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Gaussian traffic everywhere?

ABSTRACT
It is often assumed that Internet traffic exhibits Gaussian characteristics, and this assumption
has been validated in various studies of real Internet traffic. Less is known, however, about
possible boundaries: at what timescales is traffic Gaussian and how much user aggregation is
required for traffic to be Gaussian? The goal of this paper is to investigate these questions by
analyzing hundreds of traffic traces, collected at four representative locations. To assess
whether traffic is Gaussian, the paper starts with introducing an easy and fast procedure, based
on earlier work of Kilpi and Norros. This procedure is used to investigate Gaussianity at
timescales ranging from 5 msec to 5 sec. Our study shows that, if traffic is Gaussian at one
timescale, it usually preserves this property at other timescales. The paper also investigates
Gaussianity as function of the number of users. We conclude that, although it is impossible to
give a hard number saying ‘above N users traffic is Gaussian’, it is fair to say that ‘only a few
tens of users’ usually makes the aggregated traffic fairly Gaussian.
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related paper "Evaluation of 'user-oriented' and 'black-box' traffic models for link provisioning", by the same authors.





Gaussian traffic everywhere?
Remco van de Meent
University of Twente

r.vandemeent@utwente.nl

Michel Mandjes
CWI

michel@cwi.nl

Aiko Pras
University of Twente
a.pras@utwente.nl

Abstract— It is often assumed that Internet traffic exhibits
Gaussian characteristics, and this assumption has been validated
in various studies of real Internet traffic. Less is known, however,
about possible boundaries: at what timescales is traffic Gaussian
and how much user aggregation is required for traffic to
be Gaussian? The goal of this paper is to investigate these
questions by analyzing hundreds of traffic traces, collected at four
representative locations. To assess whether traffic is Gaussian, the
paper starts with introducing an easy and fast procedure, based
on earlier work of Kilpi and Norros. This procedure is used to
investigate Gaussianity at timescales ranging from 5 msec to 5
sec. Our study shows that, if traffic is Gaussian at one timescale,
it usually preserves this property at other timescales. The paper
also investigates Gaussianity as function of the number of users.
We conclude that, although it is impossible to give a hard number
saying ‘aboveN users traffic is Gaussian’, it is fair to say that
‘only a few tens of users’ usually makes the aggregated traffic
fairly Gaussian.

Keywords: Traffic modeling, traffic measurements, Gaussian
models

I. I NTRODUCTION

Traffic modeling in telecommunication networks has been
and is still used for a variety of purposes. For instance, by
having a thorough understanding of the offered traffic, it is
possible to perform adequate bandwidth provisioning (i.e., to
assign adequate bandwidth capacity figures in an economically
viable way, at the same time satisfying a certain desired
performance criterion, see, e.g. [1]).

Network traffic modeling has come a long way since the
early days of telecommunications. In the IP world, various
statistical models have been proposed to characterize traffic
streams. The most simple model assumes Poisson arrivals of
packets, but such a model has the undesirable feature that it
fails to incorporate the (positive) correlations between packet
arrivals observed in real traces. For this reason, the model with
(a superposition of)ON/OFF sources is an attractive alternative:
a broad variety of correlation structures can be modeled
by choosing appropriate distributions for theON- and OFF-
times. A variant of the latter model is the so-calledM /G/∞
input model, in which flows (groups of packets, with some
general distribution) arrive according to a Poisson process, and
generate traffic at a constant rate while being in the system. By
choosing a heavy-tailed flow-size distribution, strong positive
correlations can be obtained. There is vast body of literature
on this topic; an overview of some approaches is given in, for
instance, [2, Ch.3] and references therein.

Recently, the attention has somewhat shifted to Gaussian
traffic models and multi-fractal analysis. The further devel-

opment of this type of models was triggered by a number
of measurement studies performed in the early 1990s, such as
the famous Bellcore measurements [3]. These studies revealed
extreme complexity and self-similarity in Ethernet traffic.
Clearly, such phenomena on the link layer may relate to
characteristics of traffic when regarding the higher layers in
the protocol stack. For instance, Paxson and Floyd showed
that [4] wide-areaTCP traffic could also be modeled through
a self-similar process.

A simple model with long-range dependency is a self-
similar process characterized by a slowly (hyperbolically) de-
caying autocorrelation function. A stochastic model, advocated
by Norros in [5], [6], that has many desirable properties (e.g.
long-range dependency) is a self-similar Gaussian process:
fractional Brownian motion (fBm). In recent years the fBm
model (and other Gaussian models) found wide-spread use as
a reference model for IP traffic.

Apart from the above (more or less) empirically derived
motivations for Gaussian traffic models, there is also the
argument of the Central Limit Theorem (CLT): by this the-
orem, the sum of a large number of ‘small’ independent
(or weakly dependent), statistically more or less identical,
random variables (users) has an approximately normal (i.e.,
Gaussian) distribution. Thus, one can expect that an aggregated
traffic stream consisting of many individual communications
may be modeled by a Gaussian stochastic process. However,
the CLT argumentation does not apply to any timescale: on
the timescale of transmission of (minimum size) packets, the
traffic stream is alwaysON/OFF (either there is transmission
at link speed, or silence) — which is obviously not Gaussian.
Thus, apart from the number of users (referred to as ‘vertical
aggregation’), there should also be sufficient aggregation in
time (‘horizontal aggregation’). The necessity for some aggre-
gation in both directions for traffic to be Gaussian, was pointed
out by Kilpi and Norros in [7].

Contributions. Specifically, Kilpi and Norros examined the
levels of aggregation that are required to justify Gaussian
modeling [7]. In the present paper, we further explore this
topic, in that we study the potential of Gaussian models, but
also their limitations. These limitations relate to the ‘minimal
aggregation level’ (both horizontally and vertically) needed to
safely assume Gaussianity. In more detail, our contributions
are:
(i) To assess whether or not traffic is Gaussian, we discuss
the usability of an ‘easy’ goodness-of-fit test by comparing
its results to a more standard test (Kolmogorov-Smirnov).



location short description time-span traces hosts avg utiliz.
U university residential network 5/2002 - 6/2002 15 1800 170 Mbit/s
R research institute 5/2003 - 8/2003 185 250 13 Mbit/s
C college network 9/2003 - 12/2003 302 1500 125 Mbit/s
S server-hosting provider 12/2003 - 2/2004 201 100 23 Mbit/s

TABLE I

OVERVIEW OF THE MEASUREMENTS

One would hope that both tests lead to similar conclusions
(as to whether or not reject Gaussianity) — it would clearly
be an undesirable situation if different tests lead to different
solutions.
(ii) We examine the Gaussianity of traffic on various
timescales. As argued above, one expects that on small
timescales Gaussianity cannot be assumed (and that is in fact
what has been found in several studies, see, e.g. [8]). We
systematically study the impact of the timescale, for different
types of network environments. In addition, we investigate
whether Gaussianity on one timescale does imply Gaussianity
for other timescales (with the striking conclusion that, for a
substantial range of timescales, itdoes).
(iii) We assess the impact of the number of users that are
involved in the traffic stream, on the Gaussianity of the
aggregate traffic. Here we give estimates as to the aggregation
level from which on one can safely assume Gaussianity.

From a purely methodological perspective, the procedures
followed are, to some extent, comparable to those described
in [7]. We however felt that the dataset considered in [7] was
somewhat limited, and that there was a need for a considerably
more systematic study of these issues, using large numbers
of traces, collected at several ‘representative’ locations. These
locations differ in terms of link speeds, number of simultane-
ous users, applications being used, access speeds of users, the
degree of user heterogeneity, etc. In other words, we believe
that, due to the diversity of the selected traces, our conclusions
have a stronger validity.

Organization. The paper is structured as follows: Section
2 gives an overview of the data sets that are used. Section 3
outlines the procedure to assess the Gaussianity of network
traffic, cf. [7]. Part of this procedure is the assessment of
the goodness-of-fit, for which we compare two approaches.
Section 4 discusses the impact of the horizontal aggregation
(timescale) on the Gaussianity, and Section 5 investigates the
impact of the vertical aggregation (number of users). Section
6 provides the conclusions.

II. D ESCRIPTION OF THE DATASETS

To assess the impact of horizontal and vertical aggregation
on Gaussianity, we chose to rely on measurements of real
network traffic. This choice is motivated by our objective to
obtain insights that are representative for ‘real environments’,
rather than just for simulation or lab environments.

To ensure that our data is representative for a variety

of networks, we have performed an extensive number of
measurements at 4 different locations. Each measurement
dataset consists of 15 minutes worth oftcpdump records
of all (Ethernet) frames passing a measurement point on
the so-called Internet uplink (which carries both upstream
and downstream traffic) of an organization’s access network.
Thus, all traffic flowing from and into the organizations’ local
networks is captured. Atcpdump record consists of a precise
timestamp (of observing the packet at the measurement point)
and (in our case) the headers of the packets up to the transport
protocol layer. In total, some 700 traces were recorded; see
Table I for an overview of the measurements1.

Also listed in Table I is the estimated number of local
hosts at each location, and the average aggregate bandwidth
utilization over all traces. Noteworthy is that the hosts at all
locations are connected via 100Mbit/s FastEthernet links; the
bandwidth capacities of the Internet uplinks are 1Gbit/s, except
for locationS, which had an uplink capacity of about 50Mbit/s.

The traffic at locationU is a mixture of many applications,
including WWW, e-mail and peer-to-peer traffic, both up-
stream and downstream, used by students. LocationR may be
characterized as an ‘office’: mostly WWW and e-mail traffic,
from the rest of the Internet to the employees. LocationC’s
traffic is also mostly WWW and peer-to-peer traffic; the users
are students and college employees. The traffic at locationS
is mainly WWW traffic, but the major part of the traffic flows
from locationS to the rest of the Internet — we will see that
this is an important difference compared to locationR later on
in this paper.

III. A SSESSING THEGAUSSIAN CHARACTER

Network traffic modeling, resource provisioning, etc., often
relies on the assumption that traffic is Gaussian (see, e.g. [9]):
for any t > 0, the amount of trafficA(t) offered in a arbitrary
time window of lengtht is described by a normal distribution,
parametrized by a meanMt and varianceV (t) := Var A(t).
In other words:

A(t) ∼ Norm
(
Mt, V (t)

)
.

The goal of this paper is to assess the claim that network traffic
is – at certain timescales – Gaussian.

Gaussianity assessment procedure.The procedure that we
follow to assess the Gaussianity of network traffic is rather

1For reasons of confidentiality we cannot disclose the names of the
organizations; we refer to them with the identifier listed in the first column
of Table I.
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Fig. 1. Example quantile-quantile plot:A(T ) compared to
Norm

`
MT, V (T )

´
for T = 1 sec; location R, M̂ = 9.8 Mbit/sec

and V̂ (1) = 15.3 Mbit2/sec2.

straightforward, similar to the procedure followed by Kilpi and
Norros [7]: Quantile-quantile plots are made to compare the
distribution of the observed traffic with a normal distribution,
and this comparison is quantified using a ‘goodness-of-fit’
measure.

We determine whetherA(T ) ∼ Norm
(
MT,V (T )

)
holds.

We chooseT = 1 sec to start with, motivated by our
expectation that timescales of this order are relevant for per-
formance as perceived by end-users of interactive applications
like web-browsing. Later on in this paper we also consider
other timescales.

Let Ai denote the amount of traffic offered in theith interval
of length T , and n the number of intervals. The (unbiased)
estimatesM̂ and V̂ (T ) of the average and (sample) variance
of the traffic rates in our traces can straightforwardly be
determined:

M̂ =
1

nT

n∑
i=1

Ai and V̂ (T ) =
1

n− 1

n∑
i=1

(
Ai − M̂

)2

.

Note that the convergence of the estimator of the sample
variance could be rather slow when traffic is long-range
dependent, which can be expected for real network traffic [10,
Ch.I].

To assess the Gaussianity of the network traffic, we use so-
called quantile-quantile (Q-Q) plots. In these plots, the pairs(

Φ−1
( i

n + 1

)
, α(i)

)
, i = 1, 2, . . . , n

are presented. HereΦ−1 is the inverse of the normal cumula-
tive distribution function with meanM̂T and variancêV (T ),
andα(i) are the order statistics. When the traffic is ‘perfectly
Gaussian’, all points in the Q-Q plot are on the diagonal.

In Fig. 1 an example Q-Q plot is given one of our traces.
Clearly, most points are close to the diagonal. Hence, the
traffic is ‘fairly Gaussian’. Observe however that a fraction

(up to, say, 20 out of 900) points is quite far above the
diagonal at the ‘high-end’ of the spectrum, thus higher than
the ‘expected’ value. This phenomenon is known as ‘heavy
(upper)tail’, and is often seen in Internet traffic. For the context
in which this study is performed, i.e., provisioning of network
resources, the high-end of the spectrum is more important than
the ‘under-expectations’ at the lower end. Thus, the heavy
tail motivates conservative provisioning: if a Gaussian traffic
model is assumed, one should be aware that the model may
not be accurate when traffic rates are relatively high (compared
to the average rate).

Figure 1 gives a first impression of thegoodness-of-fitof
some of the measured traffic compared to a Gaussian traffic
model. To quantify the goodness-of-fit, we use the so-called
linear correlation coefficientγ, which is generally defined as

γ =
∑n

i=1

(
α(i) − M̂

)(
qi − q

)√∑n
i=1

(
α(i) − M̂

)2 ∑n
i=1

(
qi − q

)2
,

where qi are the quantiles of the model distribution, i.e.
Norm

(
M̂, V̂ (1)

)
, andq their average. Clearly,|γ| ≤ 1, andγ

equals 1 only if all pairs fall on the diagonal. For the examples
in Fig. 1: γ = 0.986, corresponding to the ‘fairly Gaussian’
qualification above.

Remark on other Gaussianity tests.There is a vast body
of literature on (alternative) tests for assessing normality (or
another distribution) of measurement data, for instance the
Kolmogorov-Smirnovtest, see e.g. [11].

We have compared the values ofγ that are computed from
hundreds of our traces, with the outcome of the Kolmogorov-
Smirnov test (modified for estimations of mean and variance,
see [11, Sect.4.8]). The results are depicted in Fig. 2. It
shows that, roughly speaking, if the correlation coefficient
is high (say,γ > 0.9), then the Kolmogorov-Smirnov test
(at significance level 0.05) supports the hypothesis that the
underlying distribution ofA(T ) is normal. In other words, the
methods are in line with each other, and, as a consequence, it
seems justifiable to use the ‘easy’ goodness-of-fit test based
on γ, rather than the somewhat more involved Kolmogorov-
Smirnov test.

Is traffic always Gaussian?One may wonder how repre-
sentative the example is that was presented in Fig. 1. Therefore
we look at all traces collected at all 4 our measurement
locations. For each of these traces, we compute the goodness-
of-fit γ, and we plot the results as to see how common certain
values ofγ are. The outcome is presented in Fig. 3.

From Fig. 3 we may conclude that, for all locations except
R, in about 80% of the casesγ is above 0.9, suggesting fairly
Gaussian traffic. For locationR, we will later see that the
somewhat reduced Gaussianity is likely caused by the fact
that there are fewer users active at the same time.

IV. T IMESCALE

In the previous section we investigated Gaussianity of traffic
at a fixed timescale ofT = 1 sec. In this section we will
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look into Gaussianity at other timescales, ranging fromT =
5 msec to T = 5 sec. The choice for this range of timescales
T is motivated by our expectation that these dominate the
‘user-perceived Quality-of-Service’, and hence should be used
for provisioning purposes (more precisely, the provisioning
objective could be, for instanceP(A(T ) > CT ) < ε for some
predefined, small fractionε, andT the timescale of interest).

An important question here is whether a computed value
of γ at a given timescale gives a clear indication ofγ
at another timescale. Or in other words: if traffic is fairly
Gaussian at a certain timescale, does that say anything about
Gaussianity at other timescales? Suppose that a particular
traffic stream exhibits strong Gaussianity at a timescale of,
say, 5 seconds, and that such characteristic typically would be
constant across timescales. If this is true, then, after having
verified Gaussianity at timescalesτ1 and τ2, one could also
assume Gaussianity at intermediate timescales. Of course it
would be tempting to also assume traffic to be Gaussian at
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from locationR.

smaller – possibly harder to measure – timescales as well,
but, as remarked in the Introduction, this reasoning could be
dangerous (as, at very small timescales, traffic is certainlynot
Gaussian).

First, we look at an example with only a few traces. We
determineγ at various timescales; the results, with five traces
from measurement locationsR, are plotted in Fig. 4. The
impression from the examples in Fig. 4 is that, because of the
more or less horizontal lines, the Gaussianity is quite constant
over different timescales.

Next, we investigate this for all traces. We introduceνγ as
measure of the ‘variation ofγ’. More precisely, we defineνγ

as the square root of the sample variance of theγτ values at
all assessed timescalesτ1, . . . , τn ∈ T :

νγ :=
√

V̂ar
(
γτ1 , γτ2 , . . . , γτn

)
,

where we chooseT =
{

5 msec, 10 msec, 25 msec, 50 msec,
100 msec, 500 msec, 1 sec, 2 sec, 5 sec

}
. The interpretation

is that whenνγ is low, the traffic is (more or less) equally
Gaussian across multiple timescales.

We have computedνγ for all traces at all 4 measurement
locations. After ordering them from low to high values ofνγ ,
they are plotted in Fig. 5. Clearly,νγ is small in most cases:
in over 95% of the traces,νγ is below 0.05. Thus we may
conclude thatγ is quite constant over different timescales; in
other words: traffic that exhibits Gaussian characteristics at
one timescale, is likely to be Gaussian at other timescales as
well (for the timescales that we investigated, at least).

Finally we have computed the ‘average Gaussianity’ of all
traces at various timescales, i.e., the average value ofγ for all
traces at a particular location, for various timescales. These
are plotted in Fig. 6, together with error bars that represent
the standard deviation of the computedγ values at a specific
timescale.
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From the analysis in this section we may conclude that
traffic is fairly Gaussian at the vast majority of the locations,
for most traces, for most timescales from 5 msec up to 5 sec.
Thus, traffic may be assumed to be fairly Gaussian in general.
Also, generally speaking, if traffic is Gaussian at a particular
timescale, it would still be Gaussian if the measurements were
taken at other timescales.

V. NUMBER OF USERS

In the previous section we discussed the impact of the
horizontal aggregation, i.e., the timescale, on the Gaussianity
of network traffic. In this section we will look into the effect
of the vertical aggregation, i.e., the number of users whose
traffic is aggregated.

When traffic of a ‘sufficiently large’ number of users is ag-
gregated, the resulting traffic mix exhibits strong Gaussianity
[7]. We will now investigate in further detail what ‘sufficiently
large’ means. We do this by comparing the Gaussianity of
network traffic as function of the number of users involved.

In this section we will rely on the same traces as used in
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Fig. 7. Gaussianity compared to number of active users

the previous sections. In these traces the traffic of a large
number of users was aggregated, however. Therefore, we took
from these traces only a subset of all packets, namely just the
packets that relate to a random subset of users. In this way
we can investigate the Gaussianity of a traffic in which just a
fraction p of all users is aggregated (as a function of thisp).
Our procedure to reduce the number of users involved is as
follows:

We process the trace per packet; when a new IP address
within the local network address range is found, with a
probability p all of this IP address’ traffic in the trace will be
taken into account, with a probability1− p traffic of this user
is not selected, thus reducing the number of users as desired.
The experiment is repeated with the samep, evidently leading
to different results due to the random nature of the selection
process, as well as with differentp. The experiments yield
input to our ‘Gaussianity quantification procedure’ described
earlier: for various numbers of ‘active users’, a Gaussianity
figure is computed.

The number of ‘active users’ is defined as follows. PerT ,
e.g. 1 second, it is observed how many distinct IP addresses
(within the local network address range) send or receive traffic
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in that interval. The number of active users per experiment
is then the average number of distinct IP addresses over
all intervals (which is evidently not necessarily an integer
number).

It is assumed that the traffic of the users that are not taken
into account, does not influence the characteristics of the traffic
of the users whose trafficis taken into account; this can be
motivated by the relatively high degree of overprovisioning of
the network links.

Figure 7 shows for locationsR (top) andS how the number
of active users relate to the Gaussianity of the network traffic,
taking only a few example traces into account. As could be
expected, Gaussianity increases with the number of active
users. Also, for a given number of active users, there is
typically quite some variation in the Gaussianity (between
traces as well as within the same trace but for different
experiments, i.e. with different subsets of selected users).
Notably, there are cases when only a few users are active on
average, but still the Gaussianity is almost 1. In these cases, a
small number of users were dominating the trace and happened
to be selected, and apparently their traffic plus the ‘noise’ of
the others is Gaussian.

Figure 7 gives a first impression on the relation between
the number of active users relate and the Gaussianity of the
resulting aggregated traffic. For illustration purposes we have
added (least squares) fits for the data plots; the fits stem from
the formulaα ·Nβ , whereN denotes the number of users and
α andβ are scaling parameters. Next, we want to get a more
thorough expression of this relation.

We compute theγ values for numerous experiments (as
described above), and aggregate the results in two dimensions:
(i) the number of users involved is grouped per 5, and (ii) the
γ values are averaged and plotted together with an error bar
indicating the standard deviation. The results are plotted in
Fig. 8. The top picture shows the result for locationR; below
for location S. As the primary interest here is on the lower
hand of the spectrum of the number of users (as, for large
numbers of users, we already know traffic is quite Gaussian),
we have limited ourselves here to the two locations with the
least number of users.

From Fig. 8 it can be seen that, as expected, an increase in
the number of users involved tends to increase the Gaussianity.
It is not possible, however, to give a hard number saying
‘above N users, traffic may be assumed Gaussian’. It seems
justified to claim that ‘only a few tens of users’ makes the
resulting traffic fairly Gaussian (at this timescale).

VI. CONCLUSIONS

This paper investigated Gaussianity of network traffic, using
hundreds of real network traffic traces, collected at four
different locations. These locations can be described as a
university residential network, a research institute, a college
network and a server-hosting provider.

To assess whether traffic is Gaussian, the paper builds on
previous work of Kilpi and Norros. In particular it presents
an ‘easy’ goodness-of-fit procedure, using the so-calledlinear
correlation coefficientγ. Our study shows that the results
obtained using this procedure are comparable to the more
standard (and more difficult to use)Kolmogorov-Smirnov
procedure. For all but one location, we found that, in about
80% of the casesγ is above 0.9, suggesting fairly Gaussian
traffic.

An important conclusion of this paper is that traffic that
is Gaussian at one timescale, is likely to be Gaussian at
other timescales as well. More specifically, we investigated
Gaussianity at timescales ranging from 5 msec to 5 sec,
and introducedνγ to denote the ‘variation ofγ’ over these
timescales. In general we found small values ofνγ : in over
95% of the traces it is below 0.05, implying that ‘level of
Gaussianity’ remains stable over different timescales.

Finally the paper investigates Gaussianity as function of the
number of users. Although it is impossible to give a hard
number saying ‘aboveN users traffic is Gaussian’, it is safe to
make the general claim that ‘only a few tens of users’ already
make the aggregated traffic fairly Gaussian.
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