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Gaussian traffic everywhere?

ABSTRACT

It is often assumed that Internet traffic exhibits Gaussian characteristics, and this assumption
has been validated in various studies of real Internet traffic. Less is known, however, about
possible boundaries: at what timescales is traffic Gaussian and how much user aggregation is
required for traffic to be Gaussian? The goal of this paper is to investigate these questions by
analyzing hundreds of traffic traces, collected at four representative locations. To assess
whether traffic is Gaussian, the paper starts with introducing an easy and fast procedure, based
on earlier work of Kilpi and Norros. This procedure is used to investigate Gaussianity at
timescales ranging from 5 msec to 5 sec. Our study shows that, if traffic is Gaussian at one
timescale, it usually preserves this property at other timescales. The paper also investigates
Gaussianity as function of the number of users. We conclude that, although it is impossible to
give a hard number saying ‘above N users traffic is Gaussian’, it is fair to say that ‘only a few
tens of users’ usually makes the aggregated traffic fairly Gaussian.

2000 Mathematics Subject Classification: 68M10, 90B18

Keywords and Phrases: Traffic modeling, traffic measurements, Gaussian models

Note: This work has been partly carried out in the framework of the network of excellence EURO-NGI, and was
presented at the 2006 IEEE International Conference on Communications (ICC 2006), Istanbul. See also the strongly
related paper "Evaluation of 'user-oriented' and 'black-box' traffic models for link provisioning", by the same authors.
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Abstract—It is often assumed that Internet traffic exhibits opment of this type of models was triggered by a number
Gaussian characteristics, and this assumption has been validated of measurement studies performed in the early 1990s, such as
in various studies of real Internet traffic. Less is known, however, ha famous Bellcore measurements [3]. These studies revealed

about possible boundaries: at what timescales is traffic Gaussian . Lo )
and how much user aggregation is required for traffic to extreme complexity and self-similarity in Ethernet traffic.

be Gaussian? The goal of this paper is to investigate theseClearly, such phenomena on the link layer may relate to
questions by analyzing hundreds of traffic traces, collected at four characteristics of traffic when regarding the higher layers in

representative locations. To assess whether traffic is Gaussian, thethe protocol stack. For instance, Paxson and Floyd showed

paper starts with introducing an easy and fast procedure, based 4 [4] wide-arearcp traffic could also be modeled through
on earlier work of Kilpi and Norros. This procedure is used to o
5 a self-similar process.

investigate Gaussianity at timescales ranging from 5 msec to ) ] )
sec. Our study shows that, if traffic is Gaussian at one timescale, A simple model with long-range dependency is a self-

it usually preserves this property at other timescales. The paper similar process characterized by a slowly (hyperbolically) de-
also investigates Gaussianity as function of the number of users. caying autocorrelation function. A stochastic model, advocated

We conclude that, although it is impossible to give a hard number : : :
saying ‘above N users traffic is Gaussian’, it is fair to say that by Norros in [5], [6], that has many desirable properties (e.g.

‘only a few tens of users’ usually makes the aggregated traffic 10Ng-range dependency) is a self-similar Gaussian process:
fairly Gaussian. fractional Brownian motion (fBm). In recent years the fBm

model (and other Gaussian models) found wide-spread use as
a reference model for IP traffic.
Apart from the above (more or less) empirically derived
. INTRODUCTION motivations for Gaussian traffic models, there is also the
Traffic modeling in telecommunication networks has beedfgument of the Central Limit Theorem (CLT): by this the-
and is still used for a variety of purposes. For instance, §yem, the sum of a large number of ‘small’ independent
having a thorough understanding of the offered traffic, it i®r weakly dependent), statistically more or less identical,
possible to perform adequate bandwidth provisioning (i.e., #8ndom variables (users) has an approximately normal (i.e.,
assign adequate bandwidth capacity figures in an economic&igussian) distribution. Thus, one can expect that an aggregated
viable way, at the same time satisfying a certain desiré@ffic stream consisting of many individual communications
performance criterion, see, e.g. [1]). may be modeled by a Gaussian stochastic process. However,
the CLT argumentation does not apply to any timescale: on
Network traffic modeling has come a long way since thge timescale of transmission of (minimum size) packets, the
early days of telecommunications. In the IP world, variougaffic stream is alway®N/OFF (either there is transmission
statistical models have been proposed to characterize trafftdink speed, or silence) — which is obviously not Gaussian.
streams. The most simple model assumes Poisson arrivalsthfis, apart from the number of users (referred to as ‘vertical
packets, but such a model has the undesirable feature thaiggregation’), there should also be sufficient aggregation in
fails to incorporate the (positive) correlations between packghe (‘horizontal aggregation’). The necessity for some aggre-

arrivals observed in real traces. For this reason, the model Wifhtion in both directions for traffic to be Gaussian, was pointed
(a superposition ofpN/OFF sources is an attractive alternativeput by Kilpi and Norros in [7].

a broad variety of correlation structures can be modeled
by choosing appropriate distributions for tlen- and oFF Contributions. Specifically, Kilpi and Norros examined the
times. A variant of the latter model is the so-calledc/co levels of aggregation that are required to justify Gaussian
input model, in which flows (groups of packets, with somgodeling [7]. In the present paper, we further explore this
general distribution) arrive according to a Poisson process, dagic, in that we study the potential of Gaussian models, but
generate traffic at a constant rate while being in the system. Bigo their limitations. These limitations relate to the ‘minimal
choosing a heavy-tailed flow-size distribution, strong positivgggregation level’ (both horizontally and vertically) needed to
correlations can be obtained. There is vast body of literatusafely assume Gaussianity. In more detail, our contributions
on this topic; an overview of some approaches is given in, fare:
instance, [2, Ch.3] and references therein. (i) To assess whether or not traffic is Gaussian, we discuss
Recently, the attention has somewhat shifted to Gaussihe usability of an ‘easy’ goodness-of-fit test by comparing
traffic models and multi-fractal analysis. The further develts results to a more standard test (Kolmogorov-Smirnov).

Keywords: Traffic modeling, traffic measurements, Gaussian
models



location | short description time-span traces | hosts | avg utiliz.

U university residential network 5/2002 - 6/2002| 15 1800 | 170 Mbits

R research institute 5/2003 - 8/2003| 185 250 13 Mbitfs

C college network 9/2003 - 12/2003 302 | 1500 | 125 Mbits

S server-hosting provider 12/2003 - 2/2004 201 100 23 Mbitfs
TABLE |

OVERVIEW OF THE MEASUREMENTS

One would hope that both tests lead to similar conclusion$ networks, we have performed an extensive number of
(as to whether or not reject Gaussianity) — it would clearlyneasurements at 4 different locations. Each measurement
be an undesirable situation if different tests lead to differedataset consists of 15 minutes worth topdump records
solutions. of all (Ethernet) frames passing a measurement point on
(i) We examine the Gaussianity of traffic on varioushe so-called Internet uplink (which carries both upstream
timescales. As argued above, one expects that on snaild downstream traffic) of an organization’s access network.
timescales Gaussianity cannot be assumed (and that is in fHots, all traffic flowing from and into the organizations’ local
what has been found in several studies, see, e.g. [8]). Wetworks is captured. £&cpdump record consists of a precise
systematically study the impact of the timescale, for differetimestamp (of observing the packet at the measurement point)
types of network environments. In addition, we investigatend (in our case) the headers of the packets up to the transport
whether Gaussianity on one timescale does imply Gaussiarptptocol layer. In total, some 700 traces were recorded; see
for other timescales (with the striking conclusion that, for @able | for an overview of the measureménts
substantial range of timescalesdibes. Also listed in Table | is the estimated number of local
(iii) We assess the impact of the number of users that dnests at each location, and the average aggregate bandwidth
involved in the traffic stream, on the Gaussianity of thatilization over all traces. Noteworthy is that the hosts at all
aggregate traffic. Here we give estimates as to the aggregatmeations are connected via 100%s FastEthernet links; the
level from which on one can safely assume Gaussianity. bandwidth capacities of the Internet uplinks ar€biis, except

From a purely methodological perspective, the procedurfs location.S, which had an uplink capacity of about B0s.
followed are, to some extent, comparable to those described he traffic at locatiorlJ is a mixture of many applications,
in [7]. We however felt that the dataset considered in [7] wascluding WWW, e-mail and peer-to-peer traffic, both up-
somewhat limited, and that there was a need for a consideraslgeam and downstream, used by students. Loc&ioray be
more systematic study of these issues, using large numbeharacterized as an ‘office’: mostly WWW and e-mail traffic,
of traces, collected at several ‘representative’ locations. Thdsem the rest of the Internet to the employees. Locatis
locations differ in terms of link speeds, number of simultandraffic is also mostly WWW and peer-to-peer traffic; the users
ous users, applications being used, access speeds of usersanhestudents and college employees. The traffic at loca&ion
degree of user heterogeneity, etc. In other words, we beliggsemainly WWW traffic, but the major part of the traffic flows
that, due to the diversity of the selected traces, our conclusidrem locationS to the rest of the Internet — we will see that
have a stronger validity. this is an important difference compared to locatidtater on

in this paper.

Organization. The paper is structured as follows: Section
2 gives an overview of the data sets that are used. Section 3 |!l- A SSESSING THEGAUSSIAN CHARACTER
outlines the procedure to assess the Gaussianity of networRetwork traffic modeling, resource provisioning, etc., often
traffic, cf. [7]. Part of this procedure is the assessment tglies on the assumption that traffic is Gaussian (see, e.g. [9]):
the goodness-of-fit, for which we compare two approachder anyt > 0, the amount of trafficA(¢) offered in a arbitrary
Section 4 discusses the impact of the horizontal aggregatigme window of length is described by a normal distribution,
(timescale) on the Gaussianity, and Section 5 investigates fiametrized by a meah/t and variance/(t) := Var A(t).
impact of the vertical aggregation (number of users). Sectibm other words:

6 provides the conclusions. A(t) ~ Norm(M¢t, V(1)) .

Il. DESCRIPTION OF THE DATASETS The goal of this paper is to assess the claim that network traffic
To assess the impact of horizontal and vertical aggregatiisn— at certain timescales — Gaussian.

on Gaussianity, we chose to rely on measurements of real o
network traffic. This choice is motivated by our objective to Gaussianity assessment procedurdhe procedure that we

obtain insights that are representative for ‘real environment{@!low t0 assess the Gaussianity of network traffic is rather

rather than just for simulation or lab environments. 1For reasons of confidentiality we cannot disclose the names of the

) ) _ organizations; we refer to them with the identifier listed in the first column
To ensure that our data is representative for a varieiyTable I.



i i i i (up to, say, 20 out of 900) points is quite far above the
5} 1 diagonal at the ‘high-end’ of the spectrum, thus higher than
the ‘expected’ value. This phenomenon is known as ‘heavy
(uppentail’, and is often seen in Internet traffic. For the context

20 P 1

o in which this study is performed, i.e., provisioning of network
2 2 resources, the high-end of the spectrum is more important than
g »r 7 1 the ‘under-expectations’ at the lower end. Thus, the heavy
5 A tail motivates conservative provisioning: if a Gaussian traffic
T ol o 1 model is assumed, one should be aware that the model may

not be accurate when traffic rates are relatively high (compared
to the average rate).

s Figure 1 gives a first impression of tlgpodness-of-fibf
0= : " - p some of the measured traffic compared to a Gaussian traffic
N(mu.siama?) model. To quantify the goodness-of-fit, we use the so-called
, _ , linear correlation coefficienty, which is generally defined as
Fig. 1. Example quantile-quantile plot:A(7) compared to N
Norm(MT,V(T)) for T = 1 sec; location R, M = 9.8 Mbit/scc Sy (o — M) (g —q)

)

and V(1) = 15.3 Mbit®/sec?, V= " N — 2
\/Zizl (O‘(i) - M) D iei (Qi - q)

) o .. Wwhere ¢; are the quantiles of the model distribution, i.e.

straightforward, similar to the procedure followed by Kilpi an(Norm(]\Zf V(1)), andg their average. Clearlyy| < 1, andy

Norros [7]: Quantile-quantile plots are made to compare the, .15 1 only if all pairs fall on the diagonal. For the examples
distribution of the observed traffic with a normal d|str|but|on-rn Fig. 1.~ — 0.986, corresponding to the ‘fairly Gaussian’

and this comparison is quantified using a ‘goodness—of—f'a’uanﬁcatiOn above.

measure.
We determine whetheA(T') ~ Norm(M T,V (T)) holds. Remark on other Gaussianity tests.There is a vast body
We chooseT = 1 sec to start with, motivated by our of literature on (alternative) tests for assessing normality (or

expectation that timescales of this order are relevant for parother distribution) of measurement data, for instance the
formance as perceived by end-users of interactive applicatidf@mogorov-Smirnovest, see e.g. [11].
like web-browsing. Later on in this paper we also consider We have compared the values-pthat are computed from
other timescales. hundreds of our traces, with the outcome of the Kolmogorov-
Let 4; denote the amount of traffic offered in tit interval Smirnov test (modified for estimations of mean and variance,
of length T, andn the number of intervals. The (unbiasedpee [11, Sect.4.8]). The results are depicted in Fig. 2. It
estimates)/ and V(T)) of the average and (sample) variancshows that, roughly speaking, if the correlation coefficient
of the traffic rates in our traces can straightforwardly bie high (say,y > 0.9), then the Kolmogorov-Smirnov test

determined: (at significance level 0.05) supports the hypothesis that the

) ;& ) L& 2 underlying distribution ofA(T") is normal. In other words, the
M=— ZAZ' and V(T) = Z (Ai - M) . methods are in line with each other, and, as a consequence, it
nT n—13 seems justifiable to use the ‘easy’ goodness-of-fit test based

Note that the convergence of the estimator of the samB 7 rather than the somewhat more involved Kolmogorov-

variance could be rather slow when traffic is long-ranggMimov test.
dependent, which can be expected for real network traffic [10,5 traffic always Gaussian?One may wonder how repre-

Ch.]. sentative the example is that was presented in Fig. 1. Therefore

To assess the Gaussianity of the network traffic, we use iég look at all traces collected at all 4 our measurement

called quantile-quantile (Q-Q) plots. In these plots, the pair cations. For each of these traces, we compute the goodness-

of-fit v, and we plot the results as to see how common certain
<I>*1( { ) o i—1.9 n values of7 are. The outcome is presented in Fig._3.
nt1/ “@) R From Fig. 3 we may conclude that, for all locations except
R, in about 80% of the casesis above 0.9, suggesting fairly
Gaussian traffic. For locatioRR, we will later see that the
somewhat reduced Gaussianity is likely caused by the fact
Yhat there are fewer users active at the same time.

are presented. He@~! is the inverse of the normal cumula-

tive distribution function with mead/T and variancd/ (T,

anda; are the order statistics. When the traffic is ‘perfectl

Gaussian’, all points in the Q-Q plot are on the diagonal.
In Fig. 1 an example Q-Q plot is given one of our traces. IV. TIMESCALE

Clearly, most points are close to the diagonal. Hence, theln the previous section we investigated Gaussianity of traffic

traffic is ‘fairly Gaussian’. Observe however that a fractioat a fixed timescale of" = 1 sec. In this section we will
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Fig. 2. Comparison betweenand D (Kolmogorov-Smirnov) statistic, using Fig. 4. Comparing Gaussianity at different timescales, for 5 example traces
all traces. from locationR.

smaller — possibly harder to measure — timescales as well,
but, as remarked in the Introduction, this reasoning could be
dangerous (as, at very small timescales, traffic is certaiaty
Gaussian).

First, we look at an example with only a few traces. We
determiney at various timescales; the results, with five traces
from measurement locationB, are plotted in Fig. 4. The
impression from the examples in Fig. 4 is that, because of the
more or less horizontal lines, the Gaussianity is quite constant
02| 1 over different timescales.

location S ——
location U

ie} 1
0.4 L

goodness-of-fit gamma

jocation © = Next, we investigate this for all traces. We introduceas
% 02 0a 06 08 1 measure of the ‘variation of. More precisely, we define.,
fraction of traces (ordered by goodness-of-fit) as the square root of the sample variance ofthevalues at
all assessed timescales,..., 7, € T

Fig. 3. Distribution of the determined linear correlation coefficignbver
all measurements

Uy 1= \/VAar(%_l) Trzs -oos %—“) ’

. o . . where we choosd’ = {5 msec, 10 msec, 25msec, 50 msec,
look into Gaussianity at other timescales, ranging frémn= 100 msec, 500 msec, 1sec, 2sec, E}se‘fhe interpretation

5 msec 10 T' = 5 sec. The choice for this range of timescalegg ¢ whenv, is low, the traffic is (more or less) equally
T is motivated by our expectation that these dominate t'@faussian across multiple timescales

‘user-perceived Quality-of-Service’, and hence should be used
for provisioning purposes (more precisely, the provisioning We have computed., for all traces at all 4 measurement
objective could be, for instand® A(T) > CT) < ¢ for some locations. After ordering them from low to high values:of,
predefined, small fraction, andT" the timescale of interest). they are plotted in Fig. 5. Clearly;, is small in most cases:
_ _ ) in over 95% of the tracesy, is below 0.05. Thus we may

An important question here is whether a computed valygnclude thaty is quite constant over different timescales; in
of v at a given timescale gives a clear indication 9f ther words: traffic that exhibits Gaussian characteristics at
at another timescale. Or in other words: if traffic is fairlyne timescale, is likely to be Gaussian at other timescales as

Gaussian at a certain timescale, does that say anything akgg (for the timescales that we investigated, at least).
Gaussianity at other timescales? Suppose that a particular

traffic stream exhibits strong Gaussianity at a timescale of,Finally we have computed the ‘average Gaussianity’ of all
say, 5 seconds, and that such characteristic typically would tbaces at various timescales, i.e., the average valyefof all
constant across timescales. If this is true, then, after havimmgces at a particular location, for various timescales. These
verified Gaussianity at timescales and 72, one could also are plotted in Fig. 6, together with error bars that represent
assume Gaussianity at intermediate timescales. Of cours¢hé standard deviation of the computed/alues at a specific
would be tempting to also assume traffic to be Gaussiantahescale.



0.5

location R —— ' ' '
location C
3 0451 ocation S oxe )
s locationU &
2 04f 1 -
£ =
= 035 E
5 g
£ o3f { 2
2 h
¢ o025t * ©
° N
< n
E 02 4 4]
g J 2 |
= i/
< 015 f P S |
s y =)
] 0.1 ) .
3 ‘Mf location R, example trace 1~ +
© 005 1 0 _ location R, example trace 2 ~
0 o L L L L
0 0.2 0.4 0.6 0.8 1 0 5 10 15 20
fraction of traces (ordered by variance of gamma over different timescales) number of users
. 9 . . l 7 T T X,
Fig. 5. v,: goodness-of-fity over different timescales Iiﬁ%i{%f%r ]
PR — g 08 [ GBI L KL R e e
I | . % £ P
; : 0 [ & s
0.8 . o w ‘ ] 2 06 o~ |
g o0 z -
g o s
S o6} g ? [
= g 04 1
b c i
5 B ?
A 1 .
§ oaf : & o021l location S, example trace 1.~ + |
= ' location S, example trace 2 =
S location S, example trace 3
0.2 location S 1 0 ) location S, example trace 4 =
location U
location C ¢ 0 10 20 30 40 50 60
o - - - - - JocatonR 7, number of users
8 % N ) % ) 7 2 S
/bd‘@ S s, 2, 0/;) 0/;) & & 8
¢ R R % S e Fig. 7. Gaussianity compared to number of active users

timescale
Fig. 6. ‘Average Gaussianity’ at different timescales for all locations . . -
g g y the previous sections. In these traces the traffic of a large
number of users was aggregated, however. Therefore, we took

From the analysis in this section we may conclude thHPm these traces only a subset of all packets, namely just the

traffic is fairly Gaussian at the vast majority of the location®?2CKets that relate to a random subset of users. In this way

for most traces, for most timescales from 5 msec up to 5 s&¥€ ¢an investigate the Gaussianity of a traffic in which just a

Thus, traffic may be assumed to be fairly Gaussian in genef&fictionp of all users is aggregated (as a function of thjs
r procedure to reduce the number of users involved is as

Also, generally speaking, if traffic is Gaussian at a particulglf _
timescale, it would still be Gaussian if the measurements w PéOWS'

taken at other timescales. We process the trace per packet; when a new IP address
within the local network address range is found, with a
V. NUMBER OF USERS probability p all of this IP address’ traffic in the trace will be

In the previous section we discussed the impact of tfi@ken into account, with a probability— p traffic of this user
horizontal aggregation, i.e., the timescale, on the Gaussiarifiynot selected, thus reducing the number of users as desired.
of network traffic. In this section we will look into the effectThe experiment is repeated with the sapevidently leading
of the vertical aggregation, i.e., the number of users whots different results due to the random nature of the selection
traffic is aggregated. process, as well as with differept The experiments yield

When traffic of a ‘sufficiently large’ number of users is aginput to our ‘Gaussianity quantification procedure’ described
gregated, the resulting traffic mix exhibits strong Gaussiani@arlier: for various numbers of ‘active users’, a Gaussianity
[7]. We will now investigate in further detail what ‘sufficiently figure is computed.
large’ means. We do this by comparing the Gaussianity of

network traffic as function of the number of users involved. The number of ‘active users’ is defined as follows. Per
e.g. 1 second, it is observed how many distinct IP addresses

In this section we will rely on the same traces as used {within the local network address range) send or receive traffic



1 . . : : Figure 7 gives a first impression on the relation between
i the number of active users relate and the Gaussianity of the
T 08} ] resulting aggregated traffic. For illustration purposes we have
E added (least squares) fits for the data plots; the fits stem from
5 o6 - | the formulac - N?, where N denotes the number of users and
b= ' « and are scaling parameters. Next, we want to get a more
“g' 0al | thorough expression of this relation.
@ .
é We compute they values for numerous experiments (as
8 o2t i described above), and aggregate the results in two dimensions:
2 location R, example trace 1 (i) the number of users involved is grouped per 5, and (ii) the
0 ‘ location R, example trace 2 - ~ values are averaged and plotted together with an error bar
29N xﬁ\, Q. Y. 0. %, % indicating the standard deviation. The results are plotted in
o % v % % % Fig. 8. The top picture shows the result for locati@nbelow
number of users (grouped per 5) for location S. As the primary interest here is on the lower
1 5 T T T T LT T T hand of the spectrum of the number of users (as, for large
b L } } } { Lok I numbers of users, we already know traffic is quite Gaussian),
< 08} * T 1 N | we have limited ourselves here to the two locations with the
E NE 1 least number of users.
S 06 | | From Fig. 8 it can be seen that, as expected, an increase in
g the number of users involved tends to increase the Gaussianity.
E It is not possible, however, to give a hard number saying
8 04 ¢ | ‘above N users, traffic may be assumed Gaussian'. It seems
§ . justified to claim that ‘only a few tens of users’ makes the
e o2l location S, example trace 1 | resulting traffic fairlv G . .
S location S, example trace 2 g traffic fairly Gaussian (at this timescale).
location S, example trace 3 +x
0 . location S, example trace 4 - = VI. CONCLUSIONS

%5 90,0 %6.50.55 30 %5 0 %, % % 66:) This paper investigated Gaussianity of network traffic, using
BSOS D B PGy ,

hundreds of real network traffic traces, collected at four
different locations. These locations can be described as a
Fig. 8. Gaussianity compared to number of active users (grouped) University residential network, a research institute, a college

network and a server-hosting provider.

number of users (grouped per 5)

. . . . To assess whether traffic is Gaussian, the paper builds on
in that interval. The number of active users per experiment . o . )
. L previous work of Kilpi and Norros. In particular it presents
is then the average number of distinct IP addresses over, , : !

. I : : . an ‘easy’ goodness-of-fit procedure, using the so-cdileshr
all intervals (which is evidently not necessarily an integer ; e
number) correlation coefficienty. Our study shows that the results

obtained using this procedure are comparable to the more

It is assumed that the traffic of the users that are not takgf?;\ndard (and more difficult to usefolmogorov-Smirnov
into account, does not influence the characteristics of the trafﬁi&cedure For all but one location. we found that. in about

of the users whose traffiis taken into account; this can begoo/0 of the cases is above 0.9, suggesting fairly Gaussian
motivated by the relatively high degree of overprovisioning cﬂaﬁic.

the network links.
. . An important conclusion of this paper is that traffic that

Figure 7 shows for locatiorR (top) andS how the number is Gayssian at one timescale, is likely to be Gaussian at
of active users relate to the Gaussianity of the network traffiger timescales as well. More specifically, we investigated
taking only a few example traces into account. As could Rgayssianity at timescales ranging from 5 msec to 5 sec,
expected, Gaussianity increases with the number of actiygq introducedv,, to denote the ‘variation ofy’ over these
users. Also, for a given number of active users, there fighescales. In general we found small valuesvof in over
typically quite some variation in the Gaussianity (betweegso, of the traces it is below 0.05, implying that ‘level of

traces as well as within the same trace but for differeg§ayssianity’ remains stable over different timescales.
experiments, i.e. with different subsets of selected users).

Notably, there are cases when only a few users are active orfrinally the paper investigates Gaussianity as function of the
average, but still the Gaussianity is almost 1. In these casesyuanber of users. Although it is impossible to give a hard
small number of users were dominating the trace and happemednber saying ‘abovéV users traffic is Gaussian’, it is safe to
to be selected, and apparently their traffic plus the ‘noise’ afake the general claim that ‘only a few tens of users’ already
the others is Gaussian. make the aggregated traffic fairly Gaussian.
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