i
which tells us
HA(AT ) — “A—(O)‘ < (4nflog(n + 1) + 1] + 1)A.
(n+1)(n+2) —

The question is now for which cluster sizes the error can be bounded uni-
formly in A. Using (1.1), the relative error is

(n+1)(n+2)4n[ln(n+ 1) + 1]+ 1)A
12 (0)

Now choose a < 1/3 and suppose that n < s The right hand side is

max*

dominated by as3®-1In(1/)). By definition of $,,4. (equation (1.2)) this

max
dominating factor goes to zero as A | 0 and this proves Theorem 2.1. O

~ n?In(n)X1n(1/)).

11



5 Existence of a stationary translation-invariant
measure

Proposition 5.1. For the forest-fire model with parameter A on Z, there
exists at least one stationary, translation-invariant measure.

Since the forest-fire process is not a Feller process, the proposition does
not follow from the standard theory, see for example [6].

Proof. Fix A > 0. Let w(-) denote the forest-fire process on Z. Let k € N
and let w®)(.) be an auxiliary forest-fire process where on [k, k] we have
the dynamics of the ordinary forest-fire process, but with the understanding
that we consider sites —k and k to be neighbours i.e., we consider the forest-
fire process on a one-dimensional torus embedded in Z. For instance if —k
and k are both occupied we consider them to be in the same occupied cluster
for this process. Outside the interval [—k, k] nothing happens, i.e. all sites
are kept vacant.

Essentially, w(*) is just the forest-fire process on a circle with 2k + 1
sites. This is a Markov chain with a unique stationary distribution which
we denote by p(¥). Note that by the above description,

1® (w® = 0) =1 for all |i| > k.

7

By standard arguments the sequence ,u(k), k=1,2,... has a weakly conver-
gent subsequence p(%) i =1,2.... We denote its limit by x. By the above
mentioned correspondence to circles, where we have rotation invariance for
,u(k), k > 0, it follows immediately that u is translation invariant. We will
show that p is a stationary distribution for the process w(-).

First some notation. Let v be a distribution on {0,1}%, assigning in-
finitely many zeros to both half-lines (so that the process starting in a
configuration drawn from this distribution exists). Let P" denote the law
governing all Poisson processes and the initial configuration. In particular,
PY(w(t) € -) is the distribution of the configuration at time ¢ for the forest-
fire process starting in a configuration drawn from v. Similarly, when v(k)
is a distribution on {0, 1}[=%* we write P*(*)(w(®)(t) € -) for the auxiliary
process w(*), starting in a configuration drawn from v/(k). For a distribution
v on {0,1}” and a subset J of Z we denote by v; the restriction of v to J,
i.e. its projection on J.

To show that u is a stationary distribution for the process w(-), it is
sufficient to show that for all cylinder events A and all ¢ < 1

Ph(w(t) € A) = p(A). (5.1)

12



So let A be a cylinder event and ¢ < 1. Let I = [i1, i,] be an interval such
that A is determined by the configuration on I. Take positive integers L and
N. We define J = J(L) = [i1 — L, iy, + L] and let k > max{|i; — L|, |ém+ L|}.
If the ordinary forest-fire process w(-) and the auxiliary process w®(-) start
with initial configurations which agree on J and we use the same Poisson
clocks, then the only way to have disagreement between w(t) and w*)(t) on
I is by influences (fires) from outside J. These fires can only reach I if all
sites in the interval [i1 — L, ;) that were vacant at time 0, become occupied
before time ¢, or if all sites in the interval (i,,, %, + L] that were vacant at
time 0 become occupied before time ¢. If in both intervals, the number of
zeros is at least N, the above event clearly has probability at most 2tV.

Now we couple the process w(+) with initial distribution p and the auxil-
iary process w(k)(-) with initial configuration x(*¥) by using the same Poisson
clocks and by optimally coupling . ; and uf,k). Using such coupling and the
argument from the previous paragraph, gives

PH(w(t) € A) — u("’)(A)‘ - ‘P“(w(t) e A) — P (WP (1) € A)

dy (i, 1)) + 26V + p(B1(L, N)), (5.2)

IN

where dy denotes variational distance and where
Bi(L,N) = {< N vacant sites in [i; — L,41) or in (¢, im + L]}.

Now let £ — oo along the subsection mentioned in the beginning of this
section. Since p¥) converges weakly to p along that subsequence, (5.2) then
becomes

PHw(t) € A) — u(A)| < 2tV + u(Br(L, N)). (5.3)

Now we first let L — oo. By exactly the same reasons as in the beginning
of Section 3, p is dominated by a product measure with a positive density
of zero. Hence, the last term in (5.3) goes to zero as L — oo. Finally, we
let N — oo to finish the proof.

O]

It has been pointed out by F. Redig, that the proposition may follow from
the more general theory of ‘almost Feller’ processes, a notion developed by
him and C. Maes.
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