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In this paper the exact discrete adjoint of a finite volume formulation on unstructured meshes for
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to that used for the flow equations, is modified to account for multiple functionals. An
optimization framework, which couples an analytical shape parameterization to the flow/adjoint
solver and to a Sequential Quadratic Programming optimization algorithm, is tested on
constrained and unconstrained airfoil design cases. Preliminary results are also presented for a
Sequential Linear Programming algorithm, which appears to be able to deal properly with
constrained design in spite of its simplicity.
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In this paper the exact discrete adjoint of a finite volume formulation on unstructured
meshes for the Euler equations in two dimensions is derived and implemented to support
aerodynamic shape optimization. The accuracy of the discrete exact adjoint is demon-
strated and compared with that of the approximate adjoint. A solution process for the
adjoint equations, which is similar to that used for the flow equations, is modified to ac-
count for multiple functionals. An optimization framework, which couples an analytical
shape parameterization to the flow/adjoint solver and to a Sequential Quadratic Program-
ming optimization algorithm, is tested on constrained and unconstrained airfoil design
cases. Preliminary results are also presented for a Sequential Linear Programming algo-
rithm, which appears to be able to deal properly with constrained design in spite of its
simplicity.

I. Introduction

Aerodynamic shape optimization can be efficiently performed by means of the adjoint method which
enables functional gradients to be calculated at the price of roughly one additional flow computation.1

This method is very attractive in its discrete approach where the adjoint problem is directly formulated on
the discretized flow equations. The method is straightforward to understand; only some linear algebra is
involved. However, the derivation of the discrete adjoint code can be challenging due to the complexity of
differentiating the original discrete formulation. Hand–coding the adjoint may require a lot of human work.2

Automatic Differentiation tools to derive the code3–5 may be successfully applied.
In this work the adjoint algorithm is hand–coded following a methodology outlined in previous work,6,7

in the context of implicit solver development. The discrete adjoint implemented here is exact since the
residual Jacobian is obtained from the exact differentiation of the residual vector. It gives gradients that are
consistent with the ones obtained by finite difference applied to the original solver. In practice, to simplify
the derivation of the adjoint code, different approximations can be made in the differentiation. In turn, those
approximations can have a detrimental effect on the accuracy.2 Some of those approximations are discussed
here.

The solution process for the adjoint problem, despite the linearity of the equations, can be the same
time marching adopted in the flow solver.2,4, 8, 9 This greatly simplifies the coding and gives a robust adjoint
solver. Here an implicit time stepping is used which is modified to account for the solution of the adjoint of
multiple functionals. In constrained shape optimization more than one functional is usually involved so that
it is convenient to solve the adjoint problem simultaneously rather than sequentially.

The flow and the adjoint solver are part of an optimization framework, which includes the shape param-
eterization and an optimization algorithm. The latter is in charge of driving the optimization process. The
shape parameterization used here is based upon orthogonal Chebyshev polynomials.10 This parameteriza-
tion gives completeness in the design space and behaves smoothly during the optimization process even in
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case of large shape deformations. Shape optimization is performed by means of two algorithms. The first
one is a Sequential Quadratic Programming algorithm from an external library, which is used for direct and
inverse design cases. The second one is a Sequential Linear Programming algorithm implemented by means
of an existing Linear Programming routine. The latter algorithm still needs to be refined but it appears to
be already effective for constrained aerodynamic shape optimization. Preliminary results obtained with the
algorithm will be presented.

The paper is structured as follows. In section II the Finite Volume solver implemented in this work is
briefly presented. In section III the exact discrete adjoint is presented. Due to the lengthy derivation of
the exact adjoint more details are presented in the appendix for the sake of completeness. In section IV
the approach used to solve both the flow problem and the adjoint problem is presented. Section VI briefly
addresses the shape parameterization whereas in section VII some applications in shape optimization are
presented in order to demonstrate the optimization framework.

II. Finite volume formulation

The Euler equations are a system of conservation laws which can be written in integral form as

d

dt

∫

V

u dΩ +

∮

∂V

F · n dΓ = 0 , (1)

where V is a volume contained in the domain Ω. The vector n is the outward unit normal on the boundary
∂V of V . The quantities u and F are the conservative variables vector and the flux vector respectively

u =




ρ

ρw

ρet


 , F(u) =




ρwT

ρwwT + pI

ρhtw
T


 . (2)

Both are defined as functions of primitive variables v = [ ρ,w, p ]T which are density, velocity (w = [wx, wy]T

in 2D) and pressure. Other quantities to be defined are the total specific energy et = p/((γ − 1)ρ) +w · w/2
and the total specific enthalpy ht = et + p/ρ. The perfect gas equation p = ρRT is used to provide closure
of the system.
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Figure 1. Pressure distribution of the un-
structured solver compared with that of a
structured solver (NACA0012, α = 1.25deg
and M∞ = 0.8).

Equation (1) is discretized in a Finite Volume framework.11

For each internal control volume

Vi

dui

dt
+

∑

k=1,Ni

Φ(ûi, ûk,nik) = 0 , (3)

where Φ is the numerical flux evaluated at the interface ∂V ik

between two control volumes i and k. The numerical flux de-
pends on the integrated normal nik (≡

∫
∂Vik

n dΓ ) and on the
left and right state ûi and ûk. Summation of the numeri-
cal flux across all the control volume interfaces ∂V ik gives the
control volume residual ri ≡

∑Ni

k=1 Φ(ûi, ûk,nik). The hat on
the states denotes extrapolation/reconstruction at the control
volume interfaces in order to distinguish from the cell average
values ui and uk. The primitive variables are reconstructed
according to a MUSCL–like extension:12 for each variable vi a
limited linear reconstruction is performed across each control
volume interface ∂V ik:

v̂i = vi + σi∇vT
i (xik − xi) , (4)

where σi is a slope limiter, ∇vi is the variable gradient and xik is the mid–point location of ∂V ik . The
slope limiter is that of Venkatakrishnan13 defined as:

σi = min
k=1,Ni

(
α2

i + 2αi∆vik + ε

α2
i + αi∆vik + 2∆v2

ik + ε

)
, (5)
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with ∆vik = ∇vT
i (xik − xi) being the unlimited differential, ε a threshold, αi = vmax − vi for ∆vik ≥ 0 and

αi = vmin−vi for ∆vik < 0. The values vmax and vmin are the extrema of vi on the stencil composed by i and
all its distance one neighbors (k = 1, Ni; see Fig. 13 in the Appendix). The gradient ∇vi is computed using
a linear Least–Squares technique12 which reconstructs linear polynomials exactly. A Green-Gauss gradient
is also available. The numerical flux is evaluated using Roe’s approximate Riemann solver

Φij = Φ(ui,uj ,nij) =
1

2
(F(ui) + F(uj)) · nij −

1

2
|A(ũij ,nij)|(uj − ui) , (6)

where |A| is the absolute flux Jacobian evaluated with the Roe averages ũij . Equation (3) is completed by
adding suitable terms when a control volume i is lying on the domain boundary. More specifically, flux vector
splitting is used for far–field boundaries and zero normal velocity is imposed on the wall flux.14 Equation (3)
can be rewritten in the semi–discrete form

D
dU

dt
+ R = 0 , (7)

where D is a diagonal matrix containing the control volumes, U = [u1,u2, ...,uN ]T and R = [r1, r2, ..., rN ]T

are the conservative variable and the residual vector respectively. The total number of control volumes is
indicated with N . Since a median dual formulation is used, which stores the unknowns at the nodes of the
mesh, the number of control volumes N is the number of nodes in such mesh. An edge–based data structure
is used in the solver.12 Due to the flexibility of the formulation, hybrid meshes of triangular and quadrilateral
elements can be easily processed.11 Time marching of Eq. (7) is addressed in section IV.

Figure 1 shows the comparison of pressure distribution between the present solver and a structured flow
solver15 which uses variables extrapolation together with an Osher flux and Koren’s limiter.16 The mesh
used for the computation was a 128× 80 O–mesh. The present solver uses an unstructured triangular mesh
of 8000 nodes with almost the same number of nodes on the wall.

III. Adjoint formulation: exact discrete adjoint for the MUSCL scheme

First of all, the adjoint method is briefly outlined for the purpose of defining the problem and introducing
the approach preferred for this work, which is the discrete approach. Consider a functional J (e.g. Lift,
Drag) for which the sensitivity with respect to a set of shape parameters must be computed. The functional
is dependent on the flow as well as the shape of the domain. An efficient way to accomplish the computation
is via an augmented functional L. Using a terminology similar to that used in control theory1,17 the
conservative variables U can be identified as state variables and the set of shape parameters as decision
variables (α is one of those shape parameters). The state of the system is represented by the residual vector
R which depends on both state and decision variables. The functional L is obtained by augmenting J with
the state of the system. Introducing a vector of multipliers Λ:

L(U, α,Λ) = J(U, α) − ΛT R(U, α) . (8)

At the stationary point of the augmented functional L its sensitivity coincides with that of the orig-
inal functional J (dJ/dα ≡ ∂L/∂α). Imposing the stationary condition to the augmented functional
([∂L/∂U, ∂L/∂α, ∂L/∂Λ] = 0) gives a set of three equations. The third equation is the state equation
R = 0 which is solved using the finite volume solver introduced before. The first and the second equations
are the adjoint equation and the sensitivity of the functional J :

∂R

∂U

T

Λ =
∂J

∂U

T

,
dJ

dα
=

∂J

∂α
− ΛT ∂R

∂α
. (9)

The sensitivity is calculated using the multipliers or adjoint variables Λ obtained by solving the adjoint
equation. Interesting feature of the method is that a single adjoint solution can be used to compute the
sensitivity of one functional with respect to many shape parameters. The last two equations can be referred
as the dual problem. The primal problem evaluates the functional sensitivity by directly using the flow
sensitivity dU/dα computed from the linearized flow equations:

∂R

∂U

dU

dα
= −∂R

∂α
,

dJ

dα
=

∂J

∂α
+

∂J

∂U

dU

dα
. (10)
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A drawback of this approach is that the linearized flow equation (first in Eq. (10)) must be solved as many
times as the number of shape parameters. By manipulation of Eq. (9) and Eq. (10) it can be shown that
the sensitivities obtained by the two approaches are identical. The dual problem is convenient when the
number of functionals to be solved is less than the number of shape parameters. If this is not true the primal
problem becomes more efficient. Usually, in aerodynamic shape optimization there is a limited number of
functionals and a large number of shape parameters so that the dual problem is advantageous.

In the present work a discrete adjoint is used which means that the dual problem of Eq. (9) is directly
formulated from the discretized equations. The challenging part of this approach is the derivation of the
transposed residual Jacobian [∂R/∂U]T which, as already said, involves differentiation of the original finite
volume solver. Different levels of approximations may be employed to fulfill this task. However, these
approximations may have a detrimental effect on the accuracy of the computed gradient.2 For this reason,
in the present work, an exact differentiation of the residual Jacobian has been performed.

To properly derive the transposed residual Jacobian [∂R/∂U]T it is best to start from the residual
Jacobian ∂R/∂U. Deriving first the residual Jacobian is essential also for the purpose of testing the accuracy
of the adjoint. The residual Jacobian has been derived here following previous work.7
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Figure 2. Implicit pseudo time stepping for
the flow equations. Approximate and exact
Jacobian are employed. The exact Jacobian
exhibits quadratic convergence.

Three new vectors of length E equal to the number of con-
trol volume interfaces have to be introduced. For a median–
dual formulation, as the one used here, E is equal to the number
of edges in the mesh. The first vector H = [Φ̂1, Φ̂2, ..., Φ̂E ]T

contains the second order fluxes for each edge. The sec-
ond and third vectors, UL = [ûL1, ûL2, ..., ûLE ]T and UR =
[ûR1, ûR2, ..., ûRE ]T , contain the reconstructed left and right
states for each edge. Using these vectors, by means of the
chain rule, the residual Jacobian and the transposed residual
Jacobian are obtained as:

∂R

∂U
=

∂R

∂H

(
∂H

∂UL

∂UL

∂U
+

∂H

∂UR

∂UR

∂U

)
, (11)

∂R

∂U

T

=

(
∂UL

∂U

T ∂H

∂UL

T

+
∂UR

∂U

T ∂H

∂UR

T
)

∂R

∂H

T

, (12)

where ∂R/∂H is a rectangular dummy matrix of size E × N .
Each column numbered as an edge has only two non–zero en-
tries on the rows corresponding to the left and the right nodes of the edge. Values for these two non–zero
entries are −1 and +1 respectively (see Eq. (24)).

∂H /∂UL and ∂H /∂UR are square diagonal matrix of size E × E. They contain for each edge the
numerical fluxes differentiated with respect to the left and right states respectively.

More complex is the matrix ∂UL/∂U, rectangular of dimensions N × E, containing the differentiation
of the reconstructed left states with respect to the cell averages in their stencil. Since the reconstruction is
linear, on each row the non-zero entries will be positioned in the columns corresponding to the left state and
its distance–one neighbors. The same is true for the matrix ∂UR/∂U where in this case the right state must
be considered. Each element of these matrices is a square matrix of size equal to the number of variables,
for instance 4 for the 2D Euler equations.

In practice [∂R/∂U]T or ∂R/∂U are not formed at all. More likely their products with vectors are
directly computed (matrix–free assembly). In the present work an edge–based assembly of such matrix–
vector products has been derived and implemented. Using the edge–based assembly, both matrix–vector
products can be performed in the same way as for the residual vector. In fact, R is assembled with a loop on
the edges exploiting the conservation property. In the appendix the derivation of the edge-based assembly of
Eq. (11) and Eq. (12) is given together with some details about the exact differentiation of the reconstruction
operator as well as of the numerical flux.

The exactness of the transposed Jacobian [∂R/∂U]T has been tested indirectly employing the Jacobian
∂R/∂U in an implicit pseudo–time stepping procedure (see Eq. (13)). This iterative procedure becomes
Newton’s method for infinitely large time steps. This method is known to exhibit quadratic convergence
only when the Jacobian employed is exact. Figure 2 shows the residual history for the time–stepping of
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a transonic test case. The exact Jacobian is turned on after 10 iterations with the approximate Jacobian.
As can be seen, the exact Jacobian attains a quadratic convergence and in only 5 iterations the residual is
reduced by 10 orders of magnitude. Quadratic convergence is not obtained if the differentiation is not exact,
for instance, if limiters are ignored (i.e. they are considered constants in the differentiation, see Eq. (33)) or
if a programming error is present. Finally, the accuracy of the transposed Jacobian is checked by means of
the matrix identity vT [∂R/∂U]u = uT [∂R/∂U]T v which in this case is satisfied to machine accuracy.

IV. Time marching of flow and adjoint equations

Both the flow and the adjoint equations are advanced in time using implicit time stepping. The scheme
is essentially the same for both solvers. At each time step a system of linear equations arises, which is solved
iteratively to the required level of accuracy.

A. Implicit pseudo-time stepping

The implicit pseudo–time stepping used to advance the semi–discrete system in Eq. (7) is a first order
backward Euler scheme which can be written as

(
Dt +

∂̃R

∂U

)n

(Un+1 − Un) = −Rn , (13)

where the diagonal matrix Dt contains the control volumes divided by the local time step. An approximate

Jacobian ∂̃R/∂U is employed instead of the exact Jacobian of Eq. (11). Approximations are in terms of
the reconstruction and the numerical flux. The reconstruction is ignored (i.e. first order accuracy) and
the flux Jacobian |A(ũij ,nij)| of Eq. (6) is frozen in the differentiation.12 Advantages of making such
approximations are the faster assembly and the increased diagonal dominance of this Jacobian. The latter
results in a less problematic iterative solution of the linear system arising at each time step. However,
due to the approximations the rate of convergence in Eq. (13) is linear instead of quadratic. A quadratic
convergence rate can only be attained using an exact Jacobian (see Fig. 2). In order to speed up the
convergence, at each iteration the time step is increased according to a CFL update of the type CFLn =
β CFLn−1L2(R

n−2)/L2(R
n−1) where L2(R) is a discrete norm of the residual vector and β is a suitable

parameter. Depending on the flow type the CFL is limited to a maximum value or it is left free to increase
to infinity.
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Figure 3. Convergence history of the lift
sensitivity with primal, dual and dual pre-
serving iterations.

The adjoint equation appearing in the dual problem of
Eq. (9) is a linear system for the adjoint variables Λ. Due
to the off–diagonal contribution arising from the reconstruc-
tion operator the system is poorly diagonally dominant and so
it is stiff to solve. A time-like contribution can be added which
results in a more robust solver.8 In practice, the same time-
stepping and settings used for the flow solver are also used in
the adjoint solver:


Dt +

∂̃R

∂U

T



n

(Λn+1 − Λn) = −
(

∂R

∂U

T

Λ − ∂J

∂U

T
)n

. (14)

A similar procedure can be devised for the primal problem
of Eq. (10). As already said the sensitivity computed from the
solution of the primal problem and the dual problem are iden-
tical. However, if an iterative procedure is involved, equality
between the two values is only guaranteed at full convergence.
During the iterations the two computed sensitivities can pos-
sibly have different values. In order to ensure exact equality
of the two sensitivities also during the iterative procedure a duality preserving iterative scheme4,8, 9 can be
used. Figure 3 shows that the primal sensitivity and the dual (non–duality preserving) sensitivity converge
to the same value. Exact agreement is attained only at full convergence. As can be seen, if the iterations
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are duality preserving, the dual sensitivity matches the primal sensitivity during the entire iteration process.
The match is up to machine accuracy. In this work duality preserving iterations have only been used for
the purpose of checking the consistency between the dual and the primal problem in the development of
the code. In all applications presented in this work the adjoint sensitivity is usually converged to a level of
accuracy for which consistency during the iterative procedure is not an issue.

Except in the case of inverse design where the optimization problem is unconstrained, shape optimization
problems can have many constraints involving more than one functional. Simultaneous time stepping of more
than one adjoint with Eq. (14) gives an appreciable time saving compared to sequential solutions. Multiple
right–hand sides in Eq. (14) imply minor modifications. Only some more substantial coding is required to
modify the linear system solver employed at each iteration. In this work up to 3 functionals (lift, drag and
pitching moment coefficient) have been solved simultaneously and a time saving of 50% compared with a
sequential solution is obtained. The time saving comes from the evaluation of the residual Jacobian terms.
In a matrix–free procedure those terms are computed at each matrix–vector product. As a consequence it is
convenient to perform more matrix–vector products at the same time for both the left and right–hand side
of Eq. (14).

B. Linear system of equations
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Figure 4. Triangular mesh of 30 k nodes
(top) and pressure contours (bottom) for the
RAE2822 airfoil at α = 2deg and M∞ = 0.75.

The implicit time-stepping of the flow equations according to
Eq. (13) implies the solution of a linear system at each time
step. The same holds for the adjoint problem in Eq. (14).

Two options are followed in this work to solve the linear
system. The first one is a simple iterative procedure which,
given the linear system Ax = b, computes corrections of the
type:

xk+1 = xk + ∆x , ∆x = P−1(b − Axk) , (15)

where P is a preconditioner computed from A. The second
one is the more sophisticated GMRES18 algorithm which also
uses preconditioning. Libraries19 of a re–started versions of
this algorithm are linked to the present implementation.

The efficiency of both iterative procedures heavily relies on
the effectiveness of the preconditioner. If the preconditioner
is not effective the convergence can be poor for both proce-
dures or in some cases it can stall. The preconditioner should
be a good approximation of the original matrix (P ≈ A) and
moreover it should be relatively simple to invert. Two types
of preconditioners are used in this work. The first one is the
Incomplete Lower Upper factorization with zero fill–in ILU(0).
It is a lower–upper factorization for which only elements posi-
tioned in the sparsity pattern of the original matrix A are kept.
The second one is the Symmetric Successive Overrelaxation,
SSOR, which can be expressed as P = (D + L)D−1(D + U).
The matrices D, L and U are the diagonal, strictly lower and
strictly upper part of the matrix A (again, each matrix element
is a matrix of size 4 × 4).

In the following SSOR indicates the simple iterative procedure using the SSOR preconditioner whereas
GMRES-SSOR indicates GMRES using SSOR as preconditioner. The same is for ILU and GMRES-ILU. The
ILU(0) preconditioner needs to be computed and stored before being used. When the ILU(0) preconditioner
is computed an additional data structure must be introduced according to the type of libraries employed (in
this work the SLATEC20 libraries are used). Usually the data structure of the libraries can be very different
from that used in the solver implying conversion and rearrangement of the data.

As opposed to that, the SSOR preconditioner does not require any preparatory work. This preconditioner
has been implemented here directly using the flow solver data structure. Only an additional pointer is created
which links each node to its neighbors. Optionally, at least for the Euler equations, it is possible to apply the
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Figure 5. Comparison of the four sparse linear solvers for increasing mesh density.

preconditioner in a matrix–free fashion without storing the elements. This preconditioner is applied by means
of a forward solve (D + L) z = b followed by a backward solve (I + D−1U)x = z. The non-zero entries
for each node (a Jacobian row) are only the nodes in the stencil. In fact, neglecting the reconstruction
contribution, each edge produces four entries: two on the diagonal and two off–diagonal.21 With proper
ordering of the nodes in the pointer it is possible to perform the backward and forward solve without storing
L and U but by recomputing them at each step. In this case the storage requirements decrease considerably
at the price of an increase in the execution time.

A comparison of the four linear solvers is made for a transonic test case with increasing mesh density.
The test case is that of Fig. 4. The mesh density is increased only close to the wall and not uniformly in
the domain. The initial mesh size has around 2000 nodes and the final mesh has 40000 nodes. For all the
computations 10 directions are used for GMRES after which it is restarted. The linear system is solved
at each iteration to an accuracy which is 2 orders of magnitude smaller than the discrete norm of the flow
residual L2(R). Such a level of accuracy is found empirically. In general, for cases with less clustered nodes
around the boundary than the one in Fig. 4, 1 order of magnitude suffices. Performances in terms of average,
maximum and total number of iterations for 60 time steps are shown in Fig. 5. As already expected22 the
best performance in terms of required iterations is that of GMRES-ILU followed by GMRES-SSOR, ILU
and SSOR respectively. At least for the Euler equations, the SSOR preconditioner seems to be effective for
increasing mesh density as much as ILU. Moreover, in spite of the larger number of iterations to be performed
at each time step, the SSOR preconditioner (storage allowed) is found to be faster to apply than the ILU
preconditioner. For this reason in this work the SSOR preconditioner is used for all computations. When
the linear system is solved to a lower level of accuracy, for instance 1 order of magnitude smaller than L2(R),
the difference in performances between GMRES and the simple iterative procedure reduce considerably and
no particular benefit is noticed from the application of GMRES.

In the case of the adjoint equation, for more than one functional, multiple right–hand sides must be taken
into account when solving the linear system. In this work the iterative procedures that use SSOR and ILU
have been implemented to efficiently solve multiple right–hand sides whereas in the case of GMRES this
option is not considered due to the complexity of the implementation.

V. Overall accuracy of the discrete adjoint

The accuracy of the transposed Jacobian has been discussed in Section III and it was proven to be exact.
This guarantees that one has accurate adjoint variables for the evaluation of the sensitivity once the adjoint
equations are solved. The terms ∂R/∂α and ∂J/∂α, which are also required to evaluate the sensitivity, are
computed here by means of a finite difference step. With this method a truncation error must be accounted
for, contrary to the complex variable method which can give the exact sensitivity.2,4 Even though the finite
difference step is not exact, it is able (i) to show whether the sensitivity of the adjoint is consistent and (ii)
to quantify the error given by approximations in the adjoint.

In Fig. 7 results for the NACA0012 airfoil at M∞ = 0.85 and α = 1deg are shown. The flow, the adjoint
and the linearized (primal) solver have been converged to machine accuracy (convergence is only shown for
the first 200 iterations). Values of cl = 0.3533 and cd = 0.0581 are found which are in agreement with
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cl = 0.3565 and cd = 0.0582 found in the references.15 The adjoint variables are solved simultaneously for
the lift, drag and pitching moment. In order to avoid the computation to stall, it was found necessary to limit
the CFL number to 100. The Mach number contours reveal shocks on both the upper and the lower surface
of the airfoil. Probably due to these conditions the convergence rate of the solver is poor, for instance
compared to the rate of convergence obtained with the approximated Jacobian, as given in Fig. 2. The
adjoint and the linear solver appear to have the same rate of convergence as the flow solver. The contours
of the third adjoint variable for the lift coefficient are also shown. This variable represents the sensitivity of
the lift coefficient to changes in vertical momentum.
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Figure 6. Inverse design with a steepest de-
scent and a BFGS algorithm for different ad-
joint approximations. The BFGS algorithm
seems to be insensitive to the approxima-
tions in the adjoint.

In Fig. 8 the same mesh is used to compute the flow at
supersonic flow conditions M∞ = 1.2 and α = 7deg. The con-
vergence rate is three time faster than for the previous case.
Also for this case, values of cl = 0.5202 and cd = 0.1553 are
found which are in agreement with cl = 0.5237 and cd = 0.1551
found in the references.15 Contours of the third adjoint vari-
able for the lift and the second adjoint variable for the drag are
shown. They have a reverse trend as compared to the Mach
contours. This is due to the fact that the functional on the
airfoil cannot be influenced by the downstream region due to
the supersonic nature of the flow in which disturbances do not
propagate upstream.

In table 1 sensitivities with respect to the angle of attack
are shown for the two cases. The table includes the exact ad-
joint ADJE , two approximated adjoints and the finite differ-
ence values FD which are calculated with a suitable step. In
the approximated adjoint ADJA1 the limiter contribution is
neglected whereas in ADJA2 also the numerical flux Jacobian
is approximated as the one employed in the time stepping. For
comparison purposes, ∆(%) is used to indicate the average value of the percentage difference between an
adjoint sensitivity and the finite difference sensitivity for the three coefficients.

The exact adjoint sensitivity in the supersonic case seems to more closely agree with the finite differ-
ence value than the transonic case does. This is probably due to the more critical flow conditions of the
transonic case. The approximated adjoint ADJA1 compared to ADJE gives a loss of accuracy of about two
orders of magnitude for both cases. Finally, the approximated adjoint ADJA2 shows a further reduction of
accuracy which is more evident in the transonic case. As can be seen, the accuracy loss caused by the use
of approximated adjoints is evident in terms of gradient results. Nevertheless, this should not lead to the
conclusion that approximated adjoints have bad performances in shape optimization. For instance, in Fig. 6
an objective function for an inverse design of a transonic airfoil (see also Fig. 11) is shown. The three adjoint
approximations have been used with two different optimization algorithm.

Table 1. Comparison of exact and approximate discrete adjoint with finite differences for transonic and
supersonic NACA0012 cases.

FD ADJE ADJA1 ADJA2

∂cl/∂α 0.272780 0.272864 0.263342 0.253712

M∞ = 0.85, ∂cd/∂α 0.017794 0.017790 0.017263 0.016785

α = 1deg ∂cm/∂α -0.086478 -0.086517 -0.082095 -0.07757

∆(%) // 0.03 3.5 7.5

∂cl/∂α 0.073865 0.073866 0.073712 0.0740152

M∞ = 1.2, ∂cd/∂α 0.016737 0.016737 0.016685 0.016679

α = 7deg ∂cm/∂α -0.016285 -0.016285 -0.016157 -0.016152

∆(%) // 0.002 0.4 0.45

The first one is the steepest descent. With this algorithm a difference between the three adjoint ap-
proximations is noticed only in the initial phase. In fact, asymptotically they seem to reach the same poor
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Figure 7. NACA0012 airfoil at M∞ = 0.85 and α = 1deg. This case exhibits a poor convergence rate of the
residuals which drop only 4 orders of magnitude in the first 200 iterations. 600 iterations (not shown here) are
required to drop the residuals of 12 orders of magnitude. Forces and sensitivities are scaled by their converged
values.
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Figure 8. NACA0012 airfoil at M∞ = 1.2 and α = 7deg. The mesh used is the 14 K nodes unstructured
mesh used in the previous case, Fig. 7. Compared to that case the convergence rate is 3 time faster. For the
residuals, 12 orders of magnitude reduction have been achieved in 200 iterations.
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convergence rate. The second one is the BFGS algorithm23 which converges the objective much faster than
the steepest descent. With this algorithm there is virtually no difference between the three approximations.

Such a forgiveness in terms of gradient accuracy is probably due to the fact that the search direction,
contrary to the steepest descent, is not only determined as a function of the gradient but also using an
approximated Hessian which is updated at each iteration.

The steepest descent method does not seem to find practical application because of its poor performances.
On the contrary, BFGS or more in general variable metrics methods are widely used. Therefore, the fact that
those methods are relatively insensitive to the gradient accuracy can have implications on the possibilities
to use the approximate instead of the exact adjoint. Approximate adjoint requires much less efforts in the
implementation than exact adjoint. As can be seen in the Appendix, neglecting different contributions in
the adjoint as in ADJA1 and ADJA2 reduces the complexity of the implementation considerably.

VI. Shape parameterization

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

X/C
D

k

k = 0

k = 1

k = 2

k = 3

Figure 9. Basis functions for the Design
polynomial.

The parameterization of the geometry plays a crucial role in
shape optimization. The way the shape is parametrized is the
way the design space is represented. A limited representation
of such a space would limit the chance to approach an optimum
design. In this work an orthogonal Chebyshev polynomial rep-
resentation is used first to approximate the airfoil and then to
deform its shape during the optimization process. The orthog-
onality property is important since it gives completeness of the
design space. This approximation can be defined as a series of
orthogonal basis functions10,24

ft(x) =

NT∑

k=0

ckTk(z(x)) , (16)

where NT is the number of such functions, each of them defined
as

Tk(x) = cos(kθ(x)) , θ(x) = cos−1(2
√

x − 1) , (k ≥ 0 , 0 ≤ x ≤ 1) . (17)

It is assumed that the airfoil is of unit chord. A curve approximated by Eq. (16) is not closed at the leading
and the trailing edge. In order to have closure at these points the “Design” polynomial must be defined :

fd(x) =

NT −2∑

k=0

dkDk(z(x)) , Dk = Tk − Tk+2 . (18)

Figure 9 shows the basis functions Dk for the Design polynomial (dk coefficients have been set equal to one).
It is interesting to see how the first Design basis (k = 0) resembles an airfoil shape.

In practice Eq. (18) can be used to approximate the airfoil following two approaches. One approach
is to use the camber line method in which the camber and the thickness distribution are independently
approximated. Another option, which is the one preferred in this work, is to directly approximate both the
upper and the lower curves.

Given a set of N airfoil coordinates ([xi, yi]; i = 1, N) a local error (ǫi = |fd(xi) − yi|), an average error

(ǫm = 1/N
∑N

i=1 ǫi) and a maximum error (ǫM = max ǫi) can be defined. In order to approximate the
airfoil an unconstrained minimization algorithm can be used to reduce a weighted linear combination of
maximum and average error. A certain maximum error in the representation must be achieved in order not
to have discrepancies between functional computed on the original airfoil and on the approximated airfoil.
An investigation25 shows that for most CFD solvers in use a maximum error of the order of ǫM = 8 × 10−5

suffices. Using the Chebyshev polynomials different airfoils have been successfully approximated to the
required maximum error.26
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VII. Shape optimization

In shape optimization an objective function, a functional usually defined on the wall, must be minimized
in order to improve performances or to achieve a desired design. Depending on the case, constraints have
to be taken into account. Constraints can be of a geometric nature or they can be imposed on some other
functional. In this work drag minimization problems have been addressed with equality constraint on the
lift coefficient and inequality constraint on the maximum airfoil thickness. Such a problem can be stated as:

min f(d) =
cd(d)

cdR

h(d) =
cl(d)

clR

− 1 = 0 , g(d) = 1 − t/cmax(d)

t/cmaxR

≤ 0 , (19)

where d is a vector containing the design variables: shape parameters and angle of attack. For this vector
upper and lower bounds (dL ≤ d ≤ dU ) can be prescribed. The symbol t/cmax indicates the maximum
relative thickness of the airfoil and the subscript R refer to reference (initial) values. The two constraints
are necessary otherwise the drag will be reduced at the expense of the lift and the thickness. Usually the lift
coefficient is given and the thickness cannot decrease under a certain value for structural and other design
considerations. Usually the shape parameter vector d is also scaled in a way that at the beginning of the
optimization each component of the vector is equal to 1. Additional constraints on the geometry as well as
on the functional can be included. For instance a pitching moment constraint, nose radius constraint or a
trailing edge angle constraint and so on.
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Figure 10. Optimization of the
NACA64A410 airfoil at M∞ = 0.7
and α = 2deg. Comparison of ini-
tial and optimized airfoil (top) and
Mach number (bottom).

Another kind of problem, referred to as inverse design is also ad-
dressed here. In such a problem the pressure distribution on the airfoil
is assigned and the optimization algorithm is used to find the proper
set of shape parameters which give that pressure. An inverse design
problem is an unconstrained problem defined as

min f(d) =

∫

wall
(p (d) − pref)

2dS(d) , (20)

where pref is the assigned pressure distribution on the wall.

A. Using non–linear optimization algorithm

The flow and the adjoint solver can be coupled together with the shape
parameterization and linked to an optimizer. In this work a routine
from the optimization toolbox of Matlab27 has been used. This al-
gorithm follows a Sequential Quadratic Programming (SQP) approach
with a BFGS Hessian update. This methodology is suitable for non–
linear problems with many constraints. Tolerances for constraints are
strictly satisfied using this kind of algorithm. The application only re-
quires an interface to the flow solver and the adjoint solver plus all the
required settings. Two airfoils have been optimized: the RAE2822 and
the NACA64A410. For both airfoils a total of 22 design basis functions
(11 on the upper and 11 on the lower side) are used. This is the num-
ber required to obtain the predefined maximum error in the geometric
representation of the initial airfoil. The angle of attack is also included
in the optimization as design variable.

Figure 10 shows the optimization performed on the NACA64A410
airfoil at transonic flow conditions. The optimization statement is that
of Eq. (19). It means the lift coefficient cannot change and the maximum thickness of the airfoil cannot
decrease. Upper and lower bounds on the variables have been chosen (dL = 0.1d0 and dU = 2.5d0)
empirically. After 11 gradient and 26 function evaluations the drag coefficient is reduced of 52% and the
maximum constraint value is equal to 10−5. The inequality thickness constraint is critical. The resulting
airfoil is shock free and the shape has changed smoothly. The nose radius is not sharpened and the trailing
edge angle is only slightly reduced. This is positive from the point of view of off–design performances.
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Figure 11 shows the RAE2822 airfoil case, also optimized at transonic flow conditions. For this case the
upper and lower bounds are reduced (dL = 0.8d0 and dU = 1.2d0). In fact with the same bounds used
for the previous case the resulting optimized airfoil shows a sharp nose and a very thin profile close to the
trailing edge. This kind of problems arise because of the lack in geometric constraints. The resulting airfoil
using the reduced domain exhibits a smooth pressure distribution and a smooth airfoil shape. 8 gradient
and 17 function evaluations are required. The maximum constraint value is 3 × 10−6. Again, the thickness
constraint is critical. For this airfoil also an inverse design is performed. Starting from the optimized airfoil
the purpose is to step back to the original airfoil, the RAE2822. The inverse design problem is defined
in Eq. (20). Contrary to the direct design cases, a tight tolerance on the objective function is specified.
The algorithm finished after 189 iterations when the objective function showed a reduction of 10 orders of
magnitude. A low maximum error of the order of 6.5 × 10−7 is obtained for the airfoil representation which
is also smaller than the accuracy to which the original RAE2822 has been approximated. Figure 11 shows
the resulting Mach number distribution perfectly lying on the top of the one of the target RAE2822 airfoil.
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Figure 11. RAE2822 airfoil direct and inverse design at M∞ = 0.73 and α = 2deg. Initial and optimized airfoil
(left) and Mach number (middle). At the end of the optimization the RAE2822 airfoil is re–obtained starting
from the optimized airfoil by means of inverse design (right). After the inverse design, the maximum error on
the airfoil coordinates is 6.5 × 10−7 and on the pressure distribution it is 5.7 × 10−5.

For both cases the upper and lower bound on the design variables have been defined empirically in order
to stay away from unfeasible design (e.g. very sharp nose or extremely thin trailing edge). Clearly additional
geometric constraints (at the nose and trailing edge) should be imposed to remove this need for setting those
bounds empirically. In such a way the design will not be driven in the unfeasible region.

B. Sequential Linear Programming algorithm: preliminary result

Non–linear optimization algorithms are designed to face highly non–linear problems with many equality
and inequality constraints. Usually the user makes no assumptions on the nature of the function or the
constraints under consideration. In the test cases presented in the previous section the optimization algorithm
is employed as a black–box, meaning that given the required settings the optimizer drives the flow and the
adjoint solver without the user being involved in the internal computational process. In this sense the user
plays a passive role not being able to bring his judgment into the design process, at least until the optimizer
has finished. It is probably worthwhile to investigate simpler algorithms with the capability of making the
design process more interactive and transparent to the user. Nevertheless, those algorithms have to be
effective in improving the design and taking into account equality and inequality constraints in a satisfactory
way.

In this work a Sequential Linear Programming algorithm has been implemented and a preliminary result
has been obtained which seems to be promising. The algorithm linearizes the objective and the constraints
around a design point.23 In the case of the optimization statement given in Eq. (19), linearization gives:

min (f(d0) + ∇f0
T ∆d)

h(d0) + ∇h0
T ∆d = 0 , g(d0) + ∇g0

T ∆d ≤ 0 . (21)

with the upper and the lower bounds becoming dL − d0 ≤ ∆d ≤ dU − d0. This problem can be solved
by means of a Linear Programming algorithm such as the Simplex method.23 Implementations of those
algorithms are available in many libraries.20 After the solution of the linear problem is found, a new
design point is available. The non–linear problem is linearized again around this new point and the Linear
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Programming solution is repeated. This process can be iterated until a local minimum is found within a
specified tolerance.

A drawback of this algorithm is that a reduced domain ∆d∗ = b∆d to which the search is limited must be
usually defined. In practice the domain resulting from the linearization cannot always be used in its entirety
for the Linear Programming solution. This is because if the problem is underconstrained, the solution tends
to be unbounded. Therefore it will lie on the bounds if those are available. As a consequence limited bounds
are necessary, which should be reduced after each iteration, in order to reach the true non–linear minimum.
The definition of the reduced domain is not easy since it should be a compromise between two concurrent
necessities. As a matter of fact, one should avoid large steps that would bring the design outside of the region
where the linearity assumption is valid. On the contrary small steps would make convergence to an optimum
design very slow making the process inefficient. At the moment an empiric criteria for a compromise between
the two necessities is used.
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(b) First design.
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(c) Second design.
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(d) Third design.
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(e) Fourth design.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

X/C

Y
/C

RAE2822
OPTIMIZED

(f) Initial and Final airfoil.
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(h) Lift coefficient history.
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Figure 12. Preliminary result obtained from the Sequential Linear Programming algorithm. The algorithm
is terminated after four design when a smooth pressure distribution is found. Lift and maximum thickness
constraints are satisfied.

An optimization test using the Sequential Linear Programming algorithm is performed on the RAE2822
airfoil at the same conditions as the previous section except for the bounds which in this case are larger
(dL = 0.6d0 and dU = 1.4d0). By means of a numerical test, a reducing factor b = 0.2 is found imposing
the error in Lift not to be greater than 5%. Four linearized problems have been solved for which partially
converged flow and adjoint solutions have been used. As can be seen from Fig. 12 at the end of the fourth
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step the Mach number distribution obtained is very smooth so that the design is terminated and the flow
is converged to machine accuracy. A drag reduction of around 30% is noticed. The lift coefficient seems to
satisfy the equality constraint: at the end the loss in lift is less than 1%. The same is true for the thickness
constraint. Clearly the tolerance is not that strict as with the non–linear algorithm. This is because for
a convex design space this method approaches the minimum from the unfeasible region. To overcome this
problem another Linear Programming methodology known as the method of center can be used, which
guarantees to approach the minimum from the feasible region.23

As can be seen, the Mach number distribution obtained shows to have a slightly less pronounced spike on
the nose compared to the results of the non–linear algorithm. Also, the final airfoil shows a thinner trailing
edge. Those differences are probably due to the size of the domain which in this case was double the size of
the one used in the non–linear case.

It is interesting to see that in spite of the simplicity of this method a design has been performed with
very few resources. The cost is that of a single solution plus four partially converged solutions. Probably,
the problems related to the definition of the reduced bound are the limiting factors in achieving accurate
convergence to the minimum. Also, because of the lack in second order information, the algorithm is not
expected to perform as the non–linear algorithm. However, the method seems to be very effective in finding
a near optimal solution which usually is what the user is looking for in many design applications. Increasing
the complexity of the optimization problem, for instance involving more constraints, should not have a
negative effect in terms of performances of this method. In fact, it is expected to work better since the
resulting linearized problem should have a reduced tendency to be unbounded.

VIII. Conclusions and future work

The exact discrete adjoint of a finite volume formulation for the Euler equations in two dimensions
has been implemented and tested. Comparisons have been made with approximated adjoints obtained by
neglecting some contributions in the differentiation. In terms of gradient results an appreciable loss of
accuracy is caused by those approximations. Nevertheless, no appreciable differences were noticed between
the various adjoints in the convergence rate of an inverse design test case driven by a widely used optimization
algorithm. Such a result can motivate the development of approximated adjoint codes which require much
less effort than the exact adjoint. This aspect requires further investigations.

The implicit time stepping originally employed in the flow solver has been adapted for the adjoint solver.
In order to address constrained shape optimization the solver has been modified to efficiently take into
account multiple functionals. Simultaneous rather than sequential adjoint solutions were found to give
considerable time saving. For both the flow and the adjoint solver the ILU and SSOR preconditioners have
been employed by themselves or in combination with GMRES for the purpose of solving the linear system
arising at each time step. The SSOR preconditioner, optionally matrix–free, has been implemented using
the same data structure of the flow solver. When storage is allowed, SSOR seems to be faster than ILU in
spite of the greater number of iterations required for a certain level of convergence.

An optimization framework coupling the flow and the adjoint solver to the shape parameterization and to
an external optimizer has been implemented. Such a framework has been shown to be effective in addressing
direct and inverse design test cases in transonic flow conditions. In order to simplify the optimization
process and make it more accessible for the user, a simple Sequential Linear Programming algorithm has
also been employed. Preliminary results show that the algorithm can deal properly with constraints and give
appreciable improvements in the design. Further investigations are required to establish criteria to reduce
the search domain for situations in which the design has the tendency to be unbounded. An extension of the
complete optimization framework presented here is planned in order to address turbulent flows and three
dimensional cases.
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Appendix

Figure 13. Median dual around node i. The num-
ber of distance on neighbors is Ni = 5 and the
stencil is Ni = [i, k1, k2, k3, k5, k7].

This appendix describes more in detail the edge–based
assembly of the two matrix–vector products

Z =
∂R

∂U
P , Z =

∂R

∂U

T

P . (22)

N is the number of nodes and E the number of edges. The
residual at node i is defined as the sum of the numerical
fluxes across the control volume interfaces ∂Vik

ri =

Ni∑

k=1

Φ(ûi, ûk,nik) =

Ni∑

k=1

Φ̂ik . (23)

Those interfaces are lying at the mid–point of the edges
ik surrounding the node i. The hat on the conservative
variables means that those variables have been extrap-
olated at the edge mid–point. The hat is also used on
the numerical flux to indicate that it is evaluated using
extrapolated variables.

For a linear reconstruction a distance–one stencil is
used. As can be seen from Fig. 13 the stencil Ni of a node
i include the distance–one neighbors of such node as well as the node itself. Therefore, the reconstructed
variable at node i has a dependence ûi = ûi(uk; k ∈ Ni) on the cell averages in such stencil.

The residual vector is collected on each edge exploiting the conservation property. A pointer is associated
with each edge, it points to the left and the right node sharing the edge (edge–based data structure). Using
this pointer, a loop on the edges is performed and the computed flux is accumulated on the left i and
(negated) on the right node j:

ri = ri + Φ̂ij ,

rj = rj − Φ̂ij , (ij = 1, E) . (24)

This loop can be modified to perform the assembly of the two matrix–vector products given in Eq. (22). In
fact, each component i of the first matrix–vector product in Eq. (22) is given by:

zi =

N∑

k=1

∂ri

∂uk

pk . (25)

Differentiating Eq. (24) with respect to uk, multiplying by pk and adding an additional internal loop gives:

∂ri

∂uk

pk =
∂ri

∂uk

pk +
∂Φ̂ij

∂uk

pk ,

∂rj

∂uk

pk =
∂rj

∂uk

pk − ∂Φ̂ij

∂uk

pk , (ij = 1, E; k = 1, N) . (26)

where according to Eq. (25) the quantities accumulated on the nodes i and j are the components zi and zj

of Z. This means that the nested loop given in Eq. (26) can be rewritten as:

zi = zi +
∂Φ̂ij

∂uk

pk ,

zj = zj −
∂Φ̂ij

∂uk

pk , (ij = 1, E; k = 1, N) . (27)

As indicated in Eq. (23) the numerical flux is dependent on the left and right states i and j. Because of the
reconstruction, such a dependency must be extended to the stencil since ûi = ûi(uk; k ∈ Ni).
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The latter means that the numerical flux Jacobian is non–zero only for the elements contained in the
stencil of node i and node j (∂Φ̂ij/∂uk 6= 0; k ∈ Ni ∪ Nj). As a consequence, in Eq. (27) the inner loop on
the nodes can be limited to a summation on both stencil Ni and Nj to give:

zi = zi +
∑

k∈Ni

∂Φ̂ij

∂uk

pk +
∑

k∈Nj

∂Φ̂ij

∂uk

pk ,

zj = zj −
∑

k∈Ni

∂Φ̂ij

∂uk

pk −
∑

k∈Nj

∂Φ̂ij

∂uk

pk , (ij = 1, E) . (28)

The numerical flux derivative is with respect to the cell average uk. However, the numerical flux is actually
evaluated with the reconstructed variables so that the chain rule can be applied to isolate the flux derivative
from the reconstruction derivatives. In doing this the numerical flux derivative can be taken out of the stencil
summation:

zi = zi +
∂Φ̂ij

∂ûi

∑

k∈Ni

∂ûi

∂uk

∣∣∣∣
ij

pk +
∂Φ̂ij

∂ûj

∑

k∈Nj

∂ûj

∂uk

∣∣∣∣
ij

pk ,

zj = zj −
∂Φ̂ij

∂ûi

∑

k∈Ni

∂ûi

∂uk

∣∣∣∣
ij

pk − ∂Φ̂ij

∂ûj

∑

k∈Nj

∂ûj

∂uk

∣∣∣∣
ij

pk , (ij = 1, E) . (29)

The subscript ij is necessary to remind that ∂ûi/∂uk and ∂ûj/∂uk are evaluated on the ij edge. A careful
examination of Eq. (29) shows that it is equivalent to Eq. (11). The edge–based assembly of the transposed
Jacobian–vector product Z = [∂R/∂U]T P can be derived by Eq. (29) keeping in mind also the matrix–
form given in Eq. (11) and Eq. (12). The numerical flux jacobians are easy to transpose since they lie
on the diagonal of the matrix. The summation on the stencil for the reconstruction operator is relatively
more complicated since it involves off-diagonal terms. Such a summation is on the row elements. Since by
transposition they have to turn into column elements, the summation become a scattering on the stencil
nodes:

zp = zp +
∂ûi

∂up

∣∣∣∣
T

ij

∂Φ̂ij

∂ûi

T

(pi − pj) p ∈ Ni ,

zq = zq +
∂ûj

∂uq

∣∣∣∣
T

ij

∂Φ̂ij

∂ûj

T

(pi − pj) q ∈ Nj , (ij = 1, E) . (30)

This assembly is equivalent to the matrix form given in Eq. (12). A two–pass assembly of both loops in
Eq. (30) and Eq. (29) can be performed in order to optimize the construction process in terms storage
requirements. To do so it is possible to use the original data structure of the flow solver (the edge pointer to
the the left and right nodes). A brute–force approach is to introduce another pointer which links each node
with its distance–one neighbors and use it to perform the summation in Eq. (29) or the scattering in Eq. (30)
in only one pass. Clearly the two–pass approach is more suitable for large scale applications. However, when
the adjoint is exact and also the limiter is included it become a very tedious and error prone operation to
perform this approach. In fact the reconstruction contribution is as follows:

∂ûi

∂uk

=
∂ûi

∂v̂i

∂v̂i

∂vk

∂vk

∂uk

,
∂v̂i

∂vk

=




∂ρ̂i/∂ρk 0 0 0

0 ∂ûi/∂uk 0 0

0 0 ∂v̂i/∂vk 0

0 0 0 ∂p̂i/∂pk


 , (31)

where the first and third matrix are transformation matrix between conservative and primitive variables.
They are necessary if the reconstruction is on the primitive variables. For instance, considering for the
y–velocity a reconstruction of the type

v̂i = vi +
σi

2
∇vT

i (xj − xi) , (32)
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differentiating with respect to vk gives:

∂v̂i

∂vk

= δik +
1

2

∂σi

∂vk

∇vT
i (xj − xi) +

σi

2

∂∇vi

∂vk

T

(xj − xi) , (33)

where δik is the Kronecker delta. If the limiter contribution ∂σi/∂vk is neglected only the gradient contri-
bution must be computed. Such a contribution is straightforward since only metrics quantities are involved.
In the case of the Green–Gauss gradient and similar for the weighed least squares gradient:

∇vi =
1

2As

Ni∑

k=1

(vi + vk)nik ,
∂∇vi

∂vk

=
nik

2As

i 6= k ,
∂∇vi

∂vk

=
1

2As

Ni∑

k=1

nik i = k . (34)

Looking at the definition of the limiter used in this work (Eq. (5)) , the differentiation is not as easy as for
the gradient. The limiter has a dependency on all the nodes in the stencil and the differentiation does not
involve metric quantities only. Exact adjoint construction has been performed using a brute–force approach:
for each node the limiter contribution ∂σi/∂vk for (k = 1, Ni) is computed from the exactly differentiated
limiter routine, stored and finally assembled on the edge.

For the contribution of the numerical flux, the exact differentiation of Roe’s approximate Riemann solver
is available from previous work:6

∂Φij

∂ui

=
1

2
(A(ui,nij) + |A(ũij ,nij)|) + (M1M2 + M3)M4 ,

∂Φij

∂uj

=
1

2
(A(uj ,nij) − |A(ũij ,nij)|) + (M1M2 + M3)M5 , (35)

where the five matrices M1, M2, M3, M4 and M5 have been derived here following an approach similar to
that used in the original reference. For the most complex of those matrices, M3, symbolic differentiation was
used. The differentiation given in Eq. (35) can also be used for the linearization of the far–field boundary
fluxes computed with flux–vector splitting.
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