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ABSTRACT
We establish a series of properties of symmetric, N-pulse, homoclinic solutions of the reduced

Gray-Scott system
u’= uvz, V'=y - uvz,

which play a pivotal role in questions concerning the existence and self-replication of pulse
solutions of the full Gray-Scott model. Specifically, we establish the existence, and study
properties, of solution branches in the («,)-plane that represent multi-pulse homoclinic orbits,
where o and B are the central values of u(x) and v(x), respectively. We prove bounds for these
solution branches, study their behavior as o« — o, and establish a series of geometric properties
of these branches which are valid throughout the (&,8)-plane. We also establish qualitative
properties of multi-pulse solutions and study how they bifurcate, i.e., how they change along the
solution branches.
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Abstract

We establish a series of properties of symmetric, N-pulse, homoclinic solutions
of the reduced Gray-Scott system

' = w?, v =v—uv?,

which play a pivotal role in questions concerning the existence and self-replication of
pulse solutions of the full Gray-Scott model. Specifically, we establish the existence,
and study properties, of solution branches in the (a, §)-plane that represent multi-
pulse homoclinic orbits, where o and 8 are the central values of u(z) and v(z),
respectively. We prove bounds for these solution branches, study their behavior
as a — 00, and establish a series of geometric properties of these branches which
are valid throughout the («,3)-plane. We also establish qualitative properties of
multi-pulse solutions and study how they bifurcate, i.e., how they change along the
solution branches.

1 Introduction

In this article, we analyze the existence, nonexistence, bifurcation, and qualitative prop-
erties of positive, symmetric, N-pulse, homoclinic orbits of the following system of ordi-
nary differential equations:

u’ = uv? and V" = v —w?, (1.1)
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where z € R, u = u(z), v = v(x), and prime denotes d/dz. Symmetric solutions of (1.1)
are identified by their values at the origin,

u(0) =« and v(0) = B, (1.2)

where a and 3 are positive constants. Moreover, since v/ = 0 and v’ = 0 at the origin
for symmetric solutions, any pair («, ) determines a unique local solution of (1.1).

For some values of (a, () the corresponding solution (u,v) exists for all z € R and
has the property that
v(z) =0 as T — oo. (1.3)

Although u(z) — 0o as £ — Fo00 with u/(z) = £ps for some po, for such solutions, we
refer to solutions endowed with the property (1.3) as homoclinic orbits. Let us denote
the set of such points by %, i.e.,

Y ={(a,8) € Rt x R" : the corresponding solution (u,v) is homoclinic}. (1.4)

Our main objectives in this article are to study fundamental aspects of:
() the location of the set ¥ in the («, 5)-plane,
(¢2) the structure of ¥ as a family of curves, including their bifurcations, and

(747) qualitative properties of the different homoclinic orbits.
In order to determine the location of 3, we define the family of hyperbolas
Kx={(a,8): >0, f=A/a}, A>0. (1.5)

We will show that the set X lies below K3/, and that it straddles Ky. In Figure 1, we
display some of the curves from the set ¥ in the (a, 3)-plane, as well as portions of the
hyperbolas K; and K3/5.

It follows from the equation for v in (1.1) that v”(0) < 0if 8 > 1/a, whereas v"(0) > 0
if 8 < 1/a. Thus, for points in ¥ which lie above K1, the graph of v(z) must have an odd
number of local maxima; while, for those lying below K1, the number of local maxima
must be even. In Figure 2, we present the graph of v(z) of several homoclinic orbits,
two starting at points above K and two starting from points below K;.

The location of the set ¥ may be determined more precisely by analyzing homoclinic
orbits with an odd number of local maxima and those with an even number of local
maxima separately, and by defining admissible sets Ayqq and Aeven, respectively. Plainly,
Aoaa lies between the curves K3/ and K1, and Aeven must lie below K. We then obtain
an explicit curve which connects K3/, and Ky and which serves as an upper bound for
Aoaa- Bounding Aeven is a more delicate operation; here, we prove the existence of an
upper bound and a positive lower bound. See Figure 1 for an illustration of these sets.

The second objective concerns the structure of the set ¥ as a family of curves of
initial conditions corresponding to symmetric, N-pulse, homoclinic orbits. We begin
with the regime where « is large and use ideas and methods which have been developed
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Figure 1: In the (a, 5)-plane, several branches of symmetric, N-pulse, homoclinic orbits
obtained from numerical simulations of (1.1) (solid curves) and the hyperbolas K and
K3/2 (dashed curves). All of the branches lie below K3/. For large «, they are ordered
as C°, C3°, Ce°, C2°, C3°, Cfp, Cg°, Cg°, C3°, C3° from top to bottom.
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Figure 2: Left frame: the graphs of v(x) for a 1-pulse solution and a 3-pulse solution lying
on C° and C$°, respectively, the first and the second branches from the top in Figure 1.
Here, 8 = 0.2404422 and § ~ 0.2100454, respectively. Middle frame: the graphs of
v(z) for a 2-pulse solution and a 4-pulse solution, lying on C$° and C3°, respectively, the
first and the second branches from the bottom in Figure 1. Here, § = 0.1101287 and
B =~ 0.14084, respectively. Right frame: the graph of u(z) for the same 1-pulse solution
as in the left frame with py, = u/(00) & 0.5033. In all frames a = 6.

in [11] and [7] for the purpose of studying the asymptotic properties of stationary pulse
solutions of the Gray-Scott system (1.14) and more general systems. For each N > 1,
and for « sufficiently large, i.e., greater than some &(N), we find that ¥ consists of a



Figure 3: A sketch in the (a, 3)-plane of the curves K3/5 (upper hyperbola — partly
dashed and partly solid), K1 (lower hyperbola — partly dashed and partly solid), Bupper
(the solid curve segment connecting the two hyperbolae between the middle and lower
dots), Beap (the solid line segment connecting K; at the upper dot to the S-axis), and
Biower (solid curve at the bottom). The boundaries on the admissible sets Aoqq and Aeven
are given, respectively, by the solid portion of K35, the solid curve segment Bypper, and
the lower, dashed portion of 1, and by the solid portion of K1 between the upper and
middle dots, the solid line segment B.ap, a piece of the vertical (3) axis, and the solid
curve Biower-

series of unique branches
C¥ ={(a,8) :a>a(N), p=pBn(a)}, N=123,... (1.6)

of homoclinic orbits such that v(z) has N local maxima on C3’. These branches must
lie above Iy if N is odd and below K if N is even. Specifically,

3 3<11 8

Bn(a) = % 208 —(N? - 1)) +o(a?) as a—oco if Nisodd (1.7)

ERE
and
2 1
Bn(a) = iN — + ol ?) as a—oo if N is even. (1.8)

Vb«

Moreover, in the process of establishing these results, we show for each N that the N-
pulse homoclinic orbits with initial conditions on C3’ lie in the transverse intersections
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of invariant manifolds of system (1.1) when « > 1. Finally, in the special cases of N =1
and N = 2, these results agree with the matched asymptotic results obtained in [24] for
one- and two-pulse solutions of the system (1.1).

The geometric construction and the resulting asymptotic expansions (1.7) and (1.8)
imply that for each o large enough there exists an N large such that the set ¥ consists
of a family of curves CfP, with N =1,2,... ,N. These curves are neatly ordered like a
mille-feuille cake; alternating being near the hyperbola K3/, and near the a-axis. See
Figure 1. Moreover, the asymptotics also allow us to conclude that the bounds on the

regimes Ayqq and Aeven are optimal for large enough a.

The geometry of the curves C{f anchors the main results of this article about the
structure of ¥, which we now describe. The invariant manifolds, in whose transverse
intersections the N-pulse orbits lie for « large, can be continued to O(1) values of «
into the region of the (¢, )-plane in which there is no longer a small parameter in
the governing equations (1.1) and in which the four variables (u,u’,v,v") evolve on the
same scale. Moreover, by continuing these invariant manifolds and by using some of the
qualitative properties of homoclinic orbits, we will be able to track the intersections of
these manifolds, and hence the curves C3’ as well, into the region in which o and 8 are
both O(1).

For each N, let ¥ denote the subset of ¥ containing symmetric, N-pulse homoclinic
orbits, i.e., the orbits (u,v) with the property that the function v(z) has N local maxima,
and let us additionally assume that the maxima (and minima) are non-degenerate. We
shall prove the following series of results about Xy, for each N:

(1) The set X consists of a finite collection of smooth segments C, v, k = 1,2,..., Ky,
where C; y = CF7.

(2) The segments Cy n are bounded in length when k£ > 2. In particular, if we param-
eterize the segments Cp v = {(ax,n($),Bk,n(5)) : s € I N} then the intervals I y are
finite when k > 2. By contrast, the intervals I; y are semi-infinite.

(3) The functions oy n(s) and By n(s), as well as their first derivatives, have finite,
nonzero limits as s — I x, when 01 y is finite.

(4) At the finite endpoints of the segments Cj, y — referred to as bifurcation points — the
number of pulses changes and different segments begin.

(5) If a bifurcation point lies on K1, then the adjacent segments correspond to symmetric
homoclinic orbits with 2n — 1 and 2n pulses, respectively.

These results also enable us to rule out a number of different bifurcation scenarios,
For example, result (3) implies that a curve C§f cannot spiral into an accumulation point
or approach some type of nontrivial limit set. Also, along the way to establishing these
results, we show that bifurcations between homoclinic orbits with 2n and 2n + 1 are not
possible (note the contrast with result (5) above) and that bifurcations between a curve
Ci,n and a curve C N4, for n > 2 and any k are also not possible (where we restrict



to N +n > 1). We remark that these results do not say anything about bifurcations to
asymmetric homoclinic orbits, which may occur.

In numerical simulations, we observed the following continuation results:

(¢) The curves Cg°, C$°, and C£° continue all the way until they hit Xy, where they
meet the curves C3°, C3°, and Cg°, respectively, at the points P2 ~ (3.02,0.3314),
P34 ~ (3.83,0.2612), and Ps ¢ ~ (4.40,0.2274). These are also illustrations of results (2)
- (5) above.

(#) For decreasing ¢, the curve C$° becomes a new branch of 5-pulse orbits, Ca5, at
(5.0,0.2248), changes back into a branch, Cy7, of 7-pulse orbits at (4.065,0.26), and
then hits K, meeting the curve Cg°, at the point Prg ~ (4.86,0.2058). The set
cl (C2° U Ca5 UCar UCE®) appears as one smooth branch in Figure 1, where cl denotes
the closure of a set. At the first transition point, the local minima on either side of the
origin and closest to it merge with the local maxima that are further from the origin and
that are immediately adjacent to them. Hence, there is a loss of two local maxima. At
the second transition point, there is a gain of two (symmetric) local maxima. These are
also illustrations of results (2) — (5) above.

(#4i) As o decreases, the curve C§° becomes a new branch, C37, of 7-pulse orbits at
(6.0,0.1842), then becomes a new branch, Ca 9, of 9-pulse orbits at (5.2,0.1926), before
merging with C§ at Py 10 ~ (5.24,0.1908) on 1. The set cl (C§° U C37 UCag UCTY) is a
smooth branch in Figure 1.

Note that the numerical simulations indicate that there are (at least) three different
disconnected branches of 7-pulse orbits, and two branches of 5- and 9-pulse orbits, i.e.,
K7 > 3 and Ky > 2 for N = 5,9. The simulations also suggest that Ky = 1 if N is
even. Thus, the bifurcational structure of the set % is surprisingly complex, and X has
more structure than suggested by Figure 1.

The third objective concerns qualitative properties of homoclinic orbits. There is
a monotonicity property; namely, the maxima and the minima in the graph of v(z)
decrease as one moves away from the origin, as is also illustrated in Figure 2. We prove
that this is a general property of homoclinic orbits of (1.1). In particular, we show that
if (u,v) is a homoclinic orbit of the system (1.1) and v has local maxima (minima) at
the points &; and &2, then

0<& <& = v(€1) > v(&2). (1.9)

Our analysis of this monotonicity property, and that of other qualitative properties, is
inspired by methods for fourth-order systems of ordinary differential equations presented
in [35].

A useful qualitative property of (1.1) is the energy-type function

1 1
H=H(u,v,v,0") = 5(1}')2 - 51)2 + guv?’, (1.10)

which is naturally suggested by the v equation in (1.1). It is important to emphasize,
however, that this function H is not a conserved quantity for the full system. Writing



‘H = H(x), we see via a direct calculation that

M @) @) (1.11)

along orbits. More precisely, on x > 0, H is increasing along orbits whenever v > 0,
because u’' > 0 along orbits. The function H plays a crucial role in the construction of
the admissible regions Aeven and Ayqq (Figure 3).

The asymptotic results (1.7) and (1.8) and the continuation results are strongly based
on Fenichel theory for normally hyperbolic invariant manifolds, see [16, 39, 23] and [15],
respectively. Writing (1.1) as a system of four first-order differential equations,

~

u = p
! 2
p = wv
o = ¢ (1.12)
qd = v—u?
we see that the plane
M ={(u,p,v,q)|lv=10,q =0} (1.13)

is normally hyperbolic. The stable and unstable manifolds of M intersect transversely,
as we will show, and the various homoclinic orbits connecting (u, p, v, q) = (00, —Pwo, 0, 0)
to (u,p,v,q) = (00,Px0,0,0) lie in these intersections, where the value of ps depends
on the orbit. Thus, the homoclinic orbits studied in this paper are homoclinic to the
invariant manifold M. Moreover, the demonstration of the existence of these homoclinic
orbits will rely also on the reversibility symmetry (u,p,v,q,t) = (u, —p, v, —q, —t) that
(1.12) inherits from the symmetry of (1.1).

Overall, our analysis of system (1.1) represents a blending of analytical and geomet-
ric methods for differential equations. We found it fruitful and essential to combine
the analytically-obtained and geometrically-derived results in order to prove the main
existence and bifurcation results (see especially Theorem 7.1).

Finally, we describe our deeper motivation for studying system (1.1). System (1.1)
plays an important role in the analysis of the Gray-Scott model,

{Ut = Up —UV2+A(1-0), A>0

V; = DV, +UV? - BV, D>0, B>0 (1.14)

[18]. The Gray-Scott model was the first system of reaction-diffusion equations in which
the phenomenon of self-replicating pulses was observed [29, 34, 36, 37]. In recent years,
the phenomenon of self-replication of pulses and spots in the Gray-Scott model has
become an active subject of research [5, 6, 11, 13, 24, 25, 26, 30, 31, 33, 34, 36, 38,
40]. It is known from numerical simulations that there is a saddle-node bifurcation of
homoclinic orbits, which plays a central role in initiating the pulse self-replication process
[6, 5, 24, 25, 26, 30, 33, 40]. The reduced Gray-Scott system (1.1) governs the leading
order (‘spatial’) dynamics near the onset of self-replication [6, 30, 24, 25, 26]. From the
existence of the families of multi-pulse homoclinic orbits for (1.1) constructed and studied
in this paper, one can show that there are also associated families of stationary, multi-
pulse patterns of the Gray-Scott model (see also [24]). Therefore, we will describe the



relation between the reduced and the full Gray-Scott systems. In addition, the relevance
of the bifurcations of the homoclinic orbits studied here for the process of self-replication
of pulses in the full Gray-Scott model is explained.

Finally, we discuss the phenomenon of pulse self-replication in a more general setting,
since it has become clear recently that it is not restricted to the Gray-Scott model. Self-
replication of pulses has for instance also been observed in generalizations of the Gray-
Scott model, see [38], and in the classical and generalized Gierer-Meinhardt equations,
see [10, 12, 25], where we refer the reader to [17, 32] for references on this equation, as
well as to other equations of this type. It is known from numerical simulations that there
is a structure of homoclinic orbits and bifurcations in the stationary problem associated
to the Gierer-Meinhardt equations for parameter values near the onset of pulse self-
replication that is, from a geometrical view point, remarkably similar to the structure of
homoclinic orbits studied here. Moreover, as in the case of the Gray-Scott equations, it
plays a central role in organizing the dynamics in the self-replication regime [12, 25].

This article is organized as follows. In Section 2, we show that ¥ must lie below
K3/2, we establish the monotonicity property of local extrema, and we prove the first
nonbifurcation result for symmetric homoclinic orbits. In Sections 3 and 4, we establish
the bounds on the admissible sets Ayqq and Aeven, respectively, in which % lies. In
Section 5, we state the asymptotic results for & — oo quoted in (1.7) and (1.8). Then,
in Section 6, we prove the continuation results; and, in Section 7, we establish the
homoclinic bifurcation theorems. Finally, in Section 8, we discuss the relation between
the Gray-Scott model (1.14) and the reduced system (1.1), and some generic features of
the process of pulse self-replication.

Numerical solutions of (1.1) were computed using XPPAUT [14], with the fourth-
order Runge-Kutta method and dt = 0.01; and, a numerical shooting procedure was
used to find the initial conditions for the homoclinic orbits.

2 Qualitative properties

In this section, we prove a few general properties of solutions of the initial value problem
problem

U = u?, V" = — w? for >0

(IVP) { (2.1)

u=a, u =0, and v=pRB, vV=0 at =0

Specifically, we look for values of « and /3 for which there exists a solution (u, v) such that
v > 0 on R" and v(z) — 0, i.e. for which the system (1.1) possesses a nondegenerate,
symmetric, homoclinic orbit with central values (a, ).

First, we prove that the hyperbola K3/, is a universal upper bound in the («, 3)-plane
for homoclinic orbits to exist, and then we prove a monotonicity property for the local
maxima and minima of v(z), when (u,v) is a homoclinic orbit.



Lemma 2.1 Let (u,v) be the solution of Problem (IVP). If a8 > 3/2, then there exists
a point a > 0 such that

v(z) >0 for 0<z<a, v(a)=0, (2.2)
v'(z) <0 for O<z<a.

Proof First, we derive an upper bound for v”. Since u/(z) > 0 for z > 0, it follows
that u(z) > « for x > 0. Hence,

2

V' =v—w? <v-—av for z>0. (2.4)

Second, we derive an upper bound for v'. Since af > 3/2 by assumption, we find

v"(0) = B(1 — af) <~ B <0.
Hence, v' < 0 in a right-neighborhood of the origin.
Third, we define the point
zog =sup{z > 0:vv' <0 on (0,z)}.
To finish the proof, it suffices to show that
v(zg) =0 and v'(zg) < 0,
because then (2.2) holds with a = zo.

Thus, suppose to the contrary that v'(zg) = 0 as well as v(zg) > 0. Multiplying the
inequality (2.4) by 2v’ and integrating over (0, z), we find that

0>v§—52—?(vg—63), vo = v(x0),

since v'(z) < 0 on (0, z). When we divide both sides by (vgp — 8) < 0 and rearrange the

terms, we obtain
2 2
2t < (1 _ %ﬁ) (v + B).

Recalling that, by assumption, af > 3/2, we conclude that

2x
?’Ug < 0,

a contradiction. Therefore, (2.3) holds with a = zo, as claimed. O

This lemma and the fact that v(z) must be strictly positive for all z in order for the
solution to be a homoclinic orbit immediately imply:



Corollary 2.1 In order for the orbit through the initial condition («,0,(3,0) to be a
symmetric N-pulse homoclinic orbit, for any N > 1, the pair (o, B) must lie below the
curve Kz /s.

Next, we show in the following lemma, that the hyperbola /C; is a separating curve:

Lemma 2.2 In order for the orbit through the initial condition («,0,3,0) to be a sym-
metric N -pulse homoclinic orbit with N odd, the pair (o, ) must lie above K1; while for
the orbit through the initial condition («,0,3,0) to be a symmetric N -pulse homoclinic
orbit with N even, the pair (o, ) must lie below K.

Proof From the v equation in (IVP), one sees that v”(0) = (1 — aB). Hence, for
af > 1, v(z) has a non-degenerate local maximum at z = 0, so that any symmetric
homoclinic orbit must have an odd number of pulses. By contrast, for a8 < 1, v(0) is
a non-degenerate local minimum, so that any symmetric homoclinic orbit must have an
even number of pulses. [l

In the next lemma, we prove a useful monotonicity property for solutions of (IVP)
with multiple distinct local extrema. We show that successive minima must be strictly
decreasing as |z| increases. The same holds for successive maxima.

Lemma 2.3 Let (u,v) be the solution of Problem (IVP) for initial data « and 3, and
let v have distinct positive local minima at n1 and 12, respectively, where 0 < 11 < na.
and no local minima in the interval (n1,m2). Then,

v(m) > v(n2).

Similarly, distinct, successive local mazima must decrease strictly.

Proof The proof is based on an analysis of the energy function H(z), which is known
to be increasing on R*.

Suppose, to the contrary, that v(n2) > v(n1) > 0. By integrating (1.11), we find

dH 1,
(@) = u/(2)*(a)

over the interval (z,72); and, using v(z) > v(n2), we obtain

H(n) — H(z) = %/m u' (£)v3(t) dt

13

> S%(m) /"2 o () dt

= ) {ulm) -~ u(@). (2:5)
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Now, let
n* =inf{x <m2:v>v(n) on (z,m2)}.

Then, in view of our assumption,

m<n*<n and  v(n*)=v(n).

We substitute z = n* into (2.5) and evaluate the left member using the definition of #.
This yields

5% () {ulm) — ul")} = 3 (0/(r")? > 50°(m) {ulm) — ur)},

because v(n*) = v(n2). Hence, 3(v'(n*))? < 0, which is a contradiction. The fact that

the local maxima also decrease monotonically is proven in the same way. O

Corollary 2.2 For any N -pulse homoclinic orbit (u,v) of the Problem (IVP) with N >
1, the central local mazimum will be the largest if N is odd, while if N is even the central
two (symmetric) local mazima will be the largest.

In the next lemma, we prove results about solutions (u,v) of Problem (IVP) for which
v has degenerate extrema, i.e., for which v'(a) = v”(a) = 0 either at a = 0 or at some
a>0.

Lemma 2.4 Let (u(z),v(z)) be the solution of Problem (IVP) on x >0, and let a > 0
be a critical point of v. Then,

(a) v""(a) =0 if a = 0, whereas v"'(a) < 0 if a > 0.
(b) If also v"(a) = 0, then v(™®)(a) < 0, irrespective of whether a =0 or a > 0.

Proof From the second equation in (1.1), one computes
V" = —uv? — 2uv.

Hence, v"(a) = —u'(a)v?(a). Since v/(a) = 0 if a = 0 and v/(a) > 0 if a > 0, the
assertion in part (a) follows.

Next, we calculate
o) =" — "% — qu'vv’ — 2u(v')? — 2uv”.
Hence, if v"(a) = 0, then
v®)(a) = —u"(a)v?(a) = —u(a)v?(a) < 0,
as claimed in part (b). O

Next, we exclude certain bifurcations of symmetric multi-pulse orbits, namely those
that go from an odd number (2n + 1) of pulses down to an even number (2n) of pulses.
The proof of this result relies on the previous lemma.

11



Lemma 2.5 Let n > 1. A symmetric (2n + 1)-pulse orbit cannot bifurcate into a sym-
metric 2n-pulse orbit (or vice versa).

Proof Suppose, to the contrary, that a branch Cy,41 of symmetric (2n + 1) pulse
orbits does bifurcate into a symmetric 2n pulse orbit at some point (ag,Bp). Let us
parametrize the orbits on Capt1 by o such that (as,8,) — (ao,B0) as o — 0. Since
2n + 1 is an odd number, the graph of v(z) has a local maximum at the origin. Let us
denote the two adjacent local minima by +7; (71 > 0) and the nearest local maxima by
+£&1 (& > m > 0). Plainly, 73 and & depend continuously on o. Moreover, since Cop41
approaches Cy, as o — 0, it follows that

m(o) =0 and v(E£m, o) = v(0,0) as o —0.

By Lemma 2.3,
U(inl,U) < U(j:§170) < U(O’ 0)'

Therefore,
v(££1,0) = v(0,0) as o—0.

This implies that »
v@(0,00=0 for i=1,2,3,4, and 5.

However, by Lemma 2.4, this is impossible, so that we have a contradiction. O

Remark 2.1 As we will show below in Lemma 7.6, along the hyperbola K1, orbits with
an odd number, (2n — 1), of pulses bifurcate into orbits with an even number, 2n, of
pulses, in contrast to the situation described in Lemma 2.5.

Remark 2.2 At this stage, one can already see that K3/, is a sharp upper bound - at
least in the regime of large o — on the domain in which initial conditions for N-pulse
orbits with N odd may lie, since the curve of 1—pulse orbits, given by (1.8) with N =1
for large «, lies just underneath it.

Remark 2.3 The nonexistence of homoclinic orbits through initial conditions that lie
above K3y also follows directly from analyzing the energy function (1.10) introduced
above. We recall from (1.11) that H'(z) > 0 along homoclinic orbits, since u'(z) > 0 for
all £ > 0 along homoclinic orbits. Also,

lim H(u(z), v (z),v(z),v'(z)) =0

T—>00
for homoclinic orbits, since v(z) and v'(z) vanish exponentially for solutions that are
backward and forward asymptotic to (v,v’) = (0,0). Therefore, #(0) must be negative
along homoclinic orbits, but #(0) = (82/3)(aB — (3/2)), which is positive for af > 3/2.
Hence, there is a contradiction.
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3 Boundaries on A,y4, the region in which N-pulse orbits
with N odd can lie

We have seen that the region in the («, 8)-plane in which we may find N-pulse homoclinic
orbits with N odd is bounded above by K3/, and bounded below by K1. However, the
region between these two hyperbolas is unbounded as @ — 0. In this section, we find an
upper bound on this region for small values of c.

It will be convenient to introduce the variable v = af3. For points between the two
hyperbolas, we have v € [1,3/2]. We shall construct a curve

Bupper = {(*(), 87(7)) : 1 < <3/2},

which connects K1 and K3/5.

We introduce the following quantities: let T'(7) = cosh™!(2/7) and let pu* = u*(y) be
the unique solution of the equation

-2
32y for 1<y< § (3.1)

h(pT =1

See Figure 4 for a plot of the function p*(y). Asymptotically,

o0~ ) (1) er-

(S

0. 8]

_i\ T ‘:‘I_.‘i‘ ‘i.‘ZH ‘:‘L.‘SH ‘J‘_.‘Ai-‘ ‘i.HS

Figure 4: Graph of the function p*(7y), as given by formula (3.1).

Lemma 3.1 Let (u(z),v(z)) be a homoclinic orbit with an odd number of local mazima
and with initial data (o, 0,(3,0). Then the point (a, ) must lie below the curve Bypper
defined by

T(v)

* _7 * S S
(7) = o B0) S ()

for 1<y< g (3.2)
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YL TO) [ w() | B () | ()
1.0 | 1.317 | 0.876 | 2.647 | 0.378
1.1 | 1.205 | 0.856 | 2.243 | 0.490
1.2 | 1.099 | 0.827 | 1.868 | 0.642
1.3 | 0.996 | 0.783 | 1.513 | 0.859
1.4 | 0.896 | 0.704 | 1.163 | 1.203
1.5 | 0.795 | 0.000 | 0.562 | 2.667

Table 1. The values of the functions T'(v), u*(v), 8*(7), and o*(y) in Lemma 3.1 for a
series of values of v € [1, 3/2].

Proof As a preparatory step, we scale the variables by setting

u(z) = ay(t), v(z) = Bz(t), and t = Bz. (3.3)
The equations (1.1) then become

1
i = yz?, 5 =022(1 — yyz), v = apf, o= 5 (3.4)
where an overdot in the remainder of this section denotes a derivative with respect to t.
Also, the initial data at t =0 arey =1,y =0,z =1, and 2 = 0.

First, we obtain upper bounds on z(t) and y(¢). We already know that z(t) < 1 for
all ¢, by Corollary 2.2. Equation (3.4) then implies that § < y, and in turn integration
reveals that

y(t) < cosh(t), y(t) < sinh(¢).

Next, we use these upper bounds to derive lower bounds for z(t) and y(¢). Substitu-
tion of the upper bounds into (3.4) directly yields

%> o22{1 — ycosh(t)}.

For each v choose T' = T'(y) > 0 such that ycosh(T) = 2. Then, 1 — ycosh(¢) > —1
for all ¢t € (0,T), since cosh(t) is an increasing function. Hence, the upper bound on z

implies that

2

5> —0%2>—0 for 0<t<T. (3.5)

Integration of this inequality and use of the initial conditions leads to the desired lower
bound,

1
2(t) > 1 — 50%2 for 0<t<T. (3.6)

Moreover, z > 0 on [0,T) if 0T < /2, i.e., if B > T/+/2. Also, a lower bound on y(t) is
now readily at hand. Substitution of (3.6) into (3.4) implies

j> (1 - %U2T2)2y, (3.7)

so that 1
y(t) > cosh(ut) for 0<t<T, where pu=1-— 502T2. (3.8)

14



Finally, we use the energy function

H(®) = H(y(6) 50, 2(0),2(0) = 5 — 52 + Zua?,

where we emphasize that H is not a conserved quantity of the full system (3.4). Instead,
H = (027y/3)y23; and, we find that

M) =32y [ e as— (3 -7)},

because H(0) = (—02/3)((3/2) — 7). We will show that H(T) > 0, which implies that
z(t) cannot be a homoclinic orbit, in contradiction to the hypotheses. Indeed, because
z(t) > pon (0,T) by (3.6) and y > psinh(ut) by (3.7), we have

/0 9(8)23(s) ds > p®{cosh(uT) — 1}.

Hence, H(T) > 0 if
3
v {eosh(uT) =1} > = — 7,

or equivalently if

3— 2y
2ypd
Now, there exists a unique value p* of y such that

cosh(uT) > 1+

1
cosh(p*T) =1+ ——,
(1) 2(p*)?

because cosh(uT') is increasing and 1/ 243 is decreasing in p. Thus, (3.9) certainly holds
for p > u*, i.e., for
1
1-502T2>»uﬂ

or equivalently

T
2m2 * * __
o“T* < 2(1—p") = B< B = ——,
2(1 - p¥)
where we recall that T'= T'(vy), and hence also p* = p*(y) and g* = 8*(v). O

Corollary 2.1 and Lemmas 2.2 and 3.1 now directly imply

Corollary 3.1 In order for the orbit through the initial condition (c,0,/,0) to be a
symmetric N -pulse homoclinic orbit with N odd, the pair (o, 3) must lie in the connected
set Aoqq bounded above by K3 /2 and Bypper and bounded below by K.

See also the illustration in Figure 1.
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4 Boundaries on A, the region in which N-pulse orbits
with N even can lie

We consider symmetric, N-pulse homoclinic orbits with NV even. We already know that
the initial conditions (e, B) for these orbits satisfy a8 < 1 and that they must lie below
the separating curve K1, by Lemma 2.2. However, K1 has a vertical asymptote at o = 0,
so that it does not provide a finite upper bound for all & down to zero.

In this section, we show that there is a finite upper bound valid as @ — 0. More
precisely, we show that there exists a constant Scap > B*(y = 1) (where 5*(7y) is defined in
the previous section) such that the horizontal line segment Beap = {(a, 8)|8 = Beap, @ €
(0,1/Bcap|} is the desired finite upper bound. See Lemma 4.3 in Section 4.1 below.

In addition, we show that there exists a function 8 = fr(a) for all @ > 0 such that
the curve Biower = {(o, 8)|8 = Br(a)} is a nontrivial lower bound on the set of initial
conditions that can correspond to these orbits. See Lemma 4.5 in Section 4.2 below.
The results of this section are summarized in Corollary 4.1 below.

4.1 The cap B,

In this section, we establish the desired cap, Bcap. As a preparatory step, we change
variables in (IVP) so that a and § appear in the equations and in the energy function.
Let

u(z) = ay(z) and v(z) = Bz(x). (4.1)
This is the same change of dependent variables used in the previous section; however,
we do not rescale the independent variable here. The equations become

Y = %y’ and 2" = 2 — aByz?, (4.2)
with initial conditions (y(0),%'(0), 2(0), 2'(0)) = (1,0,1,0) and energy function

(ZI)Q 22 aB 3

/ N _ -~
H(y,y',2,2) = = — 5 + 5u2°,
with a slight abuse of notation (note H(y, v/, 2, 2') = B2H(u,u',v,v")). Equivalently,
H(z / H'(s ——+%+ 3B/ ' (5)23(s)ds. (4.3)
0

Also, we emphasize that #(0) < 0 for a8 < 1 and that dH/dx > 0 along orbits.

Our strategy for establishing the cap, Bcap, is to show that there exists a value of
B = Beap so that H(z) vanishes at some zg for each (, ) with a € (0, ﬁ) and = Beap-
In turn, to show that H must vanish, we derive a lower bound on H and show that it
has a finite zero, which then, in turn, forces H through zero.

We employ the following explicitly computable lower bounds for z(z), y(z), and /().
Let
zo(x) = cosh(x) (4.4)
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and let yo(z) = Co(Bsinh(z)) be the solution of the problem,

vy = B2(cosh?(z))yo, yo(0) =1, y{(0) =0. (4.5)
This is a modified Mathieu equation. See Remark 4.1 below. A lower bound for z(z) is

given in the following lemma:

Lemma 4.1 We have
2(z) > z1(z) = 20(z) — aBé1(2), as long as  z1(z) > 0, (4.6)

where

G(z) = /Ow sinh(z — s) cosh(/ sinh(s))z2(s)ds. (4.7)

The condition that z; be positive is needed, since z; will have a first zero due to the fact
that (3 eventually grows faster than zy. This will be shown in the proof of the lemma.
In fact, it will be useful to introduce the notation £(z1) and £(z) for the first, positive
roots of z1(x) and z(x), respectively.

Lower bounds for y(z) and y/(z) are given in the following lemma:

Lemma 4.2 We have

y(x) > y1(x) and Y (@) > (), (4.8)

again as long as z1(x) > 0, where y; is the solution of the following problem:

— B%25(2)y1 = —2a° cosh(Bsinh(z)) 2 (2)¢1 (), y(0)=1, 14(0)=0

The proofs of Lemmas 4.1 and 4.2 are presented in Appendix A.

The following lemma gives the desired cap:

Lemma 4.3 There exists a value of B, Peap, Which is greater than 5*(y = 1), such that
for each a € (0, 5% Bees | there exists an xo = zo(e) such that H(xzo) = 0. Moreover, the

solutions of (IVP) wzth the initial conditions (a,0, Beap,0) cannot be symmetric N -pulse
homoclinic orbits.

Proof of Lemma 4.3 Substituting the lower bounds from Lemmas 4.1 and 4.2 into
the formula (4.3) for H, we find the following, explicitly computable, lower bound on #:

H(z) > Hi(z) = —— + — + '8/ i (s)23(s)ds, (4.10)
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as long as 0 < z < £(z1). Moreover, there exists a value of 3, which we label fcap, such
that, for each o < 1/fcap, H1 first vanishes at some z = £(H1), where £(H1) depends
on a and £(H1) < &(z1). Specifically, direct evaluation shows that the value Scap = 4
works, and this value is greater than 5*(y = 1), as may be checked from formula (3.2).
Hence, for each o < 1/fcap, the energy function itself, #, must also first vanish for some
x = &(H), where £(H) < £(H1), since H; is a lower bound on . In turn, therefore, the
orbit through the initial condition (¢, Scap) cannot be a homoclinic orbit, because along
homoclinic orbits H(z) < 0 for all  and limg_,o, H(z) = 0.

To complete the proof, we need to show that the above results continue to hold in
the limit as o — 0. We establish the following lemma, which contains the asymptotics
of the zeroes £(H1) and £(z1) in the limit as o — 07. Define £* implicitly by

Bsinh (£) = In (1> , (4.11)

(67

-G

Lemma 4.4 In the limit that « — 07,

-GN E]) e
R 1 1 ) 1 ) R T

Moreover, for o sufficiently small, yi(z), z1(z), and Hi(z) are all positive at x = £*.

and observe that, as o — 07T,

Then, we have

This lemma is proven in Appendix B. It implies that, also in the limit a — 0T,
the zeroes £(z1) and &(#Hi1) exist and remain ordered as &(H1) < £(z1). Hence, the
functions #H(z) and z(x) also have zeroes for all @ down to zero, and they are ordered as
E(H) < €&(H1) < £(21) < &(2). This completes the proof of the lemma.

O

The data presented in Table 2 below are the values of the zeroes &(H), £&(H1), &£(z1),
and £(z) for a series of values of o between zero and 1/f8cap. Here, H and £(z) were
evaluated via direct numerical simulation of the differential equations and H; and £(z1)
via symbolic algebra. They are ordered from smallest to largest. We see that £(H) <
&(#1), confirming that the energy function  vanishes (and becomes nonnegative) before
the lower bound #; does so. Also, the data confirms that £(z21) < £(z), i.e., that the
z component vanishes (and becomes nonpositive) only after the lower bound z; does
so. Finally, £(H1) < £(21), confirming the analytical result that H; must first increase
through zero before z; can decrease through zero.
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a | §(#) (num) | E(H1) (symb) | £(z1) (symb) | £(2) (num)
0.01 | 0.8561 0.8571 1.390 1.614
0.05 |  0.6090 0.6098 1.155 1.424
0.10 | 0.4758 0.4763 1.037 1.315
0.25 |  0.3839 0.3842 0.962 1.242
0.20 |  0.3087 0.3088 0.906 1.186
0.25 |  0.2409 0.2410 0.863 1.134

Table 2. The values of the zeroes £(H1) and £(z1) as obtained from symbolic algebra
(symb) for the functions Hi(x) and z1(z) and the values of the zeroes £(H) and &(z)
from numerical simulation (num) of the differential equations for a series of values of «,
again using XPPAUT [14]. The zeroes are ordered from smallest to largest, confirming
the analytical results, as discussed in the text. Note that here § = 4.

Remark 4.1 The equation y” = $%(cosh?(z))y may be put into the standard form for
modified Mathieu equations, 3" — (a — 2g cosh(2z))y = 0, with a = 42/2 and ¢ = —3%/4,
because (cosh(z))? = 1(cosh(2z) + 1). See Chapter 20 of [1]. To obtain the equation in
algebraic form, set t = Ssinh(z) and n(t) = y(z) in the original equation. This yields
i + (t/(B% + t2))7 — n = 0, and the fundamental two linearly independent solutions
are Fo(t) and Eg(—t), where Ep(t) is defined in terms of a series, satisfies Eo(0) = 1
and Ej(t) > 0 for all ¢, diverges as ¢ — oo, and vanishes as ¢ — —oo. They are the
analogs of the exponential functions that satisfy w” —w = 0. We also define Cy(t) =
2(Eo(t) + Eo(—t)), which is the analog of w(t) = cosh(t). Moreover, from this form of
the equation, one sees that it has regular singular points at ¢ = 44 and an irregular
singular point at ¢ = co. Finally, it reduces to a modified Bessel equation in the limit

as t — oo, and Cy(t) ~ Io(t) ~ \/21?675(1 + £t71) as t — oo, where Ij is the zeroth order

modified Bessel function.

Remark 4.2 The value of S.ap is not unique, and there are many other values greater
than 8*(y = 1). There may even be values of Sc,p less than §*(y = 1). However, the
result of Lemma 4.3 with (.., = 4 suffices for our purposes here.

4.2 The lower bound B ye,

In this section, we establish the desired, nontrivial lower bound, 8 = fr(«).

Lemma 4.5 For each a > 0 there ezists a constant S, = Br(a) > 0 independent of N
such that, if B € (0,08L), then the solution of (IVP) with the initial condition (e, 0, 3,0)
cannot be a symmetric N-pulse homoclinic orbit with N even. Moreover, B (a) varies
continuously with c.

The proof of Lemma 4.5 is given in Appendix C. We shall use Bjoywer t0 denote the curve
Br(a) in the parameter plane given by this lemma, see Figure 1. Homoclinic orbits can
only exist for initial conditions («, 8) that lie above it.
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Lemmas 2.2, 4.3, and 4.5 now immediately imply

Corollary 4.1 In order for the orbit through the initial condition (c,0,53,0) to be a
symmetric N-pulse homoclinic orbit with N even, the pair (o, 3) must lie inside the
connected set Acyen bounded above by K1 and Bcap, bounded to the left by a segment of
the B-axis, and bounded below by the curve Biower-

Remark 4.3 The asymptotics for 1,(c) as @ — oo imply that the boundary Bigwer is a
sharp lower bound on Agyen in the regime with a large given the asymptotic location of
the curve C$° (recall (1.8) with N = 2) and given the fact that the curve C5° lies below
all of the other C{7. See the end of Appendix C.

Remark 4.4 The conclusion of Lemma 4.5 also holds for N-pulse homoclinic orbits
with N odd, since the proof is independent of the number of pulses.

5 Existence of multi-pulse orbits for large «

In this section, we demonstrate the existence of symmetric N-pulse homoclinic orbits for
large a. Specifically, we establish the existence of the curves Cf5 for a > &(N), where
&(N) is sufficiently large, and determine their leading order approximations in this limit.
These results follow directly from Theorem 4.1 in [11], where the existence of symmetric
N-pulse homoclinic orbits in the Gray-Scott model is shown. Nevertheless, we present
the proof here, because it is based on concepts that will be essential to the forthcoming
sections. Also, the proof we present here differs in several important respects from that
given in [11]. Most significantly, we follow the approach used in Theorem 2.1 of [7],
where the existence of symmetric N-pulse homoclinic orbits for a class of generalized
Gierer-Meinhardt equations is shown, because this approach more readily lends itself to
generalization to other systems with hierarchies of homoclinic orbits.

We assume a > 1. Moreover, based on the bounds on the sets Aygq and Aeven, We
see that it suffices to examine the regime in which = O(1/a) < 1. Hence, we scale u
and v accordingly,

u(z) = ay(z), v(z) =——-. (5.1)

Thus, y and z are taken to be O(1) with respect to the small parameter § = é < 1; and,
by equations (1.1), they satisfy the system,

y" = 6%yz? and 2 =z —y2? (5.2)

The coupled equations (5.2) are equivalent to the singularly perturbed, fourth-order
dynamical system,

y = dp ,

/

p = dyz

. (53)
¢ = z—y2?
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where the variables y and z differ from those used in Sections 1 and 2, and the variables
p and ¢ differ from those used above. The reversibility symmetry is given, just as in
(1.12), by

T— —T, p— —p,qg— —q. (5.4)

5.1 The manifolds M, W*(M), W*(M)

Both for § = 0 and ¢ # 0, the system (5.3) has a 2-dimensional invariant manifold, M,
given by

M ={(y,p,2,9) : 2= 0,9 = 0}, (5.5)
because the third and fourth components of the vector field vanish identically on this
set.

For § = 0, M is the collection of saddle fixed points of the fast reduced system

Y=y, P=po, 7 =4q, ¢ =2z—yo, (5.6)

where yg and pg are real constants, and we will be interested in the half plane {(yo, po) :
yo > 0}. The unions of the stable and unstable manifolds of these individual saddle fixed
points over all yp and py are the stable and unstable manifolds, W§(M) and W§(M),
respectively, of M.

We are interested only in the branches that lie in the regime with z > 0. For § = 0,
these two branches coincide in a homoclinic manifold,

Wi p(M) = W, (M) ={(v,p,2,9) :y =50 > 0,p=po € R,z = Zu(%0),9 = Z1,(v0)},
(5.7)

where

3 1
Zn(yo) = Zn(x;90) = %sech2 <§m> (5.8)

is the homoclinic orbit of (5.6) that connects the saddle fixed point to itself. In addition,
the limiting stable and unstable manifolds W§(M) and W'(M) can equivalently be seen
as part of the level set H(y, p, z,q) = 0 of the energy function

1 1 1
H(yvpa 2y q) = 5‘12 - 522 + gy237 (59)

with y, z > 0, which is a scaled version of the energy function.
By contrast, for § > 0, orbits on M evolve slowly according to the shear flow,
y' = dp, and p =0, (5.10)

and M is a normally hyperbolic slow manifold of (5.3). It has 3-dimensional stable and
unstable manifolds, W*(M) and W*(M). The local components of these manifolds are
C™ — O(6) close to Wy™(M), respectively. Orbits that are forward asymptotic to M
must lie in W§(M), and similarly orbits that are backward asymptotic to M must lie in
W' (M). Hence, these orbits asymptotically satisfy y(z) — foo and p(x) — constant as
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x — to0, since z(z) — 0 exponentially and p(z) grows only linearly for any orbit that
is forward /backward asymptotic to orbits on M, such as these orbits are.

Remark 5.1 The coincidence of the manifolds M for § = 0 and é # 0 is special, since in
general there is a family of slow manifolds each of which is only O(4) close to its singular
(or reduced) limit, [16]. Moreover, W*(M) and W*(M) are uniquely determined here,
as well, since M is given explicitly, and hence known uniquely.

5.2  The proofs of (1.7) and (1.8)

Since W ;, (M) and W', (M), which coincide, transversely intersect the hyperplane {g =
0}, the local components of the perturbed manifolds W#(M) and W*(M) also intersect
the hyperplane {g = 0} transversely in one or more 2-dimensional manifolds for all §
sufficiently small, see [16]. We define the 2-dimensional manifold Z+! to be the the first
intersection of W¥(M) with {g = 0}, and similarly the 2-dimensional manifold Z~! to
be the first intersection of W*(M) with {g = 0}.

Lemma 5.1 The manifolds Zt! and T~ are given by
' = {(¥,p,2:9) : y = yo > 0,p = po, 2 = 221 (y0, Po), ¢ = 0}, (5.11)

where z1(y,p) and z_1(y,p) are smooth functions of p and y such that

z_1(y,p) < z(y,p) for p>0,
z_1(y,p) > z(y,p) for p <O,

z1(y,0) = z(y,0) for p=0,

and where z+1(yo,po) = % + O(8). Moreover,

I NI ={(y,p,2,0) : y =10 > 0,p =0,z = 241 (10, 0),g = 0}. (5.12)

From this lemma, we see that the 2-dimensional manifolds Z*! are parameterized by
yo and pg, and we see how their relative orientations vary with p, specifically on which
side of the unperturbed homoclinic orbit, z = 3/2yg, the manifolds Z*! lie. Also, we see
that the intersection Zt' N Z~! is a subset of {p = 0}, and it is parameterized by yo.

Proof We first prove the latter statement, (5.12). A homoclinic orbit I' = (y, p, 2,q) €
W*(M) N W#(M) must satisfy

o0 1 (e o]
AH = / H|p(zydz = —5/ p(z)23(x)dz = 0, (5.13)

—oo 3 J
since H|pm = 0. Note that A is in essence the Melnikov function that measures the
distance between W*¥(M) and W¥*(M) in {¢ = 0}, [11, 7], and we remark that the

improper integral converges, because z(x) decays exponentially for these solutions, while
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p(z) grows only linearly. Equation (5.13) is exact; and, it can be approximated by setting
p(z) =po+ O(0) and z(z) = Zn(z; yo) + O(9),

1 o0
AH = §5p0/ Z3(x; y0)dx + O(6%) = 0.
Hence, the p-coordinate of W*(M) N W¥ (M) N {qg = 0} = Z*' N Z~! must satisfy
p =po = O(6), because otherwise it would not be possible for a zero of AH to exist.

We now go further and show that py must actually vanish. In fact, by the reversibility
symmetry (5.4), an orbit that has initial conditions in W¥(M) N {p = ¢ = 0} is also
homoclinic to M, i.e., the initial conditions are necessarily in W*(M) N W¥*(M) N
{g = 0} = Z*1 N Z~1. Moreover, if po(yo) is not identically 0, then we can apply
the reversibility symmetry (5.4) to obtain a second intersection Z*! N Z~! given by
p = —po(yo). However, such a second intersection cannot exist, because W*(M) and
W*(M) are uniquely determined and the local manifolds are C" —O(6) close to Wy (M)
and W', (M), respectively, as stated above. Thus, AH = 0 for pg = 0, and the desired
result, (5.12), follows.

Next, the 2-dimensional manifolds Z*! can be parameterized by p = po and y = v
with yo > 0 as in (5.11), because there are unique fast stable and unstable fibers for
each basepoint (yp,pp) on M. Also, the z-components z41(yo,po) must be O(§)-close
to 3/2yo, because this is the z-coordinate of W, (M) N {q =0} = W, (M) N {qg =0},
which has # = 0. ’ ’

Finally, we consider the orbits T'y1i(z) = (y1(z),p1(z), z1(x),q1(z)) which lie in
WH¥(M) with initial conditions (yo, po, 21(Po,%0),0) € Z*!, and we consider the homo-
clinic orbits I'_1(z) = (y-1(z),p-1(x), 2-1(z), g—1(x)) which lie in W*(M) with initial
conditions (yo, po, z—1(po, ¥0),0) € Z~1. Let

o0 1 o0
AH_,1 = /0 HI|1"_1d.’L‘=§5/(; p_1(z)23,(z)dz,

0 1 0
AHy = / ’H'|p1d$:§5/ p1(z)2} (z)dz.

Both AH_; and AH 1 exist, since H|r = 0. Therefore, if pg > 0, then AH_1 > 0, since
p' > 0 by (5.3). In turn, H(yo,Po, 2—1(po, %0),0) < 0. Similarly, H(yo, po, 21(po, %0),0) >
0. Hence, by (5.9), z_1(po,y0) < 21(Po,y0)- The case py < 0 follows by applying the
symmetry (5.4). O

Remark 5.2 In the subsequent analysis, we will often choose pg = dpp in (5.11). It
immediately follows from the above arguments that

3 _ _ 3
— + 0(8%) = z_1(y0,6p0) < 21(y0,0P0) = 5— + O(8°). (5.14)
2yo 2y

The stable and unstable manifolds W*(M) and W*(M) may have additional inter-
sections with the hyperplane {g = 0}. In fact, the flow generated by (5.3) defines a ‘half’
Poincaré map,

P:{q=0} — {¢g=0}, (5.15)
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where the image of (yo, po, 20) under P is the point (y,p, z) corresponding to the next
intersection of the orbit I'g(z) with {¢ = 0} and I'¢(0) = (yo,Pp0,20,0). With this
definition, P? defines a more standard Poincaré map. We also define Z* C W*(M)N{q =
0} (n > 1) to be the n-th intersection of W*(M) with {¢ = 0} and Z=™ C W3(M)N{q =
0} (m > 1) to be the m-th intersection of W*(M) with {q = 0}, i.e.,

PIM =1, PYZT ™) =T ™ nm>1, (5.16)

where P~! is the inverse map (backwards time) that is naturally related to P through
the symmetry (5.4). In general, P~'(Z") & I"! (n > 2), because P might not be
defined on parts of Z*~!, and, similarly, P(Z~™) G Z=™! (m > 2), since P~" might
not be defined on parts of Z-™*! (see the proof of Lemma 5.2 below). However, by
construction,

PI"NI™) = IrinZ—"t (n>1,m>2),
(5.17)
PYZ"nZI™) = I NIl (n>2,m>1).

Next, it is also not clear a priori whether 7™ and 7~ ™ exist, because we have not
yet shown that P is defined on Z*~! or that P! is defined on Z=™*!. However, due to
the singularly perturbed nature of (5.3), we have a certain control over the intersections
of W#(M) and W*(M) with {g = 0}; and, hence, we can establish the nonemptiness of
these intersections in the following lemma:

Lemma 5.2 Fiz any n,m > 1. There exists a positive §o = do(n, m) sufficiently small
such that, for all § € (0,d80), I" # O and T~™ # 0. Their asymptotic expansions are
given by

. 3
Inal' = {y =Yo > Oap =DPo, %2 = zn,—m(yOap()) = % + 0(6)}7 fO’I‘ n,m odd

(5.18)
"I ™ ={y=1yo > 0,0 =D0,2 = Zn—m(¥0,00) = O(V8)},  for n,m even.
(5.19)
Furthermore, for p > 0, they are ordered, as follows:

22(y,p) < 24(y,p) < 26(y,p) < ... K ... < 25(y,p) < 23(y,p) < 21(y, D),

z-2(y,p) < 2-4(y,p) < 2-6(y,p) < ... K ... <2-5(y,p) < 2-3(y,p) < z-1(y, D),
(5.20)

and
z—n(y,p) < 2n(y,p) for m>1 odd, while z_,(y,p) > 2n(y,p) for n>2 even,
where the ordering for p < 0 follows by (5.4).

In addition, T"NZ~™ # () when either both n and m are odd, or when both are even.
More specifically, for any fired N > 1 there exists a 8 sufficiently small such that T*
exists for k= —2N,-2N +1,...,—1, and fork=1,...,2N — 1,2N, and such that

I+NmI_N:{y:y0 > pr:0,z:ZiN(y0;0)7q:0} (521)
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for § € (0,80). Moreover, for —N < j < N,
. ) 3

I AT N = {y=yo>0,p= y_jd +0(8%), 2 = 2n+i(y0,p),g =0},  (5.22)
0

50 that TN NINH c {p> 0} for j >0 and TN NN c {p < 0} forj <O.

This lemma gives more details than are necessary for the proof of (1.7) and (1.8). How-
ever, the information on the structure of Z™ for all n, Z=™ for all m, and their intersec-
tions Z" N Z~™ will be useful below.

Proof First, we need to determine which part (if any) of Zt! € {¢ = 0} is mapped by
P to {q = 0}. Therefore, we consider an orbit I'1(z) = (y1(x),p1(z), z1(x),q1(z)) with
T'1(0) = (39,609, 29,0) € Zt1, where 079 is strictly O(). For such an orbit, I'1(0) is not
too close to Z~!. Thus, I'y(z) has its minimal distance (=O(v/§)) from M at some point
z = X, where X = O(|logé|), because I'; is O(d)-close to an unperturbed homoclinic
solution of (5.6). Then, we see that

X 1 oo
HOC0) = [ Hinwde = 3% [ Zi@ude+ 0™, (5.29)

—00

for some p > 0, because I'1(z) - M as £ — —oo and because H|r = 0. Moreover,
signum(#H(T'1(X))) = signum(5Y), which implies that only those I'1(z) with 9 < 0 have
H < 0 when they approach M, i.e., only those I'1(z) with #) < 0 are inside the family
of unperturbed homoclinic orbits (5.7) as they return to M. Therefore, the return map
P is only defined for points with 5§ < 0, because orbits with 5 > 0 are outside H = 0
and do not return to M. Also, one finds that the p-coordinate dp2 of P(y1,dp1, 21) is

X 00
6p2 = 6P +/ (p1)'dz =4 [151 + yl/ Zj (5 y1)dx + 0(5,;)] =0 [}51 + l% + 0(5’7)]

’ ’ (5.24)
for some p > 0 (by (5.8)). Hence, both ép2 < 0 and dpp > 0 are possible. Although P
is only defined on Z1! for p < 0, its image Z12 is unbounded in the p-coordinate. This
is due to the singular character of the flow, that stretches the part Zt1 N {p < 0} near
(y,p) = (0,0). By increasing p; (or dp1) toward 0, the orbit I';(z) remains near M for
an arbitrarily long time. During this period, p approaches the limit value given by (5.24)
— recall that p’ = 0 on M (5.10) — that becomes arbitrarily large by choosing y; small
enough. The y-coordinate grows along with the (slow) flow on M (5.10), and becomes
arbitrarily large by taking p; < 0 close enough to 0 (i.e. by increasing the ‘time’ that
I'i(z) remains near M). See [9] for a detailed analysis of this stretching mechanism in
singularly perturbed systems.

It also follows from the above analysis and the character of (5.3) that P(y1,p1,21) =
(y2,p2,22) € T2 with yp = y1 + O(6) > 0, po = p1 + O() and 2, = O(V5). This
establishes (5.19) for n = 2. Moreover, (5.24) implies that p; = 0 if

p1 = 61 = —oun / 22z y1)dz + O(57) = —yia +O0°) <0 (5.25)
0 1
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for some p > 0.

The proofs of the existence of the third intersection, Z73, of W%(M) and {q =
0} and of the fact that it is an unbounded manifold run along essentially the same
lines. Moreover, the third intersection of W*(M) with {¢ = 0} must lie in between the
first and the second intersections, Z*! and Z12, respectively, because W*(M) cannot
have self-intersections and because W*(M) is of co-dimension one. In terms of the z
coordinates, this translates into zo(y, p) < 23(y,p) < 21(y,p), With z3(y, p) = O(v/5) and
z1(y,p), z3(y, p) = 3/2y + O(J), because the third intersection W*(M) N {g = 0} must
also be C" — O(4) close to the unperturbed homoclinic family (5.7).

Statements (5.18), (5.19), and (5.20) follow inductively by the above arguments (in
backwards time in the case of —m < 0).

To show that Z" NZ ™ # (), we first show that ZT2 N Z 2 exists by mimicking the
proof of (5.12) in Lemma 5.1. We observe that Z*2 N {p = 0} = {p = 0} by (5.24),
so it follows immediately that Z*2NZ~2 O {p = 0}, by the symmetry (5.4). To show
that {p = 0} is the unique intersection of Z+2 and Z~2, we observe that (5.13) must
hold for all orbits that are homoclinic to M, and hence it holds in particular for those
homoclinic orbits that have their initial conditions in Z12 N Z~2, which is the second
intersection W*(M) N W*(M) N {q = 0}. These orbits make two full circuits through
the fast field between touch-down and take-off from M. During this excursion, they
are O(d)-close to a homoclinic orbit of the fast reduced system (5.6). Hence, (5.13) can
again be approximated by setting p(z) = pp + O(d) and z(z) = Zp(x; yo) + O(d) so that

AH =2 (%5;)0 / Z,f’;(x;yo)dx) + 0(6?),

which implies that the pg-coordinate Z+2 N Z=2 must satisfy p = po(yo) = O(6) in
order for A to vanish at O(62). The C" — O(6)-closeness of W*(M) and W*(M) to
W5 (M) and W', (M) implies that po(d) = 0. Similar arguments may be used to show
that ZtVN NZ=N # () and that ZFN NZ~N c {p =0} for all N > 1.

Finally, we note that (5.25) can be interpreted as the leading order approximation of
the p-coordinate of the curve in Z*! that is mapped by P to Z*2N{p =0} =ZT2NI2.
Thus, by (5.17), (5.25) represents P~ 1(Zt2NZ~2) = It N I3, i.e., we have obtained
(5.22) for N = 2 and j = —1. The above leading order calculation (5.24) of the image of
p under the map P, i.e., over a half-circuit of the unperturbed homoclinic orbit, holds for
any I'y(z) with initial conditions in Z+¥. Hence, for j = 1, (5.22) follows immediately
from the fact that Z*N¥ NZ~N c {p = 0} and that P(Zt¥N NZ~N) = Z+N+1 - N+1
where we recall (5.17). The general statement in (5.22) follows by induction, through
repetitive applications of P or P~ L. O

Proof of (1.7) and (1.8) The key to the proof lies in defining the curves C{? for any
given N in the (o, 3) parameter space in terms of the intersection manifold Z" N Z~™
for certain n and m. First, we observe that an orbit I'y(z) that is homoclinic to M
must be in W#(M) N W*(M), i.e., the intersections of such an orbit with {g = 0} must
be points in Z" NZ~™ for some n and m. Moreover, a symmetric homoclinic orbit with
initial condition T'x(0) = (an, 0, Bn,0) in ZHN NI~V (C {g = 0}) makes N half-circuits
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through the fast field associated to (5.3) before touching down on M. Thus, such an orbit
'y (z) makes N full loops through the fast field between taking off and touching down on
M. During each of these loops, the zy(z) coordinate of I'y(z) has one non-degenerate
maximum (at the intersection of I'y(z) with {g(= z’) = 0} where zx(z) = 3/2yo + O(9)
by (5.18)). Thus, by definition, I'y(z) must have its initial conditions in C3’, and hence
ZtN NZ~N corresponds identically to C%. Finally, we unscale (5.1) and find

TN AT = {(y0,0, 22n(30,0),0) = (2,0,08y,0) : (an. By) € CF},  (5.26)

by (5.21). Therefore, both the existence of the curves C3’ for all N > 1 and their leading
order approximations, see (1.7) and (1.8), follow from Lemma 5.2. This completes all
but one part of the proof. It only remains to derive the higher order terms, which give
more accurate formulas for the locations of the curves C{ for large a. We do so in the
next lemma. O

5.3 Higher order approximations of Z*” NZ " and of C¥

Apart from giving a more accurate description of ZtN NZ~N and of Cy’, the following
result also gives analytic confirmation (for ' = 0) of the ordering (5.20) obtained above
by geometric arguments.

Lemma 5.3 Fiz any N > 1. and let ZtN NI~V be represented by {(y,p,2,9) : y =
Yo, = 0,2 = 24N (y0,0),q = 0}, recall (5.21). Then, there exists a 6o(N) sufficiently
small such that for § < §o(N)

ZiN(yOaO):%{ —%(18—1+k(k—1)35—2)+0(52+f’)}, if N=2k—-1, k>1,

22N (10,0) = 6—\/\@%% + O(81+0), if N =2k, k> 1,
Yo
(5.27)
for some p > 0. Equivalently, by (5.26), if C%¥ = {(o, B) : B = Bn(a)}, then for
a> a(N),
Br(e) = o {1— H(F +k(k—1)32)+O(5)}, if N=2k-1, k>1,
(5.28)
Bn(a) = S2kL + O(). if N =2k, k> 1.

Proof The result follows by computing in two independent ways the value of H|z+vqz-n
for orbits 'y n(z) = (yen(z),pen(2), 24N (x),grn(x)) for which the initial condition,
T'+n(0) = (0,0, 22N (y0,0),0), lies in the intersection Z+N NZ~N. First,

1 3
Mz = 3 (an(m,0) (=5 + mzsn(.0)) (5.29)
by (5.9). Second, we also have

o0 1 o0
H|ptvnz-~ = — /O Hlryw(@de = =30 /O pen(2)z y (2)dz, (5.30)
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because H|r¢ = 0. In this second formula, we expand I'y x(z) in 62,

yin(z) = Yo + 0%y1(z) + O(5%7P), pin(z) = Fyan)'(2),
(5.31)
zen(z) = Zn(zyy0) +62Z1(z) + O(621P),  qun(z) =  (22n)'(2)
by (5.14) for some p > 0. Hence, from (5.2) and (5.8), we see that y;(x) satisfies
" 9 1
= 2 sech? (=
U1 " sech™ | 5z |,
to leading order, which yields
i(z)= 3 3tanh 1:t: — tanh3 liL‘ + 41 (0) (5.32)

Now, we observe that we have (in general) shifted the position of z = 0 by setting
zen(x) = Zn(z;90) + O(6%) in (5.31); with this leading order approximation of zx(z)
we necessarily have z4n(0) = 3/2yo + O(52). Of course, this is exactly the correct choice
for N =1, and hence for N = 1 we set ¢}(0) = 0 in (5.32) and approximate (5.30) as

1 o0
Hlztinz1 = _562 / v () Zp (z; yo)dz + O(671F)
0

1 Y 1 1 1
= —=5 <i> / [3 tanh 9%~ tanh® iw} sech® <—a:) dz 4+ O(5%°)
0

2
8 (3\*11 ot
- | = _ P
" (5) mroe™

Therefore, equating the two expressions (5.29) and (5.33) and using the approximation
z+1(y0,0) = 3/2yo + O(6%) obtained in (5.14) in the expression (5.29), we find

1 3 3 2\ 0?3\’ 11 24p
3 <y0zi1(y0,0)_§) <%+0(5 )) __y_g (5) ﬂ4.(’)(5 ),

which is equivalent to (5.27) for N = 1.

Next, we consider the case N = 2. We have to translate the initial condition to
the next intersection of T'+a(x) with {g = 0}, because z1a(z) = 3/2yo + O(6%) at this
intersection. This intersection lies in P(Zt2NZ~2) = ZT3NZ~! by construction. Now,
the only information we need on the initial conditions in the above analysis is the value
of y1(0) (in the shifted coordinates). It follows from (5.22), with N = 2 and j = 1,
that the p-coordinate of T+o N {g = 0} is 36 /yo + O(6%). Hence, for N = 2, we have to
set 41 (0) = 3/yo in (5.32). We introduce the return time X! < 0 as the value of = for
which (the translation of) T'1o(x) intersects {g = 0}, i.e., X} < 0 exactly defines the
translation of z = 0, T'y2(X1) € Z*2NZ~2. Thus, by (5.30),

1 [e.e]
Hlzreng-2 = —30° / | (@) Z} (23 y0)dz + O(877)
XZ
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1 3\* [ 1 1 1
35 (23/0) / {(3 tan 5% tan 2w) + 2| sec 5% dzx + O(67P)

_ 25 (3 tre 6 (1 24p
= 55 <%> /_oosech (5.’5) dz + O(67P)

6% 3\’ 32 -
= — —_ P
az) 5o

where we used the property that yj(z) — y1(0) is an odd function of . We now equate
the expressions (5.29) and (5.33) to obtain

1, 3 3\ 32 2p
gzﬂ(yo,()) <—§ +O(5)) = (5) 5 + O(0°F),

which yields (5.27) for N = 2.

Finally, we prove (5.27) for general values of N. Since the approximation z4 n(z) =
Zp(z590) + O(6%) in (5.31) is valid over at most a full circuit through the fast field,
we have to approximate the orbit I'yy(z) for N > 3 separately over each of its sev-
eral circuits/loops. The orbit I'1ox(z) makes k circuits through the fast field between
Ti9x(0) € ZHVN NI~V and at its touch down on M. Therefore, we split T'1ox(z) into
k parts: Fﬂk( x), j =1,2,...,k. For each F:I:2k( x), we translate the point z = 0 to the
intersection of F{tzk@) with I+N+2] NN+ = pU-Y (TN NTN) 5 =1,2,... k,
so that we can use expansion (5.31). Also, we recall that Z™~™ is only O(§)-close to
3/2yo for n,m odd by (5.18). Hence, it follows from (5.22) that the approximation
(y1)'(z) given by (5.32) has a (translated) initial condition (y)'(0) = 3(2j — 1)/y0. We
define X1 = O(|logé|), X’ < 0 < X%, as the values of & for which Fﬂk( z) has its
(first) intersections with {g = 0}, O(v/8) near M (with X* = o0), d.e., T%,, (X]) €
THNHZ 1Rl A 7T-N+2j-1£1 (5 < k). Hence, up to terms of O(62+7),

H|r+orqz—26 = ——(522/ Zh.’E yo)dx

1,3\ & [ 1 51 , 6 (1

= —55 <2—y0) ;/_oo {(3tanh§w—tanh §$)+2(2j—1) sech % dz
250 3\ ) o o1

= I8 = 2 —1 né (=
35 <2y0) 1( j )/oosec <2x) dz
2 (3)° 32 ,

B
Yo \2/) 154

_ P (3)’32,
ya\2) 15

NE

<.
Il

Mpr

1

<.
Il
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Equating this expression with (5.29) yields (5.27) for N = 2k. The result for N = 2k —1
is obtained by a similar decomposition of T';(2;_1)(z), and we note that &(N) may be
taken to be 1/8(N). This completes the proofs of this lemma and of the validity of (1.7)
and (1.8). O

Remark 5.3 This lemma implies that the first order corrections are of higher order
than can be expected from (5.18) and (5.19). However, the result (5.14) can be applied,
because the p-coordinate of an orbit with initial conditions in Z+N NZ~V is O(d), so
that the first-order corrections are indeed of higher order than expected.

6 Continuation of the invariant manifolds

In this section, we study the invariant manifolds of the original system (1.12) for general
values of o and . All four components of the vector field (1.12) are of the same size,
a priori. Nevertheless, we can derive sufficient information about the existence and
geometry of the invariant manifolds to continue the intersection manifolds ZtV N Z—
obtained in the preceding section for o > &(N) and 8 < 1 to the regime here in which
a,3 > 0. Hence, we may continue the curves C{Y of N-pulse homoclinic orbits, as well.

6.1 The invariant manifolds M, W (M), and W (M)

The manifold
M = {(u,p,v,q)lv=0,q =0} (6.1)

is invariant under the flow ¢, of the original system (1.12). The restricted vector field
on M is
u' = p, ' =0. (6.2)

In addition, M is normally hyperbolic, with Lyapunov type numbers v° = e™!, \* = ™1,

and o°(m) = 0 for all m € M (where the general definitions of these type numbers are
given in Chapter V of [15]). Hence, by the unstable manifold theory presented there,
M has local stable and unstable manifolds, denoted again by Wy _ (M) and W} _(M),
respectively. The manifolds W} (M) and W} (M) are three-dimensional and consist
of all of the initial conditions near M such that solutions through them approach M
exponentially in forward and backward time, respectively. More finely, let ¢} denote the
restriction of the flow map to points on M. Then, we have

WicM) = | Fop WeM) = | Fhn (6.3)
(u,p,0,0)EM (u,p,0,0)eEM

where (Su ») is the stable fiber with base point (u,p,0,0) € M consisting of initial

conditions that are (exponentially) forward asymptotic to ¢%(u,p,0,0) as £ — co and
]-"(1; ) is the unstable fiber with base point (u,p,0,0) € M consisting of initial conditions
that are asymptotic to ¢%(u,p,0,0) as £ — —oo. These fibers are invariant as a family.

For example,
$oF(up) = For(ur): (6.4)
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Remark 6.1 The invariant manifold M given by (6.1) is not compact, and the u
components of the orbits of interest on M grow without bound in the limits z — +oo.
Moreover, no compact subset of M is overflowing invariant. Hence, in order to apply
invariant manifold theory, which is developed for compact manifolds and which requires
the manifold to be overflowing invariant if it has a boundary, we take the standard
preparatory steps. One needs to work with sufficiently large compact sets of M that
contain the portions relevant to the homoclinic orbits under consideration. Also, one
needs to employ C'*° bump functions at the boundaries of these compact sets to make
the reduced vector field (6.2) point outward along these boundaries. Moreover, the notion
of solutions approaching a compact set on M exponentially in time only makes sense as
long as the orbits of the basepoints stay in that same compact set. (Alternatively, one
may analyze a version of the original vector field (1.12) in which the u variable has been
compactified.)

Remark 6.2 Any initial condition @ = (u(to),p(t0),v(to), q(to)) on Wy, with |v(to)|
and |q(to)| small but nonzero, must lie on a fiber Fy, for some base point by = (uo, po, 0,0).
Also, the image of any such base point satisfies mp¢%(uo, po) = po for all  due to the
simple flow on M. Therefore,

u(t) = oo and  p(t) — po, (6.5)

which are conditions homoclinic orbits must satisfy.

6.2 Continuation of the manifolds Z*¥ NZ " and of the curves C¥

In proving (1.7) and (1.8) in Section 5, we showed that for each N > 1 there exists
an &(N) sufficiently large such for each o > @, there is a unique symmetric N-pulse
homoclinic orbit. The good initial conditions lie on the curves C3?, and the asymptotics
of their locations were determined up to sufficiently high order for « > @(N). In this
section, we continue the curves C{} into the regime where a is not large.

The main result of this section, see Theorem 6.1 below, states that if it is known
that there is a symmetric N-pulse homoclinic orbit through a given initial condition
(0,0, Bo,0) for which (g, o) is on CF?, then there exists a segment of a smooth 1-D
path in the («, B)-plane such that solutions through the initial conditions on this segment
are also symmetric N-pulse homoclinic orbits and such that this segment contains the
given (ap, Bo) pair. Specifically, the theorem states that there exists an s > 0 such that
the curve C57 can be extended to a point that is a Euclidean distance of s away from
(w0, Bo), and that this is a balanced extension, which is locally flat to first order in s. It
is reminiscent of continuation results obtained from the Implicit Function Theorem.

Theorem 6.1 Fiz an arbitrary N > 1 and consider the curve C37 that exists for a >
a(N). Assume that CS? has been extended to (ag,Bo) € CY, i.e., assume that there is
a smooth parametrization (o(o),B(c)) of C¥ for o > og with (a(o0), B(c0)) = (a0, Bo)
and a(o) = oo as 0 — oo. Then, there exist 01,61 > 0 such that the parametrization
(ao),B(0)) of CR¥ can be extended smoothly to o € [og—o1,00) with ||(a(co—0o1), B(oo—
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01)) — (ag, Bo) || = s, and such that there is a point (a(og+61), B(c0+ 1)) on the known
segment of C3y with ||(a(oo + 61), B(oo + 61)) — (a0, Bo)|| = s and ||(a(oo — o1), B(00 —
0'1)) — (a(ao + 5’1),ﬁ(0’0 + 5’1))” ~ 2s.

Remark 6.3 Here, the extension may be said to be balanced because the new point
(a(op — 01), (00 — 01)) is at the same Euclidean distance from (a(op), 5(00)) as is the
point (a(oo + 61),5(c0 + 61)), which is on that part of the curve Cff whose existence
was already known, and because all three points are almost collinear.

Remark 6.4 We trust that the parametrization variable ¢ here will not be confused
with the o = 1/ used in Section 3.

The proof of Theorem 6.1 will depend strongly on the normally hyperbolic character
of the invariant manifold M and on the corresponding structure of the flow near M.
First, we introduce some notation and establish a proposition about tubes of solutions
that contain a solution through an initial condition of the type (ag,0,B0,0). Let 7 > 0
be small enough and consider the 3-dimensional ball B§(r) C {g = 0} of radius r
centered at (ay, 0, 8o, 0). Solutions I'(x; (ug, po, v, 0)) of (1.12) through initial conditions
(uo, po,v0,0) € B(r) constitute an open, 4-dimensional set 75, which is topologically a
tube; i.e.,

Ti— = {(U,p,’l),Q) :dz>0and (u07p071)070) € Bg(r)a (u,p,v,q) = F(*Ta (U(),p(),’UO, 0))}
(6.6)

Proposition 6.1 Define I'g(z) by I'o(z) = I'(z; (a0, 0, Bo,0)) with T'o(0) = (e, 0, Bo, 0)
and let To(x) be in Ti. There exists an 7 > 0 such that for each £1 > 0 the 4-dimensional
ball B}(7) of radius 7 centered at To(z1) lies inside T

Proof of Proposition 6.1 Fix an 7 > 0 small. For each = < 0, consider the set of
initial conditions inside the 4-dimensional ball Bf(7) centered at 'g(z). Now, flow each
initial condition in each of these balls forward for all z, and label the union of all of these
forward solutions by 7. Clearly, 7' is a 4-dimensional tube, an open set, and forward
invariant under the flow of the differential equation. In particular, T'o(z + z1) € T for
any x1 > 0, and this solution intersects the hyperplane {q¢ = 0} at x = —z1 at the point
(20,0, Bo,0), by definition. Moreover, this intersection is transverse if a3y # 1, because
then ¢'|z=—z, # 0, recall (1.12); whereas, if agfBy = 1, then this intersection is still
topologically transverse, because then ¢”|z;——_, = 0 but ¢"’|;——, # 0 by Lemma 2.4.
Therefore, in both cases (agfBy # 1,= 1), the orbits through all of the initial conditions in
B{(7) must also intersect {q = 0}, as long as 7 is small enough. In addition, the distance
between the intersection of such an orbit with {g = 0} and the point (ay, 0, 80,0) can
be made arbitrarily small, by continuous dependence on initial conditions. Of course,
there can be additional intersections of 7! with {g = 0}. However, for the intersection
nearest (ap,0, Bo,0), T2 N {g = 0} C B§(r), for the value of r fixed in Theorem 6.1, as
long as 7 is taken to be small enough. This proves the proposition. O

Remark 6.5 Theorem 6.1 above concerns symmetric N-pulse homoclinic orbits that
have nondegenerate local extrema, due to the definition of these orbits given in the In-
troduction. Hence, in the proof below it is the case that agfBy # 1. The other case,
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apBo = 1, which corresponds to orbits with degenerate extrema, will be treated sepa-
rately in Corollary 6.1 below.

Remark 6.6 The statement of the proposition might be false if the intersection of
To(z + z1) with {g = 0} is not at least topologically transverse.

Proof of Theorem 6.1 Fix an arbitrary N > 1. Let T'o(z) = T'(z; (o, 0, Bo, 0)) denote
the symmetric N-pulse homoclinic orbit through (ayg, 0, fo, 0).

There is a well-defined, closed neighborhood ¥4 of M in which the flow generated
by (1.12) can be transformed smoothly into Fenichel normal form,

a = Ay(a,b,c1,c2)a,

b = —As(a,b,c1,c2)b,
& = fl(a‘a b7 ClaCQ)ab+gl(cl’C2)7
¢ = f2(a, b, Cl,Cz)ab-i-gz(Cl,Cz), (6.7)

where Ay s(a,b,c1,c2) are C°, Ay 5(0,0,¢c1,c2) = 1, and Ay s(a,b,c1,¢2) > 0, for all
(a,b,c1,¢2) € Tpm, [15, 16] and [23]. Note that one may also use the results presented
in [21]. These transformed coordinates are chosen so that the invariant manifold M is
given by {a = b = 0}, and so that W*(M) = {a = 0} and W*(M) = {b = 0}. The
neighborhood ¥ 1 can be represented by ¥ = {—% < a,b < X} for some ¥ > 0, and
we will use 7, to denote the transformation of the tube 77 given by (6.6) in Fenichel
coordinates.

The forward orbit I'g(z), which lies in W*(M) for > 0, can be represented in X g
by To(€) = (0,b0(€), c1,0(£), ca0(€)), where we note that sometimes a rescaling of the
independent variable is needed [15, 16], so that here £ is a rescaling of z (and we trust
there will be no confusion with the different variable £ used in earlier sections). This
orbit f‘o(ﬁ) enters ¥ ¢ through the hyperplane {b = £}.

Now, by Proposition 6.1, the intersection T+ N{b = %} defines an open 3-dimensional
neighborhood, U3, of To(€) N {b = X} in the {b = X} hyperplane. Then, the intersection
U3 N {a = 0} is non-empty, because ['g(¢) C {a = 0}, and we can define the following
set

S =UWnNW M)=Tyn{db=3}n{a =0} #0. (6.8)

The set SJQF is 2-dimensional, and it is open as subset of {a = 0,b = ¥}. The forward
orbits of initial conditions in it generate a sub-tube, ’ﬁf, of T consisting of solutions
T'(€) of (6.7) that are forward asymptotic to M. This implies that, back in the original
coordinate space, there is an open 3-dimensional sub-tube 77 of 7, that consists of
orbits I'(; (uo, po, v0,0)) € W*(M). Clearly, I'o(z) € 7. The intersection 7 N {g = 0}
defines the 2-dimensional subset ST C BJ(r) of initial conditions of solutions of (1.12) in
W#(M). See Figure 5 for a schematic illustration. Of course, 7 may intersect {g = 0}
several times; and, here, we focus on the intersection centered at (ao, 0, 5p,0). (Also,
we remark that whereas the tilde always denotes the set transformed into the Fenichel
coordinates, there is one exception. Namely, Ser and Si are not the same set under the
transformation to Fenichel coordinates.)
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u
W (M)

Figure 5: A schematic illustration of a portion of the normally hyperbolic invariant
manifold M, portions of its local stable and unstable manifolds, the orbit I'g, the set
S_%, and the tube Tf. Note that the dimension of each set in the figure is one less than
it is in reality in this projective drawing.

Now, let § > 0 be small enough and consider the 2-dimensional ball B2 (3) C S of
radius 3, centered at ['o(¢) N {b = £}. The image of B2 (3) under the transformation
from the Fenichel coordinates back into the original coordinates of (1.12) is a transformed
ball, which we denote by F~1(B2(3)). This transformed ball, F~1(B2(3)), is a smooth
2-dimensional manifold that is flat to leading order, i.e., it is linear in § to leading order,
because the Fenichel transformation is smooth and because § is small enough. Next,
let F'7? denote the 2-dimensional subset of S2 C {q = 0} of initial conditions of orbits
that pass through F~!(B2(3)). This subset is also smooth and linear in 3 to leading
order, because the time-of-flight along I'g(z) from (g, 0, 8o, 0) to X ¢ is bounded. We

can now choose an s > 0 and a closed 3-dimensional ball B3(s) of radius s, centered at
(a0, 0, Bo, 0) such that B3(s) N S_% C F;Q. This 2-dimensional set can be represented by

B(?))(s) N 82 = {(’U,S(Sl, 82)7p8(817 82)7 US(Sla 32)7 0) with S% + S% < 82}7 (69)
where
us(s1,52) = g+ cts1+cysy + O(s?),
ps(s1,82) = cIs1+ chs2 + O(s?), (6.10)
vs(s1,82) = Bo+ s+ Bsy + O(s?);

and c’5" are constants. Note that (us(0,0),ps(0,0),v5(0,0),0) = (a0, 0,50,0) by con-
struction.

Exactly the same construction can be made in backwards ‘time’, i.e., for x < 0. This
leads to a subset S2 of BJ(r) of initial conditions of orbits that lie in W¥%(M), i.e., of
solutions of (1.12) that are backward asymptotic to M. It follows by the reversibility
symmetry of (1.12) that

Bg(s) N SE = {(US(Sl, 82)7 _ps(31, 32)7/03(317 82)70) with 3% + S% < 32}7 (611)

with us, ps,vs as in (6.10). Solutions of (1.12) with initial conditions in §2 N &2 are

homoclinic to M. Most significantly, within the ball B3(s), the intersection S N S? is
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explicitly given by
ps(s1,82) = fs1 + chsa + O(s?) = 0. (6.12)

We now show that the coefficients ¢} and cj are non-zero, so that (6.12) defines a
linear relation between s; and ss to leading order, which, in turn, can be substituted
into the components us and v, to obtain the desired balanced extension of the curve CRy.

The orbit I'g(z) intersects the hyperplane {g = 0} 2N — 1 times, because (ay, o) €
Cx’. These intersections correspond to N non-degenerate maxima and N — 1 non-
degenerate minima of the v-component of I'g(z) by the definition of C{?. Hence, all
intersections of I'g(z) with {¢ = 0} are transverse, and thus, by choosing s small enough,
all intersections with {g = 0} of orbits homoclinic to M that have initial conditions that
are determined by (6.12), (6.10) and (6.9)/(6.11), are also transverse. As a consequence,
the local curve

{(a(s1,52), B(s1,52)) = (us(s1,52),vs(51,52)) with s3 +s3 < 5% such that p,(s1, s2) = 0}

(6.13)
must be part of C?. The smooth parametrization assumption, which guarantees that
there is a smooth parametrization of the set of solutions of (6.12) that is given by
(a(o),B(0)) for o € [00,00+61], therefore also implies that this parametrization is linear
to leading order with (a(aq), 8(00)) = (o, B0) and (a(og +1),0, B(oo + 1)) € dB(s).
Hence, (¢!, c5) # (0,0); and, in turn, we see directly that (6.12) defines — to leading order
— a linear relation between s; and s3. Thus, the local parametrization (a(o),8(c)) can
be extended to all o € [0g—01,00+61] for some o1 > 0 so that also (a(og—01),0,8(00—
o1)) € dB3(s) with ||(a(oo — 01),0,8(c0 — 01)) — (a(oo + 61),0, 8(c0 + 71))|| = 2s, to
leading order. [l

The second result, see Corollary 6.1 below, concerns possible accumulation points
of initial conditions for which symmetric N-pulse homoclinic orbits are known to exist.
These accumulation points may lie on the curve K; or a priori also anywhere inside
the regions Ayqq or Aeven, and for now our treatment of accumulation points is general.
Specifically, we show that the initial condition corresponding to such an accumulation
point also gives rise to a homoclinic orbit, although it need not be a homoclinic orbit of
exactly the same type, because it may have degenerate maxima/minima. We also show
that, by an argument similar to that used above in proving Theorem 6.1, homoclinic
orbits even exist past such accumulation points. This situation arises for example at the
point on Ky where the curves C{® and C$° meet, as we will see in Section 7.

Remark 6.7 It is also possible, a priori, that more than two curves Cny meet at such
an accumulation point. However, the arguments of Section 7 can be used to show that
this cannot occur.

Corollary 6.1 Fiz an arbitrary N > 1. Let (cj,5;) lie on Cn for j = 1,2,3,... and
assume that lim;_,o(aj, B;) = (o, B*) exists. Let T*(z) = I'(z;(a*,0,5%,0)) be the
solution of (1.12) that is determined by (o, 8*). Then, I'*(z) € W*(M)NW?3(M), i.e.,
I'™(z) is homoclinic to M. Furthermore, there are s > 0, 01,61 > 0, and at least one
curve (a(o), B(0)) through (o, 5*), parameterized by o € [—01,61], so that the solution
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Ty(z) = I'(z;(a(0),0,8(0),0)) is homoclinic to M for all o € [—01,61]. The curve
(a(0),B(0)) € Cn for o € [~01,0), and («(0),5(0)) = (a*,5*). There is a sequence
{6,125 C [~01,0) such that (&;,5;) = (a(5;),8(6;)) is a subsequence of the (aj, B;)’s;
[(a(=01), B(=01)) = (o, BY)]| = [((61), B(61)) = (", B¥)|| = 5. The parametrization of

(a(0),B(0)) is smooth for o € [—01,0) and for o € (0,51], but not necessarily at o # 0;
the limits lim,19(a (o), B(0)) and limyo(a(0), B(0)) exist, but are not necessarily equal.

Proof Define the ball B3(r), centered around (a*,0,3*) and the tube 7 (6.6) around
I'*(x) as in the proof of Theorem 6.1. By the convergence of the sequence (a;, 3;), there
is a J such that T';(z) = I'(x; (e, 0,5;,0)) C T4 for all j > J. The orbits I'j(x) are
all asymptotic to M, thus, the tube 7} has to intersect the neighborhood ¥4 of M
in which the flow can be given in Fenichel normal form (6.7). As a consequence, the
transformed tube 7. and the transformed solutions f‘({) can be defined as in the proof
of Theorem 6.1. Moreover, the 2-dimensional set S’i (6.8) also exists and is non-empty.

The orbit I'™*(x) is asymptotic to M if it can be shown that the transformed orbit
f*(g) intersects S’i, i.e., that there is a certain value £* of £ such that f‘*(&*) € 5’3. Since
the T';(&)-orbits are homoclinic to M there exist £;’s such that T';(§;) € 5’_% (for j > J).
By the continuous dependence of initial data and by the fact that the time-of-flight
between B3(r) and $ a4 is bounded, it follows that & — ¢* and T';(¢;) — I™*(¢*) € 52 as
j — oo (recall that 5’_% is open as subset of {a = 0,b = ¥}). Proposition 6.1 implies that
T*(¢*) € §2, so that I'™(z) € W*(M)NW¥(M) by the reversibility symmetry of (1.12).

As a consequence, the next steps in the proof of Theorem 6.1 can also be mimicked.
The ‘locally flat’ 2-dimensional sets B3(s) N1 82 and B3(s) N 82 can be defined as in
(6.9) and (6.11). Moreover, the intersection S% N S? within the (closed) ball B3(s) is
also given by (6.12), so that the subset {(a(s1,s2),5(s1,s2))} of the («, 5)-plane given
n (6.13) indeed defines initial conditions of orbits that are homoclinic to M. However,
here it cannot be concluded that (c},cb) # (0,0). In general, the expression ps(s1,s2)
in (6.12) will, at leading order, be a homogeneous polynomial in s; and sy of degree
kE > 1. The expression ps(si,s2) = 0 must have (countably many) zeroes, because
(e, B5) € (82 NS2) N B3(s) for j > J, for some J; (and (a*, B*) € (82 NS2) N B3(s)).
Hence, (6.11) may define up to k& > 1 curves through the point (s1,s2) = (0,0), so
that there may be up to k parameterized curves (e;(o), Bi(0)), I = 1,2, ... through the
point (o, 3*). By picking one of these curves, one may show that the statement of the
corollary follows by the same type of arguments as used in the proof of Theorem 6.1. [J

Remark 6.8 It cannotbe concluded that the parametrization of (a(o), 5(0)) is generally
smooth at o = 0, i.e., at (a*,3*). For instance, it cannot be excluded by the above
arguments that the manifolds S have a fold structure and that (6.12) is given by
2 _ .3 4

sy =85+ O(s%).
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7 Homoclinic bifurcations

In this section, we prove Theorem 7.1, which for each N establishes the five results about
3N, the subset of the set 3 corresponding to N-pulse orbits. These results were labelled
(1)—(5) in the Introduction. In brief, for each N, this Theorem establishes that there
are finitely many components of ¥y, that all of the curves C; v = Cy’ inside X are
semi-infinite in length, that the components C; xy with £ > 2 have finite length, that
the curves Ci y remain locally flat at their endpoints, and that there are allowable and
nonallowable bifurcations between different types of multi-pulse orbits.

Many of these results are established in a sequence of lemmas (see Lemmas 7.1-7.4
below), which in turn build on earlier results from Sections 2 — 6. Hence, this Theorem
is the culmination and fruitful blending of the analytic and geometric methods employed
in Sections 2 — 6.

7.1 Bifurcations along the curves Cy

In this section, we introduce a definition of a bifurcation on a curve Cy, a definition which
agrees with the natural idea that the v-component of a bifurcating homoclinic orbit must
have degenerate critical points, and we show that bifurcations must be nondegenerate,
see Lemma 7.1 below.

A symmetric N-pulse homoclinic orbit I'y(z; (o, 8)) = (un (), pn(2), vn (), gn () C
W*(M) N W5(M) intersects the hyper-plane {¢ = 0} in 2N — 1 points, G%;, j =
—N +1,..., N — 1; the v-components of the va’s correspond to the maxima and min-
ima of vy(z) as function of z. The homoclinic orbit I'xy(z; (e, 8)) is assumed to be
non-degenerate, which by definition means that all maxima and minima of vy(z) are
non-degenerate, i.e. that vy (z) has non-vanishing second derivatives at its extremal
points — see Remark 7.1. The center (or point of symmetry) of I'y(z; (o, 5)) is repre-
sented by G%, = (un(0),0,vn(0)) = (o,0, 3). In general, the coordinates z* are defined
by qN(mgv) = 0 so that

Note that &’y = —z)’ by the reversibility symmetry. By definition, G} € Z+N+i n
N9 j =_-N+1,..,N —1. Here, I", respectively Z~™, are the 2-dimensional

manifolds in (u, p,v)-space as defined in Section 5, i.e. the n-th intersection of W*(M)
with {g = 0}, resp. the m-th intersection of W*(M) with {g = 0}. Note that Z™~™ are
defined in a scaled context in Section 5 (5.1), here we consider the unscaled equivalents
of Z™™™ (see also (5.26)). In fact,

TN NNV =up, G, j=—N+1,..,N —1, (7.2)

ie. ITtNTI N Z-(N—3) consists of the union over the (u, p,v)-coordinates of the j-th
extremes of the v-components of all symmetric N-pulse homoclinic orbits I'y(z) (again
counting from the center of I'y(x)). The family of all symmetric homoclinic N-pulse
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orbits can be identified as

SN = Ury Gy = Ury (un(0), o3 (0)), (7.3)
see also (5.26). This family will consist — in general — of several branches, i.e.,

Kn

k=1

It follows from Lemma 5.2 that Ky > 1 for every N, and we recall that C; xy = C}} was
defined to be the unique branch that extends to o — oo for every N. The numerical
simulations presented in Figure 1 show three distinct branches Cy 7, i.e. K7 > 3, while
so far K1 = Ks =1, K5 = 2, K9 = 2, and Ky, = 1, at least. We plan to carry out a
more extensive search using AUTO with HomCont.

As the initial condition («,0,3,0) varies, a non-degenerate, symmetric, N-pulse,
homoclinic orbit I';(z) may bifurcate into a symmetric M-pulse orbit I'ps(z) (N # M)
when maxima and minima of vy(x) are created or annihilated. More precisely, we
define a point (a*, 3*) as a bifurcation point of the branch Cy y if (a*, 8*) € Ci, n while
(o, B*) ¢ Ci,n, so that 'y (z; (o, 8*)), the orbit with initial conditions (a*,0, 5*%,0), is
homoclinic to M — see Remark 7.1.

There are two kinds of generic bifurcations. At both flanks of the graph of vy (z; @, ),
a maximum may merge with a minimum (in a symmetric fashion), so that (a*, 8*) €
CnNCpNyo for some N > 1, but (a*, 8*) ¢ Cxy UCN42. At the bifurcation, vy (z; (a*, 5%))
has two degenerate extrema, i.e. there is an z* > 0 such that vl (£z*;(a*,8*)) =
vl (£z*; (¥, %)) = 0. The bifurcation may also occur at the center of the graph, which
corresponds to (a*,3*) € Cxy N Cny1 for some odd N > 1 (Lemma 2.5). In this case,
vy (05 (a*, B%)) = v (0; (*, B*)) = v7(0; (¥, B*)) = 0. A bifurcation is degenerate (by
definition) if also either v} (£z*; (a*, *)) = 0 with z* > 0 or vg\z,v)(O; (a*,B*)) = 0 at the
bifurcation point.

Lemma 7.1 The bifurcation associated to a bifurcation point (o*,8*) of a branch Cy n,
k,N > 1, cannot be degenerate.

Proof This is an immediate consequence of Lemma 2.4. O

Corollary 7.1 Let (a*, 5*) be a bifurcation point of a branch C . The v-component of
the homoclinic orbit Ty (z; (a*, 5*)) has a degenerate mazimum in the point of symmetry
z =0 if (o, B%) € Ki. If (a*,5*) ¢ K1, then the v-component of T'n(x; (a*,3*)) has

degenerate extrema in two points x = £x*, x* > 0.

Remark 7.1 The definitions of non-degenerate homoclinic curves I'yy and their bi-
furcations are based on the character of the graphs of the v-components vy (z) of I'y
as functions of z and on how these graphs change as the initial conditions («,3) vary.
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Therefore, the concepts of non-degeneracy and bifurcation of homoclinic curves we in-
troduced here differ from the standard definitions in dynamical systems theory (see for
instance [28]). In that more general setting, the bifurcations of I'y as a homoclinic orbit
in the phase space are considered as functions of the problem parameters. There is in
general no ‘classical’ homoclinic bifurcation associated to the transition from an N-pulse
orbit I'y to an M-pulse orbit I'j; that we are aware of.

7.2 The curves C3 and their bifurcation points in A.qq

In this section, we restrict the analysis to the curves C3? in Aqqq 4.€., N must be odd.
The more general setting will be considered in Section 7.3. The asymptotic approach of
Section 5 gives detailed information on the bifurcation curves CJ for o large enough.
Therefore, we define the region

Aoaa = {(@, B) € Apaa : @ < &} (7.5)

where & is sufficiently large that the results of Section 5 apply for @ > &. Note that by
choosing &, we also implicitly choose a bound on N, since N must be O(1) with respect
to 1/a.

Now, it is known from Theorem 6.1 that the curves Cy are smooth. Therefore, we
may introduce the arc-length parametrization of each C{Y C Asqq by

CR = {(a¥(s), 8% (s)) : s € [0, L)}, (7.6)

where a?(0) = & and L is the length of the curve C§ inside Aodqq. Note that L = oo
is a priori possible and that — in this case — the arc-length parametrization may only
give a part of C C Aygq. It follows from Section 3 that (a2 (s), BF(s)) € Apaq for all
s € [0, L). We now establish

Lemma 7.2 The limit lims_,1,(a%(s), B35 (s)) ezists for L < oo and for L = oo, and it
is defined as

lim (a5 (5), 8% () = (v, Bx) € Aoda- (7.7)

s—L

Moreover, if L < oo, then (o, Bx) is the unique bifurcation point of CS5 in Aodd.

Note that it is not claimed in this lemma that (aj,B) is a bifurcation point when
L = oo, because the possibility that (o}, Sy) € CF if L = oo is not excluded by the
upcoming proof. However, we will show in Lemma 7.4 that L < oo, so that it will indeed
follow from Lemma 7.2 that (o, B3 ) is the unique bifurcation point of C§5 in Aodd (see
also Theorem 7.1).

Proof If L < oo, then it follows from Corollary 6.1 that the limit (7.7) must exist and
that the associated orbit Iy (z; (), By)) is homoclinic to M. By construction, we have
that (o, B%) € Cn- Now, if it is assumed that (a(L), BF(L)) € CS, i.e., that this
point lies inside the set, and not just in its closure, then it follows from the continuation
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result of Theorem 6.1 that the length of C{? in Aoaq is at least L + 81 for a certain
s1 > 0, which contradicts the assumption that the length of CY’ inside Ayqq is L. Thus,
(o, By) is indeed the (unique) bifurcation point of C5.

If L = oo, then we choose a sequence {s;}52, such that s; — oo as j — co. Herewith,

we define the sequence {(af(s;), B3 (s5))}521 C Aodq. Since Ayqq is compact, it fol~lows
that {(ag7(s;), B%7(s7))}52, must have an accumulation point (aj, By) € Cy C Aoad-
Now, we assume that there are two such sequences, {s1 ; };";1 and {s2 }?’;1, that generate
two distinct accumulation points, (o] v, 87 x) and (a3 v, 85 x), respectively, and derive

a contradiction.

It may be assumed without loss of generality that
81,5 < 82,5 < 81,541 < 82,5+1 for all 7 > 1. (7.8)

Let £* be the line segment that connects (a”l‘,N, ﬂf’N) to (a;’N, ﬂ;,N), i.e.,

e ={(a"(A),8"(N) = (1 = Naf y + Aag n, (1= MBI v + A5 ) » A€ [0,1]}, (7.9)

and let n} be the line normal to £* for each A € [0, 1] so that n3N¢* = (a*(X), B*(A)), asin
(7.9). Choose a A € (0, 1). It follows from the smoothness of the curve C3 (Theorem 6.1)
and from the ordering (7.8) that, for j > J) with some Jy large enough, there exist sy ;
such that s1; < sx; < s2; and (aF(sr;), B (sr5)) € C¥ Nn}. Now, the curve CR
cannot have any self-intersections (Theorem 6.1), and hence the (bounded) sequence
{(aR(s,4), BF (s2,5))}52 , must have a limit point on n}, i.e.,

Jim (aF7(52,), BR (1)) = (@4(V), 1Y) € mj.

The application of Corollary 6.1 to the sequence {(aR?(sx,;), B3 (s1,7))} 52, implies that
there is a subsequence {3y ;}72; of {s);}72; and a smooth curve through (aj, (), 5;(}))
such that the points (a?(5x;), B3 (5x,;)) lie in n3, which is part of CJ5.

The above argument holds for any A € (0, 1), since the choice of A was arbitrary, which
implies that C3¥ O U, an open region in the (a, 3)-plane. However, this contradicts
Theorem 6.1 and Corollary 6.1, which established that C3’ is a 1-dimensional curve.
Therefore, the assumption that the two sequences have distinct accumulation points is
incorrect, and the lemma is proven. O

Lemma 7.3 The limit lims%L(%af\?(s), %B%’ (s)) exists, both for L < co and for L =
00).

This lemma implies that C{? can locally — near its limit/bifurcation point (o}, B5) — be
approximated by a linear expression, and thus that C3f cannot spiral toward (aj, By )-

Proof In this proof, we do not distinguish between the cases L < oo and L = o0, i.e.,
L may be either finite or infinite in the forthcoming arguments.

Consider two sequences {s1,;}32; and {s2;}52, that are ordered as in (7.8), so
that s;; — L as j — oo (1 = 1,2). Both associated sequences (a3 (si;), 8% (si;))
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of points on C (7.6) must limit on (o}, %) by Lemma 7.2. Moreover, it follows
from Corollary 6.1 that there is a local parametrization (% (o3), 8% (03)) of CJF with
(5% (0), B7%(0)) = (aj,By), that is smooth for o; € [—’ai,l,O) for some oi1 > 0,
such that (a?(3i;), 8% (3i;)) € {(a3y (i), BN (0:)); 05 € [—04,1,0)} for a subsequence
{8i51521 of {si;}52, (@ = 1,2). Without loss of generality, we may identify {81521
with {s;;}72, and assume that (7.8) still holds. Furthermore, Corollary 6.1 also implies
that the limits

d def , tx ot ), i

: d o0 o0
lim (- iy (01), - Bin(0i) = (g, Bin

—1,2,
a;10

exist. The assumption that (ai’jv, i”}‘v) # (ag’;v, ;’;V) yields a contradiction by argu-
ments that are similar to those in the proof of Lemma 7.2, as we now show.

Let {h}}xe(0,1) be a ‘fan’ of half-lines parameterized by A such that each half-line h}
has (o, %) as endpoint, and that the fan has the half-lines spanned by (a’i’j}v, ﬂi}‘v)
and (ag’jv, ;’;V) as boundaries (as A | 0 or A 1 1), d.e.,, {h}}re(0,1) fills the wedge
between the half-lines determined by the endpoint (aj;, B%) and the vectors (o, 8y y)
and (a;”;\,, ;’jv) Choose a A € (0,1). It follows from the smoothness of C}® and the
ordering (7.8),that, for j > Jy with some J) large enough, there exist sy j such that s ; <
sx,j < sz, and (aF(sr5), B (8x,5)) € CF¥ Nh}. The sequence {(aF7(sx,7), BF (51,5)) 352,
must limit on (a*(A), 8*(\)), so that Corollary 6.1 implies that there is a curve through
(a*(A), 8*(N)) and the points (aRP(5x;), 8% (3x,;)) € h} that is part of CJY — here the
5),;’s form a subsequence of the original s) ; sequence. By varying A, we generate an
open region U in the wedge spanned by the h}’s that must be C C{. This again is in
contradiction with the fact that C3f is a 1-dimensional curve. g

Lemma 7.4 The length L of CY inside Aodd is finite.

Proof Assume that L = oco. Let § > 0, and define the ball B} as the ball with radius
d and center (ajy, By )- Since (aF(s), B3 (s)) = (o, By) as s = oo (Lemma 7.2), there
must be an s5 < oo such that

(e (s), 8% (s)) C Bs for all s> sq.

Thus, for any § > 0, the length of C3? inside Bj must be oco. Moreover, by Lemma 7.3
there are two smooth curves, C* and C', given by

v = {(a"!(0),*(0)) : 0 2 0},

with (a®/(0), 8%(0)) = (i, Bx), (£a™!(0), £8*H(0)) = (o, BY), and C* N C* =
(oo, By ), such that for all s > s5, (@ (s), BY¥(s)) C the cusped triangle with boundaries
c*NBg, c'n Bj, and the part of 0B5 between C* and C'. Since CY must be of infinite
length in this cusped triangle (that has a surface area < 6%), it must oscillate wildly.

We can now apply an argument based on Corollary 6.1 along the lines of the proofs
of Lemmas 7.2 and 7.3 to show that this implies that CJY must contain an open subset
U. O
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7.3 The structure and bifurcation points of the branches C; y

Lemmas 7.2, 7.3, and 7.4 do not depend on the characteristics of the curve C%?, or on the
fact that N is assumed to be odd in Section 7.2. The arguments in the proofs of these
lemmas can be applied to any branch Ci n (7.3), (7.4) of homoclinic N-pulse orbits for
any k or N. It is essential for these proofs that the full Cy 5 branch remains in a bounded
part of the (, 3)-plane. Now, for Cy ;v with & > 2 — recall that Ci y = C3 by definition
— this is known via the analysis of Sections 3 and 4, and in particular Corollaries 3.1 and
4.1, and the fact that the only Cy x branches that can persist as a — oo are the Cy n,
recall Section 5. For k = 1, we have full control on CF for « large enough (Section 5),
and here we introduce the bounded subregions Ayqq C Aoqq and Aeven C Aeven as in
Section 7.2, (7.5) and define

A = Aodd U fieven. (7.10)

We know from the asymptotic analysis of Section 5 that we may restrict our attention
to A for the bifurcation analysis.

Theorem 7.1 The family X of all symmetric N -pulse orbits consists of finitely many
smooth branches Cp N, k = 1,2, ..., Kn < 0o that do not intersect, i.e., Copy NCppr = 0
if (k,N) # (1, M).

e For k = 1, the branch Ci v = Cy is unbounded. Inside ./1, Ci,n has the arc-length
parametrization,

Cin = {(aa,n(s), B1,n(5)) : s €[0,L1n)},
where fq, ~ — the length of C1 n in A —is finite. The limits

d d * *
lim (a1,n(s), B1,3(s) = (@i w, Bin)s - lim (-on v(s), —=Bin(s)) = (e, By ),

S—)LLN s_>Ll,N d

both exist. The endpoint (o] y, B7 ) is the unique bifurcation point of Ci,n.

e For k > 1, the branch Cy n is bounded and has the arc-length parametrization,

1 1
Cr,n = {(ar,n(s), Br,n(s)) : s € (=5Len, 5LeN)},
and the length Ly n of Cy n s finite. The limits
lim  (akn(s), BN () = (ajn- Biv)s  lim (L (5), - i (5)) = (0> B,
S—):I:%Lk’N ’ ’ s—)i%Lk,N ds ™ ds ™

all exist. The endpoints (a:’;\‘,, ﬁ:}é) are the bifurcation points of C n.

Each branch Cpn can be extended beyond each of its bifurcation points into another
branch of symmetric homoclinic M -pulse orbits.

Proof All but two of the statements in this Theorem follow from arguments that
are identical to those in the proofs of Lemmas 7.2, 7.3, 7.4, or directly from Corollary
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6.1. The first statement whose proof needs a few additional words is that two distinct
branches Ci n and C; 3s cannot intersect when k # I, irrespective of whether N = M or
N # M; but, this statement must hold since otherwise there would be a contradiction
with the definition of the curves (if N # M) or with Theorem 6.1 (if N = M). The
second statement is that Ky < oo, and we now prove it, hence completing the proof of
this Theorem.

Assume that Ky = oo, i.e., that Cy consists of infinitely many (smooth, bounded)
non-intersecting branches Cy . Clearly, Cy, v C Afork>1and Gy NﬂA # (). Therefore,
we may choose on any Cp y a point (ag n, Bk,N) € A. Since A is compact, the sequence
{(ak,n, Br,N) } 32, must have an accumulation point (qace,N, Bace,N) € A.

We may now apply Corollary 6.1 to conclude that there is a smooth curve Cace N
that represents symmetric homoclinic N-pulse orbits, and that (dk7N,Bk,N) € Cace,N
for all elements of a subsequence {(dk,N,Bk,N)}z"zl of {(ak,n,BrN)}5> ;- Hence, Cace N
intersects countably many branches Cj, n, which contradicts Theorem 6.1. g

We define the open, connected region flinner as the interior of A (7.10), i.e
Ainner = A \ 8Aa
see Figure 1.

Lemma 7.5 For allk and N, (o}, y, B y) € Ainner-

Note that this in particular implies that a;;’ N >0 for all &, N.

Proof It follows from Theorem 7.1 that (az, N B, ~N) € A, hence we only have to show
that (af v, B ) ¢ dA. We know from the analysis in Sections 3 and 4 that

8A = {a = 07 IB € [07 ,Bcap]} U Bcap U 161 U Bupper U {a = 5[, B € [/élowery Bupper]} U Buppery

with K1 = K1 N A, etc., and the natural definitions for Blower, Bupper — see Figure 1. By
construction, (a,‘;, N BZ, ~N) & Bcap, Bupper, Biower (Sections 3 and 4); o N # & by definition
—recall that & is assumed to be so large that the asymptotic analysis of Section 5 is valid
for @ > &. The fact that (o v, 85 n) € K1 is a consequence of Lemma 7.6 that will be
proved below.

Thus, we only need to show that a bifurcation point cannot have aj y = 0. If
aj, v = 0, then its associated orbit I'(z; (0, 3)) can be determined explicitly, it is — by
definition — a solution of system (1.12) with initial condition I'(0;(0,3)) = (0,0, 3,0),
i.e.,

I'(z; (0,8)) = (0,0, %ﬂ coshz, %B sinh ).

This orbit is not homoclinic to M. Bifurcation points (a*, *) must correspond to orbits
I'(z; (a*,5*)) that are homoclinic to M by Corollary 6.1, hence no point (0, 5) can be a
bifurcation point. O
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We know from Corollary 7.1 that a bifurcation point (a*, 3*) either corresponds to a
homoclinic orbit I'(z; (a*, 5*)) that has two symmetric degenerate extrema at its flanks,
or to a I'(z; (a*, %)) that has a degenerate maximum at z = 0. Note that both types
of bifurcations appear in system (1.1) — see the numerical simulations discussed in the
Introduction.

In the former case, i.e., if (a*, %) € Ajnner \ K1, the point (a*, 3*) marks the tran-
sition from an N-pulse homoclinic orbit to a homoclinic orbit with a v-component that
either has N + 2, N — 2 or again N maxima. As already stated in Theorem 7.1, each
branch Cp n can be extended beyond its bifurcation point(s) (o y,B% n) by Corollary
6.1. However, Corollary 6.1 (and its proof) do not give further information on the nature
of this extension. It thus does not exclude the possibility that C n extends into another
branch of N-pulse homoclinic orbits C; y, | # k.

In the case that (a,:’N,B,’;N) € K1, we can be more explicit.

Lemma 7.6 Let N = 2n, where n > 1, and assume that there is a k € {1,2, ..., Ko, }
such that the branch Ci 2, C Acven of symmetric 2n-pulse homoclinic orbits has a bifur-
cation point (azgn, B};Qn) € K1. Then, there is a branch Ci 2,1 C Aoaa of symmetric
(2n — 1)-pulse homoclinic orbits with a bifurcation point (O‘Z2n—1a B, on—1) Such that

(A an—1:Blon—1) = (k.20 Bron) € K1 (7.11)

Thus, we may conclude from this lemma that a symmetric 2n-pulse orbit that is asso-
ciated to a point (o 2,(5),Bk2n(s)) on a branch Cj o that has a bifurcation point on
K1, transforms smoothly into a symmetric (2n — 1)-pulse orbit as (ag2x(s), Bk,2n(5))
approaches Kj. Note that this lemma also provides a kind of (topological) transversality
result, although the possibility that the combined curve C 2, U (a,’;gn, Bz’%) UCron—1 is
tangent to K; at the intersection (az,%, B;;Qn) is not excluded by the lemma.

Proof By Theorem 7.1 and the assumptions in the lemma, we know that there is an
arc-length parametrization (a,2n($), Bk,2n(8)) of Ckon, such that (og.2n($), Br2n(s)) —
(a,’;gn, ﬂ;,?n) as s — %Lk’gn. Thus, s also parameterizes the associated homoclinic orbits,

Cron(2;8) = (k20 (5 5), Dkon (25 5), Vk,2n (T3 8), Qr,2n (23 8)) = Ton(2; (ak,2n(S), Br,2n(8))),

and the extremal points Gi,2n = Giﬂn(s) (7.1). The points G272n(s) and G1!(s) merge
as s — %Lk,zn, since the maximum at = 0 is degenerate on K; (Corollary 7.1). This
implies that the intersection curves Z2" N Z=2" and Z2"*! N Z~-(27=1) 3ls0 merge as
s — %Lk’gn (7.2). Note that the intersections IN+i 0 7-(N=3) also appear in separate
branches, but we refrain from adding the extra labels. Note also that we do not (have
to) take the branch spanned by the G;;n(s)’s into account.

Since Z?* NZ~2" C {p = 0}, it follows that Z?"+t1 N Z~(2»=1) approaches {p = 0} as
s — %Lk,gn. More precise,

—(2n— 1 1 1
R o A GOl N Gllc,Qn(ELkﬂn) = G%,Qn(nggn) €{p=0} as s— ELk,2n7
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and, since uy 2, (0;5) = g 2n(s) and v 2,(0;s) = Br,2n(s) by definition (7.3),

Gg,2n(§Lk,2n) = (@k,2n(5 Li2n), 0, Bron (5 Lk,2n)) = (@ 20, 0, B,om)- (7.12)

Next we observe that both Z2#+1NZ~(2n—1)  7-(n—1) 3pd 72017~ (2n-1) - 7-(2n-1)
and that Z2*~1NZ~("=1) corresponds to C; 9,1 for some [ (7.2), (7.3), (7.4). Moreover,
by the symmetry in the system, Ca, 1 = Z~ 2?1 N {p = 0}. Hence, if 72"t nZ-(2n-1)
approaches {p = 0} as s — %Lmn, then 7271 N7~ (27=1) myst also approach the branch
Ci2n—1 (interpreted as subset of {p = 0}) as s — %Lk,2n- This implies that the three
branches Z2" N 72" (¢ Cran), I NI~ and 7271 N 2= (& oy g) all
limit on the same point G%Qn(%Lk,gn) = (0% 971 0, B§ 9,,) (7.12), where (o) 5, Bf 5,) € K1
is the bifurcation point of Cj 2.

Since all orbits I'n(z, (e, B)) have a degenerate maximum at z = 0 if (o, 8) € Ky,
(a,’ggn, ﬁ,’;’%) € Ci,2n—1 must also be a bifurcation point of C;2,—1. This is equivalent to
(7.11) by Theorem 7.1. O

8 The model problem and the phenomenon of pulse split-
ting

In this section, we examine the relation between the homoclinic orbits of the system
of ordinary differential equations (1.1) studied in this paper and the onset of the self-
replication process exhibited by the Gray-Scott system (1.14). Moreover, we discuss the
phenomenon of pulse self-replication in a more general setting, i.e., beyond the specific
context of the Gray-Scott model.

8.1 Pulses and pulse bifurcations in the Gray-Scott model

Stationary solutions of the Gray-Scott equation (1.14) satisfy the following system of
ordinary differential equations:

no __ 2 2 _ — &2
U” = g[UV 5 e1g2(1 — 2U)], (8.1)
VYt = Vv -UV?
where we used the parameter combinations
VA
&1 = ?, Ey =V B.D, (82)

and the scaling

D _ D~ _ A -
v =1/ 5% U(x):B3/2\/;U(a:), V(z) =1\ 55V (@),

and where the tildes have been dropped. See [19, 20, 5], or the equivalent scalings of
(1.14) in [24, 25, 26, 27, 30, 31]. Now, system (8.1) is a singularly perturbed system of
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ordinary differential equations when
0<er,ea<kl, and e2<e; or e =0(e1),

and the existence and stability of (singular) homoclinic stationary pulse and multi-pulse
solutions of the Gray-Scott system has been established in [6, 8, 11, 24, 25, 26, 27, 30, 31].

These singular, localized, stable pulses can be seen as the origin of the self-replication
process. Starting with 0 < €1,e2 < 1, this process can be initiated by increasing €1 to
O(1) values, while keeping e2 fixed. At a certain, O(1), critical value €7, the pulse
‘disappears’ in a homoclinic saddle-node bifurcation, and this homoclinic saddle-node
bifurcation marks the onset of the self-replication process [5, 6, 24, 25, 26, 30, 33, 40].
Now, near the bifurcation, (8.1) is no longer singularly perturbed, since U, V, and their
derivatives vary on the same scale. However, by a simple further scaling (U = eju,
V =w/e1), (8.1) is transformed into

" 2 (8-3)

v = ww? - e2ea(1 — equ),
v = v —w?

in which 0 < 3 < 1 is still an asymptotically small parameter, but €1 = O(1).

The reduced problem (1.1) considered in this paper is the leading order part of
(8.3), i.e., (1.1) can be obtained from (8.3) by taking the limit e — 0. By a similar
motivation, a version of equation (1.1) has been derived in [30]; equation (1.1) is called
‘the core problem’ in [24, 25, 26]. Systems like (1.1) have also been studied as simple
models for auto-catalysis in [2, 3].

The homoclinic solutions considered in this paper are directly related to pulse solu-
tions of the Gray-Scott equation in the pulse-splitting regime, 4.e., to homoclinic solutions
of (8.3) with 0 < g9 < 1 and &1 = O(1). To see this, we note that

M = {(uaanaQNU = 0,(1 = 0}

is an invariant manifold of (8.3) that is identical to that of (1.1), see (1.13), where here
again p = v/ and ¢ = v'. Away from M°® and with v = O(1), the perturbation term
‘—e2e9(1 — gqu)’ in (8.3) is just a regular perturbation term. Therefore, the results of
the previous sections on the location and structure of the set ¥ and the branches Cy n
that represent homoclinic orbits to M in (1.1) are expected to carry over directly to
yield the existence of a set 3X° consisting of branches C;  representing symmetric orbits
in (8.3) that are homoclinic to M°®. In fact, the distances between the curves Cr y and
their leading order counterparts Cx y will be O(e2). ’

A more technical version of this statement can be made rigorous by relatively standard
arguments, but we do not intend to go into this here. We also refer to [24, 25, 26] for
an analysis based on asymptotic matching of the relation between homoclinic orbits in
(8.3) and homoclinic orbits in (1.1).

A solution of (8.3) that is homoclinic to M* is not necessarily a (stationary) pulse
solution of the Gray-Scott equation (1.14). Indeed, orbits homoclinic to M® must also
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satisfy an additional condition, namely they must lie in the intersection of the two-

dimensional stable and unstable manifolds of the critical point (u,p, v, q) = (1/e2,0,0,0) €
ME | so that they are forward and backward asymptotic to this fixed point on M¢®. Note

that this critical point corresponds to the ‘trivial pattern’ U = 1, V = 0 in the (unscaled)

Gray-Scott equation (1.14), which is the ‘background state’ for pulse solutions.

The perturbation term ‘—e?e3(1 — eau)’ in (8.3) changes the trivial, shear flow of
(1.1) on M significantly. The flow on M? is linear and governed by

{wo® (5.4

p = —8%62(1—5’2’!1,),

This linear system has a saddle point (1/e2,0,0,0) with stable and unstable manifolds
given by the lines ¢5, C M°,

Ly = {(u,p) € M®|p=+e1(1 —e2u)}, Ly ={(u,p) € M®|p= —€1(1 —equ)}. (8.5)

Thus, while the p-coordinates of the symmetric homoclinic orbits of (1.1) constructed
in this paper approach a constant value +p,, as £ — +00, the p-coordinates of their
perturbed counterparts in (8.3) become unbounded as z — =00, except for the co-
dimension 1 set of orbits which are homoclinic to (1/e2,0,0,0).

Fenichel theory can be applied to determine whether these special co-dimension 1
orbits indeed exist. Moreover, this geometric point of view can can also be used to
establish a direct relation between the bifurcations of the symmetric homoclinic orbits
as discussed in Section 7 and the homoclinic (saddle-node) bifurcations that have been
observed by numerical simulations in the Gray-Scott model as the parameter e; varies
[33, 25], as we now show.

It follows from Fenichel theory that, to any curve C; y C X° in the (a, 5)-plane
of homoclinic orbits to M¢ in (8.3), there correspond two curves on ME, the take-off
curve TOH(CE, ) and the touch-down curve Tdown(Cz, ~), that govern the behavior of or-
bits homoclinic to M¢ backward and forward asymptotically, respectively, see [11, 7].
These curves represent the families of base points of the Fenichel fibers associated to
the family of orbits homoclinic to M¢®, backward and forward asymptotically, respec-
tively, described by Cj 5. More precisely, let I'(z;Tg) be a solution of (8.3) taken as
4-dimensional dyna.mic’al system, with I'(0;T) = 'y = (¢,0,5,0) and (o, ) € CiN-
Then, there exist two points T's € M?, T € Tor (Cf, i) and I'{ € Taown (Ci nv), and two
solutions I (z;T'5) C M® with T3 as initial conditions, such that

I'(x;To) — r+ :E;I‘jE — 0 exponentially for z — Foc.
0

In other words, the orbits Fi(x;I‘(ﬂf) € M¢ shadow the path of the homoclinic orbit
I'(z;To) for x such that it is (exponentially) close to M°®. Therefore, if

Ty € £s N Taown(Ci v) (8.6)

for some k, then we may conclude that the orbit I'(x; I'g) is an N-pulse orbit homoclinic
to (1/e2,0,0,0), i.e., it represents an N-pulse solution in the Gray-Scott system, since
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in this case I'"(z;T¢) — (1/e2,0,0,0) as z — oo. Of course, the orbit is symmetric, and
hence (8.6) is equivalent to I'y" € £, N Tog (C, )-

Again, we remark that the analysis required to make these statements — and the
upcoming ones — rigorous is technical but straightforward.

If (o,B) € Cf y with o, f = O(1) with respect to 3, then the (u,p)-coordinates of
the associated péint in Tyown(Cf ) Will also be O(1) with respect to e2. If & > 1 then
the system can again be brougl’lt into a singular perturbed form — as in Section 5 —
and Tqown(Cf ) can be determined explicitly. In fact, this is in essence equivalent to
the analysis in [11, 5]. Since the distance between Cj  and Cy n is O(e2), the position
of Taown(C y) C ME is O(e2) close to that of its équivalent Tdown(Cr,N) € M that
is defined for system (1.1). Moreover, the position of Tgown(Cf ) Will not change (to
leading order) as the parameter £; is varied. ’

For O(1) values of u, the stable and unstable manifolds, ¢, s C M°®, of (1/e2,0,0,0)
are given by

s ={(u,p) € M®p=+4e1+ O(e2)}, Lyu={(u,p) € M®|p=—e1+ O(e2)},

recall (8.5). Thus, the intersection (8.6), which establishes the existence of homoclinic
orbits to (1/£2,0,0,0) in (8.3), can be traced directly as a function of the bifurcation
parameter €1, since £, = {p = €1} and Tqown(Cj ) is not influenced by e; (to leading
order in &3). 7

If ¢; is small, then to each intersection point in (8.6) there is an associated point
(a(e1),B(g1)) € CE y such that a > 1, which implies that k = 1, i.e., C§ y = Cy™°. Thus,
for small &1, we recover the N -pulse homoclinic orbits to (1/e2,0,0, 0)’(or, unscaled, to
the background pattern (U = 1,V = 0) in (1.14)). This statement is completely equiva-
lent to results in [11], and its proof may therefore be found there (although the parameter
space of (1.14) considered in [11] is more restricted than it is here). A bifurcation point
(a,’;’ N B,’;, ~) of a curve C,i n corresponds to a bifurcation value s,‘;’ n of €1 such that

(aler,n); Bleg,n)) = (% n» Be,N)-

Thus, each bifurcation point in 3¢ corresponds to a well-defined value of the bifurcation
parameter £;. Moreover, any such bifurcation value of £; by definition marks the tran-
sition from an N-pulse to an M-pulse homoclinic orbit in the Gray-Scott model (1.1).
Hence, the results obtained in this paper can be translated into results on the existence
and bifurcations of homoclinic N-pulse orbits in the Gray-Scott equation in the splitting
regime, i.e., for vVA/B = O(1) (8.2).

The outermost branch in Figure 1, i.e., the curve cl(C{°UCS®), is the most im-
portant curve for the relation between model problem (1.1) and the initiation of the
pulse-splitting process in the Gray-Scott system. We therefore consider its counterpart
cl (C7° U C5™) for system (8.3). If £1 is small, then the intersection Tyown (c1(C7"™ U C5))N
{5 consists of two points. These points correspond to (ai(e1),B1(e1)) € C7™ and
(a2(e1),B2(e1)) € C5™°, respectively, that represent the singular 1-pulse and 2-pulse
homoclinic orbits, respectively, in the Gray-Scott model that have already been studied
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in [11]. See also [24]. As ¢; increases, the points (a1(e1),81(£1)) and (a2(e1), B2(£1)))
travel along the curve cl (C7"™° UC5™™), with a-coordinates aj2(e1) that must remain
bounded. Since we know that cl (C;"> U C5™) is bounded for bounded «, and bounded
away from {a = 0}, we may conclude that there is a critical value €} of &1 such that

L5 N Taown ((CTFUCT™)) =0 for &1 > €],

while the intersection contains (at least) the two points (a12(e1), B1,2(€1)) for €1 < 7.
Thus, as €; increases through €7, two homoclinic orbits merge and there is a homoclinic
saddle-node bifurcation (in the sense of dynamical systems theory, see for instance [28]).
This is the saddle-node bifurcation that initiates the self-replication process in the Gray-
Scott model [5, 6, 24, 25, 26, 30, 33, 40]. Note that there is no reason for the bifurcation
point (a1,2(g}), B1,2(€})) to be equal to the bifurcation point C7"°\C7'™ = C3*\C5'™ at
which the two pulses of 2-pulse orbit merge into one pulse. In fact, numerical simulations
indicate that this is indeed not the case (see also [25]).

This scenario has also been studied in detail, numerically and asymptotically (0 <
€1 < 1 or equivalently @ > 1), in [24]. The analysis in this paper provides a rigorous
foundation for the continuation of the curves C7’5° into the region a = O(1) (Section
6). Moreover, it follows from the results of this p,aper that the curves C7’3° are smooth,
bounded, and of finite length for a bounded (Sections 3, 4, and 7), which implies that
there must be a value of €1 above which neither the 1- nor the 2-pulse orbits can exist
in (8.3), i.e., in the Gray-Scott model. However, we have not proved the numerically
obvious fact that the 1-pulse and 2-pulse orbits do not undergo any other bifurcations
([33, 24] and Figure 1).

The 1- and 2-pulse orbits are naturally embedded in a family of N-pulse orbits (see
Section 5 and [11], and Section 8.2 below, as well as [7], for a similar result for the Gierer-
Meinhardt equation). We have shown in this paper that the equivalent scenario in which
a (2m — 1)-pulse can only bifurcate into a 2m-pulse, i.e. in which C$2,_ |, NCSS, # 0, is
not correct for general higher order pulses. In fact, our numerical simulations indicate
that this only happens for m = 1,2, 3, and that other bifurcations take place for m > 4
(section 1). The analysis in this paper supplies a foundation for further research of the
intriguing bifurcation structure of the multi-pulse homoclinic orbits in system (1.1) and
in the Gray-Scott system (1.14).

8.2 The onset of pulse self-replication

Recently, it has been shown that the phenomenon of self-replication of pulses is not
restricted to the Gray-Scott model. In [33] an ‘artificial’ model that exhibits pulse self-
replication was constructed. Moreover, it was found in [12] that pulse self-replication
also appears in the Gierer-Meinhardt model,

{SQUt = Uy —2pU + V2

8.7
‘/jt = €2me - V + %2, ( )

with parameters e, > 0 [17, 32], and in the generalized Gierer-Meinhardt equations
(see also [25]). Self-replication of pulses was observed also in [10] in several other models
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of Gierer-Meinhardt type, as well as in generalizations of the Gray-Scott model, see
[38]. It may thus be concluded that self-replication of pulses is a generic phenomenon.
There are several ingredients that appear to be necessary for the self-replication process
[33, 40, 13, 5, 25]. The existence of a family of symmetric 1- and 2-pulse orbits is one
of them [11, 7, 25], it is called the ‘multi-bump transition condition’ in [25]. This latter
ingredient is perhaps the aspect of pulse self-replication that is most suitable for a full
analytical approach. Note that such an analysis cannot be restricted to only 1- and
2-pulse orbits. For instance, to prove that a 1-pulse homoclinic orbit must bifurcate into
a 2-pulse orbit one must exclude the possibility that the 1-pulse develops extra pulses
on its flanks, i.e., that it bifurcates into a 3-pulse orbit, etc... Moreover, in all known
examples of systems that exhibit pulse self-replication, the families of 1- and 2-pulse
orbits are naturally embedded in a larger family of N-pulse orbits (N > 1) — see also
the discussion below on self-replication in the Gierer-Meinhardt equations.

Thus, the onset of pulse self-replication is in general strongly linked to bifurcations
of N-pulse homoclinic orbits. This gives a further motivation to study the existence and
bifurcations of the family of homoclinic orbits in the a priori simple model problem (1.1).

The onset of pulse-self-replication in the Gierer-Meinhardt equation (8.7), and in
models of (generalized) Gierer-Meinhardt type, is similar to that in the Gray-Scott sys-
tem. The existence and stability of singular symmetric, stationary homoclinic multi-pulse
solutions to (8.7) can be established if 0 < ¢ < 1 is an asymptotically small parame-
ter [4, 7, 22]. Note that these pulse solutions are homoclinic to the background state
(U =0,V = 0) and that the N-pulse homoclinic orbits are unstable as solutions of
equation (8.7) if 0 <e < 1and N > 2 [7].

It is shown in [12] that the multi-pulse orbits cannot exist for u > 1/e%, and that
the methods developed in [7] can be applied up to 0 < p < 1/e*, which establishes
the existence of multi-pulse orbits for these values of u. Hence, one expects homoclinic
saddle-node bifurcations in the region u = O(1/e%). As in the Gray-Scott case, the self-
replication is initiated by these saddle-node bifurcations, as was numerically confirmed
in [12, 25].

In the scaling of the Gierer-Meinhardt equation chosen in (8.7), the U- and V-
components of the pulses have O(1) amplitudes with respect to ¢, however these ampli-
tudes scale with /i as u is varied. To study the homoclinic saddle-node bifurcations it
is therefore natural to introduce the O(1) parameter i by u = fi/e?, to scale U and V/
as

Uz)=e2u, V(z)=¢e "0,

and set z = eZ. These scalings transform the stationary problem associated to (8.7) into

o' = iu—v?
{ " ! v? (8.8)

v = U—U.

Hence, the homoclinic saddle-node bifurcations and the onset of pulse self-replication
occur in the Gierer-Meinhardt system for parameter combinations at which the station-
ary problem no longer has a singularly perturbed nature. This is completely similar to
the Gray-Scott case (compare (8.8) to (8.3)). However, in the Gray-Scott problem, (8.3)
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could be further simplified to the reduced, or core, problem (1.1). It is a priori not clear
whether (8.8) can also be further simplified, since the term ‘fiu’ in (8.8) is not small,
while the term ‘—e2e2(1 — €2)u’ is a higher order term in (8.3).

Nevertheless, although equations (8.3) and (8.8) are quite different, they exhibit two
similar families of multi-pulse homoclinic orbits that play crucial and similar roles in the
onset of pulse self-replication. It is expected that further investigation of the geometric
structures that are responsible for the existence of the families of multi-pulse homoclinic
orbits and their bifurcations may provide a fundamental understanding of the similarities
between systems (8.3) and (8.8), and thus of the generic nature of the phenomenon of
pulse self-replication.
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A The proofs of Lemmas 4.1 and 4.2

In this appendix, we prove Lemmas 4.1 and 4.2, which establish lower bounds on z(x)
and y'(z), respectively. We begin by recalling the governing equations (4.2) from Section
4,

y' = B2y22 and 2'=2-— aByzQ, with  y(0) = 1,4/(0) = 0,2(0) = 1,2'(0) = 0.

Also, we recall that zo(z) = cosh(z) is the solution of A
20 — 29 =0, 20(0) =1, 2,(0)=0
and that yo(z) = Co(B sinh(x)) is the solution of
v = B?(cosh?®(z))yo y0(0) =1 and y{(0) = 0. (A.2)

In order to prove the desired lower bounds, we need to derive the following upper
bounds on z and y first.
Proposition A.1 Forx >0,

z(z) < zo(x) and 0 < y(z) < yo(x) < cosh(B sinh(z)). (A.3)

Proof of Proposition A.1 Let Z = z — 2zy. Then,
Z" -7 =—afyz* <0, Z(0)=0, Z'(0)=0.

Hence, Z"(0) = —af < 0, and we see that Z’ < 0 and Z < 0 in a right neighborhood of
the origin. Moreover, it also follows, by a standard argument by contradiction, that Z”,
7' and Z remain negative for all z > 0. Therefore, we may conclude as desired that
z(z) < zo(x) = cosh(z) for z > 0.

Next, observe that y(z) > 0, which follows directly from equation (A.1) for y. We
now derive an upper bound for y. Since z < zg, the y equation in (A.1) implies

y// < ﬁ2yz(2,.
Let Y = y — yo. This difference variable satisfies
Y" < B23Y for >0, Y(0)=0, Y'(0)=0,

from which we deduce that Y (z) < 0 on > 0 and, hence, y < yo, as desired.
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This upper bound on y(z) is the sharper of the two stated in the lemma here, and it
is purely for the benefit of later calculations that we also derive a bound on yo(z), which
is a less sharp bound on y itself but which is much easier to work with. Let

t = Bsinh(x) and () = yo(z). (A.4)
Then, 7(t) satisfies the modified Mathieu equation (A.2), which we may write as

t

n—n= —mﬁy (A.5)

with 7(0) = 1, /(0) = 0, and the overdot now denotes the derivative with respect to ¢.

We observe that 7)(t) > 0 at least for small values of ¢, because 7j(0) = 1(0) > 0. Now,
we claim that 7(t) > 0 for all values of ¢ > 0. Suppose to the contrary that n(t) > 0
for ¢ € (0,%0) for some ¢y and that 7(tp) = 0. Then, it would be the case that 7j(tg) <
0. However, the equation directly reveals that, if 1(¢9) = 0, then 7j(t9) = n(to) > 0.
Therefore, the initial supposition leads to a contradiction, and hence 7(¢) > 0 for all
t>0.

As a consequence, we see that

n—n<o0 for all ¢ > 0.

and hence that
n(t) < cosh(t) for ¢t >0,

by comparison. Translating back to the z variable, we have shown the desired result
that yo(x) < cosh(fsinh(z)) for all x > 0, which completes the proof. O

Now, we are in a position to prove Lemma 4.1, which we recall states that
z(x) > z1(x) = z0(z) — af(i(x), as long as z; > 0, (A.6)

where

G(z) = /Om sinh(z — s) cosh(f sinh(s))23(s)ds. (A.7)

Proof of Lemma 4.1 We use a comparison argument. We insert the upper bounds
for y and z found above in Proposition A.1 into the z equation of (A.1) to obtain

2" — 2 > —af cosh(B sinh(z))z3. (A.8)
Hence, it is useful to examine the problem
2 — 21 = —af cosh(Bsinh )22, z1(0) =1, 21(0) = 0. (A.9)

The homogeneous solution that satisfies the initial conditions is 2z¢(z) = cosh(z), and
the particular solution is —a((;(z), noting the minus sign, where ¢;(z) is given by (A.7)
above, namely by the solution of ¢} —(; = cosh(Bsinh z)22, with ¢1(0) = 0 and ¢} (0) = 0.
Therefore, we have

z1(z) = 20(x) — B (). (A.10)

55



Now, comparing the equations for z and 21, namely (A.1) and (A.9), and recalling (A.8),
we find that z(z) > z1(z), which completes the proof. O

Remark A.1 The sharper of the two upper bounds on y, namely y < yg, from Propo-
sition A.1 could also be used in this proof. That would lead to a slightly sharper lower
bound on z, namely to the same expression for z; but with the modified Mathieu func-
tion yo(z) = Co(Bsinh(x)) in place of the term cosh(Ssinh(z)) in the definition of (;.
However, the integrals are easier to evaluate with the weaker bound. Finally, to compare
the two bounds, we found that the numerical values given by the sharper estimate are
close. In fact, for the same values of « as reported in Table 2 we find &(z;)= 1.419, 1.177,
1.051, 0.974, 0.917, 0.874, and &(H1)= 0.8564, 0.6095, 0.4762, 0.3842, 0.3088, 0.2410 (in
increasing order of ).

To conclude this appendix we prove Lemma 4.2, which we recall establishes that
y(z) > y1(x) and y'(z) > yj(x), where y; satisfies

yi — Bz (z)y1 = —20,8° cosh(Bsinh(z))z0(z)1(x), y1(0)=1, (0)=0.
(A.11)

Proof of Lemma 4.2 Again, we use comparison arguments. We recall from (A.1)
that y satisfies

y// _ ﬁ2 y 22-
Substituting the lower bound z(z) > z;1(z), obtained in the previous lemma, into the
right member of this equation and recalling that y(z) > 0, we find

y" > B2(z0 — aBC1)y > B2(22 — 2aB820(1)y.

Then, recalling the upper bound y(z) < cosh(sinh(x)) obtained in Proposition A.1, we
find
y" — 8222y > —208° cosh(Bsinh(x))z0¢1,  for 0 < z < &(21). (A.12)

Clearly, since y; is defined to be the solution of the problem (A.11), we obtain the desired
result that y(z) > yi(x), by comparison.

Finally, we show that y/(z) > v} (). Substituting the lower bound z(z) > 21(z) from
the previous lemma into the equation for y, we find

Y > B2y on z>0. (A.13)

By integrating, we find
V@ > [ B )as

Next, we use the lower bound y(z) > y1(z) that was just established and expand the 2?
term using the definition of z; (recall (A.6)) to obtain

/(2) > /0 " B2(23(s) — 20B0(s)1(s) + 02B2C (5))u (s)ds.

56



In addition, we recall that y(z) < yo(z) < cosh(fsinh(z)) from Proposition A.1 and
observe that the third term in the right member of the lower bound on %’ is positive.
Hence,

/(@) > /0 *(8223 ()1 (5) — 20B70(s)C1(s) cosh (B sinh(s))) ds.

Finally, we observe that the term in square brackets is precisely y{ (s) by (A.11). Hence,

Y(z) > /O "yl (s)ds = ¥} (<), (A.14)

which completes the proof. O

B The proof of Lemma 4.4: the asymptotics of the zeroes
§(21) and &(H)

In this appendix, we prove Lemma 4.4, which gives the asymptotics of the first positive
zeroes, £(z1) and &(H1), of z1(z) and Hi(z), respectively, in the limit as @ — 0. It also
shows that at z = £*, defined by (4.11), the three quantities y'(z), z(z) and H;(x) are
strictly positive.

The zeroes diverge as @ — 0. Hence, we are interested in the asymptotics for large
x throughout the proof. Moreover, we warn the reader that the asymptotics need to be
carried out to fairly high order, so that some of the calculations are rather long.

Proof of Lemma 4.4

Part I. The asymptotics of £(z1). We start by recalling the definition of z1(z), the
lower bound on z(z),

z1(z) = z0(z) — aBCi(2), (B.1)
from (4.6). Here, the function
(z) = /0 " sinh(z — ) cosh?(£) cosh(Bsinh(t))dt (B.2)
is the solution of the problem
— 1 = 22(z) cosh(Bsinh(z)),  with ¢;(0)=0 and ¢}(0) =

A more useful formula for (7 is obtained by using the addition formula for sinh, as follows:

C1(x) = sinh(z)¢1(z) — cosh(z)¢a(z), (B-3)
where
sinh(z)
d1(z) = / cosh®(t) cosh(/3 sinh (¢ / (1 + s2) cosh(Bs)ds
0 0 sinh(z)
pa(z) = / sinh(t) cosh?(t) cosh(8 sinh(t))dt = sV 1+ s2cosh(Bs)d
0
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Next, set
r = sinh(z) and  ®;(r) = ¢i(z), i =1,2.

Then,

®i(r) = ; <1 + % +r ) sinh(fr) — /; r cosh(fAr),

which implies that to leading order

Br
Ql(r):;—ﬂ(r2—%r+ﬂz+l) as 7 — 00.

Hence, we have one of the two main ingredients for the asymptotics of (;(x); to leading
order,

Br
r®(r) = 625 (7"3 - %r + @T—FT) (B.4)

Next, we turn to the function ®5(r). Note that

1 1 1
sV 1+s2=s" {1 + 53_2 ——s4 4 ES_G + 0(3_8)} .

8

Hence,
2

1 2
Dy(r) = ( + 7 + 8r2> sinh(8r) — 52 —57Tcosh(Br) +---,
which implies that to leading order

pr 2 2 1 1
w0 =g (P m ) o o

Hence, the second of the two main ingredients for the asymptotics of (;(x) is also in
hand, namely to leading order

Br
mfbg 62_,3 (T‘?’ - %7"2 + ET +7r— B B12 1) (B5)

Asymptotically, therefore, 51(7") = (1(z) is given by subtracting (B.5) from (B.4),

- eﬂr 1 _1 _9 .
Gi(r) = 252 {1 - ET +O(r )} , where r = sinh(z) — oo, (B.6)

In turn, this result for ; enables us to obtain the desired asymptotics of £ = £(z1),
the first zero of z1(z), as follows. Setting z1(z) = 0 in (B.1), we have 29(§) = a8¢1(§).
In the limit of large 7, this becomes

«
1 2 __ = pBr
+7r 256 ,

which is equivalent, asymptotically, to

2
e’ = —Br, as r — oo.
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After an elementary computation, we find, to leading order,

()5 2]

Therefore, recalling r = sinh(z), we wind up with the desired first formula in Lemma
4.4; namely, to leading order,

- (@D bE]) = e w

See also Table 3 below.

Part II. The asymptotics of {(#1), the first zero of #;. We turn to 1, which we
recall from (4.10) is given by

1 xz
Hale) =3 + 2—5 + % /0 Y, ()23 (s)ds. (B.8)

The goal is to find lower and upper bounds on the asymptotics of the first zero, £(H1).

We begin with a lower bound on £(#1). This lower bound will be the first zero of an
upper bound on H;, and we label it . We recall that y}(z) < y/(z) < y;(z) and that
z1(z) = zo(x) — afli(z) < zo(x), as long as yj(z) > 0 and z1(z) > 0. Hence, for these
same values of x,

1 aof apf

Hi(z) < —5t 5 + ?Xo(x), where Xy(z) = /Ow yh(8)25(s)ds. (B.9)

Set t = Bsinh(z). To leading order,

1 3
yo(z) ~ elV/t <1 - —t_l) as T — 00. (B.10)

Also,

and the differential element for the integral defining X is ds = dt/+/3? + t2. Hence, we

i 1 L, 1/2 3 1 2, .2
Xo(z) = \/ﬂﬂz*/o e'r 1-— 3" (8% + r*)dr,

which, after some integration by parts, yields to leading order

]_ t 5 23 -1 .
= ——€t2 |1 — —t h t= h(x). B.11
o(x) Jon Set < 3 ), where B sinh(z) ( )
Now, the upper bound on #; first vanishes, to leading order, when
23 K 38%V/2
e'ts <1 - gtl) = as a—0, where K = p iy (B.12)
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Taking the logarithm and Taylor expanding the natural logarithm of the third term in
the left member (noting, a posteriori, that quadratic terms in this expansion are higher
order), we find to leading order

5 23 1
t+ 3 In(t) — gtfl =In (a) + In(K).
After some computations, we find that the first three terms in the asymptotic expansion

e t=In <1) - gln [m (3” +In(K) as a—=0. (B.13)

0% 0%

Remark B.1 The next two terms are

24—5 [m [m (é)” [In(1/a)] ! + g <§ — ln(K)) [In(1/a)] ™

with a remainder strictly
0 ([m {m (é)” [1n(1/a)]2) .

Finally, recalling that ¢t = fsinh(z) ~ (8/2)e®, we translate this result back into the
original x variable to obtain the asymptotics of &,

-1 -1
o (3)] 40 (5) 3 [ Q)] @] men[ ()]
(B.14)
as a — 0. This completes the analysis of the lower bound, and hence also of the first
half of the proof of Part II.

In this second half of the proof, we derive an upper bound for £(#H;) and the asymp-
totic expansion of this upper bound will turn out to agree with that of the lower bound,
o, at least in the first five nontrivial terms, and hence the leading order asymptotics for
&(H1) will be as claimed in the second formula of this lemma.

In particular, we derive a lower bound on #1, and then, by construction, the first
zero of this lower bound will be the desired upper bound on £(H;). We label this zero
&u. Recall that yj(z) < ¢'(z), as long as z1(z) > 0, and that y; satisfies (4.9),

Yy — B222(x)y1 = —208° cosh(Bsinh(z))zo(z)¢1 (), 1 (0)=1, ¢}(0)=0.
(B.15)
Let ¢t = Bsinh(x) and 71(¢t) = y1(z). This equation becomes
.. t . )
m + mnl -—m= _f(t)7 771(0) = ]-7 771(0) = 07 (B]'G)
where
f(t) = \/% con®G)  and GO = 5610~ /14 ()
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It is useful to compare the left member to the left member of the simpler, modified
Bessel equation. Namely, we observe that

1

I t . .
i + T m= —f(t)+ <Z - m) m > —f(t), as long as m >0 (B.17)

Hence, we study the inhomogeneous modified Bessel equation,

N 1, }
fj2 + T2 TR = —f(t), n2(0) =1, 72(0) =05 (B.18)
and, from the comparison (B.17), we see that
n2(t) < m(t) and M2(t) <m(t), as long as 7 > 0.

Moreover, letting ya(x) = n2(t), we find the desired lower bound on 1,

Ho(z) = —%-I— ?-I— ?XL(:B) < Hi(z), where X (z) = /Om yh(s)23(s)ds. (B.19)

The asymptotics of this lower bound are obtained as follows.

The solution of (B.18) that satisfies the initial conditions is

() = Io(t) +7n(t), where in(t) = —To(t) /O rEo(r)f(r)dr + Koft) /O rIo(r) f(r)dr,

(B.20)
and Iy and K are the modified Bessel functions of order zero. Writing 72 in this manner
as the sum of the homogeneous solution, Iy(t), and the particular solution, 7a(t), is
advantageoues for keeping track of the asymptotics, as we will now see. The large ¢
asymptotics are

Y 1
Lo(t) ~ —2 (1 + 2t 4 %t_z)

V27t 8 12
[T ¢ ot 9 .o
Ky(t) 2te <1 8t + 128t )
e’ -1 52 -2
G(t) ~ W (1 -t 4+ Zt ) , (B.21)

where we recall (B.6). Hence, after some computation, we find

(t) = & (14t o2 ) - o (1o Ly ot™?) as t— 00
= ot 8 6t 2 ’

and also

in(t) = ¢ =3 Lo y) - ac’t (1+0@t ™) as t— oo
P = U8 3 ’

Converting this expression back into one in terms of the original z variable, we find

2
yb(z) = ma(t) /B2 + 12 = \/"’—;_W\/Z (1 - grl + 0(t2)> - %t (1+o0¢™),
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as t = Bsinh(z) — oco. A central observation now is that the first two terms, at least, in
the asymptotic expansion of that part of y} that stems from the homogeneous solution
coincide with the first two terms of the asymptotic expansion of y(, above, recall (B.10).
This observation will be essential to determining the asymptotics of the lower bound on
H1, as well as on its first zero, as we show below. On a technical note, we will keep only
these first two terms, as well as the dominant term from the particular solution.

For M2, the other two ingredients (expressed in terms of t) are

21(z) = 20(x) — aBCi(z) = %\/ﬂQ 18— o).

and dz = dt/\/2 + t2. Hence, X (z), the integral in Hy, becomes
X (z) = X1(z) — 3afXa(z) + 36282 X3(x) — o383 X4 (), (B.22)

where t = sinh(z) and

Xi(@) = % /0 t [\/%_W\/Fer (1— §r1> - %eQT] B2+ dr  (B.23)

]_ tr ]. 3 1 87 2 i
Xo(2) = == | |—=vre (1=2r1) =S¥ | /B +r2dr  (B24
2(z) 254/0 _mﬁe ( g" ) 3¢ | B2 +r2e"dr (B.24)
1 T 1 r 3 -1 a 21"- 2r
X3(£C) = W/(; -\/—2_7( re (1 - g'f' ) - §€ ] e“"dr (B25)
1 i1 3 a o e
X, = — — 1= ) - 2| —dr B.2
4(x) 856/0 Wi re < y ) 3¢ | \/Wdr (B.26)

In the formula for X, (z), the stated terms from X (x) are the dominant ones on the time
scales over which y](z) > 0 that we are interested in, and we recall that the integrals of
these first terms were already found above in the computation of X(z). Integrating the
last term also, we find

1 1 23
XL(m) ~ @ |:\/—2_7rt5/2€t (1 — gt 1) — %tQGQt] . (B27)

Moreover, &7, the zero of the lower bound on 1, is given to leading order by the solution
of

3
2083
We solve this equation, following the procedure used above. However, there is one
significant difference. We have

etts (1 - %t_l - O‘—V()%ett—%) -

XL(CL‘) =

?

RIX

where the constant K is as before. The exponential term inside the parentheses is the
significant difference. We will see that it is higher order, as follows. Taking the logarithm
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and Taylor expanding (noting that the quadratic terms in this expansion are higher order,
although here there is one more quadratic term that could have been important a prior:
but is not), we find

5 23, ov27 t-1 1
- —¢
8 6 o

t+ gln(t)— —t 2 =In —) + In(K).
Since the leading order solution is ¢ = In(1/«), we set

t=ln (é) (1+w), (B.28)

to also find the relative error w. Substituting this into the equation, we find

(@) Slnn ()] - B3] 0o
() - ()] e

where we expanded In(1 4+ w) ~ w and (14 w)~ %2 ~ 1 — (w/2). Next, we observe that

(é)“’ _ gwin(2)  =3lnfn(2)] [m (é)} N

where we profited from looking ahead at the leading order asymptotics of w. Therefore,
solving for w and recalling (B.28), we find that, as a — 0,

@ = ()] en ()3 Q) o (3)] s (2)]
ol (OO

Now, by construction, & is an upper bound on £(#1). But, we see that the first
several terms in its asymptotic expansion agree with those of the lower bound &y found

above. Moreover, they first differ in the term O ([ln o (1)]] [ ()] _3), which is in

[s3
&u, and which arises due to the fact that Xo(z) — X1(z), the difference between the
integrals involved in the upper and lower bounds on H;, respectively, is to leading order
%¢2e?, which is a higher order term. Hence, the asymptotic expansion of £(#1), which
lies between &y and &7, agrees with those of these bounds, at least to within the order
stated, and is as given in the statement of the lemma.

Remark B.2 The other terms involving Xa(z), X3(z), and X4(z) and the remaining
terms obtained from integrating by parts in X;(z) correspond to higher order terms. For

example,
3a L 3200 @

—— | e tedt| .

263 [ 2v/27 9
However, these terms are higher order only by factors powers of In(1/a), which arise
due to the differences in the fractional powers of ¢. In fact, the exponential terms all

—3afXi(z) ~
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lead to the same asymptotic expression; namely, we note that, for each integer m > 0,
amemtt — o1 at t = In(1/a), i.e., at z = In((2/8) In(1/a)).

Part III. Finally, we show that yj, z1, and H; are positive at £* for sufficiently small
values of a. Recall that the ‘time’ £* is defined implicitly by

Bsinh (¢*) = In (1> . (B.29)

(67

The equivalent explicit definition is

c—cwman {tu(2))

Direct calculation using the above asymptotics for ¥}, 21, and H1 implies:

1 I (3) 1
!/ *
Y1) = ———14+0 | ——
€)= =" N
€) = oln(+)+0)
z1 = 2ﬂn 5
1 1\ %2 1
Hi(§*) = ———<In|— 140 | —— — 0.(B.30
(€) 3_%2{11(&)} — as o — 0. (B.30)
This concludes the proof of the lemma. O

To confirm the above asymptotics, we compared the values of £(z1) and &(H1) as
computed by direct numerical simulations and by evaluation of the asymptotic formulas.
The data is presented for the case = 4 in Table 3.

a | &(z1) (num) | {(z1) (asymp) | {(H1) (num) | {(H1) (asymp)
10~4 1.902 1.693 1.372 1.369
105 2.076 1.902 1.565 1.576
106 2.223 2.073 1.744 1.754
107 2.341 2.216 1.890 1.910
108 2.458 2.341 2.025 2.047
1079 2.551 2.451 2.152 2.170

Table 3. The values of £(z1) and (1) as computed via direct numerical simulations
(num) and via evaluation of the asymptotic formulas (asymp), recall (B.7) and the lower
bound given by (B.14). Here 8 = 4.
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C  The proof of Lemma 4.5: the nontrivial lower bound

Blower on Aeven

In this appendix, we prove Lemma 4.5, which we recall establishes the curve Bjower-
In particular, for each o > 0, there exists a () such that there are no homoclinic
orbits for 8 < Sr(a). Also, after the proof of this lemma, the asymptotics of S («) are
presented both for a« — oo and for a — 0.

It will be convenient first to normalize u and v by scaling the dependent variables as
we did in the proof of Lemma, 4.3. Let

u(z) = ay(z) and v(z) = Bz(x). (C.1)
We recall that the equations become
y" = B2yz? and 2" = 2(1 - aByz), (C.2)

with initial data y(0) =1, ¢’(0) = 0, 2(0) = 1, and 2’(0) = 0, and the energy function is
1 1 1
H(y, '\ 2,2") = 52'2 — §z2 + gaﬂyz?’.
Now,

H(z) = 308 (2)2*(2);

and, hence, H increases along homoclinic orbits, because z(x) > 0 by assumption for
homoclinic orbits and y'(z) > 0 by (C.2). Moreover, for any z > 0, one finds

%@ﬁﬂﬂ@+%ﬁ%ﬁﬂﬂf@ﬁ; 7«@:—%+%w. (C.3)

The proof will be by contradiction. We will show that, for any o > 0, there exists a
Br(a) such that, if 8 is smaller than (1 («), then there is some finite value of x, which
we will label £(8), such that H(£(8)) > 0. (The variable ¢ here is different from that
used earlier.) This will in turn yield a contradiction with the fact H(z) — 0~ as x — o0
along a homoclinic orbit.

Proof of Lemma 4.5 Let

1 3
e=e(p)=hlog(5), g<h<l (C.4)
We will show that for each @ > 0 there exists a 1,(a) such that
H(E) >0  for B e (0,8L(a)). (C.5)

We follow the by-now standard strategy, namely we first derive upper bounds on the
components z(z) and y(z) for all z € [0,£(B)], and then we use these to help derive
lower bounds on both z(z) and y'(z), the two key ingredients in H'(x).
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Since y(z) > 0 for all z, it follows from (C.2) that
y(z)>1 and  z(z) < cosh(z) for z>0.
Therefore, one directly obtains the following upper bound on z:
z(z) < cosh(¢) < et =% for O<z<¢. (C.6)
Next, we seek an upper bound on y(z). Substitution of (C.6) into (C.2) yields
y' < ﬂQ(lfk)y for 0<zx<E.

Integration of this inequality then yields

def

y(x) < cosh(B!*z) < cosh(B' *¢) < exp(B1 %) = n(B) for 0<z<E (C.T)

Also, limg_,gn(8) =1, since k < 1 and

Blke = kB " Flog (%) —0 as B —0.

Now, we bound z(z) from below. Substitution of (C.6) and (C.7) into (C.2) yields
"> pPz, p=4/1—aBlFn(B). (C.8)

z(x) > cosh(u ) for 0O0<z<g, (C.9)

Therefore,

which is the desired lower bound.
Remark C.1. u(B)—> 1" asf — 0" .

Finally, we estimate y’ from below. By putting the lower bound (C.9) for z into (C.2)
and recalling that y(z) > 1 for z > 0, we obtain

y" > B2 cosh?(pu ) for 0<z<E.

Hence,

T 2
Y (z) > 52/ cosh?(ut) dt > % sinh(2uzx) for O<z<¢. (C.10)
0

We now have the two necessary ingredients, (C.9) and (C.10), to derive a lower bound
on H(£). Substituting these into the formula (C.3) for H(£), we find
1 3
H(E) > Eaﬁ?’/ sinh(2ut) cosh®(ut) dt + H(0)
0
3
— oo {cosh®(u€) ~ 1} + H(O)

335k 1

ZE (1 39B%Hky _
26-15,u( 826°7) 2

1
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Evidently, we have to choose k and (3 such that
3 —buk < 0. (C.12)

Since we have fixed k > %, and u(B8) — 1~ as B — 07, there exists a 1 > 0 such that
(C.12) is satisfied. Also, by taking g sufficiently small, i.e. smaller than some B2 > 0, we
can ensure that 7 (§) > 0, as desired. Therefore, by taking B = min{fi, S2}, we have
shown that for 8 < 81, homoclinic orbits cannot exist. O

As we will now show, the curve Bjgyer is a sharp lower bound in the limit that o — oo.
Consider the curve
r,: {(a,p):a=Kp "}, v >0,

for any positive, O(1) constant K, and repeat the above argument while « and f stay
onI'y, as 8 — 0. We find that we now need to fix k, 8 and v such that

3—b5uk—v<0 and k<l-—v.

Since u(B) — 1 as 8 — 0, it is possible for any v < % to find k£ and B so that these two
inequalities are satisfied for 8 < (1. Like before, this implies the existence of a constant

Br, € (0, 1] such that no homoclinic orbit can exist for § < 1. Moreover, recalling that
the curve Cq is given asymptotically by 8 = fa2(a) = %% as a — 00, we see that Biower
is a sharp lower bound, because the above estimate holds for any 0 < v < %, and hence
for any B, < ‘5—;

Finally, we also briefly examine the @ — 0 asymptotics of S1.(). To this end, consider
r,: {(o,f):a=Kp"}, v>0,K>0.
The conditions are now

3—-5uk+v<0 and k<1

Since u(B) — 1 as f — 0, it follows that for any v € (0, 2) it is possible to find constants
k and (1 such that for any 8 € (0, 31) the two inequalities are satisfied. This completes
our analysis of the curve Bjower and this appendix.
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