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1. Introduction

The conservation of wave action was introduced in (Whitham 1965) for slow modulations of trav-
eling wave trains. The concept was further extended in (Whitham 1970) (see also (Whitham
1999)). Whitham’s theory has found application in wave-mean field interactions (Andrews &
McIntyre 1978), (Grimshaw 1984) and instability theory (see (Bridges 1997b, Bridges 1997a) and
the references therein). The most general form of the conservation law of wave action was intro-
duced by (Hayes 1970), and it is this form that will be treated here, using the multisymplectic
formalism of (Bridges 1997a). Hayes’s approach to wave action conservation was to consider a
periodic, one-parameter family of solutions to the Euler-Lagrange equations. The wave action
conservation law then follows from Noether’s theorem, due to the trivial invariance of the action
integral under translations in the ensemble parameter. The identification of the ensemble param-
eter with a phase shift recovers Whitham’s theory, and it is clear that the importance of this
conservation law is that it holds even when the action integral is explicitly dependent on time and
space, such that the energy-momentum tensor is not exactly conserved. The local conservation law
for wave action is a space-time generalization of the concept of an adiabatic invariant in a classical
mechanical system with slow dependence of the Hamiltonian on time (Arnold 1989). Wave action
with multiple ensemble parameters is considered in (Hayes 1970) and (Ablowitz & Benney 1970).

Consider an abstract Hamiltonian PDE in multisymplectic form (Bridges 1997b)

K∂tu + L∂xu = ∇S(u, t, x), (1.1)

where u(t, x) ∈ RN , KT = −K and LT = −L are N × N skew-symmetric matrices, and S :
RN × R × R → R is a functional, which may depend on t and x. Consider a one-parameter
ensemble of solutions u(t, x, θ) depending smoothly on θ ∈ S1. Taking the vector inner product
of (1.1) with ∂θu yields the conservation law

∂θ

(

1

2
〈K∂tu,u〉 +

1

2
〈L∂xu,u〉 − S(u, t, x)

)

+ ∂t(
1

2
〈Ku, ∂θu〉) + ∂x(

1

2
〈Lu, ∂θu〉) = 0,

as can be checked (Bridges 1997a). The ensemble average gives Hayes’s conservation law of wave
action

∂tA + ∂xB = 0, A =

∮

1

2
〈Ku, ∂θu〉 dθ, B =

∮

1

2
〈Lu, ∂θu〉 dθ.
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Multisymplectic numerical discretizations in the sense of (Bridges & Reich 2001) satisfy a discrete
conservation law of wave action. This result is a corollary to the result that multisymplectic
semi-discretizations satisfy a semi-discrete energy-momentum conservation in each continuous (i.e.
undiscretized) independent variable, which follows from the Noether theory for multisymplectic
PDEs (Bridges 1997b). The latter result has been shown for special cases in the literature (Reich
2000b), but the general case has not been recorded. The purpose of this paper is to explicitly
state the wave action conservation law for one class of MS discretizations, namely the Runge-
Kutta box schemes, for an arbitrary number of dimensions and ensemble parameters. We give
explicit formulas for the set of conservation laws for undiscretized dimensions, and specify the wave
action conservation law by loop integration over the ensemble parameters. Although the result
follows from Noether’s theory, we derive it directly here based on the symplecticity condition for
Runge-Kutta methods, because such an approach yields local conservation laws.

2. Multisymplectic structure and conservation laws

Consider a d-dimensional space-time, with coordinates x ∈ Rd, and phase space RN . A multisym-
plectic PDE on RN is written (Bridges 1997b)

d
∑

α=1

J (α)∂xα
u(x) = ∇S(u,x), (2.1)

where S : RN × Rd → R is a smooth functional and the J (α), α = 1, . . . , d are N × N constant
skew-symmetric matrices

J (α) = −J (α)T

with associated presymplectic two-forms

Ω(α)(U, V ) = 〈J (α)U, V 〉, ∀U, V ∈ RN ,

where 〈·, ·〉 is the standard inner product on RN .

2.1 Energy-momentum conservation laws
Taking the inner product of (2.1) with ∂xβ

u(x) gives

d
∑

α=1

Ω(α)(∂xα
u(x), ∂xβ

u(x)) = 〈∇S(u,x), ∂xβ
u(x)〉. (2.2)

Using the skew-symmetry of Ω(α), Ω(α)(∂xβ
u(x), ∂xβ

u(x)) = 0, and furthermore

Ω(α)(∂xα
u(x), ∂xβ

u(x)) = ∂xα

1

2
Ω(α)(u(x), ∂xβ

u(x)) + ∂xβ

1

2
Ω(α)(∂xα

u(x),u(x)).

If in addition, S(u,x) does not depend explicitly on the coordinate xβ , then ∂βS(u,x) = 〈∇S, ∂βu〉,
and it follows that (2.2) is equivalent to the conservation law (Bridges 1997b)

∂xβ
eβ(x) +

d
∑

α=1,α6=β

∂xα
fα

β (x) = 0 (2.3)

where

eβ(x) =
d

∑

α=1,α6=β

1

2
Ω(α)(∂xα

u(x),u(x))− S(u(x)), fα
β (x) =

1

2
Ω(α)(u(x), ∂xβ

u(x)).

In total there is one such conservation law for each coordinate for which there is no explicit
dependence of S. These conservation laws are the momentum maps associated with the translation
symmetry in the respective direction (Bridges 1997b). For xβ = t the time, this is the energy
conservation law.
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2.2 Conservation of wave action
The wave action conservation principle of (Hayes 1970) has been cast in multisymplectic form in
(Bridges 1997a). The idea is to consider a family of solutions smoothly parameterized by a closed
loop in phase space. We write u(x, θ) for θ ∈ S1, and compute the inner product of (2.1) with
∂θu:

d
∑

α=1

Ω(α)(∂xα
u(x, θ), ∂θu(x, θ)) = 〈∇S(u,x), ∂θu(x, θ)〉.

Using the same reasoning as in the previous section, this yields a conservation law

∂θa(x, θ) +
d

∑

α=1

∂xα
b

α(x, θ) = 0, (2.4)

where

a(x, θ) =
d

∑

α=1

1

2
Ω(α)(∂xα

u(x, θ),u(x, θ))−S(u(x, θ),x), b
α(x, θ) =

1

2
Ω(α)(u(x, θ), ∂θu(x, θ)).

Usually, the solution is averaged around the loop to yield the conservation of wave action

d
∑

α=1

∂xα
Bα = 0, (2.5)

where the wave action α-flux density Bα is given by

Bα =

∮

S1

b
α(x, θ) dθ.

In general there is no reason to restrict oneself to a single ensemble parameter. The case of
multiple parameters is also considered by (Hayes 1970) and (Ablowitz & Benney 1970). Note
that the conservation law (2.4) can also be obtained as a special case of (2.3), by identifying one
coordinate, say xd, with θ and defining a trivial presymplectic form: J (d) = 0. Since S(u,x)
constructed in this way will not depend on xd, a conservation law (2.3) associated with translation
symmetry in xd will hold. In the same way we can derive wave action conservation for any number
of ensemble parameters, directly from the conservation law (2.3).

In (Bridges 1997a) it is shown that a local conservation law of symplecticity can be derived by
applying Stokes theorem to (2.5). The defining property of a multisymplectic discretization is
that it satisfies a discrete version of the local conservation law of symplecticity. Given the above
relation between the wave action and symplectic conservation laws, one might expect there to be
a discrete conservation law of wave action for multisymplectic integrators. In the next section we
identify such a conservation law for the class of multisymplectic Runge-Kutta methods.

3. Wave action conservation for multisymplectic Runge-Kutta box schemes

3.1 Multisymplectic Runge-Kutta discretizations
We consider a semi-discretization of (2.1) on a tensor-product grid. It is sufficient to consider a
single grid cell of dimension ∆x1 × · · ·×∆xd∗ , d∗ ≤ d, where the equations will be left continuous
in the coordinates (xd∗+1, . . . , xd). We will assume that S(u,x) = S(u, x1, . . . , xd∗), so that
conservations laws (2.3) hold for each of the continuous coordinate directions.
For each coordinate direction xα, α = 1, . . . , d∗, we associate an sα-stage Runge-Kutta method
with coefficients (Hairer et al. 1993) denoted

cα
j , bα

j , aα
jk, j, k = 1, . . . , sα (3.1)
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Additionally, we define index sets associated with stage abscissae:

Pα = {1, . . . , sα},

P =

d∗

∏

α=1

Pα = {(i1, . . . , id∗) | iα ∈ Pα},

Qα =

d∗

∏

β=1,β 6=α

P β = {(j1, . . . , jα−1, ∅, jα+1, · · · , jd∗) ∈ P | jβ ∈ P β}.

Note that by our definition the set Qα is the subset of P consisting of those ordered d∗-tuples whose
αth element is the null set. This is to preserve the ordering of indices. Given an element J ∈ Qα and
an element k ∈ P α, we denote by (J ; k) the element in P given by (j1, . . . , jα−1, k, jα+1, . . . , jd∗).
For I ∈ P, define the collocation point xI = (c1

i1
, . . . , cd∗

id∗
, xd∗+1, . . . , xd).

With these definitions, the Runge-Kutta box scheme semi-discretization is defined by

d∗

∑

α=1

J (α)Uxα

I +
d

∑

α=d∗+1

J (α)∂xα
UI = ∇S(UI ,xI), ∀I ∈ P (3.2)

where UI = UI(xd∗+1, . . . , xd), and Uxα

I is a stage vector approximating ∂xα
u at the collocation

point xI . Additionally we have the relations

U(J;j) = u
α,0
J + ∆xα

sα

∑

k=1

aα
jkU

xα

(J;k),

∀j ∈ Pα,

∀J ∈ Qα,

α = 1, . . . , d∗.
(3.3)

In (3.3) each N -dimensional stage vector on the left side appears in d∗ relations, corresponding
to a quadrature in each coordinate direction. The quantities u

α,0
J and u

α,1
J approximate u on the

abscissa set Qα on the lower and upper α-faces of the grid cell respectively. They are related by

u
α,1
J = u

α,0
J + ∆xα

sα

∑

j=1

bα
j Uxα

(J;j),
∀J ∈ Qα,

α = 1, . . . , d∗.
(3.4)

Additional formulas are necessary to relate the above quantities to gridpoint values (Frank et al.
2005). However, the relations (3.2), (3.3) and (3.4) are sufficient to obtain the conclusions of this
paper.
A Runge-Kutta box scheme is multisymplectic (i.e. satisfies a discrete local conservation law of
symplecticity in the sense of (Bridges & Reich 2001)) if each coefficient set {cα

j , bα
j , aα

jk} defines a
symplectic RK method (Hairer et al. 2002):

bα
i bα

j − bα
j aα

ji − bα
i aα

ij = 0. (3.5)

3.2 Semi-discrete energy-momentum conservation laws
We are interested in the remnants of the conservation laws (2.3) after (semi-) discretization.
The following lemma expresses an identity that is crucial for the derivation of semi-discrete con-
servation laws and the conservation of wave action.

Lemma 1 Consider a presymplectic two-form Ω and a set of vectors u0(θ), u1(θ), Ui(θ), Ux
i (θ) ∈

RN , i = 1, . . . , s, smoothly dependent on a parameter θ and satisfying the Runge-Kutta formulas

Ui = u0 + ∆x

s
∑

j=1

aijU
x
j , i = 1, . . . , s (3.6)

u1 = u0 + ∆x

s
∑

i=1

biU
x
j . (3.7)
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For symplectic Runge-Kutta methods (3.5) the following identity holds:

s
∑

i=1

biΩ(Ux
i , ∂θUi) = ∂θ

[

s
∑

i=1

bi

1

2
Ω(Ux

i ,Ui)

]

+
1

∆x
(F 1 − F 0), (3.8)

with F j = 1
2Ω(uj , ∂θu

j), j = 0, 1.

Proof. Substitute (3.7) into the definition of F 1 to obtain

Ω(u1, ∂θu
1) = Ω(u0, ∂θu

0) + ∆x

s
∑

i=1

biΩ(Ux
i , ∂θu

0) + ∆x

s
∑

i=1

biΩ(u0, ∂θU
x
i )

+ ∆x2
s

∑

i,j=1

bibjΩ(Ux
j , ∂θU

x
i ). (3.9)

Solving (3.6) for u0 (for each i), differentiating with respect to θ, and substituting into the first
sum above yields

s
∑

i=1

biΩ(Ux
i , ∂θu

0) =

s
∑

i=1

biΩ(Ux
i , ∂θUi) −

s
∑

i,j=1

biaijΩ(Ux
i , ∂θU

x
j )

=

s
∑

i=1

biΩ(Ux
i , ∂θUi) −

s
∑

i,j=1

bjajiΩ(Ux
j , ∂θU

x
i ),

where the skew-symmetry of the two-form has been used. Similarly, the second sum becomes

s
∑

i=1

biΩ(u0, ∂θU
x
i ) =

s
∑

i=1

biΩ(Ui, ∂θU
x
i ) −

s
∑

i=1

biaijΩ(Ux
j , ∂θU

x
i ).

Substituting the above two formulas into (3.9) gives

Ω(u1, ∂θu
1) = Ω(u0, ∂θu

0) + ∆x

s
∑

i=1

biΩ(Ux
i , ∂θUi) + ∆x

s
∑

i=1

biΩ(Ui, ∂θU
x
i )

+ ∆x2
s

∑

i,j=1

(bibj − bjaji − biaij)Ω(Ux
j , ∂θU

x
i ). (3.10)

For symplectic RK methods (3.5), the last term in (3.10) cancels. Finally we note that

Ω(Ux
i , ∂θUi) + Ω(Ui, ∂θU

x
i ) = 2Ω(Ux

i , ∂θUi) − ∂θΩ(Ux
i ,Ui),

and (3.8) easily follows. �

Let us define the quadrature operator acting on functions UI defined at the the collocation points
xI :

Q[S(UI ,xI)] := |∆x|
∑

I∈P

bIS(UI ,xI),

Q[Ω(UI ,VI)] := |∆x|
∑

I∈P

bIΩ(UI ,VI),

where |∆x| = ∆x1∆x2 · · ·∆xd∗ and for an element I ∈ P, I = (i1, . . . , id∗), we define bI =
b1
i1

b2
i2
· · · bd∗

id∗
.

We also define a quadrature operator over an α-face of the grid cell

Qα[Ω(u0
J ,v0

J)] =
|∆x|

∆xα

∑

J∈Qα

bJΩ(u0
J ,v0

J ),

where for J ∈ Qα we define bJ = b1
j1
· · · bα−1

jα−1
· bα+1

jα+1
· · · bd∗

jd∗
.

Using these definitions we have the following
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Theorem 1 Consider the multisymplectic Runge-Kutta box scheme semi-discretization (3.2), (3.3),
(3.4), in which the coordinates x1, . . . , x

∗
d are discretized and the remaining coordinates are left

continuous. Then for each β ∈ {d∗ + 1, . . . , d}, the semi-discrete conservation law holds:

∂xβ
eβ +

d
∑

α=d∗+1,α6=β

∂xα
fα

β +

d∗

∑

α=1

1

∆xα

(Fα,1
β − F

α,0
β ) = 0, (3.11)

where e(xd∗+1, . . . , xd), fα
β (xd∗+1, . . . , xd), and F

α,j
β (xd∗+1, . . . , xd), j = 0, 1 are defined by

eβ =

d∗

∑

α=1

Q

[

1

2
Ω(α)(Uxα

I ,UI)

]

+

d
∑

α=d∗+1,α6=β

Q

[

1

2
Ω(α)(∂xα

UI ,UI)

]

−Q[S(UI ,xI)], (3.12)

fα
β = Q

[

1

2
Ω(α)(UI , ∂xβ

UI)

]

, (3.13)

F
α,j
β = ∆xαQ

α

[

1

2
Ω(α)(uj

J , ∂xβ
u

j
J
)

]

, j = 0, 1. (3.14)

Proof. Take the inner product of (3.2) with ∂xβ
UI ,

d∗

∑

α=1

Ω(α)(Uxα

I , ∂xβ
UI) +

d
∑

α=d∗+1

Ω(α)(∂xα
UI , ∂xβ

UI) − 〈∇S(UI ,xI), ∂xβ
UI〉 = 0,

and apply the quadrature operator Q to each term

d∗

∑

α=1

Q[Ω(α)(Uxα

I , ∂xβ
UI)] +

d
∑

α=d∗+1

Q[Ω(α)(∂xα
UI , ∂xβ

UI)] −Q[∂xβ
S(UI ,xI)] = 0. (3.15)

The quadrature operator commutes with partial derivation with respect to xβ , so the last term
above is equivalent to

Q[∂xβ
S(UI ,xI)] = ∂xβ

Q[S(UI ,xI)]. (3.16)

Similarly, the terms of the second summation in (3.15) can be rewritten as

Q[Ω(α)(∂xα
UI , ∂xβ

UI)] = ∂xα
Q[

1

2
Ω(α)(UI , ∂xβ

UI)] + ∂xβ
Q[

1

2
Ω(α)(∂xα

UI ,UI)]. (3.17)

Finally, consider a term in the first sum in (3.15) and apply Lemma 1:

Q[Ω(α)(Uxα

I , ∂xβ
UI)] = |∆x|

∑

I∈P

bIΩ
(α)(Uxα

I , ∂xβ
UI)

= |∆x|
∑

J∈Qα

sα

∑

j=1

bJbα
j Ω(α)(Uxα

(J;j), ∂xβ
U(J;j))

= |∆x|
∑

J∈Qα

bJ







∂xβ





sα

∑

j=1

bα
j

1

2
Ω(α)(Uxα

(J;j),U(J;j))



 +
1

∆xα

(Fα,1
β,J − F

α,0
β,J )







= ∂xβ
Q[

1

2
Ω(α)(Uxα

I ,UI)] +
1

∆xα

(Fα,1
β − F

α,0
β ). (3.18)

Substituting (3.16), (3.17) and (3.18) into (3.15) and using the definitions (3.12), (3.13) and (3.14)
yields (3.11). �

Example. If we consider d = 3, d∗ = 2, and let x = (x, y, t), then there are no continuous flux
densities fα, e is the energy density and F 1,j and F 2,j , j = 0, 1, are the discrete energy flux
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densities in the x and y directions respectively. Equation (3.11) expresses the conservation of
energy by the spatial semi-discretization

∂te +
1

∆x
(F 1,1 − F 1,0) +

1

∆y
(F 2,1 − F 2,0) = 0.

This result has been noted for the specific example of the nonlinear Klein-Gordon equation in
(Reich 2000b). Reich and co-workers have have found analogous results for other multisymplectic
methods in (Reich 2000a, Bridges & Reich 2001, Moore & Reich 2003a, Moore & Reich 2003b).
The above energy conservation law also holds when the multisymplectic Hamiltonian S depends
explicitly on x and y.
Theorem 1 only gives conservation laws in the semi-discrete case. When S(u) is quadratic (linear
PDEs), fully discrete local conservation of energy and momentum are obtained. However, in
the following section we obtain a fully discrete local conservation law of wave action, which is
independent of the nonlinearity of the PDE.

3.3 Discrete conservation law of wave action
Consider a multisymplectic PDE (2.1) on a d∗-dimensional space-time, and define d − d∗ ensem-
ble parameters xd∗+1, . . . , xd, each 2π-periodic and associated to trivial presymplectic operators
J (β) = 0, β = d∗ + 1, . . . , d. Consider a full discretization on space-time (left continuous in the
ensemble coordinates). In this case, the densities fβ are zero. Taking the loop integral of (3.11)
with respect to each of the xβ , β = d∗ +1, . . . , d, yields a discrete conservation law of wave action:

Corollary 1 Let the coordinates xβ, β = d∗ + 1, . . . , d, be periodic with period 2π and associated
to trivial presymplectic operators J (β) = 0. Then for each β = d∗ + 1, . . . , d, the following discrete
wave action conservation law holds

d∗

∑

α=1

1

∆xα

(Fα,1
β −Fα,0

β ) = 0, (3.19)

where

Fα,j
β =

∮

F
α,j
β dxβ , j = 0, 1.

Note that the wave action conservation law holds for nonlinear problems, for problems (2.1) where
S depends explicitly on the space-time coordinated x1, . . . , x

∗
d (where energy and momentum are

not conserved), and for any tensor product grid (we have looked at a single grid cell here, without
any reference to the size of neighboring cells). This discrete conservation law is the discrete analog
of the general wave action conservation law of (Hayes 1970) and is an exact law, requiring no
assumptions of near linearity of the solution or small amplitude perturbations. However, like the
result of (Hayes 1970), the utility of this result depends on the identification of the ensemble
parameters xd∗+1, . . . xd.

4. Concluding remarks

In this paper we have given the explicit form of the energy-momentum conservation law for multi-
symplectic Runge-Kutta semi-discretizations. This conservation law implies conservation of wave
action over an arbitrary number of ensemble loop parameters in phase space, each associated to
the trivial presymplectic operator, and the explicit form of these conservation laws has also been
given here. A discrete wave action conservation law analogous to (3.19) also holds for the space-
time generalization of the Störmer-Verlet method (Bridges & Reich 2001), also obtained by loop
integration applied to a semi-discrete conservation law. Appealing to the Noether theory, one may
expect that any method that can be derived from a variational principle (Marsden et al. 1998)
will also conserve wave action, at least in a global sense.
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