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networks

ABSTRACT
Bandwidth-sharing networks as considered by Massoulie & Roberts provide a natural modeling
framework for describing the dynamic flow-level interaction among elastic data transfers.
Although valuable stability results have been obtained, crucial performance metrics such as
flow-level delays and throughputs in these models have remained intractable in all but a few
special cases. In particular, it is not well understood to what extent flow-level delays and
throughputs achieved by standard bandwidth-sharing mechanisms such as alpha-fair strategies
leave potential room for improvement. In order to gain a better understanding of the latter issue,
we set out to determine the scheduling policies that minimize the mean delay in some simple
linear bandwidth-sharing networks. While admittedly simple, linear networks provide a useful
model for flows that traverse several links and experience bandwidth contention from
independent cross-traffic. Even for linear topologies it is rarely possible however to explicitly
identify optimal policies except in a few limited cases with exponentially distributed flow sizes.
Rather than aiming for strictly optimal policies, we therefore focus on a class of relatively simple
priority-type strategies that only separate large flows from small ones. To benchmark the
performance of these strategies, we compare them with Proportional Fair as the prototypical
alpha-fair policy, and establish that the mean delay may be reduced by an arbitrarily large factor
when the load is sufficiently high. In addition, we show the above strategies to be asymptotically
optimal for flow size distributions with bounded support. Numerical experiments reveal that even
at fairly moderate load values the performance gains can be significant.
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Abstract

Bandwidth-sharing networks as considered by Massoulié & Roberts provide a natural
modeling framework for describing the dynamic flow-level interaction among elastic data
transfers. Although valuable stability results have been obtained, crucial performance met-
rics such as flow-level delays and throughputs in these models have remained intractable in
all but a few special cases. In particular, it is not well understood to what extent flow-level
delays and throughputs achieved by standard bandwidth-sharing mechanisms such as α-fair
strategies leave potential room for improvement.
In order to gain a better understanding of the latter issue, we set out to determine the
scheduling policies that minimize the mean delay in some simple linear bandwidth-sharing
networks. While admittedly simple, linear networks provide a useful model for flows that
traverse several links and experience bandwidth contention from independent cross-traffic.
Even for linear topologies it is rarely possible however to explicitly identify optimal policies
except in a few limited cases with exponentially distributed flow sizes. Rather than aiming
for strictly optimal policies, we therefore focus on a class of relatively simple priority-type
strategies that only separate large flows from small ones. To benchmark the performance of
these strategies, we compare them with Proportional Fair as the prototypical α-fair policy,
and establish that the mean delay may be reduced by an arbitrarily large factor when the
load is sufficiently high. In addition, we show the above strategies to be asymptotically op-
timal for flow size distributions with bounded support. Numerical experiments reveal that
even at fairly moderate load values the performance gains can be significant.

1 Introduction

Over the past several years, the processor-sharing discipline has emerged as a useful paradigm
for evaluating the flow-level performance of elastic data transfers competing for bandwidth on
a single bottle-neck link, see for instance [1, 12]. Bandwidth-sharing networks as considered
by Massoulié & Roberts [10] provide a natural extension for modeling the dynamic interac-
tion among competing elastic flows that traverse several links along their source-destination
paths. Bonald & Massoulié [2] showed that a wide class of α-fair bandwidth-sharing policies as
introduced by Mo & Walrand [11] achieve stability in such networks under the simple (and nec-
essary) condition that no individual link is overloaded, see also [18] for instance. While stability
is arguably the most fundamental performance criterion, flow-level delays and throughputs are
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obviously crucial metrics too. Although useful approximations, bounds [3] and heavy-traffic lim-
its [8] have been obtained, the latter performance metrics have largely remained intractable in
all but a few special cases. In particular, it is not well understood to what extent the flow-level
delays and throughputs achieved by common bandwidth-sharing mechanisms leave potential
room for improvement.
The scope for improving flow-level delays and throughputs has been the focus of intense efforts
in a somewhat distinct strand of research on size-based scheduling strategies. Several studies
have demonstrated that the Shortest Remaining Processing Time first (SRPT) discipline can
achieve significant performance improvements for heavy-tailed service requirements compared to
First-Come First-Served or Processor Sharing. The SRPT discipline has therefore been adopted
as an effective mechanism for improving the performance of web servers [4, 6]. A critical issue
associated with size-based scheduling in general and SRPT in particular, is that it relies on
(partial) knowledge of (remaining) service requirements. While such information is usually
available in web servers, it is impractical to obtain in Internet routers. An alternative strategy
which has hence been advocated for scheduling data flows is the Least Attained Service first
(LAS) discipline also known as Foreground-Background Processor Sharing [9, 13, 14, 15].
Nearly all studies on the performance gains from size-based scheduling strategies such as SRPT
and LAS have considered single-server settings. Single-server systems provide reasonable mod-
els for web servers, but they do not accurately capture scenarios where users require service
from several resources simultaneously. Such concurrent resource possession arises in the above-
mentioned bandwidth-sharing networks, where data flows traverse several links between their
source-destination pairs and consume bandwidth on each of them for the duration of the trans-
fer. (Even though individual packets travel across the network on a hop-by-hop basis, when we
view the system behavior on a somewhat longer time scale, a data flow claims roughly equal
bandwidth on each of the links along its path since the amount of buffering at intermediate
nodes is typically quite limited.)
While single-server systems provide tractable results and useful insights, they do not exhibit the
potential non-work-conserving behavior that may occur in scenarios with concurrent resource
possession. There are various indications that priority mechanisms in such scenarios may cause
starvation effects with possibly severe consequences. For example, Yang & De Veciana [21, 22]
demonstrated that SRPT scheduling in network scenarios may yield considerable performance
improvements in terms of mean delays and throughputs, but also observed that flows on long
routes with large sizes may sustain a marked performance degradation. Recently, it was shown
that size-based scheduling strategies such as SRPT and LAS may in fact unnecessarily fail to
achieve stability in network settings, even at arbitrarily low loads [20].
In conclusion, the results for size-based scheduling in single-server models do not provide a
good indication for the scope for improvement over common bandwidth-sharing mechanisms
in network scenarios. In order to gain better insight into the latter issue, we will set out to
determine scheduling policies that minimize the mean delay in bandwidth-sharing networks with
a linear topology. While admittedly simple, linear networks provide a useful model for flows
that traverse several links and experience bandwidth contention from independent cross-traffic.
Even for linear topologies, however, it is barely feasible to explicitly obtain optimal policies,
except in a few restrictive cases with exponentially distributed flow sizes [19].
In case of general flow size distributions, optimal policies may be exceedingly complicated or
even totally intractable. Rather than seeking strictly optimal policies, we will therefore focus
on a class of relatively simple priority-type strategies that only distinguish small and large flows
on each of the routes. We will examine the performance of these strategies in heavy-traffic con-
ditions where each of the links is near-critically loaded. Although the link utilization may not
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always be that high, a heavy-traffic regime is relevant to consider because at low load the perfor-
mance will tend to be satisfactory no matter what. Also, even when the typical link utilization
is relatively low, the load might fluctuate over time and exhibit significant surges, causing se-
vere congestion periods or even temporary overload conditions. In particular, we compare the
performance of the above strategies with that of Proportional Fair as the prototypical α-fair
policy, and demonstrate that the reduction in the mean flow delay and thus the improvement
in user throughput becomes arbitrarily large as the load approaches the critical value. For flow
size distributions with bounded support, we show the above strategies in addition to be asymp-
totically optimal. Numerical experiments indicate that even at reasonably moderate load values
the performance gains can be substantial.
As a final comment, it is worth emphasizing that there is a fundamental trade-off between
achievable performance and implementation complexity. Although promising methods for ob-
taining flow size estimates and supporting flow-aware scheduling have been proposed, the actual
implementation of size-based scheduling strategies in high-speed routers arguably involves ma-
jor challenges. In the present paper we do not aim to pursue implementation issues in any
depth, but rather focus on deliberately simple strategies in an effort to evaluate the scope for
performance gains. Gaining quantitative insight into the achievable improvements in an ideal
situation is meant to serve as first step towards determining whether the potential benefit is
sufficient to even bother contemplating implementation aspects.
The remainder of the paper is organized as follows. In Section 2 we provide a detailed model
description and introduce notation. We gather some useful preliminaries in Section 3. In Sec-
tion 4 we develop a heavy-traffic analysis of a single-node system in order to illuminate the key
observations and mathematical constructs in the simplest possible context. In Section 5 we then
turn the attention to linear bandwidth-sharing networks as described above. Subsection 5.1
deals with the case where all the flows on the long route are granted priority over the large flows
on the short routes. In Subsection 5.2 we address the case where the flows on the short routes,
when simultaneously present, are favored over the large flows on the long route. In Section 6
we present the numerical experiments that we conducted to validate the analytical findings and
in particular compare the performance of the above strategies with that of a Proportional Fair
policy.

2 Model description and notation

We consider a linear network with L nodes, see Figure 1. For convenience, we assume each of the
nodes to have a unit service rate. In order to present the results in the simplest possible setting,
we focus on a traffic scenario with L + 1 classes, where class i requires service at node i only,
i = 1, . . . , L, while class 0 requires service at all L nodes simultaneously. Class-i users arrive
according to a Poisson process of rate λi, and have generally distributed service requirements
Bi with distribution function Bi(x) = P(Bi < x), i = 0, . . . , L. Define Mi := inf{m : P(Bi >
m) = 0} as the maximum possible value of Bi, with Mi = ∞ in case Bi has infinite support.
Throughout, we assume E(B2

i ) < ∞. Denote by pi := λi/λ the fraction of class-i users, with
λ =

∑L
i=0 λi the total arrival rate. Let the traffic load of class i be ρi := λiE(Bi), thus the load

at node i is ρ0 + ρi.
Denote by Π the class of all (possibly preemptive) policies. For a given policy π ∈ Π, denote
by Nπ

i (t) the number of class-i users at time t and by W π
i (t) their total residual amount of

work. Define Nπ(t) :=
∑L

i=0 Nπ
i (t) as the total number of users in the system at time t.

Denote by Nπ
i,<mi

(t) and Nπ
i,≥mi

(t) the number of class-i users with original service requirement
smaller than mi and larger than or equal to mi, respectively. Similarly, we define W π

i,<mi
(t) and
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node 1 node 2 node 3 node L

Figure 1: Linear network with L nodes.

W π
i,≥mi

(t) as the amount of work consisting of class-i users with original service requirement
smaller than mi and larger than or equal to mi, respectively. Denote by ρi,mi := λiP(Bi <

mi)E(Bi|Bi < mi) = λi

∫ m−
i

0 ydBi(y) the load composed of class-i users with original service
requirement smaller than mi. We further define Nπ

i , W π
i , Nπ, Nπ

i,<mi
, Nπ

i,≥mi
, W π

i,<mi
and

W π
i,≥mi

as random variables with the corresponding steady-state distributions (when they exist).
Throughout, we assume ρ0 +ρi < 1 for all i = 1, . . . , L, which are obviously necessary conditions
for stability. In fact, these are known [2] to be sufficient for the family of α-fair bandwidth-
sharing policies as introduced by [11], provided α > 0. (For conciseness, these conditions will
be referred to as the ‘standard’ conditions.) As mentioned earlier, the flow-level performance of
α-fair policies is in general intractable. In the special case of α → 1, i.e., Proportional Fairness
(PF), however, the joint distribution of the numbers of users of the various classes in the above-
described network has a product-form and is insensitive to the service requirement distributions,
see [10]. In particular, the mean numbers of users are given by E(NPF

0 ) = ρ0

1−ρ0
(1+

∑L
i=1

ρi

1−ρ0−ρi
)

and E(NPF
i ) = ρi

1−ρ0−ρi
for i = 1, . . . , L. Thus the mean total number of users is

E(NPF ) =
1

1− ρ0

(
ρ0 +

L∑

i=1

ρi

1− ρ0 − ρi

)
. (1)

3 Preliminaries

In the remainder of the paper we seek to identify policies that minimize the mean total number of
users in the system. Because of Little’s law, minimizing the mean number of users is equivalent to
minimizing the mean sojourn time, and thus also equivalent to maximizing the user throughput
defined as the ratio between the mean service requirement and the mean sojourn time. We
distinguish the following classes of policies.

• Π̄ ⊆ Π is the class of non-anticipating policies: π̄ ∈ Π̄ if π̄ uses no knowledge of the
(remaining) service requirements.

• Π̂ ⊆ Π is the class of work-conserving policies: π̂ ∈ Π̂ if π̂ utilizes the full service rate at
any node i that is backlogged.

• Π∗ ⊆ Π̂: π∗ ∈ Π∗ if π∗ gives preemptive priority to class 0 whenever it is backlogged.
Otherwise, all other classes with a backlog are served simultaneously.

• Π∗∗ ⊆ Π̂: π∗∗ ∈ Π∗∗ if π∗∗ serves classes i = 1, . . . , L whenever they are all simultaneously
backlogged. Otherwise class 0 is served. When class 0 is non-backlogged, all other classes
with a backlog are served simultaneously.

Observe that under any policy π̂ ∈ Π̂ the total workload in any node i behaves as that of a
single work-conserving server offered traffic from classes 0 and i. It immediately follows that any
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policy π̂ ∈ Π̂ ensures stability under the ‘standard’ conditions mentioned earlier. In addition,
the Pollaczek-Khintchine formula gives

E(W π̂
0 ) + E(W π̂

i ) =
λ0E(B0

2) + λiE(Bi
2)

2(1− ρ0 − ρi)
, (2)

for any policy π̂ ∈ Π̂. It further follows that any policy π̂ ∈ Π̂ minimizes the total workload in
any node i at every point in time. More specifically, if W π̂

0 (0) + W π̂
i (0) ≤st W π

0 (0) + W π
i (0) for

some arbitrary policy π ∈ Π, then for all t ≥ 0

W π̂
0 (t) + W π̂

i (t) ≤st W π
0 (t) + W π

i (t), (3)

with ≤st denoting the standard stochastic ordering.
Note that the definition of the policies in Π∗ and Π∗∗ only pertains to how the service rate is
allocated among the various classes, and not to the scheduling among users within classes. Since
Π∗, Π∗∗ ⊆ Π̂, all policies in these two classes satisfy inequality (3) for all i = 1, . . . , L.
In addition, under a policy π∗ ∈ Π∗, class 0 does not notice the presence of other classes. The
mean amount of class-0 work is therefore given by the Pollaczek-Khintchine formula:

E(W π∗
0 ) =

λ0E(B0
2)

2(1− ρ0)
.

Substituting the latter equation in (2),

E(W π∗
i ) =

λ0E(B0
2) + λiE(Bi

2)
2(1− ρ0 − ρi)

− λ0E(B0
2)

2(1− ρ0)
.

For a policy π∗∗ ∈ Π∗∗ there are no closed-form expressions available for the individual mean
workloads of the various classes. For L = 2, determining these amounts to solving a boundary-
value problem [5]: the service rate allocated to any class i depends on the workloads of the
other classes. However, we can compare (sample-path wise) the workloads of the various classes
under different policies. Call W π

0,j,k(t) := W π
0 (t) + W π

j (t) + W π
k (t) the aggregate workload in

nodes j and k. Note that the aggregate workload differs from the sum of the workloads in the
two nodes as the workload of class 0 is only counted once. Besides minimizing the workload
in any individual node at every point in time, a policy π∗∗ ∈ Π∗∗ also minimizes the aggregate
workload in at least one pair of nodes (these need not always be the same pair of nodes) as is
formalized in the following lemma.

Lemma 3.1 Let π∗∗ ∈ Π∗∗ and π ∈ Π. If for t = 0 there exist nodes j and k with j 6= k, such
that

W π∗∗
0,j,k(t) ≤ W π

0,j,k(t) (4)

and the arrival and service requirement sequences are identical for both policies, then, for any
t > 0, there exist j and k (not necessarily the same as at time t = 0) with j 6= k such that (4)
holds.

For L = 2, the above lemma implies that the class of policies Π∗∗ stochastically minimize the
total workload in the system. We note that there is no policy that achieves the same for L > 2.
The proof of Lemma 3.1 can be found in [19].

The above results hold for arbitrary service requirement distributions and scheduling disciplines
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within classes. In the remainder of the section we focus on the particular case of exponentially
distributed service requirements, with µi = 1/E(Bi), and restrict the attention to the class
of non-anticipating policies Π̄. In this case, scheduling within classes (without knowledge of
the actual service requirements) does not affect the distribution of the numbers of users. We
will show that, roughly speaking, for relatively ‘large’ values of µ0, i.e., when class-0 users are
relatively small, policies in either class Π̄ ∩ Π∗ or Π̄ ∩ Π∗∗ minimize the mean number of users
at every point in time, among all policies in Π̄.
To put our results into perspective, we recall that the ‘µ-rule’, i.e., granting priority to the user
with the highest service rate, is known to stochastically minimize the number of users [16] in a
single-server system. The rationale behind this rule is that it maximizes the departure rate at
all times. In the present network context, besides trying to maximize the total departure rate,
we must also take into account that when serving class i 6= 0 while another class j 6= 0 is non-
backlogged but class 0 is backlogged may leave node j underutilized. For example, if µi > µ0

for all i = 1, . . . , L, then giving priority to classes i = 1, . . . , L myopically maximizes the total
departure rate, but such a discipline unnecessarily causes instability [20] when ρ0 >

∏L
j=1(1−ρj).

In general, there can be a trade-off between maximizing the total departure rate and using the
full capacity in each node whenever that node is backlogged. It is precisely in those cases where
these two objectives are compatible, that we can identify relatively simple policies that minimize
the total number of users.
The following two propositions [19] state that, in certain cases, policies in either class Π∗ or
Π∗∗ stochastically minimize the total number of users at every point in time among all non-
anticipating policies.

Proposition 3.2 Let π∗ ∈ Π̄ ∩ Π∗. Assume W π∗
i (0) ≤st W π

i (0) for all i. Let the service
requirements be exponentially distributed with µi = 1/E(Bi) and

∑L
i=1 µi ≤ µ0. Then Nπ∗(t) ≤st

Nπ(t) for all π ∈ Π̄ and for all t ≥ 0.

Proposition 3.3 Let π∗∗ ∈ Π̄ ∩ Π∗∗. Assume W π∗∗
i (0) ≤st W π

i (0) for all i. Let the service
requirements be exponentially distributed with µi = 1/E(Bi) and

∑L
i=1 µi ≥ µ0 ≥

∑L
i=1,i6=j µi for

all j 6= 0. Then Nπ∗∗(t) ≤st Nπ(t) for all π ∈ Π̄ and for all t ≥ 0.

Propositions 3.2 and 3.3 extend to the case where class-i users have hyperexponentially dis-
tributed service requirements with parameters pij ,

∑Ki
j=1 pij = 1 and µij , j = 1, . . . , Ki. Opti-

mality in expectation can then be established when either
∑L

i=1 µmax
i ≤ µmin

0 or
∑L

i=1 µmin
i ≥

µmax
0 and µmin

0 ≥ ∑L
i=1,i6=j µmax

i , for all j 6= 0, with µmin
i = minj=1,...,Ki µij and µmax

i =
maxj=1,...,Ki µij .
The above results provide a strong notion of optimality, but involve correspondingly stringent
assumptions. In the next sections, we will seek to find policies that are optimal under significantly
milder conditions, although only in a suitable asymptotic sense. In particular, we will identify
a wide class of policies that are optimal in a heavy-traffic regime. We will compare these
policies with Proportional Fairness (PF) as a prototypical α-fair policy to assess the potential
performance improvement, and demonstrate that the relative improvement can be arbitrarily
large.

4 Single-node system in heavy traffic

Although the issue of concurrent resource possession only arises in network scenarios, we first
present a heavy-traffic analysis of a single-node system in order to illustrate the key concepts
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and insights in the simplest possible context. In the next section we will return to the linear
network model.
Consider a single-server system, where users arrive according to a Poisson process of rate λ and
have service requirements B with B(x) := P(B ≤ x). Denote the load by ρ := λE(B) < 1 and
define ρm := λ

∫ m−
0 ydB(y). For every policy π, the mean workload in the system obeys the lower

bound E(W π) ≥ λE(B2)
2(1−ρ) , assuming E(B2) < ∞, with equality when policy π is work-conserving.

We analyze a heavy-traffic regime where the system is critically loaded, i.e., λ ↑ λ∗ := 1
E(B) (so

ρ ↑ 1 as ρ implicitly depends on λ). Motivated by classical heavy-traffic theory, we will consider
the workload and number of users scaled by 1− ρ.
In order to improve the overall user performance, we can exploit the variability in service de-
mands, and give precedence to small users over large ones. Specifically, we introduce a class
of policies Πm ⊆ Π̂\Π̄ which use a simple threshold m to determine whether a user is small or
large, and give preemptive priority to users with (original) service requirement smaller than m.
Among users with an (original) service requirement larger than m, service is non-preemptive,
i.e., the service of a user of size larger than m cannot be preempted by the service of another
user of size larger than m.
Under policies in the class Πm, the small users do not notice the presence of the large users,
and experience similar performance as in a system without any large users. Now observe that
the load in the latter system is ρm, and remains bounded away from 1, even when the load ρ
approaches 1 as λ ↑ λ∗ (assuming that there are in fact large users, i.e., P(B < m) < 1).
Hence, the small users are ‘shielded’ from the heavy-traffic conditions, as is formalized in the
next proposition, which shows that the number of small users remains bounded as the load
approaches the capacity.

Proposition 4.1 For a policy πm ∈ Πm with P(B < m) < 1, it holds that E(Nπm
<m) = O(1) as

λ ↑ λ∗.

Proof: Consider a policy πm ∈ Πm. Users of size smaller than m do not notice the presence of
users of size larger than m. Therefore, E(W πm

<m) = λP(B<m)E(B2|B<m)
2(1−ρm) ≤ λm2

2(1−ρm) . The condition
P(B < m) < 1 is equivalent to ρm < ρ, so limλ↑λ∗ ρm < 1. Hence, E(W πm

<m) = O(1) as λ ↑ λ∗.
Now suppose that service is non-preemptive among users of size smaller than m as well (this
assumption is not essential, see Remark 4.2 below). Then (E(Nπm

<m)−1)E(B|B < m) ≤ E(W πm
<m),

which implies E(Nπm
<m) = O(1) as λ ↑ λ∗. ¤

Remark 4.2 The assumption in the proof of Proposition 4.1 that service is non-preemptive
among users of size smaller than m, is not crucial. Instead, we could use that the preemptive
Longest Remaining Processing Time (LRPT) discipline maximizes sample-path wise the number
of users among all work-conserving policies. This follows from the fact that under LRPT all
users leave together at the end of the busy period. Since users of size smaller than m receive
preemptive priority under policy πm, their mean number can be bounded by the mean number
of users under LRPT in a system with only users of size smaller than m. The latter is given
by E(NLRPT

<m ) = λP(B < m)(E(B|B<m)
1−ρm

+ λP(B<m)E(B2|B<m)
2(1−ρm)2

), see [7]. The result now follows by
noting that limλ↑λ∗ ρm < 1.

Proposition 4.1 implies that the scaled mean number of small users tends to zero in heavy traffic.
The number of large users can be bounded in terms of the total workload in the system. Hence,
we obtain an upper bound for the scaled mean total number of users in the system, as provided
in the next proposition.
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Proposition 4.3 For a policy πm ∈ Πm with P(B < m) < 1, it holds that limλ↑λ∗(1 −
ρ)E(Nπm) ≤ λ∗E(B2)

2m .

Proof: Consider a policy πm ∈ Πm. Note that E(W
πm

≥m) ≥ m(E(N
πm

≥m) − 1), because service is
non-preemptive among users of size larger than m. Proposition 4.1 implies in particular that
the scaled mean number of users smaller than m converges to zero. This yields limλ↑λ∗(1 −
ρ)E(Nπm) = limλ↑λ∗(1 − ρ)E(Nπm

≥m) = limλ↑λ∗(1 − ρ)(E(Nπm
≥m) − 1) ≤ limλ↑λ∗(1 − ρ)

E(W πm
≥m)

m ≤
limλ↑λ∗(1− ρ)E(W πm )

m = limλ↑λ∗(1− ρ) λE(B2)
2(1−ρ)m = λ∗E(B2)

2m . ¤

4.1 Comparison with Processor Sharing

The next proposition provides a comparison of the policies in the class ∪mΠm with the Processor-
Sharing (PS) discipline, which corresponds to the PF policy in a single-node system.

Proposition 4.4 Let πm ∈ Πm. When B has infinite support, we have

lim
m→∞ lim

λ↑λ∗
E(Nπm)
E(NPS)

= 0.

When B has finite support, we have

lim
m↑M

lim
λ↑λ∗

E(Nπm)
E(NPS)

≤ λ∗E(B2)
2M

.

Proof: It is well-known that E(NPS) = ρ/(1 − ρ), so limλ↑λ∗(1 − ρ)E(NPS) = 1. Invoking
Proposition 4.3, we obtain limλ↑λ∗

E(Nπm )
E(NPS)

≤ λ∗E(B2)
2m for any m such that ρm < ρ, which proves

both assertions. ¤

In case B has infinite support, it may be deduced that a policy from the class ∪mΠm can
outperform PS by an arbitrarily large factor. In case B has finite support, the ratio λ∗E(B2)/M
can be arbitrarily small for a wide range of service requirement distributions since E(B2) ≤
1
λ

[
kρk + M(1− ρk)

]
. These two findings may be intuitively explained as follows. Under the PS

discipline, the total workload is distributed across users of various sizes, in proportion to their
share in the total load, and hence the total number of users grows linearly with the workload as
λ ↑ λ∗. In contrast, under policies in the class ∪mΠm the overwhelming fraction of the workload
is contributed by users of size larger than m as λ ↑ λ∗. Thus, as the value of m increases, the
entire workload is concentrated in fewer and fewer users compared to the PS discipline.

Remark 4.5 The assumption that service is non-preemptive among users of size larger than m
under policies in the class Πm, is not essential. For example, for the first statement of Proposi-
tion 4.4 to hold, it is sufficient that limm→∞ limλ↑λ∗

E(W )
E(Nπm

≥m)
= ∞, which is valid under consid-

erably milder assumptions. Then we have

lim
m→∞ lim

λ↑λ∗
E(Nπm

≥m)
E(NPS)

= lim
m→∞ lim

λ↑λ∗
E(Nπm

≥m)
E(W )

E(B2)
2E(B)

= 0,

since E(W ) = E(B2)
2E(B)E(NPS).
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Remark 4.6 Note that policies in Πm rely on knowledge of the service requirements, which
is not always easy to obtain. Instead, we could consider policies that give preemptive pri-
ority to users with attained service less than m. Let π̃m be such a policy. Denote by
ρ̃m = λ

∫ m
0 ydB(y) + λmP(B ≥ m) < ρ the load due to users truncated at size m (users larger

than or equal to m contribute an amount m, rather than zero as in ρm). Let Ñ π̃m
<m and Ñ π̃m

≥m

denote the number of users with attained service less than m and larger than or equal to m,
respectively. We define W̃ π̃m

<m as the amount of work in the system consisting of users with at-
tained service smaller than m, with their service requirement truncated at size m. Furthermore,
let W̃ π̃m

≥m = W π̃m − W̃ π̃m
<m.

Since users with attained service less than m do not notice the presence of users that have
attained more than m, we can upper bound the former by considering a system where users have
service requirement min(B, m) and where we apply the LRPT discipline. This gives, E(Ñ π̃m

<m) ≤
λ(E(min(B,m))

1−ρ̃m
+ λE((min(B,m))2)

(1−ρ̃m)2
). Using the fact that limλ↑λ∗ ρ̃m < 1 for m < ∞, we obtain

limλ↑λ∗(1− ρ)E(Ñ π̃m
<m) = 0. Furthermore,

lim
λ↑λ∗

(1− ρ)E(Ñ π̃m
≥m) = lim

λ↑λ∗
(1− ρ)

E(W π̃m
≥m)

E(B|B > m)−m
≤ lim

λ↑λ∗
(1− ρ)

E(W )
E(B|B > m)−m

= lim
λ↑λ∗

(1− ρ)E(W )
P(B > m)∫∞

m P(B > y)dy
=

P(B > m)∫∞
m P(B > y)dy

lim
λ↑λ∗

(1− ρ)E(W ),

where we need E(B) < ∞ in the third equality. For service requirement distributions with

lim
m→∞

P(B > m)∫∞
m P(B > y)dy

= 0, (5)

we then obtain limm→∞ limλ↑λ∗
E(N π̃m )
E(NPS)

=
E(Ñ π̃m

≥m)

E(NPS)
= 0, i.e. these non-anticipating policies can

outperform PS by an arbitrarily large factor.
An important class of policies that satisfy condition (5) are heavy-tailed distributions,
i.e. limy→∞

P(B>y+z)
P(B>y) = 1 for any z, that have a decreasing failure rate (DFR), i.e. fB(y)

1−B(y) is
decreasing in y (with fB(·) the density function of B). Note that many heavy-tailed distributions,
such as Pareto, satisfy the DFR property. Since the service requirement distribution is of type
DFR, the function P(B>m+z)

P(B>m) is monotone in m. From the monotone convergence theorem we
then obtain

lim
m→∞

∫∞
m P(B > y)dy

P(B > m)
= lim

m→∞

∫ ∞

0

P(B > m + z)
P(B > m)

dz

=
∫ ∞

0
lim

m→∞
P(B > m + z)
P(B > m)

dz = ∞,

where the third equality follows from the heavy-tailed assumption.

4.2 Optimality properties

The next proposition shows that for any policy π, there exists a policy in ∪mΠm that performs
at least as well as π in heavy traffic. In other words, the class of policies ∪mΠm is asymptotically
optimal. This may be heuristically interpreted as follows. As mentioned above, under policies
in the class ∪mΠm the vast bulk of the workload is concentrated in users of size larger than m,
while at the same time the total workload is minimal. In case B has finite support and the
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value of m is close to M , it is not possible to achieve a smaller number of users for the given
workload. (When B has infinite support, it may be possible to reduce the number of users for
a given workload yet further, by allowing preemptive service among large users.)

Proposition 4.7 Let πm ∈ Πm. If B has finite support, then for any policy π ∈ Π,

lim
m↑M

lim
λ↑λ∗

E(Nπm)
E(Nπ)

≤ 1.

Proof: For any policy π ∈ Π,

E(Nπ) ≥ E(W π)
M

≥ λE(B2)
2(1− ρ)M

. (6)

Applying Proposition 4.3, taking m < M , we obtain

lim
λ↑λ∗

(1− ρ)E(Nπm) ≤ λ∗E(B2)
2m

. (7)

Comparing (6) and (7), and letting m ↑ M yields the assertion. ¤

5 Linear network in heavy traffic

In Section 3 we showed that in case of exponential service requirements, with relatively small
class-0 users, policies in either class Π∗ or Π∗∗ are optimal among all non-anticipating policies.
We will now explore whether, in a heavy-traffic regime, these results extend to more general
service requirement distributions, now also allowing anticipating policies.
As described in Section 2, the linear network consists of L nodes and L + 1 classes of users.
We impose that p1E(B1) = . . . = pLE(BL), so that ρ1 = . . . = ρL. We analyze a heavy-traffic
regime where each node is critically loaded, i.e., ρ0 + ρi =: ρ ↑ 1 for all i = 1, . . . , L. This is
equivalent to λ ↑ λ∗ := (p0E(B0) + piE(Bi))−1. We will consider the workload and number of
users scaled by 1− ρ.
Just like for the single-node system in Section 4, we focus on simple priority-type strategies. In
Section 5.1 we analyze a class of policies where class 0 is favored, while in Section 5.2 policies
are studied which simultaneously favor classes i = 1, . . . , L.

5.1 Favoring class 0

We first consider policies that serve either class-i users of size smaller than mi for all i = 1, . . . , L
simultaneously or class-0 users. If that is not possible, then classes i = 1, . . . , L are served, with
class-i users with service requirement smaller than mi receiving priority. Other than that, the
priority structure within each of the classes is not essential for the analysis. Service is non-
preemptive among class-i users of original size larger than mi, i.e., the service of a class-i user
of size larger than mi cannot be preempted by the service of another class-i user of size larger
than mi. We denote this class of anticipating policies by Π∗m, where m ≡ (m1, . . . , mL). We
adopt the notation m ↑ M and m → ∞ to indicate that mi ↑ Mi for all i = 1, . . . , L and
mi →∞ for all i = 1, . . . , L, respectively (order is irrelevant).
Under policies in the class Π∗m, class-0 users and small class-i users do not notice the presence
of the large class-i users, and experience similar performance as in a system without any large
class-i users. Now observe that the load at node i in the latter system is ρ0 + ρi,mi , and remains
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bounded away from 1, even when the load ρ approaches 1 as λ ↑ λ∗ (provided that there are in
fact large class-i users, i.e., P(Bi < mi) < 1). Hence, the class-0 users and small class-i users are
‘immune’ from the heavy-traffic conditions, as is proved in the next proposition, which shows
that the number of class-0 users and small class-i users remains bounded as the load approaches
the capacity.

Proposition 5.1 For a policy π∗m ∈ Π∗m with P(Bi < mi) < 1 for all i = 1, . . . , L, it holds that
E(Nπ∗m

0 ) = O(1) and E(Nπ∗m
i,<mi

) = O(1) as λ ↑ λ∗.

Proof: Consider a policy π∗m ∈ Π∗m. Class-0 users and class-i users (i = 1, . . . , L) of size
smaller than mi do not notice the presence of class-i users of size larger than mi. Policy π∗m
is work-conserving, and therefore E(W π∗m

0 ) + E(W π∗m
i,<mi

) = λ
p0E(B2

0)+piP(Bi<mi)E(B2
i |Bi<mi)

1−ρ0−ρi,mi
. The

condition P(Bi < mi) < 1 is equivalent to ρi,mi < ρi < 1 − ρ0, so limλ↑λ∗ 1 − ρ0 − ρi,mi > 0.
Hence, we conclude that

E(W π∗m
0 ) + E(W π∗m

i,<mi
) = O(1), as λ ↑ λ∗. (8)

Now suppose that service among class-0 users and class-i users of size smaller than mi, i =
1, . . . , L, is non-preemptive as well (this assumption is not essential, see Remark 5.2 below).
Then (E(Nπ∗m

0 ) − 1)E(B0) ≤ E(W π∗m
0 ) and (E(Nπ∗m

i,<mi
) − 1)E(Bi|Bi < mi) ≤ E(W π∗m

i,<mi
). To-

gether with (8) this proves both claims. ¤

Remark 5.2 In a similar way as in the single-node case, Proposition 5.1 can also be proved
without the non-preemptive assumption with regard to class-0 users and class-i users smaller
than mi. Under policy π∗m, these users do not notice the presence of class-i users of size larger
than mi. Since each node is work-conserving we can therefore upper bound the mean number of
users by considering the LRPT discipline in a system with only class-0 users and class-i users
smaller than mi. This gives

E(Nπ∗m
0 ) + E(Nπ∗m

i,<mi
) ≤ λ(p0 + piP(Bi < mi))

( E(B̄)
1− ρ0 − ρi,<mi

+
λ(p0 + piP(Bi < mi))B̄2

2(1− ρ0 − ρi,<mi)2
)
,

with B̄ = p0

p0+piP(Bi<mi)
E(B0) + piP(Bi<mi)

p0+piP(Bi<mi)
E(Bi|Bi < mi) and B̄2 = p0

p0+piP(Bi<mi)
E(B2

0) +
piP(Bi<mi)

p0+piP(Bi<mi)
E(B2

i |Bi < mi). The result now follows by noting that limλ↑λ∗ 1− ρ0 − ρi,mi > 0.

Proposition 5.1 implies that the scaled mean number of class-0 users and small class-i users
tends to zero in heavy traffic. The number of large class-i users can be bounded in terms of the
total workload at node i. Hence, we obtain an upper bound for the scaled mean total number
of users in the system, as provided in the next proposition.

Proposition 5.3 For a policy π∗m ∈ Π∗m with P(Bi < mi) < 1 for all i = 1, . . . , L, it holds that

lim
λ↑λ∗

(1− ρ)E(Nπ∗m) ≤ λ∗
L∑

i=1

p0E(B2
0) + piE(B2

i )
2mi

.

Proof: It follows from Proposition 5.1 that limλ↑λ∗(1−ρ)E(Nπ∗m) = limλ↑λ∗(1−ρ)
∑L

i=1 E(Nπ∗m
i,≥mi

).
Since service is non-preemptive among class-i users of original size larger than mi, we have

E(W π∗m
i,≥mi

) ≥ mi(E(Nπ∗m
i,≥mi

)−1). Hence, limλ↑λ∗(1−ρ)(E(Nπ∗m
i,≥mi

)−1) ≤ limλ↑λ∗(1−ρ)
E(W

π∗m
i,≥mi

)

mi
≤

limλ↑λ∗(1− ρ)E(W
π∗m
i )+E(W

π∗m
0 )

mi
= λ∗ p0E(B2

0)+piE(B2
i )

2mi
for i = 1, . . . , L, which proves the statement.

¤
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5.1.1 Comparison with Proportional Fairness

We now compare the performance of the policies in the class ∪mΠ∗m with that of PF as a natural
extension of PS.

Proposition 5.4 Let π∗m ∈ Π∗m.
When B1, . . . , BL have infinite support, we have

lim
m→∞ lim

λ↑λ∗
E(Nπ∗m)
E(NPF )

= 0.

When B1, . . . , BL have finite support, we have

lim
m↑M

lim
λ↑λ∗

E(Nπ∗m)
E(NPF )

≤ λ∗

L

L∑

i=1

p0E(B2
0) + piE(B2

i )
2Mi

.

Proof: From (1),

lim
λ↑λ∗

(1− ρ)E(NPF ) = lim
1−ρ0−ρi↓0

(1− ρ0 − ρi)E(NPF ) = lim
1−ρ0−ρi↓0

∑L
i=1 ρi

1− ρ0
=

L(1− ρ0)
1− ρ0

= L.

(9)

Together with Proposition 5.3, this proves the assertion. ¤

We deduce that when B1, . . . , BL have infinite support, there exists a policy π∗m ∈ ∪mΠ∗m that
outperforms PF by an arbitrarily large factor in a heavy-traffic regime. This may be intuitively
explained as follows. Under the PF discipline, the total workload is distributed across users of
various sizes, and hence the total number of users grows linearly with the workload as λ ↑ λ∗. In
contrast, under policies in the class ∪mΠm the dominant fraction of the workload is contributed
by class-i users of size larger than mi as λ ↑ λ∗. Thus, as the value of mi increases, the entire
workload is concentrated in fewer and fewer users compared to the PF discipline.
Comparing Propositions 4.4 and 5.4 we observe that the relative improvement over the PF policy
achieved by policies in the class π∗m is equal to the average relative improvement that would have
been obtained over the PS policy by policies in the class Πm in each of the L nodes separately.

5.1.2 Optimality properties

We now assume that Bi has finite support for all classes i = 0, . . . , L, with
∑L

i=1
1

Mi
≤ 1

M0
. The

next proposition shows that for any policy π ∈ Π, there exists a policy in ∪mΠ∗m that performs
at least as well in heavy-traffic conditions. This may be heuristically interpreted as follows. As
mentioned above, under policies in the class ∪mΠ∗m the lion share of the workload is composed
of class-i users of size larger than mi, while at the same time the total workload in each node
is minimized. In case

∑L
i=1

1
Mi

≤ 1
M0

, and the value of mi is close to Mi, it is not possible
to achieve a smaller total number of users for the given workload as attained under policies in
∪mΠ∗m.

Proposition 5.5 Let π∗m ∈ Π∗m. Assume Mi < ∞ for i = 0, . . . , L and
∑L

i=1
1

Mi
≤ 1

M0
. Then

for any policy π ∈ Π,

lim
m↑M

lim
λ↑λ∗

E(Nπ∗m)
E(Nπ)

≤ 1.
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Proof: Policy π∗m ∈ Π∗m is work-conserving in all nodes. Therefore we have for any policy π ∈ Π,

E(W π∗m
0 ) + E(W π∗m

i ) ≤ E(W π
0 ) + E(W π

i ). (10)

Proposition 5.1 implies that limλ↑λ∗(1 − ρ)E(Nπ∗m
i,<mi

) = 0. In conjunction with (E(Nπ∗m
i,≥mi

) −
1)mi ≤ E(W π∗m

i,≥mi
), this yields that limλ↑λ∗(1− ρ)E(Nπ∗m

i )mi ≤ limλ↑λ∗(1− ρ)E(W π∗m
i,>mi

). It also

follows from Proposition 5.1 that limλ↑λ∗(1 − ρ)E(Nπ∗m
0 ) = 0. Furthermore, we have E(W π

i ) ≤
E(Nπ

i )Mi for every policy π. Together with (10), this results in

(1− ρ)
(
E(Nπ∗m

0 )M0 + E(Nπ∗m
i )mi

)
≤ (1− ρ)

(
E(Nπ

0 )M0 + E(Nπ
i )Mi

)
+ o(1− ρ), (11)

for i = 1, . . . , L. Also,

0 = (1− ρ)E(Nπ∗m
0 )M0 ≤ (1− ρ)E(Nπ

0 )M0 + o(1− ρ). (12)

Letting mi ↑ Mi, i = 1, . . . , L, multiplying (11) by 1
Mi

for all i = 1, . . . , L, and (12) by 1
M0

−∑L
i=1

1
Mi

≥ 0, and summing these L + 1 inequalities, gives

lim
m↑M

lim
λ↑λ∗

(1− ρ)
L∑

i=0

E(Nπ∗m
i ) ≤ lim

λ↑λ∗
(1− ρ)

L∑

i=0

E(Nπ
i ). ¤

5.2 Favoring classes i = 1, . . . , L simultaneously

We now consider policies that serve classes i = 1, . . . , L simultaneously or serve class-0 users
of size smaller than m0. If that is not feasible, then class-0 users of size larger than m0 are
served. Within class i, users of size smaller than mi receive priority, i = 0, . . . , L. Other than
that, the priority structure within each of the classes is irrelevant for the analysis. Service is
non-preemptive among class-i users of size larger than mi: their service may not be interrupted
by the service of other class-i users of size larger than mi. We denote this class of anticipating
policies by Π∗∗m, where m ≡ (m0, . . . ,mL). As before, we use the notation m ↑ M and m →∞
to indicate that mi ↑ Mi for all i = 0, . . . , L and mi →∞ for all i = 0, . . . , L, respectively (order
is irrelevant).
Under policies in the class Π∗∗m, the number of small class-0 users as well as the number of small
class-i users remain bounded as the load approaches the capacity, just like in Proposition 5.1,
but this is far more difficult to prove now. While these users indeed receive some degree of
preferred treatment, it is no longer the case that they do not notice the presence of the large
users. Observe that simultaneous service of large class-i users can have precedence over service
of small class-0 users, and that small class-i users must be simultaneously present in order to
receive priority over large class-0 users. Hence, in order to prove the above assertion, we need
more elaborate arguments as provided in Lemma 5.6 below. Denote by Ŵ c

i (t) the workload at
time t in a reference system with class-i traffic only, service rate c, and with Ŵ c

i (0) = 0. Define
Ud

j (t) := sup0≤s≤t{d(t− s)−Aj(s, t)}.

Lemma 5.6 Let δ < 1 − ρj, for all j = 1, . . . , L, and π∗∗m ∈ Π∗∗m. Assume W
π∗∗m
0,<m0

(0) =

W
π∗∗m
i,<mi

(0) = 0, for a certain i ∈ {1, . . . , L}. Then at time t ≥ 0, there exists a j∗ ∈ {1, . . . , L},
such that

W
π∗∗m
0,<m0

(t) + W
π∗∗m
i,<mi

(t) ≤ Ŵ ρ0−δ
0,<m0

(t) + Ŵ
ρi,mi

−δ

i,<mi
(t) + Ŵ

ρj∗+δ
j∗ (t) + U

ρj∗−δ
j∗ (t).
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The proof of Lemma 5.6 may be found in Appendix A.

Proposition 5.7 For a policy π∗∗m ∈ Π∗∗m with P(Bi < mi) < 1, i = 0, . . . , L, it holds that
E(Nπ∗∗m

0,<m0
) = O(1) and E(Nπ∗∗m

i,<mi
) = O(1) as λ ↑ λ∗.

Proof: Using Lemma 5.6, we obtain that

E(W π∗∗m
0,<m0

) + E(W π∗∗m
i,<mi

) ≤ E(Ŵ ρ0−δ
0,<m0

) + E(Ŵ ρi−δ
i,<mi

) +
L∑

j=1

E(Ŵ ρj+δ
j ) +

L∑

j=1

E(Uρj−δ
j ).

For δ small enough, E(Ŵ ρj−δ
j,<mj

) = λ
pjP(Bj<mj)E(B2

j |Bj<mj)

2(ρj−δ−ρj,<mj
) and E(Ŵ ρj+δ

j ) = λ
pjE(B2

j )

2δ , which

means E(Ŵ ρj−δ
j,<mj

) = E(Ŵ ρj+δ
j ) = O(1). Furthermore, we can equivalently replace U

ρj∗−δ
j∗ by the

supremum of a random walk with drift ρj∗ − δ − ρj∗ = −δ < 0. The drift is negative, inde-
pendently of λ, which implies that the mean of the supremum is finite in heavy traffic. Hence
E(Uρj−δ

j∗ ) = O(1). Together, this gives E(W π∗∗m
0,<m0

)+E(W π∗∗m
i,<mi

) = O(1). Using similar arguments
as in the proof of Proposition 5.1, then yields the assertion. ¤

Proposition 5.7 implies that the scaled mean number of small class-0 and small class-i users tends
to zero in heavy traffic. The number of large class-0 and large class-i users can be bounded in
terms of the total workload at node i. Hence, we obtain an upper bound for the scaled mean
total number of users in the system, as provided in the next proposition.

Proposition 5.8 For a policy π∗∗m ∈ Π∗∗m with P(Bi < mi) < 1 for all i = 0, . . . , L, it holds that

limλ↑λ∗(1− ρ)E(Nπ∗∗m ) ≤ λ∗Lp0E(B2
0)+

PL
i=1 piE(B2

i )
2min(m0,m1,...,mL) .

Proof: Proposition 5.7 indicates that the number of class-i users smaller than mi, i = 0, . . . , L,
under policy π∗∗m remains bounded as λ ↑ λ∗. Since furthermore service is non-preemptive
among class-i users of size larger than mi, it follows that (1 − ρ)(E(Nπ∗∗m

0 ) + E(Nπ∗∗m
i )) ≤ (1 −

ρ)E(W
π∗∗m
0 )+E(W

π∗∗m
i )

min(m0,mi)
+ o(1 − ρ) as λ ↑ λ∗. So for any mi such that ρi,mi < ρi, the scaled mean

total number of users is limλ↑λ∗(1− ρ)E(Nπ∗∗m ) ≤ limλ↑λ∗(1− ρ)
(
LE(Nπ∗∗m

0 ) +
∑L

i=1 E(Nπ∗∗m
i )

)
≤

limλ↑λ∗(1− ρ)
(PL

i=1(E(W
π∗∗m
0 )+E(W

π∗∗m
i ))

min(m0,m1,...,mL)

)
= λ∗Lp0E(B2

0)+
PL

i=1 piE(B2
i )

2min(m0,m1,...,mL) . ¤

5.2.1 Comparison with Proportional Fairness

As before, we now compare the performance of the policies in the class ∪mΠ∗∗m with that of PF.

Proposition 5.9 Let π∗∗m ∈ Π∗∗m.
When B0, B1, . . . , BL have infinite support, we have

lim
m→∞ lim

λ↑λ∗
E(Nπ∗∗m )
E(NPF )

= 0.

When B0, B1, . . . , BL have finite support, we have

lim
m↑M

lim
λ↑λ∗

E(Nπ∗∗m )
E(NPF )

=
λ∗

L

Lp0E(B2
0) +

∑L
i=1 piE(B2

i )
2 min(M0, M1, . . . , ML)

.
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Proof: Proposition 5.8, together with (9), gives the result. ¤

As before, we conclude that when B0, B1, . . . , BL have infinite support, there exists a policy
π∗∗m ∈ ∪mΠ∗∗m that outperforms PF by an arbitrarily large factor in heavy-traffic conditions.

5.2.2 Optimality properties

We now assume that Bi has finite support for all classes, with
∑L

i=1
1

Mi
≥ 1

M0
and 1

M0
≥∑

l=1,l 6=i
1

Ml
for all i = 0, . . . , L. The next proposition shows that for any policy π ∈ Π, there

exists a policy in ∪mΠ∗∗m that performs at least as well in heavy-traffic conditions. As before,
these policies manage to simultaneously minimize the workload in each of the nodes and con-
centrate the entire workload in users of maximum size (which in general may not be possible to
accomplish).

Proposition 5.10 Assume Mi < ∞ for all i = 0, . . . , L, and
∑L

i=1
1

Mi
≥ 1

M0
and 1

M0
≥∑

l=1,l 6=i
1

Ml
for all i = 0, . . . , L. Let π∗∗m ∈ Π∗∗m. Then for any policy π ∈ Π,

lim
m↑M

lim
λ↑λ∗

E(Nπ∗∗m )
E(Nπ)

≤ 1.

The proof may be found in Appendix B. The idea of the proof may be described as follows.
Instead of proving the result for an arbitrary policy in Π∗∗m, we first focus on a policy πp ∈
Π∗∗m ∩ Π∗∗. Lemma 3.1 holds for πp, which will allow us to prove the optimality of this policy.
Since the scaled workloads for policies in class Π∗∗m are identical in heavy traffic, the optimality
result applies to all policies in this class.

6 Numerical experiments

In the previous sections we compared the performance of policies in classes Π∗m and Π∗∗m with
that of PF in a heavy-traffic regime. We will now focus on a subset of the class Π∗m, and conduct
numerical experiments to illustrate the analytical findings and assess the scope for performance
gains. We specifically examine those policies π ∈ Π∗m ∩ Π∗ that serve class-i users of original
size smaller than mi, i 6= 0 and class-0 users in a non-preemptive fashion. Because of the
non-preemptive feature, the following upper bounds hold:

E(Nπ
0 ) ≤ 1+

E(W π
0 )

E(B0)
, E(Nπ

i,<mi
) ≤ 1+

E(W π
i,<mi

)
E(Bi|Bi < mi)

and E(Nπ
i,≥mi

) ≤ 1+
E(W π

i,≥mi
)

E(Bi|Bi ≥ mi)
.

In case of exponentially distributed service requirements, the 1 in the right-hand side of the first
equation may in fact be omitted. Since class 0 receives preemptive priority, its mean workload
is

E(W π
0 ) =

λp0E(B2
0)

2(1− ρ0)
.

Class-0 and class-i users of size smaller than mi, i 6= 0, are served in a work-conserving manner,
and therefore

E(W π
i,<mi

) =
λ(p0E(B2

0) + piP(Bi < mi)E(B2
i |Bi < mi))

2(1− ρ0 − ρi,mi)
.
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Policy π is work-conserving, hence

E(W π
i,≥mi

) =
λ(p0E(B2

0) + piE(B2
i ))

2(1− ρ0 − ρi)
− E(W π

i,<mi
)− E(W π

0 ).

In the numerical experiments, we considered a system with two nodes, p0 = 0.5, p1 = 0.25,
p2 = 0.25 and m1 = m2 = m. We studied both exponentially and Pareto distributed service
requirements. In the former case, we took µ0 = 2, µ1 = 1, µ2 = 1, while in the latter case we
chose α0 = 10, α1 = 3, α2 = 3 (dBi(x) = αix

−(αi+1)dx).
In Figures 2 and 3 we plotted the upper bound for the scaled mean number of class-0 users
as a function of ρ. Note that the scaled mean number of class-0 users does not depend on
m and as ρ increases it converges to zero. In Figures 4 and 5 we plotted the upper bound
for the scaled mean number of class-1 users smaller than m1 as a function of ρ. Again, as
ρ increases, it converges to zero. Furthermore, we observe for a large fixed ρ, a horizontal
asymptote as m grows large. This asymptote can be found by interchanging the order of limits,
i.e. limλ↑λ∗ limm→∞(1 − ρ)E(Nπ

1,<m1
) = λ∗(p0E(B2

0) + p1E(B2
1))/(2E(B1)). In Figures 6 and 7

we plotted the upper bound for the scaled mean number of class-1 users larger than m1.
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Figure 2: Upper bound for (1 − ρ)Nπ
0 , for

exponential service requirements.
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Figure 3: Upper bound for (1 − ρ)Nπ
0 , for

Pareto service requirements.
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Figure 4: Upper bound for (1−ρ)Nπ
1,<m1

, for
exponential service requirements.
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Figure 5: Upper bound for (1−ρ)Nπ
1,<m1

, for
Pareto service requirements.

The three bounds specified above provide an upper bound for the total mean number of users
under policy π. In Figures 8 and 9 we plot the ratio between this upper bound and the total mean

16



0.75 0.8 0.85 0.9 0.95 1
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

rho

 

 
m=2
m=4
m=6
m=8

Figure 6: Upper bound for (1−ρ)Nπ
1,≥m1

, for
exponential service requirements.
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Figure 7: Upper bound for (1−ρ)Nπ
1,≥m1

, for
Pareto service requirements.

number of users under PF as a function of ρ for exponentially and Pareto distributed service
requirements, respectively. In both cases, the discipline with threshold m = 2 gives already
a substantial performance improvement for a load of 0.85. It is worth observing here that we
have pursued deliberately simple policies in order to obtain provable asymptotic performance
guarantees. There are clearly more sophisticated policies conceivable that will typically achieve
larger gains, but may be too complex to allow any explicit performance guarantees.
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Figure 8: Upper bound for E(Nπ)/E(NPF ),
for exponential service requirements.
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Figure 9: Upper bound for E(Nπ)/E(NPF ),
for Pareto service requirements.

7 Summary and conclusions

Although valuable stability results have been obtained for the class of α-fair bandwidth-sharing
strategies, it is not well understood to what extent the flow-level delays and throughputs leave
potential room for improvement. In order to gain a better understanding of the latter issue,
we set out to determine the scheduling policies that minimize the mean delay in some simple
linear bandwidth-sharing networks. Rather than aiming for strictly optimal policies, we focused
on a class of relatively simple priority-type strategies that only separate large flows from small
ones. To benchmark the performance of these strategies, we compared them with Proportional
Fair as the prototypical α-fair policy, and established that the mean delay may be reduced by
an arbitrarily large factor when the load is sufficiently high. In addition, we showed the above
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strategies to be asymptotically optimal for flow size distributions with bounded support. Nu-
merical experiments revealed that even at fairly moderate load values the performance gains can
be significant. It is worth recalling here that we have focused on deliberately simple policies in
order to obtain explicit asymptotic performance guarantees. There are evidently more advanced
policies imaginable that will typically yield larger gains, but may be too complicated to allow
any strict performance guarantees.
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Appendix A: Proof of Lemma 5.6

Assume δ < 1 − ρj , for all j = 1, . . . , L, and π∗∗m ∈ Π∗∗m. Let W
π∗∗m
0,<m0

(0) = W
π∗∗m
i,<mi

(0) = 0, for a
certain i ∈ {1, . . . , L}. We will prove that at time t ≥ 0, there is a j∗ ∈ {1, . . . , L}, such that

W
π∗∗m
0,<m0

(t) + W
π∗∗m
i,<mi

(t) ≤ Ŵ ρ0−δ
0,<m0

(t) + Ŵ
ρi,mi

−δ

i,<mi
(t) + Ŵ

ρj∗+δ
j∗ (t) + U

ρj∗−δ
j∗ (t). (13)

For convenience, we will assume that among class-i users of size smaller than mi service is
non-preemptive, although this is not essential in any way for the assertion to hold.
Define s1 := sup{s ≤ t : W

π∗∗m
0,<m0

(s) + min(W π∗∗m
1 (s), . . . ,W π∗∗m

L (s)) = 0} and s2 := sup{s ≤
t : W

π∗∗m
i,<mi

(s) = 0}. Note that W
π∗∗m
0,<m0

(s1) = 0, W
π∗∗m
i,<mi

(s2) = 0, and W
π∗∗m
j∗ (s1) = 0 for some

j∗ ∈ {1, . . . , L}. Denote by Bi(s, t) the total amount of service given to class-i users during the
time interval [s, t], and denote by Bi,<mi(s, t) the portion of service that is given to class-i users
of size smaller than mi. Then,

W
π∗∗m
i,<mi

(t) = W
π∗∗m
i,<mi

(s2) + Ai,<mi(s2, t)−Bi,<mi(s2, t) = Ai,<mi(s2, t)−Bi,<mi(s2, t),

and
B0,<m0(s, t) + Bi,<mi(s, t) = t− s, (14)

with s := max(s1, s2).
We distinguish between two cases: s1 ≤ s2 and s1 ≥ s2. If s1 ≤ s2, then from (14) we obtain

B0,<m0(s2, t) + Bi,<mi(s2, t) = t− s2.
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By definition,

W
π∗∗m
0,<m0

(t) = W
π∗∗m
0,<m0

(s2) + A0,<m0(s2, t)−B0,<m0(s2, t)

and

W
π∗∗m
0,<m0

(s2) = W
π∗∗m
0,<m0

(s1) + A0,<m0(s1, s2)−B0,<m0(s1, s2) = A0,<m0(s1, s2)−B0,<m0(s1, s2).

In the interval (s1, t) there is continuously work present of class-0 users of size smaller than m0

and work of class-j users, j = 1, . . . , L. Therefore, under policy π∗∗m, for all j ∈ {1, . . . , L},
B0,<m0(s1, s2) + Bj(s1, s2) = s2 − s1.

Furthermore,

Bj∗(s1, s2) = W
π∗∗m
j∗ (s1) + Aj∗(s1, s2)−W

π∗∗m
j∗ (s2) = Aj∗(s1, s2)−W

π∗∗m
j∗ (s2).

Combining the above equations, we obtain

W
π∗∗m
0,<m0

(t) + W
π∗∗m
i,<mi

(t)

= A0,<m0(s1, t) + Ai,<mi(s2, t) + Aj∗(s1, s2)− (t− s1)−W
π∗∗m
j∗ (s2)

≤ A0,<m0(s1, t) + Ai,<mi(s2, t) + Aj∗(s1, s2)− (t− s1)
≤ A0,<m0(s1, t) + Ai,<mi(s2, t) + Aj∗(s1, t)−Aj∗(s2, t)
−(ρ0 − δ)(t− s1)− (ρi + δ)(t− s1)− (ρi − δ)(t− s2) + (ρi − δ)(t− s2)

≤ sup
s≤t
{A0,<m0(s, t)− (ρ0 − δ)(t− s)}+ sup

s≤t
{Ai,<mi(s, t)− (ρi − δ)(t− s)}

+ sup
s≤t
{Aj∗(s, t)− (ρi + δ)(t− s)}+ sup

s≤t
{(ρi − δ)(t− s)−Aj∗(s, t)},

yielding (13).
Now assume s1 ≥ s2. From (14) we obtain

B0,<m0(s1, t) + Bi,<mi(s1, t) = t− s1.

Furthermore,

W
π∗∗m
0,<m0

(t) = W
π∗∗m
0,<m0

(s1) + A0,<m0(s1, t)−B0,<m0(s1, t) = A0,<m0(s1, t)−B0,<m0(s1, t)

and

Bj∗(s2, s1) = W
π∗∗m
j∗ (s2) + Aj∗(s2, s1)−W

π∗∗m
j∗ (s1) ≥ Aj∗(s2, s1).

There is continuously work present of class-i users of size smaller than mi in the interval (s2, t).
Hence, for all j ∈ {1, . . . , L},

Bi,<mi(s2, s1) ≥ Bj(s2, s1).

Combining the above equations, we obtain

W
π∗∗m
0,<m0

(t) + W
π∗∗m
i,<mi

(t)
= A0,<m0(s1, t) + Ai,<mi(s2, t)−Bi,<mi(s2, s1)− (t− s1)
≤ A0,<m0(s1, t) + Ai,<mi(s2, t)−Aj∗(s2, s1)− (t− s1)
≤ A0,<m0(s1, t) + Ai,<mi(s2, t) + Aj∗(s1, t)−Aj∗(s2, t)
−(ρ0 − δ)(t− s1)− (ρi + δ)(t− s1) + (ρi − δ)(t− s2)− (ρi − δ)(t− s2)

≤ sup
s≤t
{A0,<m0(s, t)− (ρ0 − δ)(t− s)}+ sup

s≤t
{Ai,<mi(s, t)− (ρi − δ)(t− s)}

+ sup
s≤t
{Aj∗(s, t)− (ρi + δ)(t− s)}+ sup

s≤t
{(ρi − δ)(t− s)−Aj∗(s, t)},

which again yields (13). This concludes the proof. ¤
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Appendix B: Proof of Proposition 5.10

Take πp ∈ Π∗∗m ∩Π∗∗. In Lemma 3.1 it is proved that for every policy π ∈ Π, there are at time t
classes j 6= k ∈ {1, . . . , L}, such that

W πp

0 (t) + W πp

j (t) + W πp

k (t) ≤ W π
0 (t) + W π

j (t) + W π
k (t). (15)

Furthermore, πp is work-conserving in all nodes. Therefore,

W πp

0 (t) + W πp

i (t) ≤ W π
0 (t) + W π

i (t). (16)

Multiplying (15) by
∑L

i=1
1

Mi
− 1

M0
≥ 0 and (16) by 1

M0
−∑

l=1,l 6=i
1

Ml
≥ 0 for i = j, k and by 1

Mi

for all i = 1 . . . L with i 6= j, k, and summing these L+1 inequalities results in
∑L

i=0
1

Mi
W πp

i (t) ≤∑L
i=0

1
Mi

W π
i (t), hence

L∑

i=0

1
Mi
E(W πp

i ) ≤
L∑

i=0

1
Mi
E(W π

i ). (17)

We now extend this result to policies in Π∗∗m by analyzing the scaled workloads. Note that under
both policy π∗∗m ∈ Π∗∗m and policy πp every node operates in a work-conserving manner with
respect to work consisting of class-0 users smaller than m0 and class-i users, which implies

W
π∗∗m
0,<m0

(t) + W
π∗∗m
i (t) = W πp

0,<m0
(t) + W πp

i (t).

Since policies π∗∗m and πp are work-conserving in all nodes with respect to the total amount of
work, it follows that

W
π∗∗m
0,≥m0

(t) = W πp

0,≥m0
(t). (18)

Observing that π∗∗m, πp ∈ Π∗∗m, we obtain from Proposition 5.7 that limλ↑λ∗(1− ρ)(E(W π
0,<m0

) +
E(W π

i,<mi
)) = 0 for π ∈ {π∗∗m, πp}. Together with (18) and the fact that π∗∗m and πp are work-

conserving, this implies that for i = 1, . . . , L,

lim
λ↑λ∗

(1− ρ)E(W π∗∗m
i,≥mi

) = lim
λ↑λ∗

(1− ρ)E(W πp

i,≥mi
). (19)

Using (18) and (19) and the fact that limλ↑λ∗(1 − ρ)
(
E(W π∗∗m

0,<m0
) + E(W π∗∗m

i,<mi
)
)

= 0, we obtain
from (17) that

lim
λ↑λ∗

(1− ρ)
L∑

i=0

1
Mi
E(W π∗∗m

i ) ≤ lim
λ↑λ∗

(1− ρ)
L∑

i=0

1
Mi
E(W π

i ). (20)

Class-i users of size larger than mi are served in a non-preemptive way, which means (E(Nπ∗∗m
i,≥mi

)−
1)mi ≤ E(W π∗∗m

i,≥mi
). Proposition 5.7 shows that under policy π∗∗m, all scaled class-i work is

composed of users of size mi or larger, i = 0, . . . , L, hence limλ↑λ∗(1−ρ)E(Nπ∗∗m
i )mi ≤ limλ↑λ∗(1−

ρ)E(W π∗∗m
i ). Noting that E(W π

i ) ≤ E(Nπ
i )Mi and substituting into (20), we obtain

lim
m↑M

lim
λ↑λ∗

(1− ρ)(
L∑

i=0

E(Nπ∗∗m
i )) ≤ lim

λ↑λ∗
(1− ρ)(

L∑

i=0

E(Nπ
i )),

which concludes the proof. ¤
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