
C e n t r u m  v o o r  W i s k u n d e  e n  I n f o r m a t i c a

Software ENgineering

Proceedings of the 2nd workshop on linking aspect 
technology and evolution 

T. Tourwé, D. Shepherd, A. Kellens, M. Ceccato

REPORT SEN-E0604 SEPTEMBER 2006

SEN
Software Engineering



Centrum voor Wiskunde en Informatica (CWI) is the national research institute for Mathematics and 
Computer Science. It is sponsored by the Netherlands Organisation for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names 
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2006, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-369X



Proceedings of the 2nd workshop on linking aspect
technology and evolution

ABSTRACT
Software evolution lies at the heart of the software development process, and suffers from
problems such as maintainability, evolvability, understandability, etc. Aspect-oriented software
development (AOSD) is an emerging software development paradigm, that tries to achieve
better separation of concerns. It is often claimed that this is actually beneficial for the
maintainability, evolvability and understandability of the software. This workshop aims to
investigate and explore this relationship between software evolution and AOSD. In particular,
the workshop’s objective is to study the impact of AOSD on software evolution on the one hand,
and the impact of software evolution on AOSD on the other hand. Both subjects raise several
interesting issues that could/should be addressed and studied in detail during the workshop:
how does applying AOSD affect the quality of the application, and how does this help software
evolution? can we quantify when applying AOSD solutions is beneficial? how do we recognise
crosscutting concerns in existing applications? which techniques (f.e. refactoring, slicing) exist
to separate them from the base code? should these techniques be extended with AOSD-
specific concepts, and if so, how? how can we ensure the behaviour of the existing application
is preserved? what (aspect) language constructs are needed to express the detected concerns?
Answers to these questions are important, as there are many applications that continue to miss
the advantages of AOSD, because appropriate tools and techniques are not sufficiently mature,
and the advantages are not yet entirely clear. The workshop is specifically intended to address
these questions, identify other interesting issues and bring together researchers from academia
and people from industry working on applying AOSD techniques to already-existing
applications.

1998 ACM Computing Classification System: D.2.7.
Keywords and Phrases: AOSD, software evolution





 

 

 
 

 
 

Proceedings of the 2nd  
Workshop on Linking 

Aspect Technology and  
Evolution 

 
 

 
Held in conjunction with the 5th  

International Conference on Aspect-Oriented 
Software Development (AOSD),  

Bonn, Germany. 
March 20th, 2006. 



Proceedings of the2nd workshop on Linking Aspect Technology and Evolution

Tom Tourẃe
Centrum voor Wiskunde en Informatica

P.O. Box 94079, 1090 GB Amsterdam

The Netherlands

Tom.Tourwe@cwi.nl

David Shepherd
University of Delaware

Newark, DE 19716

United States

shepherd@cis.udel.edu

Andy Kellens
Vrije Universiteit Brussel

Pleinlaan 2, 1050 Brussel

Belgium

akellens@vub.ac.be

Mariano Ceccato
ITC-irst

Via Sommarive 18, 38050 Povo, Trento

Italy

ceccato@itc.it

Abstract

This technical report contains the papers submitted to and presented at the 2nd workshop on Linking Aspect Technology
and Evolution (LATE), held in conjunction with the 5th International Conference on Aspect-Oriented Software Development,
Bonn, Germany.

1 Introduction

Software evolution lies at the heart of the software development process, and suffers from problems such as maintainabil-
ity, evolvability, understandability, etc. Aspect-oriented software development (AOSD) is an emerging software development
paradigm, that tries to achieve better separation of concerns. It is often claimed that this is actually beneficial for the maintain-
ability, evolvability and understandability of the software. ?This workshop aims to investigate and explore this relationship
between software evolution and AOSD.

In particular, the workshop’s objective is to study the impact of AOSD on software evolution on the one hand, and the
impact of software evolution on AOSD on the other hand. Both subjects raise several interesting issues that could/should
be addressed and studied in detail during the workshop: how does applying AOSD affect the quality of the application, and
how does this help software evolution? can we quantify when applying AOSD solutions is beneficial? how do we recognise
crosscutting concerns in existing applications? which techniques (f.e. refactoring, slicing) exist to separate them from the
base code? should these techniques be extended with AOSD-specific concepts, and if so, how? how can we ensure the
behaviour of the existing application is preserved? what (aspect) language constructs are needed to express the detected
concerns?

Answers to these questions are important, as there are many applications that continue to miss the advantages of AOSD,
because appropriate tools and techniques are not sufficiently mature, and the advantages are not yet entirely clear. The
workshop is specifically intended to address these questions, identify other interesting issues and bring together researchers
from academia and people from industry working on applying AOSD techniques to already-existing applications.

2 Programme Committee

The following people agreed to serve on the LATE programme committee and helped to ensure the quality of the workshop.

• Magiel Bruntink, Centrum voor Wiskunde en Informatica, The Netherlands



• Yvonne Coady, University of Victoria, Canada

• Serge Demeyer, Universiteit Antwerpen, Belgium

• Arie van Deursen , Centrum voor Wiskunde en Informatica, The Netherlands

• Jens Krinke, FernUniversitŁt in Hagen, Germany

• Kim Mens, Universite catholique de Louvain-la-neuve, Belgium

• Miguel P. Monteiro, Escola Superior de Tecnologia de Castelo Branco, Portugal

• Lori Pollock, University of Delaware, USA

• Awais Rashid, Lancaster University, UK

• Martin Robillard, McGill University, Canada

• Stanley M. Sutton, IBM T. J. Watson Research Center, USA

• Paolo Tonella, ITC-irst, Italy

• Herman Tromp, Universiteit Gent, Belgium

• Wim Vanderperren, Vrije Universiteit Brussel, Belgium

3 Workshop Format

Based on the quality and maturity of the work, the programme committee accepted two tiers of papers:

• The authors of the first tier papers (full presentations) gave a presentation on their work, and we required all workshop
participants to give them written feedback to supplement the discussion that occurs after each talk. This focus on feed-
back, along with a more thorough review process, is supposed to help these authors build toward a strong conference
submission in the future.

• The second tier of papers (poster presentations) were presented in one of two poster sessions, with an extremely small
number of other posters (2-4 at a time). These sessions were designed to facilitate smaller group discussions and more
informal interaction with authors, leading to quality feedback and possible brainstorming. We encouraged participants
to prepare a short demo of their work, if possible, and we identified interesting topics for discussion and comparison
of the different works.

The workshop’s schedule, including the full presentation and the poster presentation papers, can be found at the work-
shop’s URL: http://www.aosd.net/workshops/late/2006/ .

4 Outlook

The remainder of this technical report includes all of these papers for easy reference. The presentations that accompany the
papers can be downloaded from theLATEwebsite, to be found at the following URL: http://www.aosd.net/workshops/late/2006/.

The success of this workshop was mainly due to the people that attended it, presented their ideas and participated in the
discussions. We would like to thank all of these people and hope you enjoy reading their contributions.

2



AOP on the C-side

Bram Adams

Bram.Adams@UGent.be

SEL, INTEC, Ghent University, Belgium

ABSTRACT
Although aspect-oriented programming originally emerged to over-
come fundamental modularity problems in object-oriented applica-
tions, its ideas have long been backported to legacy languages like
Cobol, C, . . . As systems written in these languages are prime tar-
gets for re(verse)-engineering efforts, aspects can now be used for
these purposes. Before applying dynamic analysis techniques on
an industrial case study (453 KLOC of C) using aspects, we de-
vised a list of requirements for possible aspect frameworks. In this
paper we explain why no existing framework for C fulfilled all our
requirements. We discuss the problems we encountered with As-
picere, our own aspect language for C. We also suggest points of
improvement for future reverse-engineering efforts.

Keywords
aspect-oriented programming, legacy software, C, reverse-engineering,
comparison study

1. INTRODUCTION
Like any new technology, aspect-oriented programming (AOP) came
to life to solve problems inherent to the current state-of-the art, in
this case object-orientation (OO), and more in particular Java [15].
Crosscutting concerns were indeed fundamentally ignored in the
OO paradigm, so together with their accompanying terminology,
aspects revitalized general purpose language research.

As the first waves of enthusiasm set off, people [11, 16] noticed
that AOP’s ideas were not necessarily tied to OO (and Java). Phe-
nomena like scattering and tangling, the usual indicators for cross-
cutting concerns, equally (or probably likelier) arise in other OO-
languages and less modular paradigms like procedural program-
ming. Soon, every self-respecting language started to get its aspect
language, even legacy languages like Cobol [16] and C.

Nearly every organisation is stuck with a battery of mission-critical
software written in these old languages. These systems’ internal
structure and operations are typically no longer known, as the ori-
ginal developers, experienced maintainers or up-to-date document-
ation are not available anymore. They are inevitably hard to evolve

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

as is, making it nearly impossible to cope with new requirements
without prior re-engineering efforts. As aspect technology is get-
ting more widespread in these areas, it can be leveraged to enable
reverse-engineering techniques.

In a concrete reverse-engineering case study [23], we used aspects
to apply dynamic analysis techniques to a medium-sized (453 KLOC)
legacy system written in a mix of K&R- and ANSI-C. Although
the role of the aspects there was very light (mere tracing), we envi-
sioned applying AOP for more complex tasks. That is why we did
not settle with some ad hoc AOP solution, but thought about relev-
ant requirements for both our purpose back then as well as future
efforts.

As it turned out, no aspect language fit the bill completely and we
decided to roll our own. Eventually, we succeeded in our experi-
ments, but new requirements came up along the way.

In this paper, we present our requirements gathered thusfar (sec-
tion 2), as well as their applicability on all currently existing AOP-
frameworks for C (section 3). Afterwards (section 4), we discuss
possible points of improvement, before concluding (section 5).

2. REQUIREMENTS
To find the most suitable aspect framework for the case study of [23],
we devised a set of requirements the preferred aspect framework
needed to comply with. Although the functionality expected from
the aspects came down to plain tracing, future re(verse)-engineering
case studies would be more demanding. Our requirements were de-
signed with this in mind and try to expect the worst.

There are two groups of requirements. The first one deals with
specific properties of the whole tool chain, which immediately ap-
plies to the aspect framework used. The second one has to do with
the specific reverse-engineering techniques used. Some of them are
irrelevant here, but others indirectly demand certain functionality
from the underlying aspect framework.

These are the tool chain requirements (T1–T5):

T1. Besides “nice” ANSI-C code, the legacy environments we
will tackle obviously contain lots of non-ANSI (or K&R1) C
code, and maybe compiler-dependent extensions too.

T2. The semantics of the original applications should remain in-
tact.

T3. We do not want to delve into the original source code to gain
knowledge before deploying our tools, as knowledge mining
is exactly what we are after in the first place. I.e. the tools
should not require special preparation or exploration of the
source code.

1Kernighan & Ritchie-style code, after their seminal work [14].



T1 T2 T3 T4 T5 A2 A3

AspectC ? + - - + - +
AspectC++ - + + - + + +
Aspicere + + + - + + +
C4 + + - - + - +
WeaveC ? + ? - + + +

µDiner - + - - - - +
TinyC N/A + - + - - +
Arachne N/A + - + - - +
TOSKANA N/A + - + - - +

TOSKANA-VM + ? ? - - ? ?

Table 1: Overview of existing aspect frameworks for C and
their relation to our requirements. A1 and A4 do not apply
here, while T1 does not for the dynamic weaving mechanisms
(except for µDiner), as these operate on binary code. A ques-
tion mark means we could not decide due to a lack of tools,
documentation or both.

T4. The existing build system should remain in place, with only
minimal alterations. To refactor it, considerable knowledge
of its current internals is needed, which again is lacking.

T5. The tools should be deployable in other environments (op-
erating systems, platforms, compilers, . . . ), so that it can be
validated against other case studies.

Requirement T2 only depends on the particular advice code used
in the experiments, as obliviousness is one of AOP’s hallmarks.
This remark also partially affects T3, but we will see there is more
involved here.

Each of the analyses of [23] had the following number of re-
quirements (A1–A4):

A1. We need a well-covering execution scenario in order to ob-
tain a representative result set.

A2. The data fed into the analyses needs to be sufficiently fine-
grained. In the context of C this means individual procedure
calls. We also need context information, e.g. on the relevant
source modules.

A3. We need information about the call- and return-sequences of
procedure calls, in order to get an accurate picture of the dy-
namic behaviour of the applications.

A4. The analyses should be able to deal with initially unknown
amounts of trace data in a reasonable amount of time (i.e.
they need to be scalable).

When rephrasing these requirements for reverse-engineering tech-
niques in general, similar demands would arise. We can immedi-
ately exclude A1 and A4 from further discussion, as these apply
to the specific analysis techniques used. This leaves us with seven
requirements.

Based on these two groups of requirements, we will discuss the
state-of-the-art aspect languages and mechanisms for C known to
us at the time of writing.

3. CURRENT AOP-FRAMEWORKS FOR C
There are various ways to classify aspect frameworks, but we will
do this per type of weaving mechanism in a chronological way.
Table 1 gives a general overview of all the aspect frameworks men-
tioned and their relation to the seven requirements.

3.1 Compile-time weaving
All compile-time weaving aspect frameworks operate on the level
of source code and transform in some way the advised source code
and relevant aspects into regular C code before handing the woven
code off to a normal C compiler. Their weaver acts as a source code
preprocessor, fullfilling T5 because source code is one of the most
portable things in the context of C. All compile-time weavers ex-
cept for AspectC++ (section 3.1.2) expect a working Java run-time
environment, while AspectC++’s PUMA-framework is written in
(Aspect)C++.

This scenario has one important drawback, one we unfortunately
experienced and had to deal with ourselves [23]: the aspect frame-
work itself crosscuts the existing build system. In order to use
a weaver in combination with existing compilers and other pro-
cessors (for embedded SQL, . . . ), the existing makefile hierarchy
has to be severely altered, violating T4. Directories with include-
files, linking dependencies, . . . can make things really hard. Un-
less there is only one compiler or tool used or the makefiles are
automatically generated and have not been modified manually af-
terwards (very unlikely), this issue can not be solved easily with
some clever trick or one single pass through the build process.

Without special tools like makefile refactorers, rewriters, . . . manual
adaptation of the build system is inevitable. Or maybe an aspect
framework for makefiles could prove useful?

3.1.1 AspectC
The original AspectC [6] was targeted at tackling crosscutting con-
cerns in operating system code. To do so, the designers started from
the original AspectJ [15] and stripped it down by removing all un-
necessary (OO-related) features. The resulting language has [5]
a special aspect construct, function call/execution join points and
pointcuts (A2), before/after/around-advice (A3) consisting of nor-
mal C code and well-known pointcuts like “cflow” and “within”.
Arguments of advised procedures can be assigned to variables and
used in advice (not in the remainder of the pointcut expression
though, cf. AspectJ).

Although variable argument lists can be abbreviated using “..”, re-
turn types or procedure names can not (even not using regular ex-
pressions). Other means of selecting the right join points, like
pointcuts based on structural, semantical, dynamic, . . . informa-
tion [19] are not provided. Hence, all procedures one wishes to
advise must be declared by their exact name in the pointcut, as il-
lustrated in [4]. Also, for every possible return and argument type a
separate pointcutandadvice have to be written down, which is un-
practical (T3). Due to performance reasons, there is no thisJoinPoint-
struct, so advices cannot access any join point context uncaught in
the pointcut (A2).

Equally important, AspectC seems unmaintained since 2003 without
any official releases, ruling it out as a viable aspect framework.
That is why we do not know much regarding T1.

3.1.2 AspectC++
As (nearly) every compilable C program is also a valid C++ ap-
plication, AOP languages for C++ could be applied to C base code.
AspectC++ [21] is the most mature and general-purpose aspect lan-
guage for C++ to date, with join point, advice and pointcut types
comparable to AspectJ (A3), although more structural pointcut types
like “callsto” and “reachable” are available. Advising variable ac-
cesses is not supported, because of C/C++’s pointer mechanism.

The aspect construct is in fact the C++ class construct with added
pointcut and advice abilities. InterType Declaration (ITD) of new



members in classes, structs and unions is also possible. Both advice
and ITD are declared in the same way.

As templates have been a part of C++ for years, AspectC++ offered
generic (and generative) advice much earlier than AspectJ did [18]
(T3). Join point context (A2) like types and values of advised func-
tion calls, is easily accessible by a join point API (both static and
dynamic parts) and applicable in the advice body.

AspectC++’s weaver2 is based on the PUMA-framework, a C++
source code transformation system [21] (T5). It processes the whole
program at once, demanding drastic changes to the existing build
system (T4). Theoretically, ANSI-C code can be advised and sub-
sequently compiled using a (sufficiently template-capable) C++-
compiler (with some glitches), but tests with K&R-code failed how-
ever (T1). Full C support will only be provided starting from a
release near the end of january 2006, feature by feature.

3.1.3 Aspicere
At the time of our case study, only tools for AspectC (alpha), As-
pectC++ and Arachne (section 3.2.3) were available. As both Arachne’s
(section 3.2) and AspectC’s pointcut and advice model were too re-
strictive and AspectC++ only partially supported C, we were forced
to design and implement our own framework. Since we did not
realize the extent of the problems related to T4, we opted for a
straightforward preprocessor approach, as C code itself guarantees
the best portability of our weaver to other architectures.

Aspicere [1, 23] originally started out as WICCA [22], an AspectC-
clone without an explicit aspect construct: aspects are simple com-
pilation units with the extra power of containing advice. Exper-
iments pointed out the T3 shortcomings of AspectC’s aspect lan-
guage, i.e. the inability to write down sufficiently, “generic” ad-
vice. Also, our (slow) parser did not cope with T1 and the fixed set
of low-level pointcut primitives like execution and args prohibited
easy addition of new pointcut types for other research efforts.

We decided to build a new aspect framework based on Logic Meta-
Programming (LMP) [13], a template mechanism and a mature
ANTLR C parser capable of parsing both K&R- and ANSI-code
(T1). Basically, all pointcuts are made up of Prolog predicates and
can be mapped one-to-one onto a Prolog rule. The predicates’ lo-
gic variables can be bound to context information and reused within
the pointcut expression to express certain constraints (unification).
These bindings can then be applied within the advice body and the
advice signature as some sort of template parameter (like C++ has)
to denote types, caught arguments, weaving metadata, . . . This res-
ults in simple, generic advice for C (T3). The around advice type
and thisJoinPoint-like struct support A3 and A2. Lexical order of
aspects and advice determines their precedence.

Besides the makefile anomaly, the case study of [23] showed that
Aspicere’s weaver currently works too slow and that its type infer-
encing capabilities are not perfect yet. Also, the ability of extend-
ing the collection of join point types was not really pursued in the
current prototype3, which currently only supports call join points.
For the moment, we are experimenting with LLVM in a less naive
preprocessor-setup, without the heavy demands of TOSKANA-VM
(see also sections 3.3.1 and 4).

3.1.4 C4
AspectC’s ideas of aspectizing UNIX-like operating systems us-
ing a static (preprocessing) weaver, live on in the aspect language
called C4 (CrossCutting C Code) [10]. It aims at replacing the

2
http://www.aspectc.org/

3
http://users.ugent.be/ ∼badams/aspicere/

traditional patch system by a simplified AOP-driven, semantic ap-
proach. Aspects describe “modifications” to a base system on a
higher level than the pure lexical patch(1)-tool does. However,
chances of adoption are reversely proportional to C4’s complexity.

Basically, the idea is that a programmer writes down advice (so-
called woven C4) in situ (A2) in the base program, without any
quantification. The C4 unweaver extracts the changes into a separ-
ate unwoven C4 file (a semantic patch) which can be freely distrib-
uted to everyone or (if needed) converted to a plain patch first. At
compile-time, the unwoven C4 is physically woven with the base
code.

This unwoven C4 file is in fact a (tweakable) classic aspect writ-
ten in an AspectC-based dialect capable of ITD in structs/unions
and advising global variables, but lacking the “call” and “cflow”
pointcuts. The rationale here, is that one can always extract code
blocks and encapsulate them into their own methods, which can be
advised directly. It is clear that the woven C4 severely violates T3,
while the unwoven version suffers from the same disadvantages as
AspectC (T3, T4 and A2). No special thisJoinPoint-construct ex-
ists.

C4 is based on the XTC-framework [12], an advanced macro facil-
ity for C, that takes care of the physical weaving. Domain-specific
language extensions like the C4-language (AOP domain) are de-
clared as macro’s and mapped onto specific plain C structuresand
extra type information. C4’s unweaver and (logical) weaver are still
under construction4.

3.1.5 WeaveC
WeaveC5 is a very recent aspect language, in which both pointcuts
and advice are written in XML-files. As it aims at becoming a
general-purpose language, it has the same join point types as As-
pectC. Pointcuts are name-based (and wildcarded) and the dynamic
pointcut types like “cflow” are only provided in the advanced ver-
sion of WeaveC. Advice is prioritized to handle conflicts at joint
join points using a priority level mechanism. Advice bodies or ITD
of types or functions are written down in CDATA-elements of the
XML-file. Currently, there is no around-advice yet.

Some predefined context variables (function name, argument types,
. . . ) are available, and variables appearing near the join point shadow
can be used freely in the advice body (A2). It is unclear whether
generic advice is possible using these context variables (T3).

WeaveC’s weaver is implemented in Java, and transforms the AST
of the base program. In the advanced version, CodeSurfer6 is used
to perform the necessary analyses.

3.2 Run-time weaving
Then, there are a number of aspect languages with dynamic weavers,
based on instrumentation libraries or binary rewriting techniques.
As they act on binary code, they fulfill T4 (except forµDiner) and
T1, but not necessarily T5, as platform-independence is question-
able. Different operating systems use other binary formats and each
processor’s instruction set potentially needs a modified weaver.

All dynamic approaches provide some sort of around advice or
a combination of before and after (A3). They support procedure
calls and variable access join point types, but typically there is not
enough context information available at the binary level (A2). Gen-
eric advice is impossible as all these approaches’ languages require
duplication of advice and a priori knowledge of return types (T3).

4
http://c4.cs.princeton.edu/

5
http://weavec.sourceforge.net/

6
http://www.grammatech.com/products/codesurfer/



3.2.1 µDiner
µDiner [20] requires that declarations of advisable funtions and
global variables are annotated as “hookable”, and that a support
library is linked with the created (base) executable, so T4 poten-
tially shows problematic.

Aspects are compiled into shared libraries which are loaded into
the advised base application at run-time. Hooks are then construc-
ted to connect advised join point shadows with the right advices,
and measures are taken to avoid freezing the base application. The
weaving process is processor architecture-dependent (T5).

µDiner’s aspect language features around advice (written in C)
which can access the arguments of an advised procedure call, the
current value of a global variable and (for variable assignment) the
assigned variable. Types are hard-coded in the pointcut (T3). The
familiar cflow-pointcut is replaced by an explicit nested call hier-
archy, always ended either by a function call or by a variable access.

As Arachne supersedesµDiner (see section 3.2.3), no tools are
available forµDiner.

3.2.2 TinyC2

TinyC2 [24] was developed independently fromµDiner, and re-
lies on the DynInst-instrumentation library instead, which uses the
UNIX debugging API (ptrace). Aspects are transformed into self-
contained C++ programs driving DynInst. Once compiled, one can
dynamically advise a running C application.

Disadvantages of this approach, are the relatively high cost due to
DynInst’s use of trampolines and ptrace, and the impossibility of
modifying arguments and return values.

The pointcut language of TinyC2 only supports function call join
points. There is both onentry- and onexit-advice (comparable to
before and after), containing regular C code (A3). Pointcuts use
prefix- or regular expression-based matching of procedure names.
Available context includes explicitly bound function arguments and
global variables, but no thisJoinPoint-construct (A2). Return types
are hardcoded (T3) in the onexit-advice.

No implementation of TinyC2 is freely available on the Internet.

3.2.3 Arachne
Arachne [7] improves on theµDiner framework, as annotating the
base code is now obsolete. Dependence on a particular architecture
is now localised in so-called “rewriting strategies” which guide in-
sertion of hooks for a particular join point type on a specific ar-
chitecture. For some reason, Arachne did not function on our ma-
chines, but the prototype weaver is still under heavy development7.

The pointcut language has been reworked, inspired by Prolog (uni-
fication). There is also a new join point type: sequences of function
call and/or (in)direct variable access join points. This is a natural
means for advising protocol-like behaviour, as each element of the
sequence can be advised individually (A2).

Unfortunately, advice is just a normal C procedure, so bound vari-
ables cannot be used in the advice body like Aspicere allows, nor is
there an explicit proceed()-statement. Worse, a procedure’s return
type cannot be hidden behind a predicate, nor is there any context
data available, apart from captured arguments which are passed to
the advice (A2). This means that advice needs to be repeated for
all possible return and argument types (T3).

On the other hand, Arachne’s pointcut and join point model should
be easily extensible and some issues could be ironed out eventually.

7
http://www.emn.fr/x-info/arachne/

3.2.4 TOSKANA
TOSKANA (Toolkit for Operating System Kernel Aspects with
Nice Applications) [8] is another aspect language for C with a dy-
namic weaver (appearing more or less at the same time as Arachne),
but targeted solely at NetBSD’s kernel mode. The weaving mech-
anism is similar to Arachne’s (i.e. “code splicing”), but aspects are
compiled into kernel modules. No prototype is available.

Due to the low-level nature of kernel code, TOSKANA’s aspect
language is very limited. Basically, advice is a C procedure with a
special return type (“ASPECT”) and it can call special macro’s to
proceed with the advised code, access stack state, . . . In general,
this is too low-level for reverse-engineering purposes (A2). In an
initialising function, the advice is then instantiated as e.g. around
advice and applied to a specific procedure execution. There are no
name patterns or other means to advise many procedures at once.

3.3 VM-weaving
The dynamic weaving approaches of the previous section are re-
stricted by the available information in the advised binaries. As
such, richer join point models are hard to provide. What is more,
the dynamic weaving approaches result in unoptimized woven ap-
plications, as the weaving process happens way after the last com-
piler optimization passes.

3.3.1 TOSKANA-VM

The folks of TOSKANA decided to take a look at virtual machines
and came up with the TOSKANA-VM approach [9]: on top of
an L4 microkernel, a bunch of LLVM (Low-Level Virtual Ma-
chine) [17] instances and a weaver are running. LLVM is a com-
piler framework with a universal IR (Intermediate Representation)
and life-long analysis facilities. It can be extended with optional
components to emulate a real virtual machine. So, the LLVM in-
stances are virtual machine instances, in which applications (or
operating systems) are running which have been compiled in the
LLVM bytecode format. This way, the optimization problem is
fixed and more advanced join point types are possible, as LLVM’s
IR stands on a higher level than mere binary code.

A downside of this approach, especially in older environments,
are the relatively high infrastructural requirements like the micro-
kernel and suitable operating system personalities (T5).

No information on the aspect language is available, except for the
available join point types: call, execution, variable assignment and
access. Likewise, no prototype is available on the Internet.

4. POINTS OF IMPROVEMENT
It is important to stress again the fact that our requirements con-
sidered worst case scenarios. E.g. if the case at hand is situated on
a modern Linux environment on top of a standard Intel processor,
T5 is not an issue. If one can fall back on an expert to refactor the
build system, then T4 is not important either.

In the general case, work is needed to address T4. Many Java
projects are using Ant or other XML-based build systems which
can more easily be transformed. Even genuine makefiles are much
more recent there than is the case for C systems. Although T4 is
not a unique issue for C, it will show up more often.

Besides T4, T3 remains the principal problem when using AOP
on crosscutting concerns affecting thoroughly scattered, unrelated
join points. Reverse-engineering is one example, especially during
the initial phases where one tries to narrow down the focus to the
places of interest. Programming conventions [4, 2] are another one.



Only AspectC++ (section 3.1.2), once these features are supported
in C, and Aspicere (section 3.1.3) provide both generic pointcuts
(i.e. beyond mere pattern matching) and advice. The other frame-
works have been designed with more specific crosscutting concerns
in mind, where advice reuse is not the issue.

Finally, although all approaches use the terminology and lots of
features originally introduced by AspectJ [15], typical C features
(or problems) like pointers, dealing with macro’s, slightly different
dialects (T1), . . . have not yet been addressed extensively. This is
unlike the Java world, where one can experiment e.g. with the abc-
workbench [3]. Built on a solid analysis framework, basic weaving
functionality is already provided and people just need to focus on
new features which eventually can loop back to the real AspectJ.

Although AOP in C goes back to 2001 [6], no such mature, ex-
tensible and general-purpose AOP-framework really took off. This
is probably due to C’s higher complexity and the lack of a natural
higher-level IR like bytecode. As a practical consequence, people
need to create a new aspect language like Aspicere from scratch,
facing the same low-level groundwork others came across.

5. CONCLUSION
We reviewed the ten currently known AOP-frameworks for C in the
context of seven requirements set out for a reverse-engineering case
study. Compared to the Java scene, no framework really stands out.
Most of the problems are related to the impact on the existing build
system and the absence of generic advice.

6. ACKNOWLEDGEMENTS
We would like to thank Kris De Schutter, Andy Zaidman, Marc
Fiuczynski (C4) and Pascal Dürr (WeaveC) for their input. Bram
Adams is supported by a BOF grant from Ghent University.

7. REFERENCES
[1] Bram Adams, Kris De Schutter, and Andy Zaidman. AOP

for Legacy Environments, a Case Study. In2nd European
Interactive Workshop on Aspects in Software, 2005.

[2] Bram Adams and Tom Tourẃe. Aspect Orientation for C:
Express yourself. In3rd Software-Engineering Properties of
Languages and Aspect Technologies Workshop (SPLAT),
AOSD, 2005.

[3] Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren,
Sascha Kuzins, Jennifer Lhoták, Ondrej Lhot́ak, Oege
de Moor, Damien Sereni, Ganesh Sittampalam, and Julian
Tibble. abc: an extensible aspectj compiler. InAOSD ’05:
Proceedings of the 4th international conference on
Aspect-oriented software development, pages 87–98, New
York, NY, USA, 2005. ACM Press.

[4] Magiel Bruntink, Arie van Deursen, and Tom Tourwé. An
initial experiment in reverse engineering aspects. InWCRE,
pages 306–307. IEEE Computer Society, 2004.

[5] Yvonne Coady and Gregor Kiczales. Back to the future: a
retroactive study of aspect evolution in operating system
code. InAOSD, pages 50–59, 2003.

[6] Yvonne Coady, Gregor Kiczales, Mike Feeley, and Greg
Smolyn. Using AspectC to improve the modularity of
path-specific customization in operating system code.
SIGSOFT Softw. Eng. Notes, 26(5):88–98, 2001.

[7] Rémi Douence, Thomas Fritz, Nicolas Loriant, Jean-Marc
Menaud, Marc Śegura-Devillechaise, and Mario Südholt. An
expressive aspect language for system applications with
Arachne. InAOSD, pages 27–38. ACM Press, 2005.

[8] Michael Engel and Bernd Freisleben. Supporting autonomic
computing functionality via dynamic operating system kernel
aspects. InAOSD ’05, pages 51–62. ACM Press, 2005.

[9] Michael Engel and Bernd Freisleben. Using a LowLevel
Virtual Machine to improve dynamic aspect support in
operating system kernels. In4th AOSD workshop on Aspects,
Components, and Patterns for Infrastructure Software
(ACP4IS), AOSD, 2005.

[10] Marc Fiuczynksi, Robert Grimm, Yvonne Coady, and David
Walker. patch (1) Considered Harmful. InProceedings of the
10th Workshop on Hot Topics in Operating Systems, 2005.

[11] Jeff Gray and Suman Roychoudhury. A technique for
constructing aspect weavers using a program transformation
engine. InAOSD, pages 36–45. ACM Press, 2004.

[12] Robert Grimm. Systems need languages need systems! In
2nd Workshop on Programming Languages and Operating
Systems (ECOOP-PLOS’05), ECOOP, 2005.

[13] Kris Gybels and Johan Brichau. Arranging language features
for more robust pattern-based crosscuts. InAOSD, pages
60–69. ACM Press, 2003.

[14] B. Kernighan and D. Ritchie.The C Programming
Language.Prentice-Hall, 1978.

[15] Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris
Maeda, Cristina Lopes, Jean-Marc Loingtier, and John Irwin.
Aspect oriented programming. InECOOP, volume 1241,
pages 220–242. Springer-Verlag, 1997.

[16] Ralf Lämmel and Kris De Schutter. What does Aspect
Oriented Programming mean to Cobol? InAOSD ’05, pages
99–110, New York, NY, USA, 2005. ACM Press.

[17] Chris Lattner and Vikram S. Adve. Llvm: A compilation
framework for lifelong program analysis & transformation.
In CGO, pages 75–88. IEEE Computer Society, 2004.

[18] Daniel Lohmann, Georg Blaschke, and Olaf Spinczyk.
Generic advice: On the combination of AOP with generative
programming in AspectC++. In Gabor Karsai and Eelco
Visser, editors,Proc. Generative Programming and
Component Engineering: Third International Conference,
volume 3286, pages 55–74. Springer, October 2004.

[19] Klaus Ostermann, Mira Mezini, and Christophe Bockisch.
Expressive pointcuts for increased modularity. InECOOP,
2005.

[20] Marc Śegura-Devillechaise, Jean-Marc Menaud, Gilles
Muller, and Julia Lawall. Web cache prefetching as an
aspect: Towards a dynamic-weaving based solution. In
AOSD, pages 110–119. ACM, 2003.

[21] Olaf Spinczyk, Andreas Gal, and Wolfgang
Schr̈oder-Preikschat. AspectC++: An aspect-oriented
extension to the C++ programming language. InProceedings
of the Fortieth International Conference on Tools Pacific,
pages 53–60. Australian Computer Society, Inc., 2002.

[22] Stijn Van Wonterghem. Aspect-oriëntatie bij procedurele
programmeertalen, zoals C. Master’s thesis, Ghent
University, 2004.

[23] Andy Zaidman, Bram Adams, Kris De Schutter, Serge
Demeyer, Ghislain Hoffman, and Bernard De Ruyck.
Regaining lost knowledge through dynamic analysis and
Aspect Orientation - an industrial experience report. In
CSMR, 2006. Accepted for publication. To Appear.

[24] Charles Zhang and Hans-Arno Jacobsen. TinyC2:towards
building a dynamic weaving aspect language for c. InFOAL
2003, Boston, MA, USA.



Version 2.*.* and Counting!   

The Toll of Evolution on Aspect-Oriented Distribution 
Jennifer Baldwin  

University of Victoria 
jbaldwin@cs.uvic.ca 

John Zigman 

The Australian National University 
john.zigman@anu.edu.au 

Yvonne Coady 

University of Victoria 
ycoady@cs.uvic.ca 

ABSTRACT 

The distributed Java Virtual Machine (dJVM) is a cluster aware 

implementation of a JVM, designed specifically for evaluating 

distributed runtime support algorithms [6].  A prototype 

implementation of the dJVM is available as a patch file applied to 

IBM’s Jikes Research Virtual Machine (RVM) [2] version 2.2.0, 

released in January 2003.  This patch touches roughly 55% of the 

original 1500 files.  In previous work, we considered the impact 

of AOSD on this implementation of distribution [3].  Factors we 

looked at included internal structure, external interaction and 

reduced code size. 

But an important part of this study remained untested: as the 

RVM continues to undergo rapid evolution, what toll is this 

evolution going to take on the aspects?  The current release of the 

Jikes RVM, as of November 2005, is version 2.4.2.  This paper 

provides a case study characterizing the major evolutionary trends 

over the period between these two versions and considers the 

impact this evolution has on the implementation of distribution as 

a patch versus aspects.  This work is preliminary as the new, full 

implementation of the dJVM for 2.4.2 is not yet available.  

Therefore, the analysis in this paper is based on code inspection of 

the two versions of the Jikes RVM, as far as distribution 

modifications are concerned.  

1. INTRODUCTION 
In previous work [3]1, we argued that aspects could ease the 

evolution of distribution in a virtual machine, but what about the 

evolution of the virtual machine?  What kind of toll would 

evolution of the base code take on the aspects?   

In this study, our base code is IBM’s Jikes Research Virtual 

Machine (RVM) [2] – a unique open source project in Java.  Its 

code-base affords researchers the opportunity to experiment with 

a variety of design and implementation alternatives within an 

otherwise stable and consistently well maintained infrastructure.   

The distributed Java Virtual Machine or dJVM [6]2  is a ground-

breaking effort to add distribution to the original Jikes RVM.  The 

impetus behind distributing the JVM is largely performance-

based.  Many Java-based server applications are multi-threaded, 

with relatively little interaction between threads.  This would 

indicate that a virtual machine running across a cluster of nodes 

may provide dramatically increased concurrency for better 

performance.  This new functionality is made available for 

                                                                 

1  Research page is located at 

   http://www.csc.uvic.ca/~jbaldwin/diva/ 

2 The dJVM patches and documentation can be obtained from 

http://djvm.anu.edu.au/ 

download as a patch file – a file containing a difference listing 

produced by the diff utility – enabling users to seamlessly 

introduce distribution to their RVM, given a compatible version.  

Unfortunately, in its current form, it is difficult to reason about 

the ways in which the dJVM patch modifies the RVM.  Though 

the design has been carefully developed, it is difficult to map it to 

the implementation when it is presented in terms of line numbers 

and modifications to over half of the 1500 files in the RVM.  

The work presented in [3] is a preliminary report on efforts to 

structure the implementation of distribution supported by the 

dJVM using aspect-oriented programming (AOP) [4,5].  This 

preliminary experiment revealed the concrete ways in which 

aspects can improve the internal structure of some of the 

distribution code, clarify external interaction between the 

distribution code and the RVM, and reduce code size relative to 

the patch.  These results bode well for easing evolution of 

distribution in the RVM with aspects.  This work was motivated 

not only by the inherent value in improving the modularity of the 

system, but also by the reality that patch actually shackles 

innovation to outdated versions of the Jikes RVM.  That is, it 

requires nontrivial effort to both understand and maintain the code 

in this form, even across minor RVM upgrades, due to the lack of 

semantic information and the fragile nature of textual substitution.   

This paper extends that work by evaluating the evolvability of the 

aspects throughout significant changes to the Jikes RVM.  Since 

patches are dependent upon line numbers, they are not able to 

leverage principled points of execution within the system.  

Therefore, logically the aspects are more evolvable.  This work 

aims to investigate just how evolvable these aspects might be by 

evaluating whether or not they will still apply to the new system.  

This analysis is a necessary step before the next phase in this 

project, which includes porting the aspects to the new version of 

the RVM while at the same time incorporating additional changes 

in the newest version of the dJVM patch, when it is released. 

The paper is organized as follows.  Section 2 overviews the design 

of the dJVM.  The results of the original study and the way in 

which these results pertain to the argument considered here, are 

outlined in Section 3.  Section 4 discusses how evolution of the 

RVM has impacted distribution in general.  In Section 5, we look 

at how the aspects of the earlier refactoring need to be modified 

and provide an analysis of the aspect-oriented implementation in 

the face of evolution.  We discuss future work in Section 6 

followed by conclusions in Section 7.   

2. DJVM DESIGN 
The dJVM provides a cluster aware JVM using a Single System 

Image (SSI) to the Java programmer, hiding the underlying 

architecture and its complexities from the programmer.  The 



dJVM is aware of the cluster however, and must try to maximize 

opportunities to make applications run efficiently.  

One important design decision that is particularly challenging to 

comprehensively map to the implementation is that of static 

(global) versus instance (local) variables.  Static variables may be 

local within their node or within the entire application.  Local 

variables will always be held within their host node.  When data is 

being kept locally, an empty interface called 

DVM_LocalOnlyStatic must be implemented by any class 

that contains static data that is always accessed locally [6].  

3. ASPECTS OF DISTRIBUTION 
The current strategy for introducing distribution to the Jikes RVM 

is by using patch.  As a development tool, patch allows new 

functionality to be developed in situ, relative to the existing 

functionality of the system.  But in terms of semantic leverage, the 

patch file itself is hard to understand.   

The first step in creating our AspectJ implementation [3] was to 

go through the distribution patch and extract related code 

segments, constituting individual crosscutting concerns, then 

attempt to structure them as aspects.  The following subsection 

describes the LocalOnlyStatic aspect as an example. 

3.1 Example: LocalOnlyStatic Aspect 
Figure 1 shows the AspectJ implementation of the modifications 

to class hierarchy.  Looking briefly at the constructs in the aspect, 

the declare parents construct in AspectJ is used to modify the 

class hierarchy in the dJVM to introduce 

DVM_LocalOnlyStatic.  Though this aspect is very 

straightforward, these changes account for a large portion of the 

patch, about 44%, of the changes in the system.  In total, the 

original patch file consisted of 13,509 lines of code to accomplish 

what the aspect has done in 5 statements.     

By inspecting the patch file, the design intent behind the set of 

classes that should implement, for example, the 

DVM_LocalOnlyStatic interface, is not obvious.  The classes 

which define global structures that are for intra-node runtime 

systems, such as the scheduler, thread, garbage collection, internal 

type information, Java Table of Contents and compilers, are those 

that fall into this category.  The problem is that the rule does not 

always apply and therefore, some trial and error is needed in order 

to define the subset of classes accurately.  This is due to the 

distinction between identifying the behavior, versus how the 

behavior is implemented.  This approach leads to a large number 

of trivial modifications which are particularly hard to map 

between the design and the implementation in their scattered 

form.   

3.2 Aspects Ease Evolution of Distribution 
Perhaps the most obvious difference between the patch and the 

aspects is the number of lines of code with each approach.  The 

reduced number, the patched version at 36,987 lines and the 

aspect-oriented version at 11,482, has intuitive benefits in the 

realm of maintainability and understandability.   

Frequently throughout the patch, visibility modifications (from 

private to public) were made.  In order to distribute the system, 

functionality between clustered nodes needed to be made less 

strict in order to facilitate their communication.  This relaxation of 

access rights suggests that encapsulation must be rethought in the 

presence of distribution, especially when changes made to the 

code are fixed.  An aspect can control these modifications since 

changes to visibility can be seen either solely within the aspect or 

within the aspect’s defining package.  These reassignments in 

access are then restricted within an aspect and can easily be 

added/removed from the system. 

package com.ibm.JikesRVM; 
 
import com.ibm.JikesRVM.memoryManagers.vmInterface.*; 
import com.ibm.JikesRVM.librarySupport.*; 
 
public aspect LocalOnlyStatic { 
 
  declare parents: VM_Scheduler || VM_Wait || com.ibm.JikesRVM.*Thread || VM_CollectorThread ||  
    VM_*Lock* || VM_Processor* || VM_Proxy ||  VM_Synchronization ||  
    (*Map* && !VM_JNIGCMapIterator) || com.ibm.JikesRVM.memoryManagers.JMTk.* ||  
    VM_Barriers || VM_Memory || Scan* || SynchronizationBarrier || Util ||  
    VM_Finalizer || VM_Handshake || VM_Interface ||  
     (*Info && !VM_PendingJSRInfo) || *Table* || VM_DynamicTypeCheck ||  
    (*Compile* && !VM_JNICompiledMethod) || (VM_Pragma* && !VM_PragmaException) ||  
    VM_DynamicLink ||VM_Entrypoints ||  VM_BaselineException* || VM_Magic* || 
    VM_OutOfLineMachineCode || VM_RecompilationManager || VM_Runtime ||   
    VM_StackTrace || VM_Verifier ||  
    (VM_JNI* && !VM_JNICompiledMethod && !VM_JNIFunctions) || 
    *Header || *Profile* || *Monitor* || VM_*Class* ||  
    VM || VM_Array || VM_Atom || VM_BasicBlock || VM_BootRecord || 
    VM_BuildBB ||  VM_Callbacks || VM_CommandLineArgs || VM_Configuration ||  
    VM_EdgeCounts ||VM_FileSystem || VM_EventLogger || VM_Field || VM_Lister ||   
    VM_Math || VM_Member || VM_Method || VM_ObjectModel || VM_Primitive ||  
    VM_Properties || VM_Reflection || VM_Services || VM_Statics || 
    VM_Time || VM_Triplet || VM_Type || VM_UTF8Convert || JikesRVMSocketImpl ||  
    FileSupport || ReflectionSupport && !*Constants && !DVM* 
    implements DVM_LocalOnlyStatic; 
 
  declare parents: *Constants && !DVM* extends DVM_LocalOnlyStatic; 
 
} 
 

Figure 1.  Aspect code for files implementing dJVM hierarchy related modifications for DVM_LocalOnlyStatic. 



4. OVERVIEW OF EVOLUTION 
A more recent release of the dJVM is not yet available, for a 

variety of reasons.  These include the replacement of the roll-

your-own bytecode manipulation tool with BCEL3, and 

converting over to use the non-blocking java.nio libraries.  Both 

have introduced unforeseen complications.  The first is that the 

classpath and RVM classloading mechanism are somewhat 

moving targets, the second is that the GNU classpath 

implementation of the non-blocking libraries is not yet stable. 

Recent efforts in the project have gone into porting the bytecode 

analysis tools to those that BLOAT4 (a bytecode level optimizer) 

provides.    

The overall approach of the dJVM was to leverage the 

classloading mechanism as much as possible to effect both VM 

and application mutations.  This will remain the approach for the 

next version of the dJVM; however, a higher-level specification of 

those mutations, perhaps in the form of aspects, is potentially 

quite worthwhile.  In such a case the mutated classloading 

mechanism would include and/or be essentially a runtime weaver. 

 However, we must also bear in mind performance is a long term 

goal. 

There will be some changes to the dJVM design itself.  One such 

change will be the inclusion of proxy objects (these will be 

identical to the original in terms of layout) which can act both as a 

cache for an object or as a method for redirecting calls.  The 

purpose of this is to enable easy, and hopefully efficient, plug in 

of caching and replication algorithms.  There is potential for 

aspects in this area in particular, though this implementation will 

be particularly sensitive and could have a serious impact upon 

performance and prevent many compiler optimizations. 

Another area that is receiving attention is the removal of the 

trivial preprocessor directives from the Jikes RVM.  In particular 

those directives that conditionally execute Java code, since a 

reasonable number of these can be replaced with standard Java 

condition statements.  The replacement of these statements should 

not incur any execution overhead for code generated by the 

optimizing compiler since it can do constant folding and dead 

code elimination. 

Improving the package structure and the interfaces between those 

packages combined with the elimination of preprocessor 

directives, isolating any non-standard Java into a minimal number 

of small fragments, should facilitate research using the Jikes 

RVM.  Furthermore, such improvements would provide a better 

platform for considering what role aspects can play in the Jikes 

RVM and separately to the dJVM. 

Currently the use of preprocessor directives for introducing 

interfaces such as LocalOnlyStatic is really circumstance 

dependent.  For example if the restructuring of the Jikes RVM 

allowed a fairly succinct rule for replacing where the 

LocalOnlyStatic is used (i.e. a rule that someone could keep in 

their head so that they knew why and where it would be 

applied) then it would be replaced.  However, if the rule becomes 

complex or obscure then an explicit annotation may be preferred.  

                                                                 

3 http://jakarta.apache.org/bcel/index.html 

4 http://www.cs.purdue.edu/s3/projects/bloat/ 

It is really a matter of cognitive effectiveness (or at least the 

developer’s perception of what that is).  An aspect for 

LocalOnlyStatic is more likely if the RVM structure is a little 

cleaner. 

The high-level specification of mutations instead of lower level 

annotations is preferable from the perspective of dJVM 

development.  Aspects would be more appealing if the Jikes RVM 

package structure and interfaces between those packages were 

improved, this would in turn help reduce the complexity of the 

rules identifying where Aspects would be applied. 

5. THE TOLL OF EVOLUTION 
In the aspect-oriented prototype implementation of distribution, 

there were four other aspects in addition to LocalOnlyStatic.  

These other aspects included those that made changes to the 

optimizing compiler, those specific to the PowerPC architecture 

and two others which will be factored out as development 

continues.  These two include newly added variables and methods 

to existing classes (inter-type declarations), and the other which 

modifies existing methods (currently implemented without 

refactoring the original system).  There will of course be a lot of 

extra functionality required due to new classes introduced to the 

system during evolution, but that artifact is out of the scope of this 

paper until the new dJVM patch is available.  The overview of 

evolvable changes is shown in Figure 2. 

5.1 LocalOnlyStatic Aspect 
Perhaps one of the largest changes to the latest version of the 

Jikes RVM in terms of distribution is that the Java Memory 

Management Toolkit (JMTk) has been made independent of the 

Jikes RVM and is now known as the Memory Management 

Toolkit or MMTk.  Much work has been done on factoring out the 

VM-specific code, which now resides outside of the Jikes RVM 

source tree, and it has been reorganized to have an Eclipse 

friendly directory/package structure.  But it is not just the MMTk 

structure that has changed.  In fact, some of the code originally 

located inside of the root package of Jikes has now been migrated 

into two new packages, classLoader and jni, and three 

packages (including their code) have been removed from the old 

version of the Jikes RVM.  These included the 

BytecodeToolset, ClassTransformer and 

librarySupport packages.   

The inclusion of MMTk means that some of the distribution 

modifications for the dJVM are lost.  However, the aspect which 

is affected most by this is the previously mentioned 

LocalOnlyStatic aspect in which all of the members of the JMTk 

package were affected (40% of the changes in this aspect).  It may 

seem logical to attempt to weave into every file within the MMTk 

package instead.  However, this is likely to select too many files 

and therefore cause problems so the changes to memory 

management in the LocalOnlyStatic aspect will most likely have 

to be completely revised as a result of this evolutionary change. 

Another interesting point about the LocalOnlyStatic aspect is that 

it takes advantage of wildcard expressions which capture different 

files in each version of the system.  For example, 

VM_NativeDaemonThread, which does not exist in version 

2.4.2, fell under *Thread in version 2.2.0.  The AspectJ 

compiler [1] will not throw a compiler error telling us that this 

class does not exist since we didn’t explicitly define it, therefore 



making the aspect more robust.  This property of AOP makes it 

evolvable to new versions of a system.  Each of these wildcard 

expressions were evaluated to make sure that they were not 

specifying any new files that perhaps were not supposed to be 

woven in the new version.  In only 2 out of 15 cases, did the 

wildcard expression match any new files.  In those 2 cases, it is 

highly likely that the new files should indeed be matched.  In 8 

out of 15 of those cases, the new version was missing files that 

were originally caught by the wildcard expressions in version 

2.2.0.  However, by not explicitly naming these files, our aspect 

will still compile and run.  

This aspect modified 44% of the original 1500 files, many more 

than shown in Figure 2.  This is due to the fact that many of these 

files were not in our configuration.  However, the files we used 

and files from other configurations tend to have the same class 

names but reside in different directories within the source.  

Therefore, we expect the same number of changes to be unusable, 

no matter which configuration is used.  This also applies to the 

following aspects, although not to the same extent.  For more 

information on Jikes configuration options, see [2]. 

5.2 Optimizing Compiler 
The files and methods which were modified in this aspect all still 

exist in the new version of the Jikes RVM.  Additionally, the 

types of changes that were made within this aspect are highly 

evolvable.  This is due to the fact that the changes include the 

addition of getter methods, before advice that is not dependent 

upon the code that follows it in the original method, and lastly, 

around advice which never proceeds to the original method’s 

implementation.  This type of around advice means that if the 

implementation of the actual method has changed in the new 

version of the Jikes RVM, we are less likely to need to change the 

aspect since we never use the original method’s code. 

5.3 PowerPC 
The PowerPC aspect adds the functionality necessary to generate 

inline code for VM_MagicNames.invokeStubMethod 

when the VM_MagicCompiler.generateInlineCode 

method is executed.  However, not only does the 

invokeStubMethod no longer exist within 

VM_MagicNames, but the VM_MagicCompiler class itself no 

longer exists and has been absorbed into VM_Compiler.  As a 

result, this aspect will need to change completely.  Additionally, 

with the release of Apple’s Intel Processor machines, it is likely 

that PowerPC support will no longer be supported.  If this were 

the case, it shows how useful it can be to provide architecture 

specific aspects which can easily be evolved or even unplugged in 

response to hardware evolution. 

5.4 Inter-type Declarations 
In regards to inter-type declarations, where we are adding entirely 

new methods and variables to an existing class, we really only 

need to see whether or not the target classes still exist within the 

system.  As mentioned previously, some of the original RVM files 

were migrated into a classLoader package.  9 of the files 

modified in this aspect are now within this new package.  

However, if we import all needed packages at the top of the 

aspect, it will find the files and weave into them no matter which 

package they are in.  This means the only changes needed in this 

aspect will be different imports statements.  However, 11 out of 

36 of the files modified in this aspect no longer exist in the new 

system so the changes made to them will likely need to be 

migrated to new classes. 

5.5 Advice on Methods 
Lastly, changes to methods were evaluated by inspecting the join 

points and seeing if, (a) the classes and methods themselves still 

0

50

100

150

200

250

300

Inter-type

Declarations

Hierarchy

Changes

Method

Changes

OPT PowerPC Total

Evolvable

Not Evolvable

Figure 2.  Number of classes which have modifications that are applicable to Jikes 2.4.2 



existed, and (b) judging by the implementation in the methods, 

whether or not the advice would still be applicable.   

In regards to (a), 10 out of 44 changes are no longer usable 

because their methods or classes are no longer present.  In 

evaluating (b), since some of the advice was before or after 

advice, then as long as the method signature was the same, we 

would still be able to bind to it.  Problems arose, however, when 

we had around advice.  Due to difficulty in implementing changes 

to the middle of a method, and because no refactoring was done to 

incorporate aspects, the whole method needed to be copied to the 

around advice with no proceed functionality.  In this case, if the 

method implementation had changed at all, our aspect would be 

out of date.  Because of this, 7 out of 44 changes may not work 

but with refactoring, made especially easy if we had automated 

refactoring tools, our aspects would have a better chance of 

survival. 

The final results of this indicate that for the most part, the aspect 

would be applicable to the new system with approximately 35% 

of the changes being those made to non-existent methods or those 

in around advice that are likely to require modification.  

6. FUTURE WORK 
The work present in this paper is a quantifiable, logical argument 

based upon code inspection.  In order to really evaluate the 

arguments put forth in this paper, it is important to apply the 

existing aspects to the new version of the Jikes RVM.  Clearly, 

these aspects will have to be modified and extended in order to 

implement a functional distributed virtual machine.  In order to do 

this, when the new patch is released, it will be refactored into 

aspects in much the same way as it was for the original dJVM 

system.  The aim of reimplementing distribution for another 

version of the Jikes RVM is to answer the question: would it be 

less work to modify the aspects rather than reimplement 

distribution for the new version of the Jikes RVM?  If the effort 

involved in effecting a large change such as distribution into an 

evolving system can be significantly eased, then changes such as 

these are less likely to be left behind as the system evolves. 

In this particular case study, evolvability may not be the most 

important factor in deciding whether to use patches or aspects.  

Another factor to consider is the effect that aspects have on 

performance.  Previous work has shown that aspects may decrease 

performance [7].  Since the impetus behind distributing the RVM 

was to boost performance, this may not be acceptable.  Therefore, 

performance testing will also be an important factor to consider in 

the future. 

7. CONCLUSIONS 
The dJVM [6], which effects distribution by means of a patch, is 

based on version 2.2.0 of the Jikes RVM [2].  However, only 2 

years later, we are now on version 2.4.2 of the Jikes RVM and the 

developers of the dJVM are trying to catch up.  When this task is 

complete, what version of the Jikes RVM will be the newest?  It is 

a constant struggle for developers to keep large system changes up 

to date if the system they are based upon is continuously 

changing.  Aspects have been touted as being evolvable due to the 

fact that they are based on principled points of execution within 

the system, whereas the patch is rigidly based on line numbers.  

Therefore, as part of an entire study of using AspectJ to 

implement distribution in the Jikes RVM [3], it is important to 

look at how evolvable those aspects really are in practice. 

This preliminary study has shown that these aspects are more 

evolvable than the patch but are not perfect.  As the system 

changes, package structure changes, functionality changes or even 

entire files are removed.  It is estimated that roughly 40% of our 

aspects can no longer be applied for the previously mentioned 

reasons.  Using wildcard expressions such as *Thread in the 

LocalOnlyStatic aspect can help by continuing to capture design 

intent rather than statically applying changes to named files.  In 

order to really leverage these expressions, we need the Jikes RVM 

to have a clean structure, basing packages on design or at the 

least, having an understandable naming convention on which 

modifications to design can be based. 

A future study will implement distribution on a newer version of 

the Jikes RVM, using the aspects from version 2.2.0 and the new 

dJVM patch file, when it is released.  We can then measure 

whether the task of recreating distribution from older aspects is 

easier than reimplementing distribution across all of the new 

source files.  We hope to work closely with tool developers to 

establish new means of linking aspects to evolution, both in terms 

of evolving aspects independently of the base code, and in terms 

of evolving the base code independently of the aspects.  

8. REFERENCES 
[1] AspectJ compiler 1.2, May 2004.  http://eclipse.org/aspectj/. 

[2] B. Alpern, S. Augart, S.M. Blackburn, M. Butrico, A. 

Cocchi, P Cheng, J. Dolby, S. Fink, D. Grove, M. Hind, K.S. 

McKinley, M. Mergen, J. E. B. Moss, T. Ngo, V. Sarkar, and 

M. Trapp.  The Jikes Research Virtual Machine project: 

Building an open-source research community.  IBM Systems 

Journal, Vol 44, No 2, 2005. 

[3] J.Baldwin and Y.Coady. Are Patches Cutting it?  Structuring 

Distribution within a JVM using Aspects.  In Proceedings of 

the IBM Center for Advanced Studies Conference 

(CASCON), Markham, Ontario, Canada, October 2005.  In 

Proceedings of CASCON, 2005. 

[4] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, 

and W. G. Griswold.  An Overview of AspectJ.  In 

Proceedings of the 15th European Conference on Object-

Oriented Programming (ECOOP), pages 327 – 353, 

Jyväskylä, Finland, 2001. 

[5] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. 

Lopes, J-M Loingtier, and J. Irwin.  Aspect-Oriented 

Programming.  In Proceedings of the 11th European 

Conference on Object-Oriented Programming (ECOOP), 

pages 220 – 242, Jyväskylä, Finland, 1997. 

[6] J.  N.  Zigman and R.  Sankaranarayana.  Designing a 

Distributed JVM on a cluster.  In Proceedings of the 17th 

European Simulation Multiconference, Nottingham, United 

Kingdom, 2003. 

[7] P. Avgustinov, A.S. Christensen, L. Hendren, S. Kuzins, J. 

Lhoták, O. Lhoták, O. de Moor, D. Sereni, G. Sittampalam, 

and J. Tibble, 2005.  Optimising aspectJ.  In Proceedings of 

the 2005 ACM SIGPLAN Conference on Programming 

Language Design and Implementation, Chicago, IL, USA, 

June 2005.



An Evaluation of Coupling Measures for AspectJ 
Marc Bartsch 

School of Systems Engineering 
The University of Reading, Reading 

RG6 6AY, UK 
+44(0)118 378 8617 

m.bartsch@reading.ac.uk 

Rachel Harrison 
School of Systems Engineering 

The University of Reading, Reading 
RG6 6AY, UK 

+44(0)118 378 8617 

rachel.harrison@reading.ac.uk 
 

  
ABSTRACT 
The maintenance of aspect-oriented software requires measures 
that are theoretically valid. Management or project decisions 
made using metrics that have not been validated may be 
detrimental or unhelpful. Recently, measures have been suggested 
that focus on aspect-oriented concepts, such as the crosscutting 
behaviour of aspects. Before these new measures can be put to use 
they should be evaluated to determine how far they indeed 
measure what they purport to quantify. This paper focuses on the 
theoretical evaluation of five aspect-oriented coupling measures 
with the aim of constructively increasing the quality of software 
evolution. 

Categories and Subject Descriptors 
D.2.8 [Software Engineering]: Measurement – product metrics. 

General Terms 
Measurement. 

Keywords 
Measurement, aspect-oriented, coupling. 

1. INTRODUCTION 
Aspect-orientation is an emerging paradigm that is based on the 
separation of concerns principle. It offers the idea of a new 
modular unit that encapsulates crosscutting concerns which would 
otherwise be scattered across multiple modules. Aspect-oriented 
languages introduce new forms of coupling which are unknown to 
object-oriented languages. The execution of base code might 
trigger the execution of aspect code leading to coupling 
relationships between classes and aspects which are not 
transparent. In addition to that, intertype declarations can change 
class implementations by adding attributes or methods.  

Measuring these new kinds of coupling relationships is an issue 
which has been addressed lately with the definition of coupling 
measures specifically designed to support aspect-oriented 
concepts. A maintenance process for aspect-oriented software that 

relies on the results of these measures must have the confidence 
that the measures involved do indeed measure what they purport 
to quantify. Also, the comparison of measurement results is an 
error prone task if measures can be interpreted in different ways. 

The position of the authors is that all measures including coupling 
measures need to be validated to gain confidence in the results 
taken from measurement. However, others have pointed out that 
measures that cannot be validated may still be useful [6]. Since 
research into measurement of aspect-oriented systems is at an 
early stage, it is particularly important to validate aspect-oriented 
measures thoroughly. Also, the authors would like to stress the 
fact that the validation of aspect-oriented coupling measures as 
presented in this paper depends on at least two frameworks. First, 
the validation criteria need to be agreed upon. A measure that 
validates successfully in the context of one framework might not 
validate in another. Second, aspect-oriented coupling measures 
depend on a specific idea of coupling. Mechanisms that constitute 
coupling in one aspect-oriented language might not exist in 
another. Hence, a specific aspect-oriented language 
implementation has to be considered, when aspect-oriented 
coupling measures are validated. In this paper we focus on 
measures for AspectJ [1]. 

This paper presents the evaluation of five selected aspect-oriented 
coupling measures suggested by Ceccato and Tonella [4]. They 
define five coupling measures, CAE, CIM, CFA, CMC and CDA, 
in order to investigate the trade-off between the advantages 
obtained from a separation of concerns and the disadvantages 
caused by coupling introduced by aspects. We selected the five 
measures for two reasons: first, two of the five measures (CMC, 
CFA) are derived from a well-known object-oriented measure 
(CBO). Second, measures like CAE, CIM and CDA focus on 
aspect-oriented core concepts such as static and dynamic 
crosscutting. We believe that the five measures are good 
representatives for measuring different kinds of coupling in 
AspectJ and that they deserve further investigation to make sure 
they are theoretically valid.  

The paper is structured as follows: section 2 presents related 
work, section 3 introduces two evaluation frameworks used in this 
paper; section 4 introduces and evaluates the coupling measures. 
Finally, section 5 offers conclusion and points to further research. 

2. RELATED WORK 
Aspect-oriented measures derived from Chidamber and 
Kemerer’s suite of object-oriented measures [5] have been 
suggested by Ceccato and Tonella [4] and by Sant’Anna et al. [9]. 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
LATE’06, March 20, 2006, Bonn, Germany. 
Copyright 2006 ACM 0-00000-000-0/00/0000…$5.00. 
 



Zhao defines coupling [10] and cohesion [11] measures for 
aspect-oriented systems. 
The issue of validating measures has been approached from 
different viewpoints. Kitchenham et al. define a set of criteria that 
all measures must obey to be considered a valid measure from a 
measurement theory point of view [8]. Other validation criteria 
have been suggested by Briand et al. [3]. They define 
mathematical criteria that all coupling measures must conform to. 
As far as construct validity is concerned, these criteria are only 
necessary but not sufficient [3]. In contrast to the criteria put 
forward by Kitchenham et al. they do not consider the 
relationship between the attribute being measured and the 
mathematical formula that is used to calculate the measure. 
Instead, they focus on properties of the mathematical formula 
only. Such criteria can verify that a certain algorithm does indeed 
measures coupling. They cannot, however, detect whether all 
coupling relationships that are necessary to measure a certain 
coupling attribute will be counted. We have chosen the validation 
framework by Kitchenham et al. in this paper since we are more 
interested in the question of whether an algorithm indeed 
represents a specific kind of coupling attribute than in the 
question of whether an algorithm represents coupling at all. 
In [7], Kaner and Bond define a list of 10 questions that they 
consider relevant for any measure from a practical viewpoint and 
also raise the issue of construct validity. 

3. EVALUATION FRAMEWORKS 
The evaluation process for the five coupling measures will be 
guided by two frameworks. First, a coupling framework for 
AspectJ will be used that offers a common terminology to express 
the different coupling measures in a uniform way [2]. The 
coupling framework is a means to investigate ambiguities 
associated with the algorithm that implements each of the 
different measures. 

Second, the validation framework by Kitchenham et al. is used for 
the purpose of a theoretical validation of each measure [8]. The 
validation framework consists of four criteria that all valid 
measures must obey. 

3.1 Coupling Framework 
Bartsch and Harrison [2] suggest a coupling framework for 
AspectJ which is an extension of a coupling framework for 
object-oriented systems put forward by Briand et al. [3]. Our 
coupling framework [2] focuses on coupling mechanisms that do 
not exist in object-oriented languages or that exists between 
members which are unknown in object-oriented languages. 

The criteria of the framework are:  

1. Type of Connection. The type of a particular coupling 
connection is determined by the mechanism that is used to 
establish the coupling connection. The use of a class 
identifier as a return type of a piece of advice, for example, 
is a mechanism that leads to coupling between the aspect that 
implements the advice and the class whose identifier has 
been used.  

2. Locus of Impact. If an aspect is used in a coupling 
connection, a distinction is made between import and export 
coupling which defines a counting rule for a coupling 
connection. If aspects invoke methods of other classes, then 

import coupling counts the number of classes whose methods 
would be called by a given aspect. Export coupling counts 
the number of aspects that make calls to a method of a given 
class. 

3. Granularity. Granularity refers to the level of detail at which 
coupling information is collected. It indicates the 
components that are counted and how to count multiple 
occurrences of a connection. 

4. Stability of Server. Stability of server expresses whether 
components at the receiving end of a coupling connection are 
subject to modifications and might influence coupled classes 
if modifications are applied. This criterion is independent of 
the distinction between object-oriented or aspect-oriented 
languages and is beyond the scope of this paper. For the 
remainder of this paper, only stable classes and aspects will 
be considered. 

5. Direct or Indirect Connections. Direct or indirect 
connections refer to whether to count direct coupling 
connections only or also indirect connections. For the 
remainder of this paper, only direct connections will be 
considered. 

6. Inheritance. The following questions should be answered 
with regard to inheritance: First, does the use of members, 
such as the use of methods, attributes or pointcuts, of an 
ancestor class or aspect constitute coupling or not? Second, 
does a measure consider both polymorphically and statically 
invoked methods and, third, do inherited members belong to 
the inheriting aspect or not? 

7. Static Crosscutting/Intertype Declarations. Similar to the 
question of whether an inherited method or an attribute 
belongs to a class or an aspect, we have to determine 
whether introduced methods or attributes belong to a class or 
not. There are three options. First, an intertype declaration 
only belongs to the aspect that defines it. Second, an 
intertype declaration only belongs to the class it is defines 
for or, third, an intertype declaration belongs to both the 
class and the aspect. 

8. Dynamic Crosscutting. Join points can reference an 
executing object and a target object. When a coupling 
measure is being defined a choice has to be made whether to 
count only the executing object, the target object, or both. 

9. Instantiation. Instantiation refers to the question whether to 
count aspects at a per-instance level or not. This criterion 
refers to runtime measures and will not be considered 
further. 

Ambiguities can arise from the fact that certain criteria are not 
addressed in a measure where a choice is possible. For example, 
criterion 7 refers to a decision of how to assign intertype 
declarations. A coupling measure that does not address this issue 
might be interpreted in different ways. We will apply the coupling 
framework to investigate the well-definedness of each measure, 
i.e. to find and to resolve ambiguities of each measure. 

3.2 Validation Framework 
Kitchenham et al. propose a set of four criteria that all valid 
measures must obey [8]: 



1. For an attribute to be measurable, it must allow different 
entities to be distinguished from each other. 

2. A valid measure must obey the Representation Condition [6], 
i.e. it must preserve our intuitive notion about the attribute 
and the way in which it distinguishes different entities.  

3. Each unit of an attribute contributing to a valid measure is 
equivalent. 

4. Different entities can have the same attribute value (within 
the limits of measurement). 

In this paper, we will focus on criterion 2, the Representation 
Condition. Since all coupling measures which we will discuss are 
based on counting coupling connections only, criteria 1, 3 and 4 
can be validated intuitively and will not be considered any 
further. 

Notions about attributes are subjective and can vary. Not 
everyone will agree upon what constitutes coupling in aspect-
oriented systems or in a particular language like AspectJ. In order 
to validate a measure against the Representation Condition, first, 
the notion of the attribute being measured has to be defined. 
Second, an algorithm needs to be specified that defines how the 
values of the measure will be computed. The validation process 
consists of verifying that the values support the agreed notions 
about the measure. The Representation Condition is also 
highlighted during consideration of Construct Validity [7]. 
Construct Validity generalises from a measure or the algorithm of 
a measure to the concept of it, and asks whether the algorithm 
really captures the notion of a certain measure. The process of 
validation is then an investigation into how far the algorithm 
agrees with the attribute being defined for a certain measure. 

4. EVALUATION 
As a result of the discussion in section 3, the evaluation process 
will include the following steps for each measure: first, the 
attribute being measured by each measure will be presented. 
Second, the original algorithm will be stated and, third, the well-
definedness of each algorithm will be investigated. Fourth, each 
measure will be validated by an investigation of the 
Representation Condition, i.e. an investigation into the notion and 
the algorithm involved. Usually this involves the question of 
whether a certain measure includes all the necessary coupling 
mechanisms that are associated with a certain notion of coupling. 
If necessary, changes to the definition of the measure will be 
suggested. 

4.1 CAE (Coupling on Advice Execution) 
Attribute. Aspects can cause control flow shifts so that advice is 
executed in the course of a program’s execution. CAE [4] 
quantifies the amount of coupling caused by these shifts for a 
given class or aspect.  

Algorithm. CAE counts the number of aspects containing advices 
possibly triggered by the execution of methods, advices or 
method intertype declarations, attribute and attribute intertype 
declarations in a given class or aspect. 

Well-Definedness. The measure uses selected join point coupling 
mechanisms, i.e. all mechanisms that refer to executions: method, 
constructor or advice execution and attribute and attribute 

intertype declaration join point coupling. The granularity is 
aspect and every aspect will be counted only once. The locus of 
impact is export coupling. We interpret the phrase possibly 
triggered as a hint to the dynamic nature of pointcuts. Pointcut 
designators such as cflow cannot be determined at design time and 
have to be approximated. As far as intertype declarations are 
concerned, we assign them to the aspect they are defined in. 
Advice that is executed due to the fact that a method intertype 
declaration is executed will be considered coupled to the aspect 
that defines the intertype declaration. With these interpretations, it 
is possible to classify CAE as well-defined. 

Validation. CAE counts only certain selected join point coupling 
mechanisms that can lead to the execution of advice. AspectJ 
supports more types of join points that can also cause the 
execution of advice, such as object initialization join points, 
exception handler join points, call join points and advice 
execution join points. A valid measure of coupling on advice 
execution needs to counts all of these join point coupling 
mechanisms. 

Suggested Changes. In order to achieve theoretical validity we 
suggest including all types of join point coupling mechanism, i.e. 
all join points that can cause advice to be executed. The following 
table summarizes all the join points that may need to be counted 
by CAE: 

Table 1. Join Points 

# Mechanism 

1 method execution join point 

2 method call join point 

3 constructor call join point 

4 constructor execution join point 

5 object initialization join point 

6 attribute reference join point 

7 attribute assignment join point 

8 handler execution join point 

9 advice execution join point 

 

If the suggested changes are applied, we can classify CAE as a 
theoretically valid measure. 

4.2 CIM (Coupling on Intercepted Modules) 
Attribute. CIM [4] quantifies the explicit knowledge that an 
aspect has in its pointcuts of another class or interface that it 
crosscuts. It indicates the direct knowledge an aspect has of the 
rest of the system. High values indicate high coupling, due to high 
crosscutting. 

Algorithm. CIM counts the number of classes or interfaces 
explicitly named in the pointcuts of a given aspect. 

Well-Definedness. This algorithm can be mapped unambiguously 
to the criteria of the coupling framework. The type of connection 
is type pattern coupling, the granularity is class or interface and 
every class or interface will be counted once. The locus of impact 



is import coupling. An aspect that selects a join point will be 
coupled with the executing object exposed by that join point. 
With this addition, we can classify CIM as well-defined. 

Validation. CIM cannot be validated successfully. This measure 
makes the assumption that an explicitly mentioned class or 
interface in a pointcut always leads to crosscutting or to 
crosscutting with the mentioned class or interface. This is not 
always the case. Consider the following examples: 

 
Figure 1. Type pattern based coupling. 

Although the Manager class is explicitly mentioned in both 
pointcuts, it is excluded from the set of join points in the first 
example and does not lead to crosscutting with the Manager class. 
In the second example, Manager is also explicitly mentioned, but 
it also does not lead to crosscutting with the Manager class. A 
minor problem is that the mere definition of a pointcut is not 
enough to crosscut base code. It also needs to be referred to in at 
least one piece of advice. As a result, the given algorithm does not 
measure the attribute defined. 

Suggested Changes. The problems with this measure can be 
resolved in two ways. A first approach would be alter the attribute 
(and the name) so that CIM only quantifies the explicit 
knowledge an aspect has of the rest of the system, regardless 
whether this knowledge leads to crosscutting. An alternative 
approach would be to alter the algorithm to count only explicitly 
mentioned classes or interfaces that in fact contribute to 
crosscutting and that are referred to in at least one piece of advice. 
With one of these changes, CIM can be considered a theoretically 
valid measure. 

4.3 CMC (Coupling on Method Call) 
Attribute. CMC [4] is based on Chidamber and Kemerer’s CBO 
measure. CMC focuses on method calls only and quantifies the 
amount of coupling due to the call of methods or method intertype 
declarations of other classes or aspects. 

Algorithm. CMC counts the number of classes or aspects that 
declare methods which are possibly called by a given class or 
aspect, including those methods that have been introduced by 
intertype declarations. 

Well-Definedness. The type of connection is method execution, 
the granularity is class or aspect and every class or aspect will be 
counted once. The locus of impact of CMC is import coupling. 
We associate intertype declarations with the aspect that defines 
them and we associate inherited methods with the class that 
defines them. We interpret the phrase possibly called as potential 
coupling due to polymorphism. If a polymorphic method is called, 
we associate the calling class with all possible classes that could 
be called due to polymorphism. With these additions, we can 
consider CMC to be well-defined. 

Validation. The theoretical validity of this measure depends to a 
great extent on how much the attribute that CMC measures is 
based on CBO. The attribute that CBO measures is coupling 

between objects: two objects are coupled if and only if one of 
them acts upon the other. X is said to act upon Y if the history of 
Y is affected by X, where history is defined as the chronologically 
ordered states that a thing traverses in time [5]. In terms of 
software, acting upon is defined as calling an object’s method or 
accessing an object’s attribute. Obviously, CMC does not support 
the entire attribute that CBO measures, since it only considers 
method calls. Another deviation from the CBO measure is the fact 
that CMC only counts import coupling whereas the acting upon 
relationship implies import and export coupling. We draw the 
following conclusion: if CMC is modeled on CBO it should count 
import and export coupling in order to be a theoretically valid 
measure. If it is not modeled on CBO, the current definition of 
CMC can be considered theoretically valid. 

Suggested Changes. If CMC is based on CBO, we suggest 
changing the algorithm to include import and export coupling. 

4.4 CFA  (Coupling on Field Access) 
Attribute. CFA [4] is designed similarly to CMC. Where CMC 
measures coupling due to method calls, CFA measures coupling 
due to attribute accesses.  

Algorithm. CFA counts the number of classes, interfaces or 
aspects declaring attributes that are accessed by a given class or 
aspect. 

Well-Definedness. The type of connection is attribute access, the 
granularity is class, interface or aspect and every class, interface 
or aspect will be counted only once. Just like CMC, we associate 
methods and attributes with the class or aspect that defines them. 
With these additions we consider CFA to be well-defined. 

Validation. The theoretical validity of this measure follows the 
same argument as for CMC. If CFA is modeled on CBO, it should 
consider import and export coupling to be theoretically valid. If it 
is not modeled on CBO, it can be considered theoretically valid 
without any changes. This consideration is important if values of 
CBO are compared with the sum of the values of CMC and CFA. 
Since they do not measure the same attribute, a comparison might 
be problematic. 

Suggested Changes. If CFA is based on CBO, we suggest 
changing the algorithm to include import and export coupling. 

4.5 CDA (Crosscutting Degree of an Aspect) 
Attribute. CDA [4] captures the overall crosscutting impact that 
an aspect has on the rest of the system through pointcuts and 
intertype declarations. The difference between CDA and CIM 
gives the number of modules that are affected by an aspect 
without being referenced explicitly by the aspect. 

Algorithm. CDA counts the number of classes or aspects affected 
by the pointcuts and by the intertype declarations of a given 
aspect. 

Well-Definedness. The locus of impact is import coupling, the 
granularity is class or aspect and every class or aspect will be 
counted only once. We interpret the crosscutting degree of an 
aspect as being dynamic and static crosscutting. A class a or an 
aspect b is affected by an aspect c, if the aspect c defines join 
points whose executing object can be associated with either class 
a or aspect b. The set of join points can only be approximated at 

pointcut execMethods() : execution( void *.add() )  
                               && ! execution( void Manager.add() ); 
pointcut callMethods() : call( void Manager.add() ); 



design time. A class a is also affected by an aspect b if the aspect 
defines an intertype declaration for class a. With these additions, 
we consider CDA well-defined.  

Validation. CDA can be considered a theoretically valid measure 
since it considers both dynamic and static crosscutting. 

As far as the difference between CDA and CIM is concerned, it 
does not indicate the number of modules that are affected by an 
aspect without being referenced explicitly. Since CDA considers 
intertype declarations, which CIM neglects, it counts modules 
which are affected by an aspect but which are referenced 
explicitly. The degree of generality intended by CDA can only be 
maintained if it considers modules affected by dynamic and not 
by static crosscutting. 

4.6 Summary 
The following table gives an overview of the measures and 
validation status. For CMC and CFA two validation states are 
given. As discussed, these refer to the extent to which they are 
based on the underlying CBO measure. We consider CDA to be  a 
valid measure without any changes. 

Table 2. Overview of all measures 

Measure Validation status 
before changes 

Validation status 
after changes 

CAE No Yes 

CIM No Yes 

CMC Yes/No Yes 

CFA Yes/No Yes 

CDA Yes - 

5. CONCLUSION 
In this paper, we investigated the theoretical validity of five 
coupling measures and identified areas of improvement for four 
of the five measures. In two cases the improvements depend on 
how the attribute being measured is defined. We also suggested 
changes where necessary and conclude that with these changes all 
five measures can be considered theoretically valid. In particular, 
we conclude from our research that measures like CIM can now 
be applied with more confidence in a software evolution process. 
The coupling framework used in this paper describes decisions 
that need to be considered when a measure is being defined. It 
served as a tool to explore the expressiveness of all five measures 
with regard to the criteria defined in the framework. We 
investigated the well-definedness of the measures and gave our 
interpretation of each in terms of this framework. For example, 
we followed the principle to assign methods and attributes to 
those classes and aspects that define them. These decisions are 
important when inheritance or intertype declarations are involved, 
because they greatly influence a measure: CMC counts method 
calls, but if a method being called is an intertype declaration then 
there is a coupling relationship towards the aspect that defines the 
method and not towards the class the method was defined for. Our 
interpretation of each measure highlights the degrees of freedom 
that designers of coupling measures need to consider. 
A theoretical evaluation of measures can point to critical areas. 
We have shown that CMC and CFA do not cover the same 
attribute that CBO measures and that a comparison of CBO values 

with the total of CMC plus CFA is likely to be problematic.  Only 
if CMC and CFA are defined in a similar way to CBO can 
comparability be guaranteed. 
Future work will include the formal definition of aspect-oriented 
coupling measures and an investigation into the validity of other 
sets of coupling measures. Also, we would like to work towards 
an empirical validation of the measures discussed in this paper. 

6. ACKNOWLEDGMENT 
We would like to thank all anonymous reviewers for their 
valuable comments. 

7. REFERENCES 
[1] AspectJ, 2005: http://www.eclipse.org/aspectj 
[2] Bartsch, M. and Harrison, R., ‘A Coupling Framework for 

AspectJ’, Extended Abstract, Proceedings of EASE 2006, 
Keele, UK. 
http://www.personal.rdg.ac.uk/~sir04mb2/Publications/barts
ch-harrison-couplingFramework.pdf. 

[3] Briand, L.C., Daly, J.W. and Wüst, J.K. (1999) A Unified 
Framework for Coupling Measurement in Object-Oriented 
Systems. IEEE Transactions on Software Engineering, 
25(1), 91-120. 

[4] Ceccato, M. and Tonella, P., ‘Measuring the Effects of 
Software Aspectization’, CD-Rom Proceedings of the 1st 
Workshop on Aspect Reverse Engineering (WARE 2004). 
Nov. 2004. Delft, The Netherlands. 

[5] Chidamber, R. and Kemerer, C.F., ‘A Metrics Suite for 
Object-Oriented Design, IEEE Transactions on Software 
Engineering, 20(6):476–493, 1994. 

[6] Fenton, N.E. and Pfleeger, S.L., ‘Software Metrics: A 
Rigorous and Practical Approach (2nd Edition)’, 
International Thomson Computer Press, 1996. 

[7] Kaner, C. and Bond, P., ‘Software Engineering Metrics: 
What Do They Measure and How Do We Know?’, 10th 
International Software Metrics Symposium (Metrics 2004), 
Chicago, IL, September 14-16, 2004. 

[8] Kitchenham, B.A., Fenton, N. and Pfleeger, S.L., ‘Towards a 
Framework for Software Measurement Validation’, IEEE 
Transactions on Software Engineering, 1995, Vol.21, No.12, 
pp. 929-944. 

[9] Sant’Anna, C., Garcia, A., Chavez, Ch., Lucena, C. and von 
Staa, A., ‘On the Reuse and Maintenance of Aspect-Oriented 
Software: An Assessment Framework’, Proceedings of the 
Brazilian Symposium on Software Engineering (SBES'03), 
Manaus, Brazil, Oct 2003, pp.19-34. 

[10] Zhao, J., ‘Measuring Coupling in Aspect-Oriented Systems’, 
10th International Software Metrics Symposium 
(METRICS'2004), (Late Breaking Paper), Chicago, USA, 
Sept. 14-16, 2004. 

[11] Zhao, J. and Xu, B., ‘Measuring aspect cohesion’. 
Proceedings of the International Conference on 
Fundamental Approaches to Software Engineering (FASE), 
LNCS 2984, Barcelona, Spain, March 2004. Springer 
Verlag, pp.54-68.



Aspect-Oriented Refactoring: Classification and Challenges 
Jan Hannemann 
University of Tokyo 

jan@graco.c.u-tokyo.ac.jp 
 
ABSTRACT 
This paper provides an overview of the three different kinds of 
AOP refactorings: aspect-aware OO refactorings, refactorings for 
AOP constructs, and modularizations of crosscutting concerns. 
We discuss recent developments for each of them and highlight 
their commonalities with respect to associated challenges and ties 
to related research, such as program analysis and aspect mining.  

1. INTRODUCTION 
Useful software systems are constantly evolving and changing, 
and often those changes require that the software be re-
modularized, so that the system becomes easier to understand, 
extend, or maintain [8]. The technique for disciplined program 
transformations that change a system’s structure while preserving 
its behavior is called refactoring. Refactorings are parameterized 
transformations of a system’s source code intended to improve a 
system’s structure with regards to informally expressed goals, 
such as maintainability, changeability, or readability [5, 8, 21]. 
While most refactoring research focuses on object-oriented (OO) 
system transformations, refactorings play a similar role in an 
aspect-oriented programming (AOP) context. In addition, 
refactorings are instrumental for the migration of legacy OO 
systems to use AOP. To distinguish AOP refactorings from 
traditional OO refactorings, and to differentiate between 
individual approaches to aspect-oriented refactoring, we will use 
the simple AspectJ example shown in Figure 1. It shows part of a 
Book class for a library system. The code presented focuses on 
signing out books. In the method signOut(Customer), race 
conditions are prevented by acquiring a lock before the actual 
changes are executed, which happens in method 
helper(Customer). After that, the lock is released. If the 
book is not available (signed out already, for example), an 
exception is raised. Further, an aspect logs all successful 
transactions. 
We use the term traditional refactorings to refer to parameterized, 
behavior-preserving transformations of object-oriented systems 
(although refactorings are not limited to OO systems, the majority 
of research targets that paradigm). Such refactorings usually focus 
on single program elements or small sets of non-scattered 
program elements (plus their associated references), and they can 
often be automated. Despite the limited number of elements 
targeted, such refactorings may cause program-wide changes. For 
example, a Rename Method refactoring [5] requires all call sites 
to the targeted method to be updated. Renaming the method 
signOut(Customer) in the example system represents a 
traditional refactoring.  

2. AOP REFACTORINGS 
Aspect-oriented refactorings differ from traditional refactorings in 
that they involve/consider AOP constructs. They can be divided 

into three distinct groups as outlined below. Their properties and 
differences are summarized in Table 1. 

1. Aspect-aware OO refactorings, which are traditional 
object-oriented refactorings that are extended to ensure 
they do not break AO programming constructs. 

2. Refactorings for AOP constructs, which are refactorings 
explicitly involving AOP program elements, either as 
the targeted elements or in the resulting code 

3. Modularizations of Crosscutting Concerns, which are 
composite refactorings aiming to transform non-
modularized CCCs into aspects. 

In the following, we describe each kind of aspect-oriented 
refactoring in detail. 

2.1 Aspect-Aware OO Refactorings 
Traditional refactorings focus on object-oriented code. When 
applied as-is to an AOP system, references in AOP constructs are 
not taken into account, potentially introducing errors.  

For instance, applying the Rename Method refactoring to the 
(poorly named) helper(Customer) method requires updates 
to references of that construct not only in OO code elements, but 
also in AOP constructs, like the signOutBook(..) pointcut. 
Similarly, inlining the helper(Customer) method would also 

public class Book {  
 . . . 
 public void signOut (Customer c) 

throws UnavailableException { 
 log("attempting to sign out "+this);  

   acquireLock(this); 
   try { 
    helper(c); }  
   finally {  
    releaseLock(this); }} 
 
 private void helper(Customer c) 
  throws UnavailableException {  
   if(! isAvailable) {  
    throw new UnavailableException(..); }  
   else {  
    owner = c; 
    isAvailable = false; 
    signOutCounter++; }}} 
 
 
public aspect LibraryLogger {  
 . . . 
 pointcut signOutBook(Book b, Customer c): 
  execution(void Book.helper(Customer)) && 
    target(b) && args(c); 
 
 after(Book b, Customer c) returning: 
   signOutBook(b, c) {  
    log(b + " signed out " + getDate()); }} 
  Figure 1. A simple library example 



require aspect-oriented version of an OO refactoring. This case is 
more complex, as the join points identified by the pointcut cease 
to exist [9]. 

Research in the area of aspect-aware OO refactorings focuses on 
extending traditional refactorings with appropriate steps to 
properly update references in AOP constructs. Making OO 
refactorings aspect-aware is the topic of several research projects, 
for example [9, 14, 25]. 

2.2 Refactorings for/to AOP Constructs 
While the aforementioned refactorings target OO constructs, this 
class or refactorings explicitly involves AOP constructs, either 
directly (e.g., inlining a pointcut and advice body), or in the 
resulting code (e.g., replacing an object method with an 
appropriate inter-type declaration). Many of these parallel 
existing OO refactorings: with respect to the kind of refactorings 
that can be applied to them, pointcuts can be compared to 
methods and aspects to classes. It is straightforward to envision 
the meaning of OO refactorings such as Add Parameter, Pull Up 
Method, or Push Down Method [5] when applied to a pointcut 
declaration. Similarly, equivalents of Collapse Hierarchy or 
Extract Super/Subclass may be conceived for aspects, as shown 
by Monteiro et al. [20], for example. 
In addition, AOP programming constructs allow for a set of new 
refactorings without OO equivalents, like the merging or splitting 
of advice and/or pointcuts. For example, imagine an additional 
pair of pointcut and advice in the library system for logging the 
returning of books. The pointcuts, the advice, or both could be 
merged with the ones for logging signing books out. Several 
researchers have proposed new refactorings for AOP constructs, 
for example [14, 20]. 
Finally, there are low-level object-to-aspect program transforma-
tions that ‘move’ small OO code fragments to aspects by 
replacing them with their aspect-oriented equivalents. These 

target OO program elements, but involve the creation of AOP 
ones. For example, the Replace Implements with Declare Parents 
refactoring [20] moves an implements declaration to an aspect 
by replacing it with the equivalent AspectJ construct declare 
parents. Replacing the explicit call to aquireLock(..) at 
the beginning of signOut(Customer) with a corresponding 
pointcut and advice pair is an example for such a ‘move’ 
refactoring. 
Much like aspect-aware refactorings, refactorings for AOP 
constructs have a similar scope as traditional refactorings, i.e., 
they target single program elements or localized sets of them.  

2.3 Modularizations of CCCs 
Modularizations of crosscutting concerns (CCCs) transform 
scattered CCC implementations into a modularized form (an 
aspect), which is schematically shown in Figure 2.  

For instance, replacing all code pertaining to preventing race 
conditions in the entire library system with an equivalent, 
modular AOP implementation constitutes a CCC modularization. 
Or, consider that the Book class would incorporate an update 
mechanism, in which interested objects can register themselves 
and are notified whenever the book’s status is accessed or 
changes. Such functionality would in OO likely be implemented 
using the Observer design pattern [7] (not shown). Replacing the 
code pertaining to this mechanism with an AOP version of the 
pattern [12] is another example for such a modularization. 

Non-modularized CCCs consist of multiple related program 
elements. Their relationships can be either explicit through code-
level dependencies, such as method calls, subtyping, or contains-
relationships, or implicit, such as access to the same data files. 
These refactorings are generally composite refactorings, 
consisting of multiple aspect-aware OO refactorings and 
refactorings for AOP constructs. Other than mere examples1 for 
and experience reports (e.g., [19]) of CCC modularizations, two 
approaches – with differing tradeoffs – actively support them. 

2.3.1 Extract-to-Aspect Refactorings  
Recently Binkley et al. have developed a partially implemented, 
human-guided approach to support OO-to-AO refactorings [1], 
which focuses on the specific problem of extracting OO code 
fragments into aspects. Their approach relies on code bases in 
which the code segments pertaining to the implementation of the 
target CCC have been specially marked. Identifying and marking 

                                                                 
1 E.g., R. Laddad’s Aspect-oriented Refactoring Series. Online document 

at The Server Side, http://www.theserverside.com/, 2003. 

Table 1. Overview of AOP refactoring approaches. 

Approach / Technique Target Focus / Motivation Examples 

Aspect-Aware OO 
Refactorings 

OO constructs Ensure OO refactorings update 
references in AOP constructs properly 

Rename/Inline Method etc. 

Refactorings for AOP 
Constructs 

OO and AO constructs Provide new refactorings involving 
AOP constructs 

Replace Member with Intertype 
Declaration, Pull up Pointcut, etc. 

CCC Modularizations CCC implementations Provide refactorings to replace non-
modular CCC implementations with 
equivalent aspects 

[Replacement of any non-
modularized CCC implementation 
with an aspect] 

 
 

Figure 2. CCC modularization (schematic). A non-
modularized CCC implementation is replaced with  

an equivalent aspect. 



the CCC code is currently done manually, but the authors plan to 
employ automated concern mining approaches in future versions.  

Their tool supports an interactive aspect extraction workflow 
consisting of discovery (determines applicable refactorings for the 
marked code), transformation (applies enabling OO refactorings), 
selection (lets the developer select appropriate AOP refactorings), 
and finally refactoring, which transforms the code. The tool does 
not yet create aspect code, but the authors assure this poses no 
conceptual difficulties. 

The discovery phase uses TXL transformation rules to identify 
and suggest candidates for one of the five supported extraction 
refactorings (such as the Extract Beginning/End refactoring, 
which replaces a code block at the start/end of methods with 
appropriate before/after advice, respectively). A developer 
can review the suggestions or perform two different OO 
transformations (Statement Reordering and Extract Method) to 
potentially enable further suggestions. This process of discovery 
and selection is iterative, and meant to be performed until all 
marked code is refactored. 

In the library example, consider refactoring the synchronization 
concern: all code pertaining to acquiring and releasing locks when 
signing out / returning books would initially be marked by the 
developer. The the tool would then suggest applicable refactor-
rings (such as an Extract End refactoring for the call to 
releaseLock(..) in the signOut(..) method), and the 
developer can further perform statement reorderings so that 
Extract Beginning applies to the call to aquireLock(..), or 
move on to the next marked code segment. 

Binkley’s approach treats CCC modularizations a series of low-
level AOP refactorings that are restricted to the replacement of 
code fragments with pointcut and advice pairs; the overall 
structure of the CCC and the relationships between extracted code 
segments is not explicitly taken into account. The approach has 
very few requirements with respect to the structure of the concern 
to be extracted, and applies whether the marked code represents a 
single concern, multiple concerns, or just parts of one concern. On 
the other hand, the resulting aspect code has very little structure to 
it, as it consists of an accumulation of pointcut and advice pairs. If 
more meaningful aspect structures are desired, developers have to 
manually refactor the resulting aspect code, or utilize role-based 
refactoring, as outlined in the next section. 

2.3.2 Role-Based Refactorings 
Prior to Binkley’s work, role-based refactoring (RBR) was 
proposed as a technique to both capture and refactor CCCs [13]. 
RBR describes the refactoring based on an abstract model of the 
target CCC’s principal elements (called role elements) and their 
relationships. Role elements represent sets of program elements, 
such as classes, methods, and fields, which fulfill the same pur-
pose within a concern’s implementation. The idea behind RBR is 
that for all concrete program elements corresponding to a given 
role element, refactoring instructions are the same. RBR allows 
for a description of the refactoring specific to the target concern, 
yet independently from an actual implementation. Refactorings 
thusly take the concern structure into account and can further 
apply to multiple possible implementations of the same CCC.  
In the library example, the logging CCC would be described as 
consisting of two role methods (e.g., getLock(..), releaseLock(..)), 

and potentially their enclosing type CurrencyControl as a role 
type2. Refactoring instructions are then defined in terms of these 
elements, one of which would likely be: “apply the Replace 
Method Call With Pointcut and Advice” refactoring [10] to calls 
to the getLock(..) and releaseLock(..) role methods”. In order to 
apply the refactoring to a concrete system, like the library 
example, a mapping between role elements and program elements 
in the system is required. For example, by specifying that the 
concrete method aquireLock(Book) corresponds to the role 
method getLock(..), the refactoring instructions defined on 
getLock(..) can be applied to aquireLock(Book). 

Replacing crosscutting OO design pattern implementations with 
their AOP equivalents (see [12]) has been shown to be a useful 
application of this technology [13], but the approach is not limited 
to design pattern refactorings, and can be used to capture and 
refactor other, non-pattern concerns (such as logging) as well 
[10]. The RBR approach has been realized in a refactoring plugin 
for the Eclipse IDE. The structural model of the concern is further 
useful for determining the concern extent by comparing the ab-
stract concern structure to the structure of the actual program it is 
applied to, helping to identify the entire concern implementation. 

The concern model, while allowing for complex transformations, 
is also the main limitation of the approach. For example, if the 
actual implementation varies too much from the expected concern 
structure (as can be the case with design pattern variants, for 
example), the refactoring description or the target system may 
need to be adjusted before the RBR refactoring can be applied. In 
case that the concern structure and its principal elements are not 
known to the developer, the extract-to-aspect approach mentioned 
above is more suitable. 

3. CHALLENGES 
Even though the three groups of refactorings have different pur-
poses, there are many common technical challenges. This section 
outlines the challenges and potential ways to address them.  

3.1 Utilizing Synergy 
Some sub-problems are similar to all three areas of AOP 
refactoring research; all have to transform aspect-oriented 
programs. There is considerable overlap in the transformations 
used. For example, refactorings of crosscutting concerns generally 
consist of several smaller transformation steps, each of which is 
either an aspect-aware OO refactoring or a refactoring of an AOP 
construct.  But on a very fine-grain level, all refactorings consist 
of multiple transformation steps. Insights regarding these 
elementary refactorings should therefore be shared. 
Ideally, the wheel should not be re-invented. For example,  
Binkely’s Extract Beginning/End [1] and Monteiro’s Extract 
Fragment to Advice [20] perform basically the same function3. 
Similarly, Hannemann’s Move Object Member to Aspect [10] is 
equivalent to Monteiro’s Move Field/Method from Class to Inter-
Type [20] and Iwamoto’s Move Class Method/Field to Advice 

                                                                 
2 Names for role elements in a role-based refactoring description 

are not tied to an actual implementation, but are meant to 
abstract and describe principal functionality. 

3  Monteiro’s version appears more general, but given the 
limitation of AspectJ advice, the two are essentially the same. 



[14]. The above example illustrates that the same technique can 
be assigned multiple names, which can be confusing for AOP 
refactoring research. In other cases, refactorings have different 
granularity. For example, Monteiro’s Move Method from Class to 
Inter-Type and Replace Inter-Type Method with Aspect Method 
are combined in Hannemann’s Replace Object Method with 
Aspect Method. A refactoring catalog, like the one proposed by 
Monteiro [20], can help to systematically collect elementary AOP 
refactorings, and give researchers an idea what transformations 
have already been considered, thus avoiding duplicating work.  

3.2 Suggesting AOP Refactorings 
Part of the challenge of adopting AOP for an OO system is not 
only the transformation of non-modularized (latent) CCCs into 
aspects, but also their prior identification in the code. Since latent 
CCCs have scattered and tangled implementations, differentiating 
concern code from the rest of the system is a complex task. 
Combining refactoring approaches with support for identifying 
latent CCCs in a software system serves two purposes:  first, such 
support can provide suggestions to the developer on how to 
improve the structure of their code. This can be particularly 
helpful if the developer is not familiar enough with the code base 
to identify latent aspects by hand. Second, it can help to ensure 
that the concern is identified completely. This is important, since 
if the not all program elements comprising the concern are 
correctly identified, the resulting refactoring will be incomplete.  
Aspect mining approaches can provide a starting point for CCC 
modularizations and suggest refactoring candidates by identifying 
program elements pertaining to the implementation of non-
modularized crosscutting concerns. Such mining approaches are 
either based on textual patterns [24], patterns in execution traces 
[2], high fan-in methods [17], or duplicated code fragments [3]. A 
qualitative comparison of aspect mining techniques is provided by 
Ceccato [4]. Recent approaches utilize or plan to utilize aspect 
mining to identify candidate sets of code fragments for extraction 
to aspects [1, 10, 22]. RBR, for example, uses an algorithm to 
help map role elements to concrete program elements, which 
helps to determine the extent of a crosscutting implementation by 
comparing the structure of the target program and the abstract 
concern description.  
Both CCC modularization approaches mentioned above can 
conceivably be extended so that aspect mining techniques can be 
utilized in future versions.  In the case of Binkely’s approach, this 
is already part of the refactoring model [1]. The output of the 
aspect mining algorithm can be directly used to avoid manually 
making the code to be extracted. For the RBR case the infor-
mation can help choose a proper refactoring from the library of 
CCC modularizations and provide an initial role mapping.  

3.3 Preservation of Behavior and Intent 
For AOP refactorings there is occasionally a trade-off between 
behavior preservation and preservation of intent of the code. 
Consider, for instance, inlining the helper(Customer) 
method in the library system shown in Figure 1 (an aspect-aware 
OO refactoring). This transformation would require changes to 
the signOutBook(..) pointcut since the pointcut references 
that method. The intent of the pointcut is to capture all books 
being signed out. To preserve the original behavior, we could 
define the logging to happen before the next program statement is 
executed (i.e., before the call to releaseLock(..)). 

Alternatively, we could decide that the logging should happen at 
the last statement of the original, inlined method, where the 
counter gets incremented. Both approaches fail to capture the 
original intent of the pointcut and make it less readable and self-
explanatory. To maintain readability of our pointcut, we could 
instead specify that logging should take place after the 
isAvailable field is modified. This would require accepting a 
minor behavior variation, which, while being against the 
fundamental principle of refactoring, would keep the pointcut 
readable and the intent of the pointcut intact. Hanenberg shows 
how pointcuts can become very complex as part of an aspect-
aware behavior-preserving refactoring [9], which can be seen as a 
motivation for intent preservation (as opposed to behavior 
preservation). 

3.4 Aspect Generation 
When creating aspect code, refactoring tools should aim for 
generic and reusable implementations to facilitate the later 
evolution of the software system. Pointcuts in particularl can 
hinder evolution if not chosen properly. The potential problem of 
generating pointcuts automatically is already apparent in 
Hanenberg’s work [9]. Kellens and Gybels touch on the issues 
involved with the specific subproblem of generating pointcuts in 
the course of Extract Method Calls refactorings and propose a 
machine leaning approach to overcome them [15]. 

3.5 Program Analysis for AOP Refactorings 
Modifying an AOP system can have a number of undesired 
effects (for a partial list, see [11]), if the transformation not 
performed carefully. Program analyses can help identify the 
applicability of a refactoring, specifically whether a planned 
refactoring step has an adverse effect on the behavior or intent of 
the affected program. This applies both to low-level program 
transformations and (composite) CCC refactorings. Thankfully, 
AOP refactorings can utilize techniques for OO program analyses 
to a large extent.  

3.5.1 Resolving Generalizations 
Several AOP refactorings involve generalizations. For example, 
aspect-aware versions of the Extract Interface or Pull Up Member 
[5] refactorings, but generalizations can also be included in CCC 
refactorings like Extract Interface Implementation [10]. Tip et al. 
present an approach for the detection, analysis, and resolution of 
(object-oriented) generalization refactorings [23] based on type 
constraints, including updating variable declarations in the course 
such refactorings. Although their approach is designed for use in 
an object-oriented context and an extension to AOP might 
introduce new challenges (consider, for example, how declare 
parents statements might affect the type constraints used), it 
can provide the basis for an equivalent aspect-oriented analysis.  

3.5.2 Adapting AOP Systems to Use Generics 
Java 1.5 introduced generic types, and AspectJ 5 generic aspects. 
Adapting an existing system to make use of generics is a 
challenge in itself, and can involve all three kinds of AOP 
refactorings. For the analyses involved, however, the type-
constraint-based approach presented by Fuhrer [6] for OO 
transformations could be a useful basis. If Fuhrer’s work would 
be extended to account for AOP constructs, it can be utilized for 
all three kinds of AOP refactorings. 



3.5.3 Classifying Behavior Deviations 
An approach presented by Mens et al. formalizes behavior 
preserving program transformations as basic graph rewriting 
operations and allows to statically analyze the dependencies 
between these operations at a semantic and syntactic level [18]. 
Especially interesting about this approach is the differentiation 
between various kinds of behavior preservation. It is conceivable 
that by classifying these and other kinds of behavior preservation 
according to their impact on the rest of the system, a tool could 
estimate which refactorings are behavior-preserving, which might 
produce “acceptable” behavior deviations, and which might 
violate the intent of the implementation. 

3.5.4 Composing AOP Refactorings 
CCC refactorings consist of series of lower-level AOP 
refactorings. When taking into account multiple, consecutive 
program transformations, an analysis of their overall effect is 
difficult because of potential effects of the individual steps on 
each other. A promising analysis approach for this problem is 
provided by Kniesel and Koch [16]. Their generic formal model 
for the automatic composition of conditional program transforma-
tions is program independent and applies to arbitrary conditional 
program transformations (even non-behavior-preserving ones).  

4. CONCLUSION 
Current research in AOP refactoring focuses on three related 
problems: extending existing OO refactorings to properly handle 
references to the affected program elements in AOP constructs, 
developing new refactorings that explicitly target AOP constructs, 
and providing refactoring support for the transformation of non-
modular CCC implementations into aspects. The first two kinds 
represent low-level program transformations that can be 
employed similarly to traditional refactorings and serve as 
building blocks for composite AOP refactorings, such as CCC 
modularizations. 
Research in the area of AOP refactoring is very synergistic, and it 
is important that the overlap between the different refactoring 
techniques is not only recognized, but also utilized. Additionally, 
related work that has been done for object-oriented refactorings 
can be leveraged to a large extent, as outlined in this paper.  

5. ACKNOWLEDGMENTS 
Thanks to Hidehiko Masuhara for providing valuable comments 
on earlier drafts of this paper. This work was funded by a JSPS 
fellowship. 

6. REFERENCES 
[1] Binkley, D., Ceccato, M., Harman, M., Ricca, F., Tonella, P. 

Automated refactoring of object-oriented code into aspects. Proc. 
ICSM ’05, pp. 27–36. IEEE Computer Society, 2005. 

[2] Breu, S., Krinke, J. Aspect mining using event traces. Proc. ASE’04, 
pp. 310–315. IEEE Computer Society, 2004. 

[3] Bruntink, M., Deursen, A., Tourwe, T., van Engelen, R. An 
evaluation of clone detection techniques for identifying crosscutting 
concerns. Proc. ICSM ’04, pp 200–209. IEEE Comp. Society, 2004. 

[4] Ceccato, M., Marin, M., Mens, K., Moonen, L., Tonella, P., Tourwe, 
T. A qualitative comparison of three aspect mining techniques. Proc. 
IWPC ’05, pp. 13–22. IEEE Computer Society, 2005. 

[5] Fowler, M. Refactoring: Improving the Design of Existing code. 
Addison-Wesley, 1999. 

[6] Fuhrer, R., Tip, F., Kiezun, A., Dolby, J., Keller, M. Efficiently 
refactoring Java applications to use generic libraries. Proc. 
ECOOP’05, LNCS vol. 3586, pp. 71–96. Springer, 2005. 

[7] Gamma, E, Helm, R., Johnson, R., and Vlissides, J. Design Patterns: 
Elements of Reusable Object-Oriented Software. Addison-Wesley, 
1995. 

[8] Griswold, W. Program Restructuring as an Aid to Software 
Maintenance. PhD thesis, University of Washington, Seattle, WA, 
USA, 1991. 

[9] Hanenberg, S., Oberschulte, C., Unland, R. Refactoring of aspect-
oriented software. NetObject Days ’03, Erfurt, Germany, 2003. 

[10] Hannemann, J. Role-based refactoring of crosscutting concerns. PhD 
thesis, University of British Columbia, BC, Canada, 2005. 
http://www.cs.ubc.ca/~jan/ 

[11] Hannemann, J., Chitchyan, R., Rashid, A. Report on the WS on 
analysis of aspect-oriented software. ECOOP’03 WS Reader, LNCS 
vol. 3013, pp. 154–164. Springer, 2004. 

[12] Hannemann, J., Kiczales, G. Design pattern implementation in Java 
and AspectJ. Proc. OOPSLA ’02, pp. 161–173. ACM Press, 2002. 

[13] Hannemann, J., Murphy, G., Kiczales, G. Role-based refactoring of 
crosscutting concerns. Proc. AOSD ’05, pp. 135–146. ACM Press, 
2005. 

[14] Iwamoto M., Zhao, J. Refactoring aspect-oriented programs. WS on 
AOSD Modeling With UML at UML ’03, 2003. 

[15] Kellens, A., Gybels, K. Issues in Performing and Automating the 
"Extract Method Calls" Refactoring. WS on Software Engineering 
Properties of Languages and Aspect Techn. at AOSD ’05, 2005 

[16] Kniesel, G., Koch, H. Static composition of refactorings. Science of 
Computer Programming, 52:9–51, 2004. 

[17] Marin, M., van Deursen, A., Moonen, L. Identifying aspects using 
fan-in analysis. Proc. WCRE ’04, pp. 132–141. IEEE Computer 
Society, 2004. 

[18] Mens, T., Demeyer, S., Janssens, D. Formalising behaviour 
preserving program transformations. Proc. ICGT ’02, LNCS vol. 
2505, pp. 286–301. Springer, 2002. 

[19] Monteiro, M. Fernandes, J. Refactoring a Java Code Base to 
AspectJ: An Illustrative Example. Proc. ICSM ’05, pp. 17-26, IEEE 
Computer Society, 2005 

[20] Monteiro, M. and Fernandes, J. Towards a catalog of aspect-oriented 
refactorings. Proc. AOSD ’05, pp. 111–122. ACM Press, 2005. 

[21] Opdyke, W., Refactoring Object-Oriented Frameworks. PhD thesis, 
University of Illinois at Urbana-Champaign, IL, USA, 1992. 

[22] Shepherd, D. Pollock, L. Ophir: A framework for automatic mining 
and refactoring of aspects. TR 2004-03, Dept. of Computer and 
Information Sciences, Univ. of Delaware, DE, USA, 2003. 

[23] Tip, F., Kiezun, A., Bäumer, D. Refactoring for generalization using 
type constraints. Proc. OOPSLA’03, pp. 13–26. ACM Press, 2003. 

[24] Tourwe, T., Mens, K. Mining aspectual views using formal concept 
analysis. Proc. WS on Source Code Analysis and Manipulation 
(SCAM ’04), pp 97–106. IEEE Computer Society, 2004. 

[25] Wloka, J. Refactoring in the presence of aspects. WS for PhD 
Students in Object-Oriented Systems. In ECOOP ’03 WS Reader, 
LNCS vol. 3013, pp. 50–61. Springer, 2003

 



Reasoning about assessing and improving the candidate-seed quality of a
generative aspect mining technique

Marius Marin
Software Evolution Research Lab
Delft University of Technology

The Netherlands
A.M.Marin@ewi.tudelft.nl

Abstract
We propose a new measure for assessing generative aspect
mining techniques: the candidate-seed quality. We show the
relevance of this measure and investigate how it can be im-
proved for fan-in analysis, a generative mining technique that
we have proposed in a previous work. The investigation re-
sults in a number of properties aimed at improving the quality
of the candidate-seeds reported by fan-in analysis.

1. Introduction

Aspect mining is a research area aimed at developing tech-
niques for automatic identification of crosscutting concerns
in existing code. A number of approaches to aspect min-
ing provide support for identifying and investigating the code
pertaining to a crosscutting concern starting from a seed: a
program element (method, interface or group of statements)
that is part of the crosscutting concern implementation. We
describe these approaches as explorative or query-based ap-
proaches.

A second category of aspect mining approaches focus
on identifying crosscutting concern seeds by looking in the
source code for symptoms of crosscutting behavior, like tan-
gling and scattering. We group these techniques in the gener-
ative category.

The mining techniques, and the generative ones in particu-
lar, face serious challenges in describing, comparing and com-
bining their results due to (1) the lack of a clear definition
of the crosscutting concerns, and (2) their focus on generic
symptoms (tangling and scattering) that can occur in various
concerns, of different level of granularity. This poses further
questions about how the results of a combination of aspect
mining techniques can be assessed, how to show improvement
of results, and what measures are relevant for assessing these
results and a mining technique in general.

To address these problems, we have proposed a classi-
fication system of the crosscutting concerns based on sorts
(atomic, generic crosscutting concerns) and a preliminary set
of sorts [4, 5]. The crosscutting concern sorts are described
by their specific symptoms (i.e., implementation idiom in a
non-aspect-oriented language), and a (desired) aspect mecha-

nism to refactor a sort’s concrete instances to an aspect-based
solution. Sorts are relevant for aspect mining because they
associate symptoms to generic concerns and are able to pro-
vide a focus for mining techniques and criteria for comparing
their findings. Moreover, they are by definition atomic ele-
ments, and hence able to ensure a consistent granularity level
for comparison.

In this work we further consider how the (generative) as-
pect mining techniques can be assessed, by proposing and dis-
cussing a new measure: the (candidate-)seed quality is an in-
dicator of the human effort involved for analyzing the results
of an aspect mining technique. We look in more detail at this
measure and how it can be improved for a specific mining
technique, namely fan-in analysis. Our investigation results
in a number of properties to be considered for improving the
(candidate-)seed quality for this technique.

2. Assessing generative mining tech-
niques

The results of a generative aspect mining technique are
candidate-seeds: program elements that might pertain to
a crosscutting concern implementation, and which can be
marked as either seeds or false positives by an human ana-
lyzer examining the output of the technique. The decision of
the human analyzer is typically supported by a number of el-
ements provided by the mining technique for reasoning about
its output: grouping of results by some criteria (e.g., nam-
ing), (structural) relationships between properties describing
the results (e.g., related method calls), etc.

For simplification, we will refer to candidate-seeds in the
following sections simply as candidates. We will also use
seed quality if we discuss about candidates that have been
marked as seeds.

A serious limitation of the (generative) aspect mining tech-
niques consists of lacking a clear definition of the crosscutting
concerns and thus of those concerns they aim to identify. As
a result, most of the techniques focus on generic symptoms
of crosscutting behavior, like tangling and scattering. This
makes the comparison and description of their results diffi-
cult:



• How is the reported candidate (program element) related
to a crosscutting concern, and to which concern?

• How relevant is this relation for the mining technique: Is
this an expected result or just an accidental match?

• Are the reported candidates relevant for the crosscut-
ting nature of the associated concern, or just part of its
broader, more complex implementation?

• Is the technique able to find similar concerns and is it
able to easily distinguish between concerns that are not
similar?

To answer these questions we believe that the focus of
a mining technique should not be (only) on general symp-
toms but (also) on expected results (and specific symptoms):
generic crosscutting concerns (sorts) that the technique ex-
pects to identify. This would allow for a clear assessment of
the results (whether they are a relevant element of an expected
sort instance) and the technique.

2.1. Sorts of crosscutting concerns

A crosscutting concern sort is a generic, atomic crosscutting
concern described by a number of properties common to all
its (concrete) instances like: (1) a general intent, (2) an im-
plementation idiom in a non-aspect-oriented language (i.e., a
specific symptom), (3) and a (desired) aspect mechanism to
support the modularization of the sort’s concrete instances.

Table 1 shows several sorts from a longer list of proposed
canonical sorts [4]. These are described by the three ele-
ments defining them as well as several examples of concrete
instances.

Complex examples of crosscuttingness described in liter-
ature, like design patterns[2], are compositions of sort in-
stances: an Observer pattern implementation, for example, in-
volves instances of the role superimposition sort for the two
defined roles (Subject and Observer), as well as instances of
consistent behavior for the consistent actions of listeners no-
tification and registration.

2.2. Defining “Target” crosscutting concern
sorts for fan-in analysis

Fan-in analysis generates candidates based on the fan-in met-
ric of a method: if a method is called from many, scattered
places, the method is considered a potential seed. Hence fan-
in is essentially a metric for the scattering symptom of the
crosscutting concerns.

To focus our analysis, we define the targeted crosscutting
concerns of fan-in analysis as instances of the Consistent be-
havior sort. The sort is shown in Table 1; it is described by
an action and a number of (method) elements that consis-
tently execute the action as part of their complete function-
ality. These elements, which are crosscut by the invocation of
the specific action, are part of a context that can be formalized
by a pointcut definition.

Concrete instances of the sort comprise credentials checks
as part of the authorization mechanism, or logging of excep-
tion throwing events in a system.

2.3. (Candidate-)seed quality

We propose the (candidate-)seed quality as a measure for as-
sessing the results of an aspect mining technique. The mea-
sure is defined as the percentage of elements in the (candidate-
)seed that belong to the implementation of the crosscutting
concern associated with the candidate, if any. The percent-
age of these elements gives a measure of the effort involved in
reasoning and deciding about a candidate-seed.

In order to measure the (candidate-)seed quality, a tech-
nique has to describe the way one should reason about a can-
didate (i.e., the output of the technique); that is, we need to
know what are the elements describing the candidate-seed and
what is their relation with the targeted concerns.

Returning to the fan-in analysis example, the results of the
analysis are described by the method with a high fan-in value
and the callers of this method. However, not all the calls to the
method with a high fan-in value are necessarily crosscutting,
or part of a (same) Consistent behavior instance. A fan-in can-
didate for Consistent behavior is labeled as seed if its callers
are part of a relationship (i.e., context definition) that can be
formalized in a pointcut expression. The call reported by the
technique crosscuts the elements in this context.

3. Candidate-seed quality for fan-in
analysis

We discuss the quality measure for the fan-in technique and
investigate what attributes could be relevant for improving it.
The discussion uses for exemplification a number of selected
results from the JHOTDRAW case-study.

JHOTDRAW 1 is an editor for 2D graphics developed as an
open-source project and a show-case for how to apply design
patterns [1]. We used the application as a case-study for fan-
in analysis in a previous work, in which we also describe the
concerns associated with the results of the analysis [3].

3.1. Seed quality for a number of concerns in
JHOTDRAW

The selected examples from JHOTDRAW (typically) involve
several crosscutting elements (i.e., sorts instances), like, for
instance, Role superimposition and Consistent behavior in-
stances for the Observer pattern implementation. We look at
how the elements pertaining to Consistent behavior instances
in these complex examples are identifiable by fan-in analysis,
and what is the quality of the seeds for these instances.

1www.jhotdraw.org



Sort Intent Object-oriented Idiom Aspect mechanism Instances

Consistent Behavior Implement consistent behavior as a
controlled step in the execution of a
number of methods that can be cap-
tured by a natural pointcut.

Method calls to the desired func-
tionality

Pointcut and advice Log exception throwing events in
a system; Wrap/Translate business
service exceptions [3]; Notify and
register listeners; Authorization;

Contract enforcement Comply to design by contract rules,
e.g., pre- and post-conditions checking

Method calls to method imple-
menting the condition checking

Pointcut and advice Contract enforcements specific to
design by contract

Redirection Layer Define an interfacing layer to an object
(add functionality or change the con-
text) and forward the calls to the object

Declare a routing layer (decora-
tor/adapter), and have methods in
this layer to forward the calls

Pointcut and around
advice

Decorator pattern, Adapter pat-
tern [2]; Local calls redirection to
remote instances (RMI) [6];

Role superimposition Implement a specific secondary role or
responsibility

Interface implementation, or di-
rect implementation of methods
that could be abstracted into an
interface definition

Introduction mecha-
nisms

Roles specific to design patterns:
Observer, Command, Visitor, etc.;
Persistence [3]

Table 1. Sorts of crosscuttingness.

Seed Composite concern Targeted sort in-
stance

Fan-in value

UndoableAdapter.undo() Undo YES 24
UndoableAdapter.UndoableAdapter(DrawingView) Undo YES 25
Undoable.isRedoable() Undo YES 24

Figure.addFigureChangeListener(FigureChangeListener) Figure Change Observer YES 11
Figure.changed() Figure Change Observer YES 36
Figure.listener() Figure Change Observer NO 21
Figure.removeFigureChangeListener(FigureChangeListener) Figure Change Observer YES 10
Figure.willChange() Figure Change Observer YES 25

Table 2. Selected fan-in seeds from JHOTDRAW

The selection of the concerns is aimed at showing various
relations between the elements (callers) provided by the tech-
nique for reasoning about its results.

3.1.1. Undo

The Undo concern involves around 30 classes like commands,
tools, and (figure) handles elements. The changes spawned by
the execution of the activities associated with these elements
can be undone by specialized, dedicated UndoActivites. The
UndoActivity classes are nested within their associated activi-
ties and implement the Undoable interface.

Fan-in analysis reports three seeds for the Undo concern,
all of them part of instances of the targeted sort(s). The seeds
are shown in Table 2. The first seed corresponds to a method
implementing undo functionality and which is called by 24
methods. Most of the callers (22) are implementations of the
undo method in the nested (UndoActivity) classes. The 22
callers follow the same idiom to invoke the reported seed: the
invocation is the first call in the caller to check if the spe-
cific activity can be undone. The other two callers (Undo-
Command.execute and UndoRedoActivity.redo) do not follow
this idiom and the call is not part of a consistent behavior like
for the other callers.

In order to decide about this candidate, we have to be able
to observe specific symptoms of consistent behavior, like the
structural relation between the first 22 callers to define a con-
text, or the similar positions of the calls. The other two callers,
on the other hand, make the analysis of the candidate harder,

because they have to be investigated although they turn out
not to be part of the consistent behavior concern. The relevant
elements in the analysis of the callers are the first 22 callers
and hence the quality is 22/24 (92%).

Similar, the quality for the other two candidates is
22/25(88%) and 20/24(83%), respectively.

3.1.2. Figure Change Observer

The Figure elements in JHOTDRAW participate in an imple-
mentation of the Observer pattern (Figure Change) by imple-
menting the Subject role. A number of elements listen for
changes in Figures by implementing the FigureChangeLis-
tener interface. The concrete figures implement or inherit
the methods specific to the Subject role for allowing (de-
)registration of listeners, and notification of changes in their
state.

The (de-)registration action is a consistent behavior for the
listeners of figure changes. This is implemented as a call to
the method that adds/removes listener objects for a Figure:
Figure.add-/remove-FigureChangeListener.

The notification of changes occurred in the Figures’ state is
also a consistent behavior applying to elements changing this
state. The concern is implemented as a call to the notification
method: Figure.willChange, before making the changes, and
Figure.changed, after the changes were made.

The consistent behavior for these instances of the sort is
due to the relation between the callers and the callee in the
context of the pattern: the listeners interested in changes have



Seed Orig. Quality Same hierarchy(same
method)

Role relation Same Call Po-
sition

UndoableAdapter.undo() 22/24 = 92% 22/23(22/22) = 96% (100%) 22/23 = 96% 22/22 = 100%
UndoableAdapter.UndoableAdapter(DrawingView) 22/25 = 88% 22/22(22/22) = 100%(100%) 22/22 = 100% 22/22 = 100%
Undoable.isRedoable() 20/24 = 83% 19/21(18/19) = 90%(95%) 19/21 = 90% 18/21 = 86%

Figure.addFigureChangeListener(FigureChangeListener) 11/11 = 100% Not relevant 10/10 = 100% Not relevant
Figure.changed() 36/36 = 100% Not relevant Not relevant 33/33 = 100%
Figure.listener() - - - -
Figure.removeFigureChangeListener(FigureChangeListener) 10/10 = 100% Not relevant 9/9 = 100% Not relevant
Figure.willChange() 25/25 = 100% Not relevant Not relevant 20/20 = 100%

Table 3. (Candidate-)seeds analysis for selected concerns

to register in order to be notified, and the actions changing the
state of the Subject object have to notify about this change.
Hence all the callers of the reported seeds are relevant be-
cause the calls occur due to the participation into the pattern
implementation. This participation is a secondary concern for
the callers. Moreover, the concern implemented by the callees
(the reported high fan-in methods) implies calls only from par-
ticipants in the pattern, in the context of the pattern. The qual-
ity of these seeds is thus 100%.

Fan-in analysis reports several implementations of the de-
scribed candidates. Table 2 shows the results omitting the
multiple implementations that occur due to polymorphism.

The last reported method, Figure.listener, provides access
to the listener reference in the class implementing the Sub-
ject role. The method is part of this role, however, it does
not belong to a consistent behavior instance in the analyzed
implementation of the Observer pattern.

3.2. Improving the quality of the fan-in candi-
dates

To improve the quality of the fan-in candidates, we propose a
number of properties to be considered for analyzing the callers
of a candidate. These properties show possible relations be-
tween the callers of a method with a high fan-in, and are aimed
at reducing the percentage of irrelevant elements describing a
candidate, and hence reduce the effort of reasoning about the
candidate.

The list of proposed properties comprises:

• structural relations between the callers. These relations
include:

– same hierarchy: The methods (callers) are defined
by the same interface (/super class). As a partic-
ular case, the callers could be implementations of
the same method. The (callers of the) seed for the
Undo concern previously discussed falls into this
category.

– common roles: A method is associated with all the
roles implemented by its class, so that the methods
can share common roles. A role is typically defined
by an interface. Methods that belong to the same
hierarchy will also share the role that defines the

hierarchy: the callers of the discussed Undo seed
are declared by the Undoable interface, which de-
fines the main role of the classes implementing the
concrete callers of the seed. Similarly, the callers
of the registration method in the previous Observer
example are associated with the FigureChangeLis-
tener role. The main role for these callers is, how-
ever, defined by other interfaces, like the Figure in-
terface.

– same class: The callers belong to the same class, as
for the case of a class level contract.

– etc.

• consistent call position: The position of the call, relative
to the caller’s body, is consistent for the callers of the
reported method with a high fan-in value. Such a case
has been shown for the seeds discussed in Section 3.1.

• naming-based relations: The callers have similar names.
The naming-based and the structural relations can be ex-
pressed by an AspectJ-like pointcut definition, while the
call position could be an indication of the advice type
(before/after).

• relations based on the structure of the call: similar or,
sometimes, identical call sites. For example, Exception
wrapping concerns typically consist of catching a spe-
cific type of exception and re-throwing an exception of
a different type [3]. Another example consists of calls
that occur together, like the notification of changes in the
previously discussed instance of the Observer pattern for
Figure changes: typically, a method changing the state
of a Figure object would call willChange before the
modifications, and then the changed method after com-
pleting the modifications.

• “intentional” relations between callers, such as modifiers
of Subject objects in the context of the Observer pattern.
The relations between the callers are due to their partici-
pation in the pattern implementation.

3.3. Results after extending fan-in with a
callers analysis

Table 3 shows the quality of the fan-in seeds after analyzing
the callers based on some of the proposed properties.



Figure 1. FINT support for callers-analysis

The mined instances that are part of the Undo concern are
representative for many (/most) of the concerns identified us-
ing fan-in analysis. In most cases, the quality of the seeds is
improved by analyzing the proposed properties.

Although the original quality of the seeds for the Observer
implementation is 100%, the analysis of the callers based on
the proposed properties is meaningful due to the complex re-
lation between the callers that has to be observed. Because
the relation is intentional, it is expected that the investigated,
mainly structural, properties to be irrelevant, offering little or
no insight into the intentional relation. However, the struc-
tural properties can provide insight into the specific consistent
behavior instances: Most of the callers (10 out of 11) of the
registration method belong to classes that implement the lis-
tener role and that register themselves as listeners of a Figure
object. The common role property groups and relates the 10
methods by this common, relevant concern.

A similar grouping and insight into the callers’ relation can
be obtained by considering the call position property for the
callers of the notification method.

The tool support for fan-in analysis, FINT 2, allows for
improving the quality of the results of the analysis. In the
present version (v.0.5b), the user can display and investigate
(1) relations between the callers of a method and their declar-
ing types (i.e., common roles) or implementing classes, (2)
relations between the callers and the position of the call, as
well as (3) relations between the callers and all their callees.

Figure 1 shows a part of the tool support in FINT for the
analysis of the callers. The user can investigate the relations
between the callers of a method by their declaring interfaces:
callers declared by the same interface are shown in a same
color. Another analysis allows to look at the relations between
the callers and the position of the call to the method with the
high fan-in value. This position can be an absolute value or

2http://swerl.tudelft.nl/bin/view/AMR/FINT

relative to the caller’s body.

4. Discussion and conclusions

To be able to assess aspect mining techniques, we need objec-
tive measures. In this work, we proposed a quality measure
aimed at assessing the relevance of the results of an aspect
mining technique and the effort required to analyze these re-
sults. We showed how this measure applies to fan-in analysis,
and identified a number of properties to improve the quality
of the results of this mining technique.

The proposed analysis of the callers to reason about a fan-
in candidate also shows the potential relations between the
elements describing a candidate. Such relations are impor-
tant for defining the context of the concern through a pointcut
construct.

The situations described for the Undo concern, where the
callers are related by structural relationships, are common to
many of the concerns discovered by fan-in analysis. These in-
clude Consistent behavior and Contract enforcement instances
in JHOTDRAW, as well as concerns in other analyzed case-
studies, like PETSTORE and TOMCAT [3]. The intentional
relationship, on the other hand, are typically harder to de-
tect. The intention of a developer could be captured by an-
notations in the code, which to be analyzed by aspect mining
techniques.

Acknowledgments The author would like to thank Arie van
Deursen (TU Delft) for his reviews and feedback.

References
[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Ele-

ments of Reusable Object-Oriented Software. Addison-Wesley, Reading,
MA, 1994.

[2] J. Hannemann and G. Kiczales. Design Pattern Implementation in Java
and AspectJ. In Proceedings of the 17th Annual ACM conference on
Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), pages 161–173, Boston, MA, 2002. ACM Press.

[3] M. Marin, A. van Deursen, and L. Moonen. Identifying Aspects using
Fan-In Analysis. In Proceedings of the 11th Working Conference on
Reverse Engineering (WCRE2004)., pages 132–141, Los Alamitos, CA,
2004. IEEE Computer Society Press.

[4] M. Marin, L.Moonen, and A. van Deursen. A classification of cross-
cutting concerns. In Proceedings International Conference on Software
Maintenance (ICSM 2005). IEEE Computer Society, 2005.

[5] M. Marin, L.Moonen, and A. van Deursen. An approach to aspect refac-
toring based on crosscutting concern types. In Int. Workshop on the Mod-
eling and Analysis of Concerns in Software, ICSE. Software Engineering
Notes (volume 30, issue 4), 2005.

[6] S. Soares, E. Laureano, and P. Borba. Implementing Distribution and
Persistence Aspects with AspectJ. In Proc. 17th Conf. on Object-oriented
programming, systems, languages, and applications. ACM Press, 2002.



On Using Metrics in the Evaluation of Aspect-Oriented
Programs and Designs

Katharina Mehner∗
Software Engineering Group
Technical University of Berlin

Germany

mehner@cs.tu-berlin.de

ABSTRACT
Metrics are an important technique in quantifying desirable
software and software development characteristics of aspect-
oriented software development (AOSD). Currently, metrics
proposed for AOSD have rarely been validated. We give an
overview on the necessary steps to validate definitions and
applications of metrics. We also compare definitions for pro-
posed metrics.

1. INTRODUCTION
In order to study the impact of aspect-oriented software de-
velopment (AOSD) on evolution one has to study its impact
on software characteristics such as evolvability, maintain-
ability, understandability, and quality. To evaluate these
characteristics not only qualitative but also quantitative tech-
niques are of interest.

The key question is how we can quantify when applying
AOSD is beneficial. Metrics are an important techique in
quantifying software and software development characteris-
tics. However, metrics have to be used knowledgeably and
carefully. Theoretical and empirical validation of metrics
and of their relation to software attributes is a cumbersome
and long process. It is of paramount importance that we val-
idate the utility of metrics we use in order to enable others
to use them, too. Until now, the metrics used and proposed
for AOSD are rarely validated. It is not sufficient to prove
their definitions correct but also their usefulness to describe
software characteristics has to be validated. In most cases,
this can only be achieved through controlled experiments
or through analysing large amounts of data, e.g., from case
studies. In both cases, statistical evaluations are a key tech-
nique to examine hypotheses.

In the remainder of this position paper, we first make our
problem statement more concrete. We give an overview on
the underlying theory of metrics and their validation. We fo-
cus on product metrics but much of what will be said equally
applies to process, resource, or project metrics. Here, we
cannot provide a thorough theoretical discussion but we
want to raise the level of awareness concerning the issues
involved in using metrics. We then discuss and compare
some concrete metric examples, which are often influenced
by OO metrics. We conclude by calling for more empirical
research in relation with metrics in AOSD.
∗The author has been supported by the German Fed-
eral Ministry for Education and Research under the grant
01ISC04A (Project TOPPrax).

2. PROBLEM STATEMENT
The benefit of AOSD is often studied in two ways. One
is the comparison with an OO software, which is already
existing or which sometimes is developed in paralled. The
other one is the independent evaluation of AOSD, often by
assessing evolution scenarios.

In both cases, the evaluation can employ design and pro-
gram metrics to support and to quantify their observations.
It has already noted by Chidamber and Kemerer that be-
cause of the abstractions introduced in OO, one can distin-
guish between design and code metrics [4]. The benefit of
this distinction is that design metrics, although applicable
also to code, can already be applied to the design when the
coding has not yet begun. Apart from the difference, the
validation requirements are the same. In the following, we
discuss design and program metrics together. As already
mentioned in the introduction, validation is twofold.

The theoretical or internal validation addresses the proper
definition of a metric and guarantees that a metric fulfils
generally accepted (axiomatic) properties (for an overview
see [5]). Often, metrics are defined using the representa-
tional theory of measurement. In this theory, measurement
is regarded as ”the correlation of numbers with entities that
are not numbers”. For an empirical attribute, there should
be an empirical observation of a relation in order to consider
defining a metric. Then one can try to establish a map-
ping to a numerical presentation which preserves empirical
relations. To ensure preservation of relations and proper
definition a number of axioms or properties have to be ful-
filled [5]. Using this method, it can be avoided that for a
metric we desperately seek an empirical counterpart. There
exist competing and sometimes contradictory sets of axioms
or properties for validating metric definitions, for instance
the axioms by Weyuker [12] or the validation framework by
Kitchenham et al. [8].

The empirical or external validation of a metric addresses
its utility in describing desirable properties or predicting de-
sirable properties of software (for an overview see [5]). For a
metric to be useful in assessing a software product or process
quality, i.e., a characteristic, we need a validation that shows
that this metric has a de facto influence on a characteristic
or that it serves in predicting characteristics of a process.
Such a cause-effect relation can not be validated by merely
statistically proving a correlation, but a correlation can be
an indicator as to what should be examined. Instead, an ex-

1



periment with a falsifiable hypothesis has to be carried out,
or data gathered from case studies or real projects have to
be evaluated. Empirical validation thus can be based either
on controlled experiments or on case studies which produce
enough data or data collected from real projects. The use
of statistical tests is helpful to discover correlations between
variables of controlled experiment [8, 5, 3].

Empirical validation is also required when a quality model
is used to define relationships between metrics and software
characteristics. For instance, the Goal-Question-Metric (GQM)
model is used to identify what must be measured in order
to answer the question from which the goal of an empirical
study can be determined [2]. This model helps to define
and select appropriate metrics. However, especially the re-
lation of the questions to the metrics has to be empirically
validated for each new model derived.

Given these steps for validating metrics, the state-of-the-
art in metrics for AOSD can be assessed. Metrics related
to desirable design and program characteristics have been
proposed amongst others by Lopes [9], Zhao [14], Garcia
[10], and Ceccato [11]. Individual examples therof will be
shortly discussed in Sect. 3. The theoretical validation has
only been addressed in some of these publications. Empiri-
cal validation is even harder to achieve and has been rarely
addressed. The research by [10] has included an empirical
validation which indicates the usefulness of the proposed
metrics through two case studies. This is a first step to-
wards an empirical validation of the metrics. The authors
acknowledge that this does not yet provide a complete vali-
dation. It would be desirable to accomplish their studies by
planned, controlled experiments to validate their hypothe-
ses. Note that controlled experiments in AOSD have been
used to gather qualitative data as in [7, 1].

Some of these approaches use metrics in the comparison of
AO and OO design. Here, the challenge is to validate that
metrics which have been extended from OO to AO per-
mit the direct comparison. Without empirical validation
it is particularly dangerous to interpret values of metrics
as better or worse than other values with respect to soft-
ware characteristics. One has to be careful with taking such
statements for granted.

3. METRICS FOR AOSD
The examples discussed in the following present by no means
a complete overview. We have selected them to show that
different ideas exist on how to define AOSD metrics.

For defining AOSD metrics it is obvious to build on exist-
ing general software metrics and especially on existing OO
metrics [4]. Thus, it is a key issue, how to extend metrics
and how to define corresponding metrics besides defining
completely new metrics. Most existing metrics cannot be
applied straightforwardly to aspect-oriented software, since
AOSD introduces new abstractions and new composition
techniques. Consequently, there are new kinds of coupling
and cohesion. Not only new metrics but also extended met-
rics to cover a new programming language have to be vali-
dated.

Some characteristics and attributes have been widely ac-

knowledged as playing a key role in the evolability of soft-
ware, both for OO and AO, such as size, coupling, cohe-
sion and separation of concern, and because they are obvi-
ously related to aspect-oriented modularisation of crosscut-
ting concerns. We can observe two approaches with respect
to defining metrics for these characteristics, extending met-
rics and defining new metrics. Here we shortly sketch the
different ideas behind the two approaches.

Separation of concern metrics
Separation of concern metrics are new ones. In [9] the first
separation of concern metrics were proposed. In [10, 6] these
metrics have been refined. Until now, these metrics requires
manually identifying concerns.

Coupling metrics
Coupling is interesting because it is treated both ways. Ini-
tially, the coupling-between-objects metric [4] is defined as
counting all classes (once) to which a class is coupled. This
is in turn defined by counting the classes of the objects on
which a given object/class ”acts upon”. This refers to ac-
cess or method calls on instance variables, local variables or
formal parameters. Although the metric relies on different
kinds of variables or parameter, essentially the same kind of
access is counted, i.e., that an instance of another class is
accessed via a reference and potentially via its attributes or
methods. Also note that in the OO context, high numbers
of coupling are considered as undesirable.

In [13] no new metrics are defined but the preservation of the
existing definitions is assumed. They focus on the effects as-
pects typically have on these metrics, e.g., they discuss that
OO coupling may be decreased. Thus, their work implies
the necessity to be able to understand the OO part on its
own, e.g. by preserving OO metrics.

In [10, 6], this original metric is extended to cover also cou-
pling between aspects. This means that the metric still
counts the same kinds of coupling as before, i.e., coupling
to classes used in declarations of attributes, parameters and
local variables, but now includes declarations that belong to
aspects.

Other authors [11] have decided to provide separate metrics
for the new kinds of couplings found in AO. The metric can
be used as an indicator for different effects of the different
kinds of coupling in a validation experiment. Although the
different metrics mentioned so far, coupling for OO and cou-
pling for AO, are all related to coupling, it should be avoided
to compare them directly as they describe coupling related
to two different paradigms.

Cohesion metrics
Cohesion has been addressed in both ways, too. [14] specif-
ically looks at a new way for defining cohesion. Others ex-
tend existing metrics such as lack-of-cohesion in methods
straightforwardly to advice [10].

Size metrics
Size metrics are often critized as being dependent on pro-
gramming styles and being too simple. Size itself has an
empirical counterpart in the physical length though there

2



are numerous ways to define it, e.g., LOC. From this view-
point it might be admissable to count a pointcut as a code
line. In [10, 6], experience with an extended LOC metric
has been gathered.

Size metrics can point to the fact that duplicated code is
avoided. The question is, if LOC is a good indicator for
maintainability and reusability when comparing AO with
OO. Avoiding duplicate code might be achieved by writing
difficult-to-maintain pointcuts.

4. CONCLUSION
This paper gave a short overview on the necessary steps
for validating metrics that are to be used in an evaluation
process. These steps are well-known in software engineering.
The current state-of-the-art in AOSD is that one has started
to work on the definition of apparently useful metrics. Now
it is time to start with completing this research by providing
empirical results. This will enable a larger to community to
use AOSD metrics and more importantly, understand the
benefits of AOSD. Thus, we have to strive for planning and
carrying out the corresponding experiments. The results
may also give hints as to for which purposes metrics exten-
sions are useful and for which purposes separate metrics are
useful.

5. REFERENCES
[1] E. L. A. Baniassad, G. C. Murphy, C. Schwanninger,

and M. Kircher. Managing crosscutting concerns
during software evolution tasks: An inquisitive study.
In 1st International Conference on Aspect-Oriented
Software Development (AOSD), pages pp. 120–126,
2002.

[2] Victor R. Basili. Software Modeling and
Measurement: The Goal Question MetricParadigm. In
Computer Science Technical Report Series,
CS-TR-2956(UMIACS-TR-92-96), University of
Maryland, 1992.

[3] Coral Calero, Mario Piattini, and Marcela Genero.
Method for obtaining correct metrics. In ICEIS (2),
pages 779–784, 2001.

[4] Shyam R. Chidamber and Chris F. Kemerer. A
metrics suite for object oriented design. IEEE Trans.
Software Eng., 20(6):476–493, 1994.

[5] Norman Fenton and Shari Pfleeger. Software Metrics:
A Rigorous and Practical Approach (2nd edition).
1997.

[6] A. Garcia, C. Sant’Anna, E. Figueiredo, U. Kulesza,
C. Lucena, and A. v. Staa. Modularizing design
patterns with aspects: A quantitative study. In
International Conference on Aspect-Oriented Software
Development (AOSD), pages pp. 3–14, 2005.

[7] Mik Kersten and Gail C. Murphy. Atlas: A case study
in building a web-based learning environment using
aspect-oriented programming. In OOPSLA99, pages
340–352, 1999.

[8] Barbara Kitchenham, Shari Lawrence Pfleeger, and
Norman E. Fenton. Towards a framework for software

measurement validation. IEEE Trans. Software Eng.,
21(12):929–943, 1995.

[9] Christa V. Lopes. D: A Language Framework for
Distributed Programming. PhD thesis, College of
Computer Science, Northeastern University, Nov.
1997.

[10] Claudio Sant’Anna, Alessandro Garcia, Christina
Chavez, Carlos Lucena, and Arndt von Staa. On the
Reuse and Maintenance of Aspect-Oriented Software:
An Assessment Framework. In XVII Brazilian
Symposium on Software Engineering, 2003.

[11] Paolo Tonella and Mariano Ceccato. Aspect mining
through the formal concept analysis of execution
traces. In WCRE, pages 112–121. IEEE Computer
Society, 2004.

[12] Elaine J. Weyuker. Evaluating software complexity
measures. IEEE Trans. Software Eng.,
14(9):1357–1365, 1988.

[13] A. Zakaria and H. Hosny. Metrics for Aspect-Oriented
Software Design. In Workshop on Aspect-Oriented
Modeling AO’03, 2003.

[14] Jianjun Zhao and Baowen Xu. Measuring aspect
cohesion. In Michel Wermelinger and Tiziana
Margaria, editors, FASE, volume 2984 of Lecture Notes
in Computer Science, pages 54–68. Springer, 2004.

3



Aspect Mining using a Vector-Space Model Based
Clustering Approach

Grigoreta Sofia Moldovan
Department of Computer Science

Babeş-Bolyai University
Str. Mihail Kogălniceanu, Nr. 1

Cluj-Napoca, Romania

grigo@cs.ubbcluj.ro

Gabriela Şerban
Department of Computer Science

Babeş-Bolyai University
Str. Mihail Kogălniceanu, Nr. 1

Cluj-Napoca, Romania

gabis@cs.ubbcluj.ro

ABSTRACT
This paper presents a new approach in aspect mining that
uses clustering and proposes two techniques: a k-means based
clustering technique and a hierarchical agglomerative based
clustering technique. We are trying to identify the meth-
ods that have the code scattering symptom. For a method,
we consider as indication of code scattering a big number of
calling methods and, also, a big number of calling classes. In
order to group the best methods (candidates), we use in our
approach the vector-space model for defining the similarity
between methods. For testing the efficiency of the proposed
techniques, a number of Java applications are being used.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Restructuring, reverse engineering, and
reengineering ; I.5.3 [Computing Methodologies]: Pat-
tern Recognition—Clustering

Keywords
Aspect Mining, Clustering.

1. INTRODUCTION
The Aspect Oriented Programming(AOP) is a new para-
digm that is used to design and implement crosscutting con-
cerns [11]. A crosscutting concern is a feature of a software
system that is spread all over the system, and whose imple-
mentation is tangled with other features’ implementation.
Logging, persistence and connection pooling are well-known
examples of crosscutting concerns. In order to design and
implement a crosscutting concern, AOP introduces a new
modularization unit called aspect. At compile time, the as-
pect is woven to generate the final system, using a special
tool called weaver. Some of the benefits that the use of
AOP to software engineering brings are: better modulariza-
tion, higher productivity, software systems that are easier
to maintain and evolve.

Aspect mining is a relatively new research direction that
tries to identify crosscutting concerns in already developed
software systems without using AOP. The goal is to iden-
tify them and then to refactor them to aspects, to achieve a
system that can be easily understood, maintained and mod-
ified.

Crosscutting concerns in non AO systems have two symp-
toms: code scattering and code tangling. Code scattering
means that the code that implements a crosscutting con-
cern is spread across the system, and code tangling means
that the code that implements some concern is mixed with
code from other (crosscutting) concerns.

The paper is structured as follows: section 2 presents the
main issues related to the clustering problem, section 3 ex-
plains our approach, and section 4 presents the applications
we have used to test our approach and the results we have
obtained. Section 5 presents our conclusions and some fu-
ture research directions.

1.1 Related Work
Several approaches have been considered for aspect min-
ing until now. One approach was to develop tools that
would help the user to navigate and to analyze the source
code in order to find crosscutting concerns. Some of them
rely on lexical analysis, and some also include a type-based
search([6], [8], [20]). Other approach uses clone detection
techniques to identify duplicate code, that might indicate
the presence of crosscutting concerns([16] [15], [2]). These
are all static approaches that analyze the source code for
crosscutting concerns. There are also two dynamic approa-
ches: one that analyzes the event traces [1], and one that
uses formal concept analysis to analyze the execution traces
[18]. In [19] formal concept analysis is used again, but in a
static manner. A comparison of three different approaches
can be found in [3].

There is also a clustering approach that constructs the clus-
ters based on the methods’ names [17]. The user can then
navigate among the clusters, visualize the source code of the
methods and identify the crosscutting concerns.

2. CLUSTERING
Clustering, or unsupervised classification, is a data mining
activity that aims to partition a given set of objects into
groups (classes or clusters) such that objects within a cluster



would have high similarity to each other and low similarity
to objects in other clusters. The inferring process is carried
out with respect to a set of relevant characteristics or at-
tributes of the analyzed objects. Similarity and dissimilarity
between objects are calculated using metric or semi-metric
functions applied to the attribute values characterizing the
objects.

Let X = {O1, O2, . . . , On} be the set of objects to be clus-
tered. Using the vector-space model, each object is mea-
sured with respect to a set of m initial attributes A1, A2, ...
..., Am (a set of relevant characteristics of the analyzed ob-
jects) and is therefore described by a m-dimensional vector
Oi = (Oi1, . . . , Oim), Oik ∈ <, 1 ≤ i ≤ n, 1 ≤ k ≤ m. Usu-
ally, the attributes associated to objects are standardized in
order to ensure an equal weight to all of them ([7]).

The measure used for discriminating objects can be any met-
ric function d. We used the Euclidian distance:

d(Oi, Oj) = dE(Oi, Oj) =

vuut
mX

l=1

(Oil −Ojl)2

The similarity between two objects Oi and Oj is defined as

sim(Oi, Oj) =
1

d(Oi, Oj)

A large collection of clustering algorithms is available in the
literature. [7], [9] and [10] contain comprehensive overviews
of the existing techniques. Most clustering algorithms are
based on two popular techniques known as partitional and
hierarchical clustering.

In the following, an overview of both techniques is presented.

2.1 Partitioning Methods. Thek-means

Clustering Algorithm
A well-known class of clustering methods is the one of the
partitioning methods, with representatives such as the k-
means algorithm or the k-medoids algorithm. Essentially,
given a set of n objects and a number k, k ≤ n, such a
method divides the object set into k distinct and non-empty
clusters. The partitioning process is iterative and heuristic;
it stops when a “good” partitioning is achieved.

Finding a “good” partitioning coincides with optimizing a
criterion function defined either locally (on a subset of the
objects) or globally (defined over all of the objects, as in
k-means). These algorithms try to minimize certain criteria
(a squared error function); the squared error criterion tends
to work well with isolated and compact clusters ([10]).

Partitional clustering algorithms are generally iterative al-
gorithms that converge to local optima.

The most widely used partitional algorithm is the iterative
k-means approach. The objective function that the k-means
optimizes is the squared sum error (SSE). The SSE of a

partition K = {K1, K2, ...Kp} is defined as:

SSE(K) =

pX
j=1

njX
i=1

d2(Oj
i , fj) (1)

where the cluster Kj is a set of objects {Oj
1, O

j
2, ..., O

j
nj
} and

fj is the centroid (mean) of Kj :

fj =

0
BB@

njP
k=1

Oj
k1

nj
, . . . ,

njP
k=1

Oj
km

nj

1
CCA

Hence, the k-means algorithm minimizes the intra-cluster
distance. The algorithm starts with k initial centroids, then
iteratively recalculates the clusters (each object is assigned
to the closest cluster - centroid) and their centroids until
convergence is achieved.

2.2 Hierarchical Methods. The Hierarchical
Agglomerative Clustering Algorithm
(HACA)

Hierarchical clustering methods represent a major class of
clustering techniques. There are two styles of hierarchical
clustering algorithms. Given a set of n objects, the agglom-
erative (bottom-up) methods begin with n singletons (sets
with one element), merging them until a single cluster is
obtained. At each step, the most similar two clusters are
chosen for merging. The divisive (top-down) methods start
from one cluster containing all n objects and split it until n
clusters are obtained.

The agglomerative clustering algorithms that were proposed
in the literature differ in the way the two most similar clus-
ters are calculated and the linkage-metric used (single, com-
plete or average).

3. CLUSTERING APPROACH IN ASPECT
MINING

Our approach is to try to discover crosscutting concerns by
finding measures of the two symptoms: code scattering and
code tangling. The version presented here is just for scat-
tering. Our goal is to group the methods by the number of
calling methods (the fan-in metric) and also by the number
of calling modules (in this case we have considered classes
as modules). In [14] is presented an approach to aspect
mining that also uses the fan-in metric, but in our opinion
the number of calling classes is also important. A method
might have a high fan-in value, but all the calling methods
belong to the same class. This might show a high-coupling
between the two classes and it might, even, indicate that
some refactoring is needed [4].

In order to group methods, we use two clustering algorithms:
the k-means algorithm and the Hierarchical Agglomerative
Clustering Algorithm HACA (section 2).

In our approach, the objects to be clustered are methods
X = {M1, M2, ...Mn}. The methods belong to the applica-
tion classes or are called from the application classes. We
have considered two vector-space models:



• The vector associated with the method M is {FIV, CC},
where FIV is the fan-in value and CC is the number
of calling classes. We denote this model by M1.

• The vector associated with the method M is {FIV, B1,
B2, ...Bs}, where FIV is the fan-in value and Bi is the
value of the attribute corresponding to the application
class Ci (1 ≤ i ≤ s). The value of Bi is 1, if the
method M is called from a method belonging to Ci,
and 0, otherwise. We denote this model by M2.

In the following, we will briefly describe the application of
k-means and HACA in the context of aspect mining.

k-means
We applied a modified version of the k-means algo-
rithm in order to optimally divide the set of meth-
ods into clusters. We define the “optimal” partition
K = {K1, K2, ...Kp} as the partition that minimizes
SSE(K) and we will refer to p as the “optimal” num-
ber of clusters (p ≤ k).

We also mention that in order to assure a “good”
choice of the initial centroids, we choose as initial cen-
troids the most dissimilar initial methods (objects).

We mention that, for simplicity, we will continue to
refer this method as k-means.

HACA
With the optimal number of clusters p determined af-
ter applying k-means, we have applied a modified ver-
sion of the traditional HACA algorithm in order to
determine p clusters in data (the agglomerative algo-
rithm stops when p clusters are reached).

We also mention that we have used complete-link as a
linkage metric, because, in general, complete-link gen-
erates compact clusters [10] and is a better choice for
our approach (single-link produces elongated clusters).

3.1 Identification steps
The approach consists in the following steps:

Step 1. Computation
Computation of the set of methods in the selected
source code, and computation of the attribute set val-
ues, for each method in the set.

Step 2. Filtering
Methods belonging to some data structures classes like
ArrayList, Vector are eliminated. We also eliminate
the methods belonging to some built-in classes like
String, StringBuffer, StringBuilder, etc.

Step 3. Grouping
The remaining set of methods is grouped into clusters
using k-means or HACA. The clusters are sorted by
the average distance from the point 0m in descending
order, where 0m is the m dimensional vector with each
component 0.

Step 4. Analysis
The clusters obtained are analyzed to discover which
clusters contain methods belonging to crosscutting con-
cerns. We analyze the clusters whose distance from 0m

point is greater than a threshold (eg. two).

The first three steps are done automatically, but the last one
must be done manually.

3.2 Example
In the following, we present a small example that shows how
methods are grouped in clusters by our k-means approach
using the model M1. If we have the classes shown in Table
1, the values of the attribute set are presented in Table 2
and the clusters obtained are shown in Table 3:

public class A {
private L l;

public A(){l=new L(); methB();}
public void methA(){ l.meth(); methB();}
public void methB(){ l.meth();}

}
public class L {

public L(){}
public void meth(){}

}
public class B {

public B(){}
public void methC(L l){ l.meth();}
public void methD(A a){a.methA();}

}

Table 1: Code example.

Method FIV CC

A.A 0 0

A.methA 1 1

A.methB 2 1

B.B 0 0

B.methC 0 0

B.methD 0 0

L.L 1 1

L.meth 3 2

Table 2: Attribute values when M1 is used.

Cluster Methods
C1 { L.meth }
C2 {A.methA, A.methB, L.L }
C3 { A.A, B.B, B.methC, B.methD }

Table 3: The clusters obtained by k-means.

3.3 Characteristics of our clustering approaches
Our clustering approaches have some advantages, reducing
the well known main disadvantages of k-means and HACA:

• we have adapted the traditional k-means approach in
order to determine the “optimal” number of clusters
(k-means is repeatedly applied with a different number
of initial centroids until a partition with a minimum
SSE is obtained);

• the k-means dependence on the initial centroids is re-
duced by a good selection of the initial centroids (the
most dissimilar initial objects);

• the HACA based approach that we have used, instead
of merging all the methods in a single cluster, deter-
mines a good enough partition into clusters;



• the HACA based approach uses the complete-link as
linkage metric, choice that is better for our approach
(we are looking for compact clusters in data).

4. CASE STUDIES
For each case study, we have generated the vector-space
models M1 and M2 as inputs for clustering, and we have
applied the two clustering algorithms described in Section
3: k-means and HACA. For lack of space we will give only
the results obtained by applying the k-means algorithm and
a single vector space model.

4.1 Theatre
The first case study is a web application, called Theatre,
developed by an undergraduate student as her graduation
project. It allows searching for a show, reserving tickets for a
show, canceling reserved tickets; it displays the configuration
of a showroom and the occupied places. The application was
developed using applets, servlets and databases. It has 27
classes (4 applets, 9 servlets, and 14 additional classes), and
336 methods.

The “optimal” number of clusters obtained by k-means for
the model M1 is 9 and for the model M2 is 15. The dis-
tribution of methods inside each cluster is shown in Table
4. The first two clusters are identical for all the algorithms,
independent of the vector-space model used.

Cluster C1 C2 C3 C4 C5 C6 C7 C8 C9
Methods 1 1 2 2 11 14 37 206 62

Table 4: No. of methods inside each cluster when
M1 and k-means are used.

The first cluster contains one method PrintStream.println(
String) that was used inside the applet classes to print log-
ging information. The second cluster also contains a method
used for logging, LogWriter.log(...), from the servlets classes.
The application contains two distinct logging methods, be-
cause the applets are not implicitly allowed to write to files,
so applets logging information is written to the Java console
of the browser.

The next two clusters contain methods used for the con-
struction of the user interface, and constructors for writing
to files.

The application uses a connection pool implemented using
the Singleton design patterns. In all the cases, all the meth-
ods belonging to the database connection were grouped into
the same cluster; the difference is the index of the cluster
they appear in. In one case, they are the only methods con-
tained in the cluster (when M2 is used as the vector-space
model and k-means as the clustering algorithm).

4.2 Carla Laffra - Dijkstra’s Algorithm
We have also considered as a case study Carla Laffra’s im-
plementation of the Dijkstra algorithm [12]. The “optimal”
number of clusters obtained by k-means for the model M1

is 7 and for the model M2 is 5. The distribution of methods
in clusters is shown in Table 5.

Cluster C1 C2 C3 C4 C5
Methods 1 2 20 40 90

Table 5: No. of methods inside each cluster when
M2 and k-means are used.

In each case, the methods Component.repaint() and Doc-
Text.showline(String) appear in the first or the second clus-
ter. The method Component.repaint() is used each time a
new step is executed, or when the algorithm is finished or
when a new execution is started with new input data. This
method might be considered as part of the crosscutting con-
cern that refreshes the user interface after the execution of
different operations. The method DocText.showline(String)
is used to display guiding information in the TextArea or
to display error messages when some preconditions are not
met. The last usage may be considered as a crosscutting
concern.

In [18] two crosscutting concerns were discovered: locking
and unlocking the user graphical interface each time a func-
tionality was executed. The methods used to implement
them were not found in the clusters we have analyzed (a
better choice for the threshold will, certainly, influence the
final results). Another explanation can be the fact that the
approach used in [18] was trying to discover tangled code,
and the current version of our approach is only trying to
discover scattered code.

4.3 JHotDraw
Our last case study is JHotDraw, version 5.2 which contains
190 classes. The “optimal” number of clusters obtained by
k-means for the model M1 is 20 and for the model M2

is 34. After analyzing the results we have observed that
better results were reported by using the model M1 and
HACA algorithm. That is why we briefly present only these
results.

Most of the crosscutting concerns discovered in [14] were also
discovered by our approach and they were not eliminated
during step 4. The first six clusters contain methods like
Point.Point(...), FigureEnumeration.hasMoreElements() or
Figure.displayBox() which cannot be considered as crosscut-
ting concern seeds.

The first occurrences of methods belonging to crosscutting
concerns in the obtained clusters are as follows: Observer
in cluster 7, Policy Enforcement in cluster 7, Persistence in
cluster 10, Composite in cluster 11 and Contract Enforce-
ment in cluster 17.

5. CONCLUSIONS AND FURTHER WORK
We have presented a new clustering approach in aspect min-
ing based on vector-space models. It tries to identify the
methods used to implement crosscutting concerns that have
the scattered symptom. For that we compute the fan-in
metric of each method that is called inside the application
classes, and the number of classes that call this method. The
obtained results are divided into clusters using two cluster-
ing algorithms: HACA and k-means. Some of the obtained
clusters are then manually analyzed to determine if they
contain methods used to implement crosscutting concerns.



The case studies used to test our techniques have shown
that the analyzed clusters contain almost the same methods
independently of the clustering algorithm used. Most of the
methods belonging to these clusters are used to implement
crosscutting concerns. We also mention that the approach
proposed in this paper can be used for large applications,
but the complexity of the clustering algorithms grows with
the number of methods.

Further work can be done in the following directions:

• To discover a set of attributes that can indicate the
tangling symptom for methods. This set of attributes
can be easily integrated into our approach just by mod-
ifying the vector-space model used.

• To apply other filtering steps, for example to eliminate
the get/set type methods, as in [14].

• To use other vector-space models in the clustering ap-
proach, and to identify the models that will lead to
better results.

• To apply other clustering techniques in the context of
aspect mining.

• To use other approaches for clustering that were pro-
posed in the literature (such as variable selection for hi-
erarchical clustering [5], search based clustering [13]).

• To isolate conditions in order to decide the clustering
methods and the metric that will lead to better results.

• To apply this approach for other case studies like Pet-
Store and TomCat, as in [14].

• To identify and to explain the reasons for success and
failure in our approach.

6. REFERENCES
[1] S. Breu and J. Krinke. Aspect Mining using Event

Traces. In Proceedings of International Conference on
Automated Software Engineering, pages 310–315, 2004.

[2] M. Bruntink, A. van Deursen, R. van Engelen, and
T. Tourwé. An Evaluation of Clone Detection
Techniques for Identifying Crosscutting Concerns. In
Proceedings International Conference on Software
Maintenance(ICSM 2004). IEEE Computer Society,
2004.

[3] M. Ceccato, M. Marin, K. Mens, L. Moonen,
P. Tonella, and T. Tourwé. A Qualitative Comparison
of Three Aspect Mining Techniques. In IWPC ’05:
Proceedings of the 13th International Workshop on
Program Comprehension, pages 13–22. IEEE
Computer Society, 2005.

[4] M. Fowler. Refactoring: Improving the Design of
Existing Code. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1999.

[5] E. B. Fowlkes, G. Gnanadesikan, and J. R. Kettering.
Design, Data, and Analysis: By Some Friends of
Cuthbert Daniel. Wiley, New York, NY, 1987.

[6] W. G. Griswold, Y. Kato, and J. J. Yuan.
AspectBrowser: Tool Support for Managing Dispersed
Aspects. Technical Report CS1999-0640, UCSD, 3
2000.

[7] J. Han and M. Kamber. Data Mining: Concepts and
Techniques. Morgan Kaufmann Publishers, 2001.

[8] J. Hannemann and G. Kiczales. Overcoming the
Prevalent Decomposition of Legacy Code. In Advanced
Separation of Concerns Workshop,at the International
Conference on Software Engineering (ICSE), May
2001.

[9] A. Jain and R. Dubes. Algorithms for Clustering Data.
Prentice Hall, Englewood Cliffs, New Jersey, 1998.

[10] A. Jain, M. N. Murty, and P. Flynn. Data clustering:
A review. ACM Computing Surveys, 31(3):264–323,
1999.

[11] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-Oriented Programming. In Proceedings
European Conference on Object-Oriented
Programming, volume 1241, pages 220–242.
Springer-Verlag, 1997.

[12] C. Laffra. Dijkstra’s Shortest Path Algorithm.
http://carbon.cudenver.edu/ hgreenbe/courses/dijkstra/
DijkstraApplet.html.

[13] S. Mancoridis, B. S. Mitchell, Y. Chen, and E. R.
Gansner. Bunch: A Clustering Tool for the Recovery
and Maintenance of Software System Structures. In
ICSM ’99: Proceedings of the IEEE International
Conference on Software Maintenance, pages 50–59.
IEEE Computer Society, 1999.

[14] M. Marin, A. van, Deursen, and L. Moonen.
Identifying Aspects Using Fan-in Analysis. In
Proceedings of the 11th Working Conference on
Reverse Engineering (WCRE2004), pages 132–141.
IEEE Computer Society, 2004.

[15] O. A. M. Morales. Aspect Mining Using Clone
Detection. Master’s thesis, Delft University of
Technology, The Netherlands, August 2004.

[16] D. Sheperd, , E. Gibson, and L. Pollock. Design and
Evaluation of an Automated Apect Mining Tool. In
Proceedings of Mid-Atlantic Student Workshop on
Programming Languages and Systems, 2004.

[17] D. Shepherd and L. Pollock. Interfaces, Aspects, and
Views. In Proceedings of Linking Aspect Technology
and Evolution Workshop(LATE 2005), March 2005.

[18] P. Tonella and M. Ceccato. Aspect Mining through
the Formal Concept Analysis of Execution Traces. In
Proceedings of the IEEE Eleventh Working Conference
on Reverse Engineering (WCRE 2004), pages
112–121, November 2004.

[19] T. Tourwé and K. Mens. Mining Aspectual Views
using Formal Concept Analysis. In Proc. IEEE
International Workshop on Source Code Analysis and
Manipulation, 2004.

[20] C. Zhang, G. Gao, and H. Jacobsen. Multi Visualizer.
http://www.eecg.utoronto.ca/ czhang/amtex/.



Using Design Patterns as Indicators 
of Refactoring Opportunities (to Aspects) 

Miguel P. Monteiro 
Escola Superior de Tecnologia – Institituto Politécnico de Castelo Branco 

Avenida do Empresário 6000-767 Castelo Branco 
Portugal 

 
 

ABSTRACT 
In this position paper, we argue that traditional object-oriented 
design patterns can be regarded as workarounds for limitations in 
current programming languages, including crosscutting concerns. 
Aspect-oriented programming (AOP) is able to modularise 
crosscutting concerns and overcomes many of the limitations. To 
illustrate, we mention a few examples. We describe several 
situations in which patterns are used to cope with the presence of 
crosscutting concerns. Such solutions are inferior to solutions 
make possible by AOP and on this basis we hypothesize that 
patterns can provide clues to improve existing systems by 
refactoring to aspects. We briefly outline an approach to derive a 
deeper understanding of how patterns can be used as indicators of 
refactoring opportunities. 

Keywords 
Aspect-Oriented Programming, Design Patterns, Refactoring. 

1. INTRODUCTION 
In this paper, we focus on the problem of identifying refactoring 
opportunities in object-oriented (OO) legacy systems, in the light 
of aspect-oriented programming (AOP). Our position is based on 
the premise that design patterns comprise an important technique 
used by developers of OO systems to cope with crosscutting. We 
argue that such efforts would benefit of a more systematic 
knowledge of the uses that developers make of design patterns in 
such circumstances. Such knowledge promises to yield useful 
catalogues of refactoring opportunities, i.e., descriptions of 
situations in OO code that can be improved using AOP’s superior 
compositional capabilities. For the purposes of this paper, the 
concept of refactoring opportunity is akin to that of code smell as 
proposed in [6]. 

This paper is intended to be approached as a true “position 
paper”: we do not present concrete results; rather, we limit 
ourselves to a general presentation of a hypothesis and propose an 
approach to assess whether it can be proven. The paper is 
structured as follows. Section 2 presents our position. To better 
support it, we present a few illustrative examples in section 3. 
Section 4 outlines the approach we propose to meet our goals. 
Section 5 concludes the paper. 

2. PATTERNS AS INDICATORS OF 
REFACTORING OPPORTUNITIES 
In the last decade, design patterns became increasingly popular as 
a way to express design solutions to recurring problems [7]. The 
1990s witnessed a veritable industry of “pattern hunting” and as a 

result we now have a rich repository of object-oriented (OO) 
patterns. Patterns are currently regarded as an essential 
component of the skills of any programmer involved in 
developing, maintaining and evolving object-oriented systems. 
Patterns are often presented as solutions to attain greater 
flexibility in a system for a given requirement. 

However, it is also possible to view patterns in a more negative 
light. Patterns are problem-solution pairs [14], meaning that 
whenever we use a pattern, there is problem that the pattern is 
supposed to solve, or at least circumvent. In a significant number 
of cases, the problem stems from limitations in the OO language 
used. When a feature or composition capability is not directly 
available in a language, the solution often lies in implementing 
some pattern that achieves the intended effect, usually at some 
cost in flexibility and added complexity. Often, patterns are used 
as workarounds for limitations that theoretically need not exist. In 
such a light, the existence of such a large variety of patterns 
seems to suggest that existing OO languages are rather limited. 

Let us give some examples: (1) Abstract Factory (pages 87-96 of 
[7]) proposes a way to emulate co-variance, (2) Factory Method 
(pages 107-116 of [7]) describes a way to emulate polymorphic 
construction of objects (directly supported in languages such as 
Objective C), (3) Prototype (pages 117-126 of [7]) is a way to 
emulate the prototype-cloning effect found in prototype-based 
languages such as Self [13] (4) Decorator (pages 175-184 of [7]) 
describes a way to emulate mixins [3] and (5) Visitor (pages 331-
344 of [7]) proposes a way to emulate multiple dispatch. Many 
other examples could be given, though an extensive list lies out of 
the scope of this paper. 

Despite its limitations, OO is a rich paradigm that sometimes 
enables multiple variants to achieving a given effect. Many design 
problems can be addressed by a plethora of different solutions, 
each one providing its unique set of specific advantages and 
trade-offs. This richness makes it likely that different 
programmers working in different contexts may select different 
solutions to deal with the same problem. 

It has been noted that some of the motivations for implementing 
patterns has its roots in crosscutting, such as those that can be 
effectively tackled using aspect-oriented languages. Some 
patterns are known to “disappear” when implemented using AOP, 
while other patterns witness a significant simplification in their 
implementations [8]. As with other design problems, we observe a 
rich variety of different OO design solutions in relation to 
crosscutting. As a consequence, symptoms of the presence of 
crosscutting concerns in OO legacy systems can take many 
different forms and patterns. In the next section, we mention a 



few testimonies that can be found in the literature. We believe 
that patterns may offer a rich set of clues of when to refactor well-
formed OO systems to aspects. 

Why do we focus on patterns? In the context of this paper, we’re 
referring to well-formed OO code, developed by experienced and 
knowledgeable programmers. Such programmers are more likely 
to use patterns well (in an OO sense) than novice programmers 
and be aware that “duplication is evil” [6]. Therefore, they take 
great effort to remove such duplication, by keeping their code 
clean through refactoring. It seems reasonable to assume that 
many such programmers resort to patterns to deal with such 
issues, both when designing [7] and when refactoring [10]. 

On the other hand, the compositional capabilities of OO – 
currently the dominant programming paradigm – do not seem to 
be sufficient to cope with all demands of modern software, 
namely crosscutting. There seems to be a conflict between the 
stated aims of the test-driven and refactoring communities and 
what can be achieved with the programming paradigm that most 
people from those communities (currently) use. Most testimonies 
from these communities suggest that all forms of duplicated code 
can be eliminated from OO code. And yet, this claim is likely to 
raise eyebrows from among the AOP community, given the close 
link between crosscutting and duplication. Note that crosscutting 
is not generally mentioned in [7][10] as a reason to use patterns. 

In our view, what explains this apparent conflict is the use of 
elaborate design structure, namely patterns, to mask the symptoms 
of duplication. Developers that “mercilessly refactor” a given OO 
code base until all manifestations of duplication are removed, are 
really trading one problem with another: they merely remove the 
semblance of duplication, replacing it with increased structural 
complexity and inflexibility. There is a risk that the refactored 
structure proves to be almost as hard to evolve and reason with as 
the original one. By contrast, AOP promises to provide 
developers with more acceptable trade-offs. That is the claim 
suggested by Isberg in [9], which analyses the structure of the 
JUnit framework [2]. Isberg discusses trade-offs of the current 
design decisions for JUnit and proposes re-implementations of 
some parts of the framework using pointcuts and advice, pointing 
out that most of what he proposes to re-implement is, to current 
thinking, well-modularised. 

3. A FEW ILLUSTRATIVE EXAMPLES 
In this section, we describe a few examples of the use of OO 
design patterns that are used to cope with crosscutting. We 
suggest hypothetical refactorings that yield better AOP 
alternatives. Throughout the descriptions, we assume the reader 
has a general knowledge of the Gang-of-Four patterns [7] and 
refrain from providing descriptions of the patterns. 

3.1 Decorator 
In [5], Feathers describes various techniques to deal with cases in 
which additional logic must be added to the core logic of a 
system. Feathers mentions as a typical case a situation in which 
the new logic to be added happens to execute at the same time as 
the one in a method, giving raise to temptation to place it in the 
same method. However, the new logic is otherwise unrelated and 
there is a chance that in future someone will want to use one 
without the other. Feathers mentions logging as an example of 

such an additional logic. People familiar to AOP recognise the 
favourite example of crosscutting (though in recent times it has 
been challenged by the Observer pattern). To address this 
problem, Feathers proposes a few techniques that include Wrap 
Method (pages 67-70 of [5]) and Wrap Class (pages 71-76 of [5]). 
There are a few variants to implementing Wrap Method, but it 
basically entails wrapping the method with the original logic with 
a new method that simply performs the additional logic (before or 
after, depending on the specific problem) and forwards it to the 
old method. Wrap Class is, by Feathers’ own admission, really an 
instance of Decorator. 

The two above techniques suggest two new AOP refactorings: 
Replace Wrap Method with Pointcut and Advice and Replace 
Decorator with Aspect. We envision Replace Wrap Method with 
Pointcut and Advice as creating a pointcut that captures the points 
in the execution of the program where the wrap method is called 
and adding an advice acting on those joinpoints that provides the 
logic formerly provided by the wrap method. Next, the wrap 
method can be removed. Replace Decorator with Aspect is about 
creating an aspect that captures joinpoints where the behaviour 
that the decorator decorates is called, and placing in the aspect an 
advice acting on those joinpoints that provides the logic of the 
decorator. The decorator class can probably be removed 
afterwards. In the simplest cases, using an AOP implementation 
of Decorator proposed in [8] may be sufficient. 

3.2 Template Method 
Template Method (pages 325-330 of [7]) looks very promising as 
a signal of refactoring opportunities. It comprises one of the 
design backbones of many OO frameworks and frequently 
features in APIs. Classes java.applet.Applet and 
java.lang.Thread from Java’s API include widely-known 
examples of Template Method. 

It is possible to view Template Method as a crude technique to 
emulate pointcuts and advice. The template method performs a 
role that bears some similarities to pointcuts in that it serves to 
control the moments when some desired logic executes. The 
concrete classes that override and concretise the hooks exposed 
by the template method perform a role similar to that of advice: in 
both cases, the blocks of code execute reactively, or implicitly. 
This suggests a Replace Template Method with Pontcut and 
Advice refactoring. 

3.3 Singleton 
The Singleton pattern (pages 127-134 of [7]) is one of the patterns 
that attracted most criticisms. There are many testimonies of the 
excessive use of singletons, some of which can be found in the 
refactoring mailing list at Yahoo1. Overuse of singletons is 
troublesome, as it scatters multiple dependency points to the 
singleton throughout the system. Singletons also create specific 
problems when creating unit tests for classes that depend on them 
[12][5]. The pattern is considered prone to misuse, often by 
programmers that have yet to fully absorb the fundamental 
principles of OO and that lean on singletons to write “procedural-
style OO code”. Such programmers tend to create too many 
singletons that are really procedural-style global variables. 

                                                                 
1 http://groups.yahoo.com/group/refactoring/ 



Such bad uses of Singleton can be addressed in a number of ways 
and a few of them are suggested in [10][5]. However, in cases, 
turning the singleton into an aspect may be the appropriate 
solution. Aspects can have global access to the remaining 
elements of the system, but can also compose behaviour in a 
controlled way. Aspects can compose the behaviour equivalent to 
that provided by the singleton in an implicit way, thus avoiding 
the kind of dependencies that result from scattered calls to 
singleton logic. This suggests a Replace Singleton with Aspect 
refactoring. Such a refactoring entails moving to an aspect the 
singleton logic that is called from multiple places and ensuring 
that the aspect is able to capture all those points. The logic 
provided by the singleton is next moved to advices within the 
aspect that act on those joinpoints. 

4. PROPOSED APPROACH 
In order to build a catalogue of refactoring opportunities such as 
the ones mentioned above, we propose an approach similar to the 
one we took in [11]: use existing object-oriented systems as case 
studies to derive insights. We plan to analyse the source code of 
selected systems to assess whether there is a link between 
crosscutting concerns and the use of design patterns. Refactoring 
experiments should also be performed, such as those suggested in 
[9]. Ideal case studies are pattern-rich code bases, e.g. 
frameworks. Open-source OO systems such as JUnit [2] and 
JHotDraw [1] comprise good candidates and have the advantage 
of some previous work being already available [9][4]. 

Any refactorings derived from such a study must address various 
issues, including the one that follow: 
• What are the preconditions for the refactorings? Are there any 

special situations that prevent its use or do not make it 
advisable to apply it? For instance, it is likely that some 
instances of Singleton remain desirable: documentation 
should be derived that clearly states when the refactoring is 
applicable. 

• What are the detailed mechanics of the refactorings? Do the 
refactorings require the use of other, preparatory, 
refactorings? 

• What impact do the refactorings have on the remaining code 
base? Can some designs be simplified? Can the extraction of a 
crosscutting concern remove the motivation to use a pattern in 
some situations? 

5. CONCLUSION 
In this paper, we argue that in order to identify refactoring 
opportunities to aspects, we need to go beyond the more 
superficial manifestations of crosscutting, such as duplicated (and 
scattered) code. The efforts of well-meaning and experienced 
programmers and designers may mask such superficial 
manifestations behind less obvious ones such as elaborate 
structures and use of design patterns. We argue that patterns 
comprise a primary candidate to build a deeper base of knowledge 

for identifying opportunities to evolve legacy systems using AOP. 
To illustrate, we describe uses of a few patterns whose motivation 
stems from either the presence of crosscutting effects or 
limitations of OO relative to AOP. We suggest a few refactorings 
that address the same problems more effectively. 

6. ACKNOWLEDGMENTS 
Miguel P. Monteiro is partially supported by project PPC-VM 
(POSI/CHS/47158/2002) and by FCT under project SOFTAS 
(POSI/EIA/60189/ 2004). 

7. REFERENCES 
[1] JHotDraw home page. http://www.jhotdraw.org/ 
[2] JUnit home page. http://www.junit.org/ 
[3] Bracha G., Cook W., Mixin-Based Inheritance, 

ECOOP/OOPSLA 1990, Ottawa, Canada, October 1990. 
[4] van Deursen, A., Marin, M., Moonen, L., AJHotDraw: A 

showcase for refactoring to aspects. LATE 2006 workshop 
at AOSD 2005, Chicago, USA, March 2005. 

[5] Feathers, M., Working Effectively with Legacy Code, 
Prentice Hall 2005. 

[6] Fowler, M. (with contributions by K. Beck, W. Opdyke and 
D. Roberts), Refactoring – Improving the Design of Existing 
Code, Addison Wesley 2000. 

[7] Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design 
Patterns – Elements of Reusable Object-Oriented Software, 
Addison-Wesley, 1994. 

[8] Hannemann, J., Kiczales, G., Design Pattern Implementation 
in Java and AspectJ, OOPSLA 2002, Seattle, USA, 
November 2002. 

[9] Isberg, W., Design with pointcuts to avoid pattern density, 
online article at Developerworks (AOP@Work series), June 
2005. www-128.ibm.com/developerworks/java/library/ j-
aopwork7/index.html 

[10] Kerievsky, J., Refactoring to Patterns, Addison-Wesley, 
2004. 

[11] Monteiro, M. P., Refactorings to Evolve Object-Oriented 
Systems with Aspect-Oriented Concepts. Ph.D. thesis, 
Universidade do Minho, Portugal, March 2005. 

[12] Rainsberger, J., Use your Singletons Wisely, online article at 
Developerworks, July 2001. www-128.ibm.com/ 
developerworks/webservices/library/co-single.html 

[13] Ungar D., Smith, R., Self:the power of simplicity, 
OOPSLA’87, Orlando, USA, October 1987. 

[14] Venners, Patterns and Practice – A Conversation with Erich 
Gamma, Part IV, Artima developer, June 2005. 
www.artima.com/lejava/articles/patterns_practice.html

 



Concern Highlight:
A Tool for Concern Exploration and Visualization

Eugen C. Nistor ∗ André van der Hoek

Department of Informatics
School of Information and Computer Sciences

University of California, Irvine
Irvine, CA 92697-3425 USA

E-mail: {enistor,andre}@ics.uci.edu

Abstract

Separation of concerns is a powerful principle that
can be used to manage the inherent complexity of soft-
ware. One of the benefits of separation of concerns
is an increased understanding of how an application
works, which helps during evolution. This benefit
comes from the fact that the code belonging to a con-
cern can be seen and reasoned about in isolation from
the other concerns with which it is tangled together. In
this paper, we present our tool that gives the developer
the freedom to annotate existing code based on differ-
ent concerns. These concerns can be later analyzed or
visualized as highlighted text. Although our experiences
were based on the special case of high-performance com-
puting programs, we believe that the observations are
pertinent to general programming as well.

1 Introduction

A concern denotes anything of importance while de-
veloping software. Naturally, every piece of software
will have different concerns tangled together, and this
complexity makes not only software construction diffi-
cult, but makes long term evolution and maintenance
difficult as well.

Separation of concerns is an important principle in
software engineering. The idea behind separation of
concerns is that one should be able to reason about
a single concern separately from the other concerns
tangled in the final program. Techniques such as As-
pect Oriented Programming (AOP) [1] offer the mech-
anisms through which concerns can be written in sep-

∗The work described in this paper was done while at the IBM
Thomas J. Watson Research Center, P.O. Box 704, Yorktown
Heights, NY 10598, USA

arate modules as aspects, and then weaved into an ex-
isting application at specified join points. However,
the benefits of being able to identify concerns in code,
and to use these concerns to explore the code should
not be limited to programs following AOP. In some
cases it might not always be possible to identify and
write concerns separately from the start, like in the
case of exploring projects for which source code cannot
be modified. The same is true for situation where iden-
tification of concerns will lead to a future refactoring
where some of the concerns will be written as aspects.
Furthermore, even in programs written using AOP, dif-
ferent concerns might crosscut the code inside one par-
ticular aspect, and a tool like the one presented here
might be useful in visualizing overlapping concerns.

In this paper we present the Concern Highlight, our
tool for concern exploration and visualization. The tool
is built as an extension to the Concern Manipulation
Environment (CME), an aspect-oriented software de-
velopment environment [2], and adds support for auto-
mated and free selection of source code snippets that
belong to different concerns. These concerns can then
be visualized as source code highlights in an editor in
Eclipse [3].

The development of the tool came from our ex-
periences of trying to apply concern-based develop-
ment and evolution to the specific domain of high-
performance programs written using the Message Pass-
ing Interface (MPI) library [4]. This is an inter-
esting field because it exhibits the particularities de-
scribed above that make traditional aspect-oriented ap-
proaches difficult or impossible to apply. In the rest
of this paper, we discuss the specifics of MPI pro-
gramming related to aspect-orientation, and present
our Concern Highlight tool. Although our work is ex-
ploratory, we believe that our observations can be suc-



cessfully used to help concern-based development and
evolution in regular programming as well.

2 High-performance Computing with
MPI

The initial motivation for the project was to bring
the benefits of identifying concerns and using the
CME to programs written in high-performance com-
puting. Scientific programming in general – and high-
performance programs written for parallel processor
environments in particular – have a number of partic-
ularities: they are in their majority written in a proce-
dural language such as C and Fortran, they are difficult
to change because of their complexity, and the infor-
mation content tends to be very dense because of the
algorithms embedded into code.

Message Passing Interface (MPI) is a standard
for high-performance computing libraries that pro-
vides a common interface for programming in a multi-
processor environment. The power of MPI comes from
the fact that a complex middleware functionality is hid-
den from the programmer behind a set of well defined
method calls, and the parts of the program that are
executed in parallel coexist with the code that will be
executed only on one processor. Specifying MPI as
a standard assures separation from specific hardware
implementations and interoperability across different
MPI implementation libraries.

Although the complete MPI specification contains a
significant number of methods, a few of them are very
important and used extensively. However, while us-
ing these functions, the developer needs to be aware of
special requirements and assumptions – which we can
consider under the realm of MPI domain knowledge –
that if not respected, can lead to errors. For example,
the code that will be executed in parallel is separated
by two special method calls, MPI Init and MPI Final-
ize, that delineate the start and the end of the parallel
code, and all the other MPI calls have to occur in be-
tween these two. Methods MPI Send and MPI Recv
are responsible for sending and receiving data needed
for communication between processes. Their param-
eters determine where the data is sent to or coming
from, and the process where these methods are exe-
cuted is blocked until the methods calls are complete.
Other methods include support for asynchronous com-
munication, synchronization, I/O, timing and logging
[4].

3 The Concern Highlight Tool

CME contains a number of tools that support
concern-based software exploration, implemented as
Eclipse plug-ins [5, 3]. One of such tools is the Con-

cern Explorer, which presents a hierarchical model of
different concerns identified in the software. These con-
cerns are either defined by the developer, or loaded
from specialized concern loaders from source code and
other development artifacts, such as build files or de-
sign documents. A powerful query evaluator can be
used in the Query View to evaluate queries over the
concern model. These queries not only help browsing
the concern model, but can also be saved in the concern
model as new concerns.

The Concern Highlight tool is an Eclipse Plug-in
that can be used to mark up source code ranges belong-
ing to different concerns. The highlight tool functions
as a complex code annotation system, but its integra-
tion with CME allows these concerns to be browsed or
queried afterwards in the CME Query Analyzer. Fig-
ure 1 shows the Concern Highlight tool in a typical
usage in Eclipse. On the left-side, CME’s Concern
Explorer displays the concern model. On the right-
side, the Highlight List contains a list of concerns that
the user is interested in exploring, populated with con-
cerns selected from the Concern Explorer. The editor
is shown in the middle, with the code belonging to the
selected concerns highlighted in the text.

The user can associate source code snippets with
concerns in the highlight list in two ways: either au-
tomatically, by using the CME’s API, or manually by
marking up source code in the current editor opened in
Eclipse, through a context menu option. Automatic de-
tection of source code related to a concern is desirable,
but at the same time is problematic since it is highly
domain dependent and depends a lot on the type of
concern sought.

The format of MPI programs makes a number of
concerns to be suitable for being marked up automat-
ically in code, but in general we found three distinct
types of concerns:

- Concerns that can easily be identified automat-
ically. A simple example is marking the begin-
ning and ending of MPI-related code, which corre-
sponds with the MPI Init and MPI Finalize func-
tion calls.

- Concerns where automatic identification is possi-
ble, but manual marking would be much simpler.
A good example is to try to find out usual MPI
code patterns like the one shown in Figure 2. The
code shown is a common MPI pattern, where one
of the processes, commonly called the master pro-
cess, has extra responsibilities than the other pro-
cesses, usually related to input and output or dis-
tribution and gathering of data. Automatic de-
tection of this pattern is fairly complex, while the
developer could have marked the code as belong-
ing to the concern while writing the code.

2



Figure 1. A screenshot of the Concern Highlight tool in Eclipse.

    int myrank;    
    ... 
    MPI_Comm_rank( MPI_COMM_WORLD, &myrank );    
    ...
    if ( myrank == 0 ){

         /*code that is only executed on the 
    first process */

    } 

Figure 2. A typical MPI pattern.

- Some concerns, such as the name of the user that
performed a certain change in code, or trying to
determine the code that was changed when trans-
forming a program from a non-parallel to a par-
allel version, might be either impossible to detect
automatically, would have to rely on comments
written consistently throughout the code, or be
imported from some other artifacts such as con-
figuration management logs. In this case, human
identification of concerns seems like the best solu-
tion.

Manual marking of the source code is more suitable

for scenarios where the user wants to understand an
existing application’s implementation. Many times the
source code for the libraries one uses in a project forms
the most complete documentation at hand. The task
of finding out how the existing application works is
driven by a type of concern, which is the problem that
needs to be solved. Marking up this concern will prove
beneficial in documenting the code in such a way that if
somebody else will be interested in the same concern to
be able to focus on only those parts of the code that are
relevant. For example, somebody might be interested
in only looking at the code pertinent to the master
process. In order to do so, they would select the code
that looks like the pattern in Figure 2, either manually
or with the use of a tool, and mark them as being a
part of the master process concern. The integration
with CME adds the benefit of persistence, such that
if somebody new to a project wants to understand the
code based on concerns, can use the Highlight View
later to select this concern and to quickly see where
that source code is located.

One of the important features of our tool is the vi-
sualization of concerns by highlighting the text of the
source code ranges associated with it in the current ed-

3



itor in Eclipse. The concerns in the highlight list have
an associated color, and the user can choose, by select-
ing a check-box near each concern, which ones should
be highlighted. Since the concerns have a hierarchi-
cal nature, selecting a parent concern will automati-
cally select all of the other concerns that are its sub-
concerns. In this case, all the source code ranges associ-
ated with the sub-concerns will be highlighted using the
color of the parent concern, unless they are explicitly
selected themselves in which case they will be displayed
with their own color. Figure 1 shows three different
concerns selected and the corresponding source code
snippets highlighted in the editor. The highlight fea-
ture is implemented on top of Eclipse’s support for an-
notations, and currently most text-based editors from
Eclipse are supported.

4 Observations

The main purpose of our tool was to enhance
software understanding through recording code explo-
ration traces and associating them with concerns. The
main benefits would be seen during software evolution
stages, since the code can be browsed on a concern-
basis rather than the file or class-based organization.
Moreover, if some part of the code needs to be changed,
other parts of the code associated with it through a
concern will probably hint the developer where to be
careful about the effects of the change.

Besides helping understanding and existing pro-
gram, we believe that concern-based development can
potentially avoid common errors. MPI programming
includes a number of domain rules that are either doc-
umented in books [6, 7], or are learned with experience.
Some of the typical errors can be found with the help
of either a static or dynamic analyzer. However, we be-
lieve that using concern modeling can help avoid some
of these errors and offer significant advantages during
software evolution.

Probably one of the most compelling arguments in
this regard is based on a simple observation related to a
typical development scenario that disregards concerns.
While writing the software, the developer’s intentions,
which are naturally related to a concern, are translated
into programming. This information is encoded in the
specifics of the programming language used, in the li-
braries used, and possibly in comments. In this way,
the concern information is lost as an explicit descrip-
tion. However, after the program is written, special
analyzers will try to determine the presence of errors.
While errors related to the syntax of the program can
be easily found by a compiler, the more complex errors
are based on domain knowledge. Typically, these er-
rors can be found by trying to infer the concerns back

from the code, and to figure out if a domain-based pat-
tern was broken. Having concerns marked out and pre-
served together with the program being developed has
the potential of avoiding some of these errors.

In the current state, our tool can help the developer
in detecting errors by perusing the code related to a
concern. As an example related to the scenario above,
a simple rule in MPI is that MPI Send calls have to be
matched by corresponding MPI Receive calls. When
developers write the code, they know exactly which
MPI Send is matched by which MPI Receive. How-
ever, this information is then lost as explicit informa-
tion, and only encoded in the parameters given to these
method calls. Later, static and dynamic analyzers will
try to detect errors due to wrong values for parameters,
and in order to do so they will try to guess back these
correspondences. Depending on how the program was
written, it might not be possible to achieve this stat-
ically since the values of the parameters have to be
evaluated. Figure 1 shows such an example, with the
editor showing a piece of code with four MPI Send calls
and three MPI Receive calls. Only the three MPI Send
calls grouped together correspond to the MPI Receive
calls. This is a type of information that can save impor-
tant resources consumed by a dynamic analyzer that
can induce an important overhead [8]. Moreover, just
by looking at the code, the fact that the MPI Send calls
are grouped together, and the corresponding MPI Re-
ceive calls are not, can give the developer a hint: possi-
bly not all messages that are sent are also received. A
quick look at the code reveals that indeed, some of the
messages are not received unless a condition is fulfilled,
and this can lead to memory leaks and failure.

Although the initial use of the tool was on procedu-
ral programs, we believe that its benefits will be main-
tained in both regular object-oriented programs as well
as programs written using aspects. Aspect-oriented
programming offers the mechanisms to write the code
that belongs to a concern in a separate module. How-
ever, concerns can be cross-cutting each other in such
a way that the same line of code belongs to multiple
concerns. An example from our experience with MPI is
having the the same MPI Send call belonging to a mas-
ter program, being linked to some other MPI Receive,
and dealing with some special variables important in
the algorithm. Isolating such lines of code in separate
aspect modules just based on one of those concerns,
using AOP for instance, still leaves the problem of hav-
ing the other concerns overlapping. Therefore, even in
programs where some aspects are written in separate
modules, our tool would still be useful in visualizing
how the different concerns overlap in the source code.

4



5 Related Work

Both CME and the AspectJ Development Tools
projects [2, 9] include a source code visualizer, origi-
nating from SeeSoft [10]. Our tool is similar to them
in the fact that it shows the position of the occurrence
of each concern in text, and identifies each concern with
a different color. However, our tool displays this infor-
mation in the editor for each individual file, with the
user selecting which concerns to be displayed, while the
other visualizers show a global view of the code more
suitable for a statistical overview of an entire project.

FEAT [11] is a similar tool in that it is offering a
mapping between source code text and different fea-
tures (or concerns). However, FEAT purposely moves
away from free source-code mark-up text and stores
relationships between different language artifacts, such
as method calls traces, as concern graphs [12]. We
preferred a free annotation solution, where the user is
selecting any part of source code that they think is
necessary. FEAT is also implemented as an Eclipse
plug-in, but we could not use it in our projects since
it works on Java implementations, while our MPI pro-
grams were implemented in C or C++.

The Aspect Mining Tool (AMT) [13] presents a dis-
cussion of text-based and type-based analysis as tools
for discovering hidden concerns in code, with a visu-
alization tool also similar to SeeSoft. We found that
since MPI programming is much more rigorous than
general programming, text-based and type-based min-
ing is easier in finding MPI-related concerns. However,
the AMT tool could provide useful insights for eval-
uating the possible use of the Concern Highlighter in
general object-oriented programming.

6 Conclusion

In this paper we presented our experiences with
developing a tool for concern-based exploration. Al-
though initially developed for MPI programming, for
which we have discussed its potential benefits and pos-
sible uses, we believe that the Concern Highlight tool
would prove helpful for identification and visualization
of concerns in any type of programs, even the ones writ-
ten using AOP. The identification of concerns through
our tool, together with the integration with CME, can
increase software understanding and ultimately help
with software evolution.

Our work was exploratory, and a better evaluation
of its usefulness can only come from its use in real-life
projects. In its current form, our tool can be used to
determine what kinds of concerns are more likely to be
identified, and what are the possibilities of automation
in concern detection, for both MPI programs and in
general programming.

The Concern Highlight tool is integrated
within CME and is available for download from
http://www.eclipse.org/cme.

7 Acknowledgements

The authors would like to thank Harold Ossher,
Stan Sutton and William Chung from the IBM T.J.
Watson Research Lab for their valuable input and guid-
ance throughout the project.

This research was supported in part by the De-
fense Advanced Research Projects Agency under grant
NBCHC020056.

References

[1] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C.,
Lopes, C.V., Loingtier, J.M., Irwin, J.: Aspect-oriented
programming. In: Proceedings of the 11th European Con-
ference on Object-Oriented Programming. (1997)

[2] Concern Manipulation Environment Eclipse Technology
Project. (http://www.eclipse.org/cme)

[3] Eclipse. (http://www.eclipse.org)

[4] The Message Passing Interface (MPI) Standard.
(http://www-unix.mcs.anl.gov/mpi/index.htm)

[5] Harrison, W., Ossher, H., S.M. Sutton, J., Tarr, P.: Con-
cern modeling in the concern manipulation environment,
IBM Research Report RC23344 (September 2004)

[6] Snir, M., Otto, S.W., Walker, D.W., Dongarra, J., Huss-
Lederman, S.: MPI: The Complete Reference. MIT Press
(1995)

[7] Gropp, W., Lusk, E., Skjellum, A.: Using MPI: Portable
Parallel Programming with the Message-Passing Interface.
MIT Press (1999)

[8] Vetter, J.S., de Supinski, B.R.: Dynamic software testing
of mpi applications with umpire. In: Supercomputing ’00,
Washington, DC, USA, IEEE Computer Society (2000) 51

[9] AspectJ Development Tools Eclipse Technology Project.
(http://www.eclipse.org/ajdt)

[10] Eick, S., Steffen, J., E.E. Sumner, J.: Seesoft - a tool for
visualizing line oriented software statistics. In: IEEE Trans-
actions on Software Engineering. (1992) 957–968

[11] Robillard, M.P., Murphy, G.C.: Feat: a tool for locating,
describing, and analyzing concerns in source code. In: Pro-
ceedings of the Proc. Int. Conf. on Software Engineering
(ICSE). (2003)

[12] Robillard, M.P., Murphy, G.C.: Concern graphs: Finding
and describing concerns. In: Proceedings of the Proc. Int.
Conf. on Software Engineering (ICSE). (2002)

[13] Hannemann, J., Kiczales, G.: Overcoming the prevalent
decomposition in legacy code. In: Workshop on Advanced
Separation of Concerns (ICSE). (1991)

5



VEJAL: An Aspect Language for Versioned Type Evolution 
in Object Databases 

 Awais Rashid, Nicholas 
Leidenfrost 

Computing Department 
Infolab21, Lancaster University 

Lancaster LA1 4WA 
+44-1524-510316 

awais@comp.lancs.ac.uk 

 
 
 

ABSTRACT 
In this paper, we present our aspect language Vejal (Versioned 
Java Language) which superimposes support for versioned types 
and AOP onto Java. Vejal has been developed to service the 
needs of AspOEv1, an evolution framework that supports dynamic 
adaptation of evolution strategies in object databases [8, 9]. In this 
paper, we describe how the framework benefits from the 
advanced type semantics and the capacity for dynamic 
manipulation of Java offered by Vejal and its interpreter. We 
discuss how these capabilities allow programmers to alter types 
dynamically and undertake reflective analysis and consequent 
reflective action to preserve structural and behavioural 
consistency. We also highlight the dynamic AOP capabilities of 
Vejal and its command-line environment (CLE) which allows 
programmers to define expressive, single-use evolution 
primitives. 

Keywords 
Aspect-oriented software development, aspect-oriented 
programming, object database evolution, schema evolution, 
instance adaptation, versioned types, aspect-oriented databases. 

1. INTRODUCTION 
Determining all requirements for the future use of a software 
system may be impossible to do during the design and 
implementation stages of the software life cycle. Therefore, 
despite modern software engineering practices and attempts to 
create extensible, reusable, and flexible software, maintenance 
continues to be the largest phase in the life of any application. As 
databases serve multiple applications, the extent of evolution in 
databases, as demonstrated in [10], is beyond that of any single 
system. Object databases in particular are subject to advanced 
evolution needs due to the inherent structure of their data. True to 
the OO paradigm, persistent objects in an object database define 
their own behaviour, in contrast to a relational entity, which 
merely provides raw data for external applications to interpret. 
Therefore evolutionary changes can have complex implications 
for the behaviour of both existing instances and applications. 
Furthermore, databases commonly serve as a central storage point 
for many distributed applications, each of which may evolve 
independently and have different requirements for the shared data. 
The use of persistent data in such a heterogeneous environment 
further compounds the effects of changes. Newer applications 
                                                                 
1 The framework can be downloaded from: 

http://www.comp.lancs.ac.uk/computing/aose/AspOEv.php  

may wish to add functionality to a type2, or may deem 
functionality which is used by older applications as unnecessary. 
Compatibility issues arise as applications must operate on 
persistent data created with diverging definitions of a type. 
Furthermore, compound aggregation in object data means that 
types may be interdependent, and therefore, a change in one type 
may make another potentially unstable. Altering a type can, 
therefore, have non-localised effects. Hence evolution in object 
databases must account for the effect of a change on the entire 
organisation of types (the database schema) and their instances 
within the database. 
The process of evolution in an object database raises a number of 
major concerns, two of the most prominent being schema 
evolution and instance adaptation. Schema evolution pertains to 
the management of active types within the database environment 
and their respective evolution, while instance adaptation pertains 
to the meaningful conversion of existing data from one version of 
a type to another version. 
Object databases usually provide an integrated (fixed) approach to 
address schema evolution and instance adaptation concerns. This 
supplied approach, however, may not be the best fit for the 
application programmer, or the application base that will end up 
using the database. In addition, it may be impossible to preordain 
schema evolution and instance adaptation needs when choosing 
which object database system a project will use.  
Our solution to this problem is AspOEv, an aspect-oriented 
framework which supports dynamic adaptability of schema 
evolution and instance adaptation strategies in object databases. In 
such a flexible environment, which permits the simultaneous 
existence of multiple versions of a type, applications must have 
the ability to distinguish between versions and allow interaction 
between instances of different versions. This requires special 
language features on two levels: first, a language must support the 
syntactic expression of an explicit version wherever a type is 
referenced, i.e., allowing clear indication of which version of the 
type is intended, and second, the type system governing the 
language must permit, to some extent, the interoperability of 
instances of different versions of the same type. 
Our aspect language, Vejal, and its interpreter have been 
specifically developed to service the above needs – the framework 
derives two key benefits from them. Firstly, the advanced type 
semantics and the capacity for the dynamic manipulation of Java 
facilitate dynamic evolution of types and adaptation of evolution 

                                                                 
2 In an object database altering the representation of a complex data entity 

equates to altering the data’s type definition (henceforth referred to as 
type). 



strategies within the framework. Secondly, because Vejal 
applications are interpreted, the framework is able to capture 
evolution related events that occur within their execution, 
including detecting and handling behavioural inconsistencies. 
Inconsistencies in the execution of Vejal applications arise within 
the domain of the interpreter, enabling the framework to handle 
them in a uniform fashion. 
The rest of this paper is structured as follows. Section 2 
introduces the requirements that the Vejal type system has to cater 
for. Section 3 introduces the reflective features of Vejal and their 
use to maintain structural and behaviour consistency upon 
evolution. Section 4 discusses how join points and advice are 
handled in Vejal and describes some of its dynamic AOP 
capabilities. Section 5 discusses how Vejal and its CLE facilitate 
specification of specialised, one-off ad hoc evolution primitives 
by the programmers. Section 6 concludes the paper. 

2. VERSIONED TYPE REQUIREMENTS 
FOR THE VEJAL TYPE SYSTEM 
Vejal yields many advantages and features that aid AspOEv’s 
flexibility in supporting adaptable evolution strategies. 
Applications written in Vejal have the ability to specify an 
explicit version of a type. The grammar for Vejal attempts to 
emulate that of Java, however, Vejal allows the additional 
expression of a ‘<’ / ‘>’ delineated version number where Java 
would normally only expect a class name: 

Class Student<1.0> extends Person<1.3> {...} 

Vejal allows the explicit declaration of a version wherever a type 
may be referenced, including type definitions, variable 
declarations, method return types, and method parameter types:  

Person<1.3> frank = new Person<1.3>(...); 

Applications also have the option to omit the explicit declaration 
of a version in type declarations: 

Person frank = new Person(...); 

If the application does not specify which version a variable should 
be treated as, the interpreter binds the variable to the most recent 
version. Object database schema evolution strategies in AspOEv 
can uniformly advise various nodes within the interpreter’s 
abstract syntax tree (e.g., variable declaration, constructor 
invocation) to override this functionality, if desired 

Person <3.0> {
String firstname;
String lastname;
double mass;

}

Person <4.0> {
String firstname;
String lastname;
double mass;
String mobileNo;

}

Person<4.0> bob = new Person<4.0> ( … );
. . .
Person<3.0> manager = bob;

 
Fig. 1: Assignment of an additive version 

In addition to the mere expression of versioned-type semantics, 
the Vejal type system also allows versions of the same type to be 
assigned interchangeably, hence providing a database evolution 
environment that is version polymorphic [9]. Static type safety 
guarantees are traded for flexibility as most type checking is 

deferred to runtime, allowing custom strategies to more explicitly 
define the semantics of type equality. For example, an approach 
may allow the unconditional assignment of two different versions 
of the same type if the type of the right-hand value is additive 
with respect to the type of the left-hand variable. Such an 
assignment could occur in a class versioning scenario, as shown 
in Fig. 1, or could happen as the result of a query on the database 
returning instances of various versions. Regardless of the cause, 
however, because the properties and operations defined by the 
right-hand type are a superset of those of the left-hand type, it can 
be safely assumed that the declared variable will not break 
behavioural consistency at some later stage. 

3. VEJAL META-DATA 
Meta data refers generally to objects which represent elements of 
the executing program itself, allowing the program to take action 
to alter its behaviour dynamically. Meta objects are the first class 
representations of program structures in OOP – meta classes 
model class definitions, meta fields and meta methods model the 
declarations of properties and operations respectively within meta 
classes, etc. Meta classes typically maintain inheritance 
information, as well as any meta fields and meta methods defined 
by the represented class. Likewise, meta fields typically store the 
modifiers, type, and name of the field, and meta methods the 
method signature, including modifiers, return type, name, and 
parameter types.  
Like many schema evolution approaches able to achieve 
evolution dynamically, e.g., [1, 7], AspOEv relies heavily on a 
meta-layer to represent the structure of the persistent data. The 
relationships between versions of a type adds an extra dimension 
to Vejal meta classes – in addition to storing a type’s inheritance 
graph (which is directed, acyclic), meta classes also maintain 
links to derived and base versions. This is important as instance 
adaptation mechanisms often use the derivation path between two 
versions to determine how conversion should occur upon database 
evolution. To ensure stability among changing type definitions, 
the AspOEv framework stores meta-data persistently. The Vejal 
interpreter loads all type definitions from the database at start-up, 
preventing duplicate definitions of a type. This ensures that 
instances cannot have their original representations changed; once 
a type definition is finalised, it cannot change. 
In addition to providing a cohesive view of the types in the 
schema, Vejal’s meta-classes and their relationships allow 
database programmers to alter types (and hence, the schema) 
dynamically. Additionally, execution-level meta-data, i.e., a meta 
representation of procedural (method-body) code, enables the 
reflective analysis of the impact of a change, and consequent 
reflective action to preserve consistency. 
As any change to a type will likely affect all of its subtypes, (with 
the exception of the alteration of a member which the subtype 
overrides) the derivation of a new version of a type must also 
implicitly create new versions of every type which inherits, 
directly or indirectly, from the type. Bidirectional inheritance 
relationships between a type and its super-type enable Vejal meta-
classes to automatically create these implicit versions.  
Meta-classes can determine type dependencies by analysing the 
types of instance and local variable declarations (including 
method parameters) and the return types of method invocations. 
Moreover, meta-classes can analyse the use of variables, i.e., the 
fields referenced and methods invoked on variables, to determine 
compatibility with versions of other types.  



The representation of Vejal programs enables the framework to 
query the parsed code for program structures which are directly 
affected by evolution. For example, an evolutionary change which 
removes an instance variable from a type invalidates all 
references, both internal and external, to that instance variable. 
The meta-representation of Vejal operations allows querying the 
code for relevant references. Evolution primitives which operate 
on Vejal meta-data perform such consistency searches, and draw 
attention to circumstances resulting from the enacted change. This 
enables evolution approaches to take appropriate action. An 
evolution approach could implement a set of generative handlers 
to take autonomous action, or could simply notify the database 
programmer that further evolution need occur. Take, for example, 
the case of renaming an instance variable, as shown in Fig. 2. 

Person <1.0> {
String firstname;
String surname;
double weight;

}

Person <2.0> {
String firstname;
String lastname;
double weight;

}
 

Fig. 2: A renamed field 

Any operations defined by the type, or by dependent types, with 
references to the previous field handle surname must also evolve 
to use the new field name, lastname. As this evolutionary change 
does not have any subtle semantic implications, it is a perfect 
example of behavioural inconsistencies which can be detected and 
handled automatically. 
Execution-level meta-data in the evolved type (Person<2.0>) are 
searched for field references to the deprecated field name and 
altered to refer instead to the new field name. External references 
to the altered field are detected by searching dependent types and 
applications. Matching field references are first queried by field 
name. Subsequently, the types of field references are verified by 
using the execution-level meta-data in a manner similar to a 
compiler to determine the static type of their target variables.  
Note that although such an action presents a significant overhead, 
it only occurs once when a type is evolved, and is considerably 
less work than manually revising code. 

3.1 Consistency using Reflective Handlers 
To demonstrate the consistency management features of Vejal, we 
use the restructuring scenario from [2] and [4] which affects the 
direction of an aggregate relationship between two types, Supplier 
and Part. Initially, a Part contains a set of Suppliers. The proposed 
reorganisation of the data, however, reverses the nature of the 
relationship between the two entities – a part loses the knowledge 
of which suppliers carry it and a supplier gains a set of parts. 
The nature of this evolution removes an instance variable, 
suppliers from a type, Part. This removal creates inconsistencies 
in any code which references the removed entity, which [2] 
proposes to handle via reflectively altering dependent code. With 
Vejal’s ability to detect invalidated references in loaded types and 
applications, inconsistencies can be handled by reflectively 
introducing and initialising a local variable with the appropriate 
value prior to use.  
Fig. 3(a) shows a simple method, defined within the type Part, 
which uses the removed field suppliers. Note that the removal of 
suppliers leaves the method (as well as any other dependent 
entities) in an inconsistent state as it contains a reference to a 
removed entity. Fig. 3(b) illustrates how such an inconsistency 

could be uniformly handled by using reflective generators [2]. 
The handler defined in Fig. 3(b) responds to a Removed Member 
Referenced Exception, which occurs as the result of consistency 
checking within evolution primitives. The exception carries 
information relevant to the inconsistency, e.g., the Vejal method 
in which it occurs, enabling handlers to take necessary action. The 
handler shown in Fig. 3(b) updates the inconsistent method by 
adding code which declares and initialises a local variable, 
suppliers, to the appropriate value. Line 8 of Fig. 3(b) retrieves 
the inconsistent Vejal method from the exception.  Subsequently, 
lines 14, 15, and 16 declare the necessary Vejal handling code, 
parse it, and merge it with the inconsistent method, respectively. 
The Vejal method resulting from the application of the handler in 
Fig. 3(b) to the Vejal method in Fig. 3(a) is listed in Fig. 3(c). 

void listSuppliers () {
Iterator iter = suppliers.iterator();
while (iter.hasNext())
print(iter.next());

}

1  public class RemoveHandler extends ExceptionHandler {  
2    public RemoveHandler (InterpreterException exception) {
3      super(exception);
4    }
5
6    public void handleException () {
7      RemovedMemberReferencedException rmre = 

(RemovedMemberReferencedException)exception;
8      MetaMethod method = rmre.getReferer();
9      MetaMember removed = rmre.getRemovedMember();
10     Type declaredIn = method.getDeclarer();
11     Type part = new Type(“Part”);
12     if (declaredIn.equals(part)) { // Handling for Part
13       if (removed.getName().equals(“suppliers”)) {
14         String handlerCode = “QueryEnumeration result = 
Database.where([Supplier], \”hasPart(\” + partNo + \”)\”);  Set suppliers 
= new HashSet(result.toCollection());”;
15         Statement parsedHandlerCode =

VejalClassLoader.parseStatement(handlerCode);
16           Block methodBody = Method.getMethodBody();
17           MethodBody.prependStatement(parsedHandlerCode);
18       }
19     }
20   }
21 }

void listSuppliers () {
QueryEnumeration result= Database.where([Supplier], “hasPart(“ + 

partNo +”)”);
Set suppliers = new HashSet(result.toCollection());
Iterator iter = suppliers.iterator();
while (iter.hasNext())
print(iter.next());

}

(a)

(b)

(c)  
Fig. 3. (a) Code invalidated by the removal of instance variable 

suppliers (b) Handler declaration (c) Inconsistency correctly 
handled by introducing and initializing a local variable 

Unfortunately, at present there is no way to declare handlers in an 
ad hoc manner, and all handlers as seen in Fig. 3(b) must be 
written and compiled in Java, and then associated with the schema 
evolution strategy prior to the correlated evolution. Notice the use 
of bracket (‘[‘, ‘]’) delineated type names in Figs. 3(b) and 3(c). 
This is a provision of the Vejal language which allows 
referencing types as first class entities. Note also that Figs. 3(a) 
and 3(c) are code listings in Vejal, whereas Fig. 3(b) is Java. 

4. THE META-JOINPOINT/ADVICE 
MODEL 
AspOEv utilises integrated aspects to achieve modularisation of 
evolution concerns: both join points and advice are first class 
objects within the framework. Points of interest are captured with 
meta join points (similar to AspectWerkz), known as Bindings, 
that are woven into the core OO portion of the framework using 



AspectJ. At the application level, a Binding is simply an object 
representation of a join point and its associated advice. In some 
respects, a Binding is similar to an Event-Condition-Action 
(ECA) rule within active databases [3]. It must be observed, 
however, that Bindings and their associated advice exist outside 
of the database and are not rule-driven. 
Fig. 4 illustrates how a Binding operates over a join point. 
Program control passes to the Binding when the join point is met, 
the Binding then executes before and pre-proceed around advice, 
then the join point itself (if not circumvented), followed by its 
post-proceed and after advice, and finally returns control and 
execution resumes. At runtime, a Binding can be viewed simply 
as a collection of before, after, and around advice surrounding a 
join point. 

Binding
Pr

og
ra

m
 E

xe
cu

tio
n

Join point

post-proceed around 
advice

pre-proceed around 
advice

before advice

after advice

…

…Collection of advice

 
Fig. 4: Activation of a binding 

When AspOEv is built, the framework uses declared Bindings to 
generate AspectJ code and create a seamless interface between 
AspectJ advice and the executing Vejal environment. Declaration 
of Bindings in AspOEv is nearly identical to the specification of 
activation of join points in [6]. Bindings are declared and added to 
a ‘Binding Manager.’ The Binding Manager creates an AspectJ 
aspect, to which each binding adds: 
• a runtime declaration of the Binding itself; 
• a declaration of the Binding’s arguments; 
• an AspectJ pointcut targeting the Binding’s specified join 

point; 
• an AspectJ around advice creating an interface with the 

executing Vejal environment. 
AspectJ around advice generated for a binding is summarised in 
Fig. 5. Via manipulation of Vejal scopes, the AspectJ advice 
prepares the Vejal environment in such a way as to be both 
supportive of Vejal advice and safe for the executing Vejal code 
to which the Vejal advice applies. The AspectJ advice can then 
execute any Vejal advice associated with the binding. 
Our binding model yields a number of advantages. Firstly, 
Bindings are accessible dynamically, allowing management of 
applied advice at runtime. Moreover, because all advice is written 
in Vejal, and Vejal is interpreted, advice can be added and 
removed dynamically, as well as making advice subject to the 
flexibility and safety of the interpreter. 
The creation of a seamless interface between AspectJ advice and 
the Vejal environment allows the framework to apply interpreted 

advice to aspects, permitting the dynamic addition and removal of 
advice from specified binding points. The framework is thereby 
able to take a unified approach to evolution, viewing all evolution 
events – from changes incited by primitives, to widespread, long 
lasting evolution strategies – as aspects applied to Vejal meta-data 
and instances. 

Object around ( arguments ) : bindingPointcut( arguments ) {
- Push Vejal environment scope
- Declare arguments as variables in Vejal environment
- execute binding before advice
- execute binding pre-proceed advice
if (‘proceed ( )’ has been called in pre-proceed advice) {

- pop and save Vejal environment scope        
Object result = proceed( arguments );
- restore Vejal environment scope
- store result of proceed call in Vejal ‘proceed’ variable

}
- execute binding post-proceed advice
- execute binding after advice
- Pop Vejal Environment Scope
- return appropriate value      

}  
Fig. 5: Pseudo code of Binding-generated AspectJ advice 

4.1 Dynamic AOP in Vejal 
The ability to dynamically add and remove Vejal advice from 
bindings provides dynamic AOP capability to Vejal. However, 
currently, advice defined within types can only utilise variables 
which are declared statically within the execution environment, or 
associated with the Binding to which they subscribe – instance 
variables within the type are inaccessible as the advice is 
essentially static, and therefore, not associated with any individual 
instance of the type. Fig. 6(a) shows the declaration of a piece of 
advice within a class declaration. 

class BindMonitor {
before (bind) {
bindCount = bindCount + 1;

}

before (unbind) {
bindCount = bindCount – 1;

}
}

after (someBinding) {
// Some functionality
if (someCondition) {
thisBinding.removeRule(thisAdvice);

}
}

(a) (b)  
Fig. 6. (a) Simple AO functionality within Vejal (b) Removal of 

advice from a binding 

The Vejal class shown in Fig. 6(a), BindMonitor, merely keeps 
track of the number of objects bound within the database. 
Bindings bind and unbind refer to methods on the database 
manager of the same name. Note that the variable referenced 
within the advices to bind and unbind, bindCount, must be 
statically declared (not shown in Fig. 6(a)) before it can be used. 
While meta advice declared within a type does store a reference 
to the type in which it was declared, currently there is no 
mechanism for resolving which instance of the type advice code 
refers to – i.e. as in AspectJ’s deployment model via percflow, 
perinstance, etc. – thus only statically declared variables are 
available for manipulation within advice. 
Fig. 6(b) shows dynamic AOP functionality in Vejal by 
demonstrating how advice can dynamically unsubscribe itself 
from a Binding. The variable thisBinding refers to the currently 
executing Binding, while thisAdvice to the currently executing 
piece of advice. 

5. THE EVOLUTION PRIMITIVE MODEL 
Vejal allows AspOEv to provide database programmers the option 
of using expressive, single-use primitives. Many object database 



systems supply the database programmer with a special language 
for executing predefined evolution primitives, e.g., Odberg’s 
Change Specification Language [5]. These languages are focused, 
however, only on accepting input concerning the evolution 
primitive desired, as well as any parameters required by the 
primitive to carry out its particular change. This is problematic for 
a number of reasons: 
• The programmer must learn another language.  
• Often these languages are created for the sole purpose of 

expressing primitives which are predefined by the object 
database system, and thereby lack the capability to express 
custom evolution semantics. 

• Extending the language (if possible) could potentially require 
modifying the language’s parser. Due to the simplicity of 
most primitive expression languages, the parser is apt to be 
ad hoc. 

As opposed to introducing yet another language into the 
framework, we allow database programmers to manipulate the 
schema through Vejal’s Command Line Environment (CLE). The 
CLE allows schema changes to be expressed and interpreted in a 
manner consistent with evolution rules defined within the 
AspOEv framework. Vejal primitives can also utilise predefined 
framework primitives, and apply to multiple types, or in fact, the 
entire schema. As opposed to creating and managing potentially 
large collections of Java objects that represent obscure primitives 
that might only be used once, ad-hoc use of Vejal code provides 
the immediacy, convenience, and expressive ability to create 
powerful and diverse primitives. 
Fig. 7 shows a primitive which adds the type Object<1.0> as a 
base type to any type which does not have any base types, cf. 
lines 7 and 8. Additionally, in lines 3 – 6, the primitive 
circumvents any collisions, which might occur as a result of the 
introduced base type, by renaming the field uniqueID in any type 
which defines it. 

1  edit (*) {
2    List supertypes = Type.getSuperTypes();
3    if (Type.declaresField(“uniqueID”)) {
4      String newName = 

Type.getTypeName() + “_uniqueID”;
5      RenameFieldCommand(Type, “uniqueID”, newName);
6    }
7    if (supertypes.cardinality() == 0) {
8      Type.addSuperType([Object<1.0>]);
9    }
10 }

class Object<1.0> {
double uniqueID;

}

 
Fig. 7: Specialised, single-use, ad hoc primitive 

Note that the primitive in Fig. 7 is very specialised and would 
likely only need to be used once. Therefore, ad hoc declaration of 
the primitive in Vejal is preferable to creating a dedicated Java 
object – complex and specialised primitives written in Java would 
have to be written in a separate text editor, compiled, reflectively 
fetched and loaded, and then executed. Vejal code, on the other 
hand, can be more readily integrated, as the CLE provides 
AspOEv with a means of accepting and executing valid Vejal 
code. 
By clarifying the semantics of a change, detailed evolution 
primitives can lessen the burden on the database programmer to 
specify how that change affects existing data during instance 

conversion. Moreover, the ability to apply primitives to multiple 
types facilitates the evolution of the schema as a whole. 

6. CONCLUSION 
In this paper, we have presented, Vejal, an aspect language with a 
versioned type system. The language underpins the AspOEv 
evolution framework supporting adaptation of object database 
evolution strategies. A major advantage of object databases lies in 
transparent persistence, i.e. to supply OO developers with the 
ability to express persistence concerns through techniques that 
they already know and understand, without the need for 
specialised syntax. Vejal extends this idea to the AO level by 
integrating aspect capabilities within its versioned type system, 
hence providing a means of expressing AO concerns in user-
defined persistent types that can transparently act upon persistent 
data. In addition, it facilitates aspects to operate uniformly on 
multiple levels of execution - at both the Java and Vejal level.  As 
aspects bind to elements within the Vejal Abstract Syntax Tree 
(AST), their causality relationships with evolution strategies in 
fact originate from the Vejal execution the AST node expresses. 
Vejal also facilitates specification of both static (i.e. on types) and 
dynamic (i.e. on instances) action to associate with a change. An 
evolution primitive can, therefore, be viewed as an aspect to be 
applied to a type and its instances.  The aspect-primitive, written 
in Vejal, gives the database programmer greater expressive ability 
than a single-purpose primitive specification language. 
Furthermore, structures provided for declaring primitive 
execution permit schema-wide changes by allowing conditional 
evaluation and application of the primitive to multiple types. 

Acknowledgement. This work is supported by UK Engineering 
and Physical Sciences Research Council Grant GR/R08612.  

7. REFERENCES 
[1] J. Banerjee, et al., "Semantics and Implementation of Schema 
Evolution in Object-Oriented Databases", ACM SIGMOD 
Conference, 1987, ACM, SIGMOD Record, 16(3), pp. 311-322. 
[2] R. C. H. Conner, et al., "Using Persistence Technology to 
Control Schema Evolution", ACM SIGAP Conference, 1994.  
[3] K. R. Dittrich, et al., "The Active Database Management 
System Manifesto: A Rulebase of ADBMS Features", 2nd 
Workshop on Rules in Databases, 1995, LNCS 985, pp. 3-20. 
[4] G. N. C. Kirby, et al., "Using Reflection to Support Type-Safe 
Evolution in Persistent Systems", University of St. Andrews, UK, 
Technical Report No. CS/96/10 1996. 
[5] E. Odberg, "MultiPerspectives: The Classification Dimension 
of Schema Modification Management for Object-Oriented 
Databases", Proc. TOOLS-USA, 1994, IEEE.  
[6] A. Popovici, et al., "Just-In-Time Aspects: Efficient Dynamic 
Weaving for Java", Proc. AOSD 2003, ACM, pp. 100-109. 
[7] A. Rashid, "A Database Evolution Approach for Object-
Oriented Databases": PhD Thesis, Computing Department, 
Lancaster University, UK, 2000. 
[8] A. Rashid, "Aspect-Oriented Programming for Database 
Systems", in Aspect-Oriented Software Development, Addison-
Wesley, 2004, pp. 657-680. 
[9] A. Rashid, N. Leidenfrost, "Supporting Flexible Object 
Database Evolution with Aspects", Proc. GPCE 2004, LNCS 
3286, pp. 75-94. 
[10] D. Sjoberg, "Quantifying Schema Evolution", Information 
and Software Technology, 35(1), pp. 35-44, 1993.



Tracking and Assessing the Evolution
of Scattered Concerns

Martin P. Robillard

School of Computer Science
McGill University

Montreal, QC, Canada

martin@cs.mcgill.ca

ABSTRACT
In this position paper, we describe how we document the imple-
mentation of scattered concerns by combining intensional descrip-
tions of relations between program elements and their correspond-
ing extensions for a specific version of a program. We show that
this strategy allows us to automatically track the source code im-
plementing a concern as it evolves and to assess the stability of a
concern’s implementation. We illustrate these benefits with results
obtained from ongoing empirical studies of the evolution of scat-
tered concerns.

1. INTRODUCTION
Software modifications often address concerns, or features, whose

implementation is scattered across a number of modules. In such
cases, developers often have to spend a significant amount of effort
investigating a system to identify all the code locations which may
be associated with the change. When repeated changes address a
same scattered concern, the continual re-investigation of the code
can directly translate into inefficiencies of the software develop-
ment process.

One way to address this problem is to explicitly link the descrip-
tion of a concern with the code implementing the concern. With
this approach, first proposed by Soloway et al. in 1988 [16], anno-
tations or artifacts document how specific parts of the source code
relate to different scattered concerns. Different forms of tool sup-
port can help developers view and navigate this information to ease
software development tasks. One universal challenge with this ap-
proach, however, is that every time a system is modified, the con-
cern documentation is at risk of becoming invalid, and must be con-
stantly maintained.

In our current work on concern representation, we are developing
and evaluating ways to model concerns that can withstand the de-
structive effects of source code evolution. In one of our approach,
concern graphs [12, 13], we represent the implementation of a con-
cern using both an intensional specification (e.g., “all the callers of
method m1()”) and the corresponding extension on a specific ver-
sion of a code base (e.g., m2() and m3()). This way, it is possible
to automatically detect when the code evolves to a point where the
projection of an intension on a code base does not correspond to
the extension (what we call a concern graph inconsistency).

Past [15] and ongoing legacy [18] studies of concern evolution
have provided encouraging evidence that concern graphs can be
used to track and assess the evolution of scattered concerns. In the
rest of this paper, we describe several observations we made about

AOSD 2006 Workshop on Linking Aspect Technology and Evolution.

the value of combining intensional and extensional specifications
to describe the implementation of concerns. Among others, simple
heuristics applied to concern graph inconsistencies enable the auto-
matic detection of new concern methods, of changes to method sig-
natures, of class and method moves, of moves to code blocks, etc.
In addition, we found that studying the history of concern graph
inconsistencies between different versions of a system allowed us
to assess the relative stability of a concern’s implementation for the
purpose of refactoring the concern’s code to a different object- or
aspect-oriented modularity.

2. BACKGROUND
A concern graph [13] is an artifact representing the implemen-

tation of a concern in source code by documenting the relations
between the different program elements involved in the concern’s
implementation (fields, methods, etc.). In this paper, we present
a simplified version of concern graphs that includes only the con-
cepts necessary to understand the paper. The complete description
of the most recent version of the concern graph framework can be
found in a separate report [12].

In the concern graph framework, a concern is a named collec-
tion of fragments. A fragment represents a basic relation between
program elements that are relevant to a concern’s implementation.
The definition of a fragment includes an intension1 and its corre-
sponding extension representing the actual range of the relation for
a specific version of a program.

For example, if a developer decides that all the accessors of a
field f in a class C are associated with the implementation of a
concern, then the following intension is recorded:

C.f accessed by ALL.

When this intension is recorded, a tool analyzes the current ver-
sion of the code of the program and determines the extension (e.g.,
methods C.m1() and C.m2()). The complete fragment recorded
in the concern graph then consists of the intension C.f accessed
by ALL and its extension {C.m1(),C.m2()}.

By combining an intension and its extension in a fragment, when-
ever the program evolves, the intension can be projected onto new
versions of the program to determine if the generated extension
still corresponds to the stored extension. Inconsistencies between
the generated and the stored extensions indicate modifications that
invalidate the concern graph (a concern graph inconsistency).

1We use the term “intension” in the sense of Eden and Kazman, to
denote a structure that can “range over an unbounded domain” [4,
p. 150]



In practice, concern graphs are created and used with an Eclipse2

plug-in called FEAT [14]. FEAT augments Eclipse with a num-
ber of search facilities for program investigation (e.g., to obtain
all the accessors of a field) that allow a user to add the entire re-
sult of a search as a fragment in a concern (the intension is the
query and its extension is the query result). Every time source
code in an Eclipse project associated with a concern is modified (or
when a concern graph is loaded), FEAT re-projects the intension
of each fragment and checks the resulting extension for inconsis-
tencies with the stored extension. FEAT reports inconsistencies in
a specialized Eclipse view that describes which fragments are in-
consistent and why they are inconsistent. For example, Figure 1
shows the FEAT Inconsistencies View displaying the details of the
inconsistencies for a fragment with the intension

Marker.createPosition() called by ALL.

The adornments on the elements in the detailed view (bottom
panel) show that the stored extension is missing a call from parse-
BufferLocalProperties() but includes a call from a method
that no longer exists, parseBufferLocalProperties(String).

Figure 1: The FEAT Inconsistencies View

3. CONCERN TRACKING
Concern graphs are models that abstract the implementation of a

concern as a relation between program elements. As for any model,
concern graphs are intended to represent the essential properties of
a phenomenon while abstracting away the details. In the case of
concern graphs, the essential properties of a concern’s implemen-
tation are the inter-procedural relations between program elements
(e.g., fields, methods), and the details include the syntax of state-
ments, variable names, local interactions, and comments.

3.1 Minor Code Changes
Details of the code and local interactions have no impact on the

information stored in a concern graph. As an example, let us con-
sider the following Java source code

class A {
void m(boolean p) {

// p is true in the morning
if(p) x();
else y();

}
}
2www.eclipse.org

If a developer decides that all of the methods called by m are in-
volved in the implementation of a concern, this fact can be specified
with the intension:

A.m(boolean) calls ALL.

In a concern graph this intension would be stored in a fragment
that would include the extension {x(),y()}.

In this case, any change that would not involve either removing
or adding a method call in m would have no effect on the concern
graph. For example in the revised version

class A {
void m(boolean p) {

// p is true at night
if(!p) x();
else y();

}
}

the extension corresponding to m(boolean) calls ALL is pre-
served (and the concern graph is likely to remain valid) despite the
changes to the comment and branching predicate.

This basic tolerance to changes in source code is an important
property of concern graphs that facilitates the tracking of concern
code. Since concern graphs are not intended to describe the behav-
ior of a concern’s implementation but rather its location, the risk
of transparently invalidating a concern graph by changing the local
implementation of a method is very low. In our case, this would
only occur in the case where changes to the source code invalidate
the intension while preserving the extension. In other words, we
would have to change x() or y() in a way that renders the method
irrelevant to the concern, while preserving all existing relations en-
coded in fragments. We have not yet encountered such a case in
practice.

3.2 Major Code Changes
In addition to minor modifications, a software system will also

undergo more important changes that will affect the validity of the
concern graph. For example, if we now change our example code
fragment to:

class A {
void m(boolean p) {

// p is true at night
if(!p) x();
// No else branch

}
}

the extension corresponding to m(boolean) calls ALL is now
{x()}, which is inconsistent with the previous extension {x(),y()}.
Experience and studies of concern graph evolution have demon-
strated that analyzing the details of concern graph inconsistencies
can give us a wealth of information about the nature of the source
code changes.

We are currently studying how concern graph inconsistencies
can be translated into high-level information about concern changes
that can be used to automatically adapt the concern graph to reflect
the code changes. We present a number of our results here in the
form of heuristics. In the following descriptions, we use the expres-
sion synchronizing a fragment to indicate updating a fragment’s
stored extension with a generated version.

2



HEURISTIC 1 (SIGNATURE CHANGE). If a generated exten-
sion is missing a method and contains an extraneous method of the
same name defined in the same class but with a different parame-
ter list, the missing and extraneous elements probably represent a
change in the method signature that does not otherwise impact the
concern graph. The concern graph can automatically be repaired
by synchronizing the fragment.

Figure 1 shows a case where this heuristic applies.

HEURISTIC 2 (ELEMENT MOVE). If a generated extension is
missing an element in class C and contains an invalid element with
the same name in a class C′, the element was probably moved from
C to C′. The concern graph can be automatically repaired by syn-
chronizing the fragment.

HEURISTIC 3 (NEW CONCERN ELEMENT). If a generated ex-
tension is missing an element that cannot be associated with any
other heuristic, the missing element is probably a new element in-
troduced in the concern. The new element should be inspected by a
developer.

HEURISTIC 4 (ELEMENT RENAME). If an element is miss-
ing from a number of extensions and, for each extension, there is
a corresponding invalid element, the invalid element was proba-
bly renamed. The concern graph can be automatically repaired by
synchronizing the fragment.

HEURISTIC 5 (CODE BLOCK MOVE). If an element is miss-
ing from a number of extensions and, for each case, there is a cor-
responding extraneous but valid element, a concern-related code
block may have been moved. Confidence that this heuristic applies
increases if a number of fragments present the same inconsisten-
cies.

Our studies also showed cases where we could refine the Element
Move heuristic into the more specific Pull Down Method.

HEURISTIC 6 (PULL DOWN METHOD). If a generated exten-
sion is missing an element e in class C and contains invalid ele-
ments with the same name in a class C′, and C′ is a subclass of C,
we can say that e was probably pulled down from C to C′.

We are currently designing a way to automatically encode, de-
tect, and execute these heuristics in the FEAT tool, to increase the
level of automation with witch we can track concern code in evolv-
ing software.

4. CONCERN CHANGE ASSESSMENT
In addition to facilitating the tracking of concern-related code

throughout the evolution of a system, analyzing concern graph in-
consistencies can help assess the relative stability of different parts
of the code relating to a concern. This is important when trying to
decide whether and how a concern can be refactored, either using
traditional object-oriented refactoring [6] or aspect-oriented tech-
niques[5].

One way to assess the (in)stability of a concern’s implementa-
tion is to count the number of times a given fragment became in-
consistent as the result of the evolution of a system. In our empir-
ical studies, analysis of this factor allowed us to make two simple

but important observations. First, a very stable class can be used
by very unstable code. In one case, a class that was part of the
core implementation of a concern went through only 6 revisions
throughout the 4-year history of the system. However, the code
referring to this class was in a constant flux that resulted in many
concern graph inconsistencies. This example shows that we cannot
use naive metrics such as the number of file revisions to assess the
stability of a concern’s implementation.

Our second observation is that AspectJ [9] programmers should
be careful when specifying pointcuts intensionally. We now have
a collection of cases showing that, in practice, the extension corre-
sponding to an pointcut-like intension may be changing over time.
For example, an AspectJ pointcut may have many different sets of
shadows in the history of the system without programmers nec-
essarily being aware of the situation. Although in ideal AOP pro-
grams the differences should not matter, in reality they might. Stor-
ing the extensions corresponding to intensional specifications and
analyzing the inconsistencies between extensions in different ver-
sions of a system enables the automatic detection and notification
of such cases.

5. RELATED WORK
A number of approaches have been proposed that allow devel-

opers to specify a subset of the source code of a program using
intensional specifications.

For example, the Stellation [1, 2] software configuration man-
agement system supports virtual source files using a typed aggre-
gation mechanism that can intensionally collect different program
elements and other artifacts in a single modular unit. The Aspect
Browser is a tool proposed to help developers find concerns us-
ing lexical searches of the program text [7]. In AspectBrowser, a
concern description is intensionally defined as a set of regular ex-
pressions. As another example, Intentional Views [10, 11] allow
developers to specify different views of a system that reflect some
form of commonality, which can include relevance to the imple-
mentation of a concern. With Intentional Views, developers can
manage the evolution of concerns by providing alternative inten-
sions for the same concern, whose extensions can then be checked
for consistency as the software evolves. Finally, The Concern Ma-
nipulation Environment (CME) [8] includes a Concern Explorer
tool that can be used to describe concerns using queries (i.e., inten-
sions) in a way that is similar to FEAT, but without the support for
inconsistency analysis between different extensions corresponding
to a single intension.

We see the number and variety of approaches for intensional
specification of concern code as an exiting indicator that such an
idea is feasible and practical. The main difference between con-
cern graphs and previous approaches is that concern graphs store
the extensions that correspond to programmer-defined intensions.
Only with this property can the analyses described in the paper be
possible.

A number of approaches have also been proposed for inferring
past refactorings from as system’s change history. For example,
Demeyer et al. [3] analyze changes in object-oriented metrics (e.g.,
the number of messages sent) to infer potential past refactorings.
Xing and Stroulia [17] developed an approach to recognize past
refactorings based on changes in a class hierarchy as documented
in an object-oriented design model. In contrast, our inferences
are done using concern graphs, an abstraction that is closer to the
source code than both metrics and class diagrams.

3



6. CONCLUSIONS
Artifacts that describe the source code implementing scattered

concerns can be helpful to developers performing program evolu-
tion tasks. However, an artifact referring to source code typically
becomes inconsistent as the code evolves, reducing its effective-
ness. In this paper, we described how we can efficiently evolve
descriptions of concerns in source code together with with the evo-
lution of a system. The key to enabling the inexpensive evolution
of concern descriptions is to combine intensional specifications of
the concern code with their corresponding extensions. Analysis
of the inconsistencies between extensions stored in a concern de-
scription and extensions generated on a program by projecting the
corresponding intensions can help us determine how to adapt the
concern descriptions, and provides us with valuable insights on the
stability of a concern’s implementation as the code evolve.

Acknowledgments
The author is grateful to Gail Murphy and to the LATEr 2006 ref-
erees for useful comments on this paper.

7. REFERENCES

[1] Mark Chu-Caroll, James Wright, and David Shields.
Supporting aggregation in fine grained software
configuration management. In Proceedings of the ACM
SIGSOFT International Symposium on the Foundations of
Software Engineering, pages 99–108, 2002.

[2] Mark C. Chu-Carroll and Sara Spenkle. Coven: Brewing
better collaboration through software configuration
management. In Proceedings of the ACM SIGSOFT 8th
International Symposium on the Foundations of Software
Engineering, pages 88–97, 2000.

[3] Serge Demeyer, Stéphane Ducasse, and Oscar Nierstrasz.
Finding refactorings via change metrics. In Proceedings of
the Conference on Object-Oriented Programming, Systems,
and Applications, pages 166–177, 2000.

[4] Ammon H. Eden and Rick Kazman. Architecture, design,
implementation. In Proceedings of the 25th International
Conference on Software engineering, pages 149–159, 2003.

[5] Tzilla elrad, Robert E. Filman, and Atef Bader.
Aspect-oriented programming. Communications of the ACM,
44(10):29–32, 2001.

[6] Martin Fowler. Refactoring—Improving the Design of
Existing Code. Object Technologies Series. Addison-Wesley,
2000.

[7] William G. Griswold, Jimmy J. Yuan, and Yoshikiyo Kato.
Exploiting the map metaphor in a tool for software evolution.
In Proceedings of the 23rd International Conference on
Software Engineering, pages 265–274, 2001.

[8] William Harrison, Harold Ossher, Stanley Sutton Jr., and Peri
Tarr. Concern modeling in the concern manipulation
environment. Technical Report RC23344, IBM Research,
2004.

[9] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten,
Jeffrey Palm, and William G. Griswold. Getting started with
AspectJ. Communications of the ACM, 44(10):51–57, 2001.

[10] Kim Mens, Tom Mens, and Michel Wermelinger.
Maintaining software through intentional source-code views.
In Proceedings of the 14th International Conference on
Software Engineering and Knowledge Engineering, pages
289–296, 2002.

[11] Kim Mens, Bernard Poll, and Sebastián González. Using
intentional source-code views to aid software maintenance.
In Proceedings of the International Conference on Software
Maintenance, pages 169–178, 2003.

[12] Martin P. Robillard. Representing Concerns in Source Code.
PhD thesis, Department of Computer Science, University of
British Columbia, Canada, 2003.

[13] Martin P. Robillard and Gail C. Murphy. Concern Graphs:
Finding and describing concerns using structural program
dependencies. In Proceedings of the 24th International
Conference on Software Engineering, pages 406–416, 2002.

[14] Martin P. Robillard and Gail C. Murphy. FEAT: a tool for
locating, describing, and analyzing concerns in source code.
In Proceedings of the 25th International Conference on
Software Engineering, pages 822–823, 2003.

[15] Martin P. Robillard and Gail C. Murphy. Evolving
descriptions of scattered concerns. Technical Report
SOCS-TR-2005.1, School of Computer Science, McGill
University, 2005.

[16] Elliot Soloway, Jeannine Pinto, Stan Letovsky, David
Littman, and Robin Lampert. Designing documentation to
compensate for delocalized plans. Communications of the
ACM, 31(11):1259–1267, 1988.

[17] Zhenchang Xing and Eleni Stroulia. Recognizing refactoring
from change tree. In Proceedings of the First International
Workshop on Refactoring: Achievements, Challenges, and
Effects, pages 41–44, 2003.

[18] Martin V. Zelkowitz and Dolores R. Wallace. Experimental
models for validating technology. IEEE Computer, 31(5):23,
1998.

4



Empirical Study for Evaluating Evolvability Requirements 
 

Christa Schwanninger, Iris Groher, Regine Meunier, Uwe Hohenstein 
Siemens AG, CT SE 2, Otto-Hahn-Ring 6,81739 Munich, Germany 

{christa.schwanninger, regine.meunier, uwe.hohenstein} @siemens.com, Iris.Groher@students.jku.at 
 

ABSTRACT 
To convince the industry to use aspect-oriented programming 
techniques we have to defeat the prejudice against this paradigm. 
One mean to achieve this are studies proving the benefits of AO 
and disproving the retentions against it. We describe a small 
comparative study comparing one OO with three AO languages. 
The study results and the experience we gained help to plan and 
conduct further studies to show the value of AO. 

1. INTRODUCTION 
1.1 Evolvability 
Aspect-oriented (AO) languages improve the modularity of 
systems. The claim that increased modularity improves 
understandability and thus the evolvability of systems is as old as 
modular and object-oriented (OO) programming. AO proponents 
see improved modularity as the main advantage of this paradigm 
[1, 2], critics argue that developers loose the overview when 
crosscutting concerns get modularized. A modularized concern still 
crosscuts the application. Understanding its effect when separated 
could be harder than if it was tangled with the code. The modules 
that are influenced by the crosscutting concern miss part of their 
context, the aspect contains pointcut declarations that are brittle 
and often hard to understand and handle without tool support. If the 
first position is wishful thinking or the second is a prejudice needs 
to be proven first before many practitioners in industry are willing 
to adopt AOP. We suggest giving evidence to practitioners that AO 
really improves the evolvability of software. One means to do so is 
to conduct empirical studies that prove that AO programs are easier 
to understand, easier to extend and thus easier to evolve than 
procedural or OO programs. 

1.2 Background 
Our industrial research group evaluates AO languages, tools and 
methods (among other paradigms) to find out, which AO 
technologies are helpful and mature enough to be used in industry. 
We recommend mature concepts to internal partners in product 
development, prepare teaching material and provide support.  
To get evidence on the maturity and applicability of different AO 
languages in comparison to OO, we implemented a demonstrator 
that simulates a couple of use cases of an industrial application 
(size is 57 classes in Java) in three different AO languages, 
AspectJ [3], Hyper/J [4] and CaesarJ [5], and in Java using OO 
design patterns [6]. We compared the implementations according 
to 

• Quantifiable criteria such as size, coupling, cohesion, 
complexity, inheritance hierarchy depths, and runtime 

• Qualitative criteria such as understandability and extensibility 
This paper presents the results of a small comparative study falling 
into the second category. 

We hope to get feedback from the workshop participants, hear 
about similar experiences and trigger more studies to  

• Tackle the prejudice against AOP, like programs are less easy 
to understand, to debug and to extend. 

• Get material to convince management and development teams 
to use AO languages when appropriate. 

Our main intention for this first comparative study was to get a 
first sense on how different the language ratings are and also for 
how much preparation such a study requires. Our sample is small, 
but the resulting data allows creating hypotheses for further 
investigations. We asked Siemens employed diploma and PhD 
students and two interns to participate.  
A second source for comparing the languages qualitatively is 
professionals. Considering the time constraints of professionals we 
plan a briefer version of our study, where we introduce all 
languages to a group of professionals and explain the designs for 
all our solutions. We will then ask them to rate how 
understandable, mature and applicable they find these languages 
for the development tasks they participated in. This will be the 
next step in our qualitative language comparison. 
In the next section we explain the applications we wrote for our 
comparisons and how the study was prepared and conducted. 
Section 3 presents the study results, Section 4 gives a summary of 
the hypotheses we derived from the results and the lessons learned 
on conducting comparative studies. In 5 we briefly state our further 
plans and 6 talks about related work.  

2. STUDY DESCRIPION 
2.1 Application  
We implemented a central and important part of a 
telecommunication network operation and maintenance 
application. The kernel entity of such an application is a 
topological tree (TopoTree) that visualizes the state of hardware 
elements in a telecommunication network, reflecting the topology 
of the network.  
Topological trees are common in various application domains, e.g. 
for managing high bay warehouses, power distribution systems or 
traffic control systems. The main difference between the 
application domains is the kind of monitored elements, which can 
be goods, hardware elements or vehicles. For our example the 
topological tree represents a network infrastructure to be controlled 
by telecom network operators. Controlling here means that 
hardware network entities have to be monitored to take action in 
case of a failure. Relevant data has to be presented to the operator 
in an easy to grasp way in a tree view. Color encoding is used to 
indicate the state of the network. Leaf nodes are hardware entities 
such as CPU boards, which are then aggregated to higher entities 
like racks containing the boards, and so on. The whole structure 
forms an acyclic tree. One server application manages the model of 



the tree; it writes the recent state into a database and calculates 
state changes for tree elements. Clients have a GUI and present a 
view on the tree to operators.  
In our implementation clients can change the state of nodes and 
push these state changes to the server, which is then responsible for 
calculating resulting state changes and updating all other clients. 
To make it easy for the operator to spot problems in the network, 
nodes are colored. The color code is: GREEN indicating normal 
operation, YELLOW for a warning, ORANGE for a major 
problem, RED for an error and WHITE for unknown state. These 
colors not only show the working state for each concrete leaf 
network element, the states of leaf nodes get aggregated and 
determine the color of the father node. This helps the operator to 
detect problems in a big network where most nodes representing 
higher level entities in the visualization tree are collapsed (e.g. 
node Device_5 in Figure1). Depending on the specific 
requirements, different state propagation strategies exist. If for 
example more than half of the children of a node are in a critical 
state, the father also shall show the coloring for critical state to 
make the operator aware of a major problem in a collapsed part of 
his visualization tree. Figure 1 shows a screenshot of such a client. 

 
Figure 1: TopoTree Client 

2.2 Implementation Variants 
We implemented the same requirements in four different 
languages, three of them aspect-oriented extensions to Java – 
AspectJ, Hyper/J and CaesarJ – and one in pure Java. The purpose 
of this is to have a basis for comparing the AO languages with pure 
OO regarding quality criteria like efficiency – runtime and code 
size – and development requirements like understandability and 
extensibility. 
For all versions together we upfront decided on five concerns that 
were implemented with either the aspect modularization 
mechanism of the respective AO language or with design patterns 
in the OO case. We implemented these concerns such that they are 
easily exchangeable in each application, for four of the five 
concerns even several implementation variants exist. Beyond these 
concerns the implementers of the four versions were free to choose 

other concerns to modularize in aspects as they see fit best in the 
specific language. For the five predefined concerns we were 
interested in how good these concerns can be encapsulated in each 
language without corrupting the understandability of the whole 
application. We found out that all four languages were well suited 
for encapsulating these concerns. But as we stated in the beginning 
encapsulation is not a goal in itself but should serve the goals of 
understandability and extensibility. For this purpose we conducted 
an extensibility study to help us judge how well the different 
languages support understandability, extensibility and thus 
evolution. We did not yet check for properties like testability and 
independent reusability of modules or aspects, which are also very 
important for evolvability. 

2.3 Concerns 
The concerns we chose up front were:  

• Persistency: The TopoTree application supports three 
different variants for retrieving the data: 1. reading the whole 
tree from the database as soon as the first client requests a 
node (eager persistence), 2. reading only the requested nodes, 
further nodes are read when a node gets expanded for the first 
time by a client (lazy persistence) or 3. not reading the 
database but generating the nodes only in main memory (no 
persistence). 

• Propagation: Whenever an alarm state is raised on a node, a 
propagation strategy determines how its ancestors are 
affected. Two strategies are implemented in each version of 
the TopoTree.  

• Remoting: The TopoTree either runs as a stand-alone 
application or in a client/server mode, where the server 
administers the model and arbitrary many clients show views 
on the model and feed back changes to the operator. For the 
second variant nodes should be remote objects.  

• Client-Update: The client update concern cares for updating 
all client views when a change in the model occurs. This 
concern can be switched on or off. When it is missing, the 
application does not fulfill all its requirements, since 
operators should always see the current state of the network.  

• Tracing: Different tracing levels should be possible. 

2.4 Concern Implementation  
Table 1 shows how the different concerns were implemented in the 
4 versions of the TopoTree.  

2.5 Study Set-Up 
We chose the Client Update concern to be implemented by our test 
persons. We omitted the aspect in the AO examples, for the OO 
version we threw out updating code. For each of the AO languages 
two students implemented the concern independently, for the Java 
version we had three students, two of them did not know Java 
before. We were interested in how hard it is to learn an AO 
language in comparison to learning the first OO language. 



Table 1: Concern Implementation 
Three of the students are master students in computer science; they 
never participated in product development, the programs they write 
for their diploma theses are their first reasonably sized projects 
ever. Four students are PhD students in computer science; two of 
them have considerable experience with projects of about 80 to 
100 classes each. The third one did mainly database programming 
and had nearly no experience with object-oriented languages and 
never used Java before. The last two are interns, one of them 
studying computer science and having a lot of development 
experience in Java and one bio-engineer that had only developed 
software in assembler and C so far. They all had heard about AOP, 
but none of them had investigated the paradigm more closely or 
ever used an AO language. To be able to connect the student 
education with his/her feedback, we give them names assembled 
from the language they worked in and a number. So Java1 is the 
PhD student who mainly developed database applications and has 
nearly no OO experience, Java2 is a diploma student who has OO 
and Java experience, Java3 is an intern who never used OO before. 
AspectJ1 is a PhD student with considerable Java knowledge, 
AspectJ2 a diploma student with some experience, comparable to 
student HyperJ1, HyperJ2 is a PhD student with some Java 
experience again. CaesarJ1 is an intern with a lot of programming 
experience in research projects and CaesarJ2 a PhD student with 
similar experience. To make participating in the study affordable 
for the students we  

• taught mainly the language features that were necessary to 
implement the extension 

• gave quite concrete hints where the application should be 
extended; thus the students did not have to understand all 
parts of the application thoroughly before being able to make 
the extension. (Future studies require more emphasis on the 
understandability of bigger portions of code.) 

• supported the students if they had non-AO specific problems. 
We e.g. readily helped them solve RMI related problems 
asking them not to add the time for this to the final effort. 

The students all together got a 2.5 hour’s introduction to the 
application and to AO in general with a brief summary of the three 
aspect languages. Every students group that implemented in an AO 
language then got a one to two hour’s crash course in their AO 
language concentrating on the general concept and on the specific 

concepts they needed for their solution. For all groups including 
the three Java extension developers we walked through the 
relevant parts of their specific application and gave rather concrete 
hints what was missing where. 
Every student got documentation on their language, which was 

• popular Java books for the Java developers 
• AspectJ in Action [6]] and the AspectJ Quick Reference for 

the AspectJ developers 
• The Hyper/J User and Installation Manual [4] for the Hyper/J 

developers 
• Tutorial slides from the CaesarJ language development team 

[5] for the CaesarJ developers 
During implementation, we immediately helped when we saw that 
the students had problems with non-AO related tasks or when we 
thought we didn’t introduce a language feature well enough. 
All students worked with Eclipse 3.1.0. The AspectJ version was 
1.5.0 for compiler and runtime and 1.2.0 for AJDT, the Hyper/J 
version was the latest downloadable, and the CaesarJ version 0.5.3. 
Our questions fell into four categories. The first one was on the 
effort for understanding and implementing the extension, the 
second on language understandability, then on development and 
documentation support and the last block on how the student 
judges the usefulness and applicability of the language for 
development projects. 

3. STUDY RESULTS 
3.1 Effort Comparison 
In general all students managed to solve the implementation 
task in nearly a day including understanding the application, 
understanding the language basics, designing, implementing 
and testing the solution. Figure 2 shows the effort the 
students spent on understanding the base application, 
designing their specific AO or non-AO solution, 
implementing and testing it. The number of participants is 
too low to draw strong conclusions, but we can derive some 
trends. These hypotheses need to be proven or invalidated 
by studies done with a bigger sample. 

 Persistence Propagation Remoting  Client Update Tracing 

Java 

Strategy pattern; strategy set 
in a property file and 
implementing class 
instantiated at startup time 

Visitor pattern; propagation 
strategy set in a property file 
and implementing class 
instantiated at startup time 

Proxy pattern; when no 
remoting necessary direct 
communication of view with 
model, otherwise through proxy 
object 

Observer pattern, not 
unpluggable 

Tracing class 
with choice of 
tracing level at 
runtime 

AspectJ 

Abstract aspect for common 
retrieving/storing functionality 
and specific aspects for each 
persistence strategy 

One abstract aspect with 
common functionality and 
one concrete aspect for each 
propagation strategy 

Aspect for exception softening, 
for remote reference creation 
and retrieval 

Observer pattern 
with inter type 
declarations adding 
functionality to the 
base classes 

Several tracing 
aspects 

HyperJ 
One hyperslice per 
persistence strategy 

one hyperslice per 
propagation strategy 

One hyperslice for remote 
reference creation/retrieval and 
BCEL adding of Remote 
interface and RemoteException

One hyperslice for 
implementing the 
Observer 
functionality 

Several tracing 
aspect 
hyperslices 

CaesarJ 

On cclass 
(aspect)implementation for 
each concern and one 
concern selection cclass 

One abstract aspect for 
propagation and concrete 
aspects for the different 
implementations. 

Making use of CaesarJ’s  
remoting feature 

One tree update 
aspect conforming to 
the Observer pattern

Several tracing 
aspects 



0

100

200

300

400

500

600

700

800

m in

Ja
va

1

Ja
va

2

Ja
va

3

As
pe

ct
J1

As
pe

ct
J2

H
yp

er
/J

1

H
yp

er
/J

2

C
ae

sa
rJ

1

C
ae

sa
rJ

2

Test

Implement

Design

Understand
 

Figure 2: Development Effort 
In general the students Java1 and Java3 who were new to Java and 
had to implement the Java extension had more problems dealing 
with the language than students who knew Java but were new to 
AO and had to implement one of the AO parts. Java3 never had 
used an OO language before; she was the one who had most 
difficulties in understanding the application and implementing the 
extension. The results for AspectJ and CaesarJ are similar, 
although in advance we were rather concerned that CaesarJ would 
be too different from the way how average OO developers think to 
get the task done without getting a full CaesarJ tutorial beforehand. 
However the students who volunteered to do the CaesarJ extension 
were the ones with the most programming experience; they already 
were familiar with generative programming and model driven 
development concepts and had more development experience than 
the other students.  
We were surprised that the experienced Java developers who had 
to extend the HyperJ version were faster than the AspectJ 
developers. They felt that understanding the composition language 
was quite easy and developing a hyperslice requires mainly just 
Java knowledge. On the other hand they also said that it would 
have been really hard for them to identify all hyperslices in the 
first place, while the AspectJ developers found the concerns that 
were implemented as aspects quite obvious and would also have 
identified those as aspects. 
We also found out that having the test persons measure the time for 
certain tasks themselves can temper the results. While some 
include every five minutes they thought about the problem during 
the coffee break, others tend to count only the time they fully 
concentrated on the solution.  

3.2 Language Evaluation 
In the next block of questions we wanted to know how easy to 
understand the students considered the languages and specific 
application. Table 2 “Language Evaluation Results” presents the 
results. 1 is the best grade and 6 the worst. 
In average it seems to be harder for somebody who never used an 
OO language to understand Java than for a Java programmer to 
switch to an AO language based on Java.  

For CaesarJ the documentation is not very rich, yet, this was one 
reason for the CaesarJ1 candidate to rate the language concept 
understandability very low. In general language concept 
understandability is better for AspectJ and Hyper/J, however the 
two CaesarJ ratings for how well the problem solving is supported 
are even slightly better than the AspectJ ratings. We had guessed 
AspectJ would be easiest to understand beforehand while we 
considered CaesarJ as the most different from the OO paradigm 
and thus hardest to understand. But this notion was not confirmed 
by the study results.  
The fact that CaesarJ was considered more mature than AspectJ 
was also not what we expected. This definitely needs more 
validation in a study where each participant gets to know and rate 
all three AO languages. 

3.3 Tool Support and Debugging  
The next cluster of questions deals with the IDE and debugging 
support, see Table 3 “Tool Support and Debugging”. Again ratings 
were from 1 (very good), to 6 (not provided or very bad). Since all 
students used Eclipse as IDE with the plugins provided by the AO 
languages, there was a very good Java support and reasonably 
good AspectJ support, but no real Hyper/J and CaesarJ support, 
when it comes to language parts that are not Java. 
For Hyper/J and CaesarJ (in the version we used) the IDE support 
beyond Java support is missing. This is also reflected by the 
answers to the questions concerning tool support. Debugging 
support is integrated for Java and AspectJ, some of the students 
rather used console printouts. Most of the students on the other 
hand really missed better browsing support especially for Hyper/J 
and CaesarJ. They said that for a bigger example they would need 
better visualization of the relationships between aspects and base 
code. For getting a good evaluation of the IDE integration the 
extension task obviously was too small. A study with a bigger 
extension task and a group of professional software developers 
would definitely lead to stronger results. 

3.4 General Valuation 
Finally, we wanted to get more general statements on whether the 
students can think of families of tasks or challenges they would 
consider the tested languages especially useful for, whether they 
would like to use and recommend the languages for their daily 
work and if they think the languages were mature. Table 4 
“General Valuation” summarizes the results. 
The whole Java group thinks that the language scales for industry 
projects, which is no surprise since everybody knows it does. From 
the lack of examples that could easier be solved with one of the 
languages we conclude that the students did not have enough 
experience to see a paradigm suitable for solving specific problems 
or that the time they spent with the language was too short to see 
its value. Again, a study with professionals has to be done to get 
better data on these questions.  
One interesting fact is that one AspectJ implementer first solved 
his task with OO and then pulled the code out into an aspect. This 
developer also had major concerns that AspectJ could result in a 
bad design or easily be misused for patching a system. He 
therefore would not consider it for industrial use.  
AspectJ and Hyper/J results are rather similar in the evaluation. 
CaesarJ is considered to be more a research language and needs a 
lot more tool support to be applied in real development projects. 



4. SUMMARY AND LESSONS LEARNED  
We conducted a small comparative study to evaluate how easy it is 
to extend an application written in 3 AO languages and one OO 
language. The study sample was small but sufficient to derive 
some hypotheses that have to be proven in studies with bigger 
samples. We encourage the AO community to conduct such studies 
to give evidence to the industry that AO is mature enough to be 
adopted and that quantifiable and qualitative attributes improve 
when applying AO technologies. 
Some of our hypotheses that need further investigation are 

• It is easier for an experienced OO developer to switch to an 
AO language that extends an OO language than it is for a 
developer who is only familiar with procedural programming 
to switch to an OO language. 

• New language constructs are harder to learn than an external 
connector file; in this case AspectJ and CaesarJ were slightly 
more challenging than Hyper/J. 

• The better a language supports modularization the more IDE 
support is needed to understand the result as a whole. 

This was our first comparison study on this topic. The lessons we 
learned for further studies are:  

• To compensate the variation in education and experience of 
test persons it is necessary to have the same test persons 
implement all 4 extensions if the sample is small or have a by 
far bigger sample (e.g. 25 per group) to get statistically valid 
data.  

• To get comparable time measurements it is better to have a 
facilitator who watches the test persons and notes the time.  

• For a more realistic assessment of how a language supports 
evolution several extension tasks with varying effect on the 
architecture should be performed for one application.  

• Questions concerning IDE support need bigger examples and 
professional software developers as test persons. 

• Questions falling into our general validation block need test 
persons with more experience than we had.  

5. FUTURE WORK 
In the near future we want to do a study with professionals whom 
we present all four solutions and ask for their evaluation of the 
languages. We also need measures on testability independent 
reusability.  

6. RELATED WORK 
There exists a number of studies that compare AO languages [8,9], 
AO with OO [10,11,12] or evaluate the suitability of AO for 
certain programming domains [13,14,15]. Due to space limitations 
we can’t discuss them in this position paper. 

7. ACKNOWLEDGMENTS 
We thank all students who participated in our study. 

8. REFERENCES 
[1] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.V. 

Lopes, J.M. Loingtier, J. Irwin, “Aspect-oriented 
Programming”, In Proceedings of the European Conference 

on Object-Oriented Programming (ECOOP), LNCS 1241, 
Springer-Verlag, 1997 

[2] P.L. Tarr, H. Ossher, W.H. Harrison, S.M. Sutton Jr., “Multi-
Dimensional Separation of Concerns in Hyperspace”, In 
Proceedings of the International Conference on Software 
Engineering (ICSE), pages 107-119, 1999. 

[3] AspectJ, Aspect-oriented Programming in Java, 
http://www.aspectj.org. 

[4] Hyper/J web site: 
www.research.ibm.com/hyperspace/HyperJ/HyperJ.htm 

[5] CaesarJ Website, http://www.caesarj.org 
[6] Ramnivas Laddad. AspectJ in Action: Practical Aspect-

Oriented Programming. Manning, 2003 
[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design 

Patterns: Elements of Reusable Object-Oriented Software. 
Addison-Wesley, 1995. 

[8] Christina Chavez, Alessandro Garcia, and Carlos Lucena. 
Some insights on the use ofAspectJ and Hyper/J. In Rashid 
[1181]. 

[9] Mik Kirsten. Aop@work: Aop tools comparison, part 1: 
Language mechanisms. Technical report, IBM Developer 
Works, February 2005. 

[10] Robert J.Walker, Elisa L.A. Baniassad and Gail C. Murphy, 
An Initial Assessment of Aspect-oriented Programming, In 
Proceedings of the 21st International Conference on Software 
Engineering,1999 

[11] Alessandro Garcia, Cl´audio Sant’Anna, Eduardo Figueiredo, 
Uir´a Kulesza, Carlos Lucena, and Arndt von Staa. 
Modularizing design patterns with aspects: A quantitative 
study. In Tarr [1361], pages 3–14. 

[12] Shiu Lun Tsang, Siobhán Clarke, Elisa Baniassad, Object 
Metrics for Aspect Systems: Limiting Empirical Inference 
Based on Modularity, Trinity College Dublin technical report 

[13] Kersten, A. and Murphy, G. Atlas: A Case Study in Building 
a Webbased Learning Environment Using Aspect-Oriented 
programming. Proceedings of OOPSLA’99, November 1999. 

[14] Lippert, M. and Lopes, C.V. A Study on Exception Detection 
and Handling Using Aspect-Oriented Programming in Proc. 
ICSE 2000. Limerick Ireland. 2000. 

[15] Shiu Lun Tsang, Siobhan Clarke, Elisa L. A. Baniassad, An 
Evaluation of Aspect-Oriented Programming for Java-based 
Real-Time Systems Development, ISORC 2004 

 



  

How easy was it to 
understand the language 

concept? (1=easy, 6=difficult) 

How good was the 
documentation? (1=very 

helpful, 6=no help) 

How hard was it to solve a 
problem in this paradigm? 
(1=very easy, 6=very hard) 

Do you think this language is 
mature? (1=fully developed, 

6=immature) 

Java1 4 3 4 1 

Java2 1 2 2 2 

Java3 4 2 4 1 

AspectJ1 2 2 4 3 

AspectJ2 2 4 5 4 

Hyper/J1 2 3 3 3 

Hyper/J2 2 6 2 4 

CaesarJ1 6 6 3 2 

CaesarJ2 3 4 2 3 

Table 2: Language Evaluation Results 

  IDE integration 
editing and 

browsing support missing editing and browsing support 
debugging 
integration 

Java1 2 2 browsing support, which class calls a method did not use 

Java2 2 1 missed none 3 

Java3 2 2 yes 3 

AspectJ1 3 (buggy) 2 
Refactoring (finish pure Java and refactor into aspects); see 

woven code not tested 

Aspect2J 2 2 code completion, context help (search for references) didn't use 

Hyper/J1 6 2 no, am happy with command line tool, too didn't use 

Hyper/J2 5 
2 for Java, 6 for 

Hyper/J 
support to write HyperJ files; management of slices and 

relationships 
for java yes, for 

HyperJ no 

CaesarJ1 4 5 
code completion, browsing support, context help, refactoring 

support not integrated 

CaesarJ2 4 3 

context sensitive help, code completion, optimized views (e.g. 
layered architecture view, CI/Implementation/Binding 

hierarchy/relationship view) no support 

Table 3: Tool Support and Debugging 

  
challenges/tasks to be solved 

more easily want to use and recommend scalability for industry 

Java1 for developing protocol interfaces yes yes 

Java2 no 1 1 

Java3 no don't know can't judge 

AspectJ1 
could result in bad design, 

patching 
3 (depends on relationship between effort to 
learn / number of potential aspects in project) 5 (results in bad design?) 

AspectJ2 no 
4; nice idea, but I prefer to have whole code 

together 
2; good extensibility for existing code (extra 

features ..), different versions of features  

Hyper/J1 
for introducing new parts without 

knowing all existing methods 3 2 

Hyper/J2 yes, e.g. logging 5 5 

CaesarJ1 No 5 6 

CaesarJ2 
yes, use cases with layered 

architecture and AO requirements 
5; not suitable for the industry in the current 

state, 2 in research area 
4 not in current state (challenging developer 

skills and critical tool support) 

Table 4: General Valuation 



Modeling the Evolution of Aspect Configurations using
Model Transformations

Uwe Zdun, Mark Strembeck
Institute of Information Systems, New Media Lab

Vienna University of Economics, Austria

{uwe.zdun|mark.strembeck}@wu-wien.ac.at

ABSTRACT
In this paper we introduce an approach to address the evolution of
aspect configurations with model transformations. We use model
transformation diagrams (MTDs) to define valid behavioral model
states of a system as well as valid transitions between thosestates.
MTD transformations can be used to define evolutionary changes
in the weaving process of an aspect-oriented system. To allow for a
straightforward incorporation of aspects in UML models, weextend
UML2 activity diagrams with joinpoint start and end nodes. In this
paper, each model state in an MTD refers to an extended UML2
activity diagram.

1. INTRODUCTION
In recent years a number of approaches for UML-based model-

ing of aspects have been proposed. Some approaches are extend-
ing the UML using a UML profile (see e.g. [6, 2]), others perform
a meta-model extension, i.e. they extend the UML familiy of lan-
guages with new language elements (see e.g. [10, 4]). So far these
approaches focus on mapping the elements of aspect-oriented envi-
ronments (mainly the concepts are based on AspectJ [7]) to UML
modeling elements. That is, the focus is on representing aspects in
UML models.

The effects of applying aspects – i.e. how a model evolves if an
aspect is woven – have only been marginally in focus of aspect-
oriented modeling approaches so far. This concern, however, is im-
portant to be considered for a number of situations:

• In the early stages of system design we need to trans-
late requirements into classes and aspects. In particular,
we require some approach to show the evolution from a
non-aspect-orineted model to an aspect-oriented model, as
well as the interactions between the aspect-oriented and
non-aspect-oriented parts of the system.

• Often a number of different aspect configurations can be wo-
ven for one and the same system. That is, the aspects wo-
ven into the system can be changed either at compile-time,
load-time, or runtime – depending on the used aspect weaving
mechanism. For example, consider a logging aspect, which is
woven into the debugging environment only, but not into the
productive system. Here, the evolution options resulting from
the weaving time for the aspect configurations and their cor-
responding effects should be modeled as well.

• Often aspects have interdependencies or interactions among
each other, a concern which of course should be modeled.
For instance, consider a persistence aspect is allowed to be
woven, but only if a storage device aspect is woven as well.

To address these problems, this paper proposes an approach to
model the behavioral evolution of aspect configurations in software
systems using model transformation diagrams. In other words, we
use a model transformation to represent the aspect weaving step.
The model transformation diagrams are an extension to UML 2.0. In
particular, they model the aspect weaving dependencies viamodel
transformations between different UML Activity Diagrams.Here,
the Activity Diagrams show the behavior in the system with differ-
ent aspect configurations. To enable the modeling of aspect-related
behavior in Activity Diagrams we introduce a simple extension to
Activity Diagrams for representing the start and end of the join-
points of an aspect in the control flow.

2. THE APPROACH
In this section, we explain our model transformation diagrams,

and our extension to Activity Diagrams for representing thestart
and end of the joinpoints of aspects.

2.1 Model Transformation Diagrams
We have defined the Model Transformation Diagrams (MTD) as a

meta-model extension to the UML 2.0 standard (see Figure 11). To
define MTDs formally, we specify the new packageModelTrans-
formations. The graphical notation of our model transformation
diagrams is similar to UML2 interaction overview diagrams,how-
ever, the MTD semantics differ significantly. The UML2 interaction
overview diagrams are a variant of activity diagrams and describe
the flow of control between different nodes (see [9]). In contrast,
our MTDs are a variant of state machines. Model transformation
diagrams describe changes of specification of a software system.
These changes are modeled through transitions between different
diagrams. In this paper, we use only UML2 activity diagrams in
the MTDs, to model transformations of thebehavioral model state.
(Please note that in our full meta-model definition, there are also
structural model states, but these are not used in this paper.)

The main transition type used in MTDs aretransform transitions.
Transform transitions express that the source model state of the tran-
sition is transformed to the target model state of the transition. A
transition from one behavioral model state to another meansthat
the behavior of a certain system aspect is transformed, so that after
the transition, the system behavior conforms to the state specified
by the transition’s target. For instance, the example transitions in
Figure 2 show two model transformations between two activity dia-
grams: one adds a condition between the two activities, and the re-
verse transformations removes the condition. Figure 2 alsocontains

1Due to the page limit we do not include the full formal definition
including OCL constraints of the meta-model extension here, but
provide only the corresponding meta-model as an overview.



Package ModelTransformations

State
(from BehaviorStateMachines)

Vertex
(from BehaviorStateMachines)

ModelTransformationStateMachine

Region
(from BehaviorStateMachines)

+stateMachine 0..1

+region1.. *

0..1

* +subvertex

+container

Transition
(from BehaviorStateMachines)

+source

+outgoing1
*

+target

+incoming1
*

+container

0..1

* +transition

FinalState
(from BehaviorStateMachines)PseudoState

(from BehaviorStateMachines)

kind: PseudoStateKind

«enumeration»
PseudoStateKind

(from BehaviorStateMachines)

initial
deepHistory
shallowHistory
join
fork
junction
choice
entryPoint
exitPoint
terminate

StateMachine
(from BehaviorStateMachines)

StructuralModelState

ModelState

BehavioralModelState

ModelStateUse

Action
(from BasicActions)

+argument

0..1

*

+refersTo

1*

0..1

* +class

Class
(from Kernel)

0..1

* +activity

Activity
(from FundamentalActivities)

InstanceSpecification
(from Kernel)

0..1

* +instance

Figure 1: Meta-model for Message Transformation Diagrams (MTD)

ad SystemBehaviorB

Activity
A

Activity
B

mtd  MyExampleMTD

ad

«transform»

«transform»

SystemBehaviorB

MTD Identifier Token MTD Name Identifier Token for 
activity diagrams Diagram name

MTD state machine
MTD state

MTD transform transitions

Diagram describing a valid 
behavioral system state

Activity
A

[condition2]

[condition1]

Activity
B

Figure 2: Informal overview for the elements of MTDs



informal explanations for our notations. A formal UML meta-model
extension for MTDs can be found in [11].

In the first place, MTDs are a means to depict possible model
transformations. The idea, presented in this paper, is to apply the
transform transitions in the MTDs to model aspect weaving rela-
tionships. This way different behavioral model states showmodels
of the behavior of the system in different aspect configurations. The
transform transitions then show the possible (“legal”) weaving steps
between these model states.

2.2 Extending Activity Diagrams with Join-
point Start and End Activities

In our approach, we model the behavior of aspects as part of the
activity diagrams describing the system’s behavior. That is, we show
scenarios of the aspect in action. However, it is necessary to distin-
guish the aspect-oriented and non-aspect-oriented parts of the activ-
ity diagram. Moreover, in case more then one aspect is used, we
need to distinguish different the aspects modeled in the same activ-
ity diagram.. Otherwise we would not be able to properly model
aspect interactions.

NODE TYPE NOTATION Explanation & Reference

JoinpointStart

JoinpointStart is an Activity that can be used
in an Activity Diagram to indicate that the 
aspect "AspectName" has intercepted the 
control flow at this point. All subsequent steps 
in the Activity Diagram until a JoinpointEnd 
Activity with "AspectName" is reached are 
handled by the aspect "AspectName". 

Optionally, a Joinpoint Start node can have a 
tagged value "pointcut" that indicates the name
of a pointcut designating this joinpoint.

See Activity from FundamentalActivities.

JoinpointEnd AspectName

AspectName

JoinpointEnd is an Activity that can be used
in an Activity Diagram to indicate that the
interception of the control flow by the aspect 
"AspectName" has ended.

See Activity from FundamentalActivities.

Figure 3: Definition of two Activities for start and end of joi n-
points in Activity Diagrams

Order

Create
Order

Fill
Order

Order

Receive
Order

ad Order Creation

Figure 4: Activity Diagram for order creation

To address this problem, we introduce two new Activities as sub-
classes of the UML2 Activity meta-class (from FundamentalActiv-
ities, see [9]). JoinpointStart is an Activity that can be used in an
Activity Diagram to indicate that the aspect referred to via“Aspect-
Name” has intercepted the control flow at this point. All steps in an
Activity Diagram between a JoinpointStart and the corresponding
JoinpointEnd Activity (referred to via the same “AspectName”) are
handled by the respective “AspectName” aspect. In additionit is
possible for another aspect to intercept the control flow in between.
In other words: JoinpointEnd is an Activity that can be used in an

Activity Diagram to indicate that the interception of the control flow
by the aspect “AspectName” has ended. Optionally, JoinpointStart
Activities can have a tagged value “pointcut” that indicates the name
of a pointcut designating this joinpoint. Figure 3 summarizes the
definitions.

3. EXAMPLE: ORDER HANDLING
In this section, we consider an example from the early stagesof

designing an order handling system. In a first step, we designa sim-
ple activity for order creation according to the following short sce-
nario description: when an order is received, an order object needs
to be created and then the order object is filled with values. This
simple control flow is shown in the activity diagram “Order Cre-
ation” in Figure 4.

Order

Create
Order

Fill
Order

Order

Receive
Order

[order rejected]

[order accepted]

ad Order Creation & Order Check

Order Check

Order Check

Order Check

Figure 5: Activity Diagram for combining order creation wit h
order checking

Next, we design other fundamental activities of order handling.
During the ongoing design work, we realize that in some customer
systems which should be used with the order handling system,a
check is required, whether the order can be accepted or not. This
check is not only relevant for order creation, but it must also be per-
formed before an order is changed or re-submitted. Thus “Order
Check” is a cross-cutting concern in our system and should bemod-
eled as an aspect. To do so, we need to intercept the control flow
between the Receive Order and Create Order activities. Similarly,
we need to extend other activity diagrams that have joinpoints be-
longing to this aspect. The pointcuts for the correspondingaspect
can be derived in later design stages by looking at all occurrences
of the aspect’s joinpoints and by defining proper (cross-cutting) des-
ignations for these points in the control flow. The woven aspect is
shown in the Activity Diagram “Order Creation & Order Check”in
Figure 5.

A second aspect that cross-cuts many order handling activities is
“Order Persistence”. This aspect needs to intercept the control flow
after the order is filled in, and must call the Make PersistentActivity.
The woven aspect is shown in the Activity Diagram “Order Creation
& Order Persistence” in Figure 6.

For this aspect we need to consider one special case, though.If
the aspect “Order Check” is configured, all rejected orders should be



Order

Create
Order

Fill
Order

Order

Receive
Order

ad Order Creation & Order Persistence

Order Persistence

Order Persistence

Make
Persistent

Figure 6: Activity Diagram for combining order creation wit h
persistence

logged in the persistence store. That is, the two aspects have an in-
terdependency among each other. Because both aspects are optional
extensions, we need to model this interaction in a separate Activity
Diagram “Order Creation & Order Check & Order Persistence” in
Figure 7. Here, we can see that the “Order Persistence” aspect is
cross-cutting the activities in this diagram. If the aspectis used, a
rejected order log entry object is created, and the Make Persistent
Activity is called.

Finally, we need to model the possible weaving-time aspect evo-
lutions for this system. We use an MTD to show the possible weav-
ing configurations for the two optional aspects described above. The
diagram in Figure 8 shows that in any case the basic “Order Cre-
ation” diagram is the starting point for weaving. The aspectweaver
can either weave order persistence, order checking, or no aspect.
If one of the two aspects is chosen, the other aspect can optionally
be woven as well. In this case, the behavioral state of the system
is transformed to the Activity Diagram “Order Creation & Order
Check & Order Persistence”, so that the aspect interaction is mod-
eled as well.

Please note that in this example we have shown the aspect weav-
ing process independently of the concrete weaving time. Ourap-
proach is capable to model aspect weaving at compile-time, load-
time, or runtime. Though, the MTD needs to be changed slightly
if runtime weaving is supported. Runtime weaving would mean
that we could turn off the aspects again. That is, we would intro-
duce backward transformations between the model state nodes (the
“mrefs” in the figure) to model runtime weaving properly.

4. RELATED WORK
Aldawud et al. [1] present a number of steps they apply to model

aspect-oriented systems. In particular, they model the static system
structure via class diagrams. System behavior, including aspects
and crosscutting, is modeled with UML statecharts. Their approach,
however, is not able to depict evolutionary changes resulting from
(static or dynamic) weaving of aspects which is one of the main
benefits of MTDs.

Gray et al. [3] describe an elaborated approach to support aspect-
oriented domain modeling which has partially similar objectives

Order

Create
Order

Fill
Order

Order

Receive
Order

[order rejected]

[order accepted]

Order Check

Order Check

Order Persistence

Order Persistence

Make
Persistent

Order Persistence

Rejected
Order

Log Entry

Order Persistence

Make
Persistent

ad Order Creation & Order Check & Order Persistence

Order Check

Figure 7: Activity Diagram for combining order creation wit h
persistence and order checking

to our approach. For each modeling domain they define domain-
specific weavers which operate on the abstraction layer of models
(not source code). To specify these weavers they defined the embed-
ded constraint language (ECL) as an extension to the OMG object
constraint language (OCL). The ECL is used to specify transfor-
mations between models and to specify strategies that definehow
a concern is applied in a certain model context. ECL operateson
XML files which are used to store the corresponding models and
Gray et al. implemented a tool to generate C++ source code from
ECL specifications.

Barros and Gomes [2] use UML2 activity diagrams to model
crosscutting in aspect-oriented development. They define anew
composition operation they call “activity addition” via anUML pro-
file. Activity additions are used for weaving a crosscuttingconcern
in a model. In particular, they define two stereotypes to markcertain
nodes in activity diagrams that define the so called interface nodes
which are then used to merge two or more activity diagrams, and
the so called subtraction nodes which define what nodes need to be
removed from a given activity diagram.

Jezequel et al. [5] represent crosscutting behavior using con-
tract and aspect models in UML. They model contracts using UML
stereotypes, and represents aspects using parameterized collabora-
tions equipped with transformation rules expressed with OCL con-
straints. OCL is used in the transformations for navigatinginstances
of the UML meta-model.

Han et al. [4] present an approach to support modeling of AspectJ
language features to narrow the gap between implementations based
on AspectJ and the corresponding models. Mahoney and Elrad [8]
describe a way to use statecharts and virtual finite state machines
to model platform specific behavior as crosscutting concerns. They



Order Creation

mref

Order Creation & 
Order Check & 
Order Persistence

mref

Order Creation & 
Order Check

mref

Order Creation & 
Order Persistence

mref

[no aspects]

[weave order persistence]

[weave order check]

«transform»

«transform» [weave order check]

[weave order persistence]

«transform»

«transform»

[no more aspects]

[no more aspects]

[no more aspects]

mtd Order Creation with Aspects

Figure 8: MTD for order creation with its aspects

especially plan to evaluate the effectiveness of their approach in a
model driven development context. Tkatchenko and Kiczales[10]
present an approach to model crosscutting concerns. They extend
the UML with a joint point model, advice and inter-type declara-
tions, and role bindings. Moreover, they provide a weaver toprocess
the corresponding extensions.

5. CONCLUSION
In this paper, we briefly presented an approach to model the evo-

lution of aspect configurations via model transformations.In par-
ticular, we defined model transformation diagrams (MTDs) asan
UML2 extension. In essence, MTDs are state machines which are
applied to model the evolution of software systems. Each state in
an MTD refers to a model that defines a valid structural or behav-
ioral specification of the corresponding system. Transitions between
those states describe valid transformations between thosemodels.
In this paper, however, we focused on the specification of behav-
ioral system facets to model the evolution of aspect configurations.
Therefore, we additionally introduced Joinpoint start andend ac-
tivities that allow for a clear separation of the aspect-oriented and
non-aspect-oriented parts of a system specification, as well as the
modeling of crosscutting aspects. In our future work, we will pro-
vide tool support for MTDs both on the modeling level and source
code level. In addition to behavioral states, we also use structural
model states in MTDs to model the evolution of structural aspect
models.

6. REFERENCES
[1] O. Aldawud, A. Bader, and T. Elrad. Weaving with

Statecharts. InProc. of the Workshop on Aspect Oriented
Modeling with UML, April 2002.

[2] J. Barros and L. Gomes. Towards the Support for
Crosscutting Concerns in Activity Diagrams: a Graphical
Approach. InProc. of the AOSD Modeling with UML
Workshop, October 2003.

[3] J. Gray, T. Bapty, S. Neema, D. Schmidt, A. Gokhale, and
B. Natarajan. An Approach for Supporting Aspect-Oriented
Domain Modeling. InProc. of the 2nd International
Conference on Generative Programming and Component
Engineering (GPCE),, September 2003.

[4] Y. Han, G. Kniesel, and A. Cremers. Towards Visual AspectJ
by a Meta Model and Modeling Notation. InProc. of the
International Workshop on Aspect-Oriented Modeling, March
2005.

[5] J. Jezequel, N. Plouzeau, T. Weis, and K. Geihs. From
contracts to aspects in uml designs. In O. Aldawud, G. Booch,
S. Clarke, T. Elrad, W. Harrison, M. Kande, and
A. Strohmeier, editors,Aspect-Oriented Modeling with UML,
Enschede, The Netherlands, April 2002.
http://lglwww.epfl.ch/workshops/aosd-uml/index.html.

[6] M. M. Kande, J. Kienzle, and A. Strohmeier. From AOP to
UML – A Bottom-Up Approach. InProc. of the Workshop on
Aspect Oriented Modeling with UML, April 2002.

[7] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and
W. G. Griswold. Getting started with AspectJ.
Communications of the ACM, 44(10):59–65, Oct 2001.

[8] M. Mahoney and T. Elrad. Modeling Platform Specific
Attributes of a System as Crosscutting Concerns using
Aspect-Oriented Statecharts and Virtual Finite State
Machines . InProc. of the International Workshop on
Aspect-Oriented Modeling, March 2005.

[9] The Object Management Group. Unified Modeling Language:
Superstructure.
http://www.omg.org/technology/documents/formal/uml.htm,
August 2005. Version 2.0, formal/05-07-04, Object
Management Group.

[10] M. Tkatchenko and G. Kiczales. Uniform Support for
Modeling Crosscutting Structure. InProc. of the International
Workshop on Aspect-Oriented Modeling, March 2005.

[11] U. Zdun and M. Strembeck. Modeling Composition in
Dynamic Programming Environments with Model
Transformations. InProc. of the 5th International Symposium
on Software Composition, Vienna, Austria, March 2006.
LNCS, Springer-Verlag.



Towards Tool-supported Update of Pointcuts in AO Refactoring

Jan Wloka∗

Fraunhofer FIRST
Berlin, Germany

jan.wloka@first.fraunhofer.de

Abstract

Aspect-oriented programming (AOP) is often intro-
duced as an extension to a programming language.
The new modularization mechanisms are provided by
new language constructs, such as the pointcut and the
advice. Pointcuts specify where and when an advice is
executed and thereby refer to other program elements
and structures to express the execution conditions.
During the evolution of a program these referenced
structures might be changed and hence the advice is
not invoked as intended.
In this paper we present an approach for assessing
the impact of source code changes on pointcuts and
a program analysis that supports the identification of
broken pointcuts. We elaborate how a refactoring tool
can determine reasons and how an equivalent pointcut
update can be calculated.

1 Introduction

Refactoring was found to improve the design of
an existing software system in a safe and reliable
way. It allows to modify a program’s structure
while it preserves its observable behavior. Espe-
cially tool-supported refactoring has become very
important in software engineering for controlled
software evolution. While refactoring tools for
object-oriented programs are commonly used, it is
not fully explored yet how the effects of even local
changes on the behavior of aspect-oriented programs
can be determined.

AOP introduces new modularization mechanisms

∗This work has been supported by the German Federal Min-
istry for Education and Research under the grant 01ISC04A
(Project TOPPrax).

to encapsulate implementations that would other-
wise be spread over multiple modules. An aspect, as
new implementation module, allows for example to
adapt the behavior of other modules. Therefore, it
provides new language constructs, mainly pointcut
and advice, to specify where and how the program
behavior should be adapted. A pointcut binds
an advice to well-defined points in the program
execution. These so called joinpoints are selected by
specifying their properties. E.g., method call join-
points can be selected by specifying their method’s
signature. Pointcuts refer to various information of a
program to express a joinpoint property. An advice
implements the additional behavior and is executed
before, after or around a selected joinpoint.
If a refactoring tool should apply a structural im-
provement in a behavior preserving way, it must be
able to determine the change impact on all pointcuts
in an AO program. Otherwise, the program behavior
cannot be preserved.

In this paper we present a program analysis tech-
nique for determining the impact of source code
changes on pointcuts in aspect-oriented programs.
We illustrate how pointcut matches can be repre-
sented to determine the change impact and discuss
several factors that influence the analysis results.
Based on this analysis we describe different situations
for updating a pointcut and illustrate with an exam-
ple how the proposed program analysis works.
The remainder of the paper is structured as follows.
In section 2 the term joinpoint property is defined as
the atomic part of a pointcut and examples are given.
Section 3 presents some example code that is used in
the following sections and applies one refactoring on
it. Section 4 illustrates our approach for assessing
the change impact on pointcuts, followed by a brief
discussion in section 5 when and how an equivalent

1



update for a pointcut can be calculated. In section
6 this papers ends with some implementation details
and a preliminary conclusion.

2 Specifying Joinpoint Proper-
ties

A pointcut can refer to very different kinds of pro-
gram information. In general one distinguishes be-
tween static and dynamic pointcuts. A static point-
cut uses only information that can be obtained from
the program code, whereas a dynamic pointcut also
employs runtime information.
In both cases, a pointcut specifies structural proper-
ties of a program representation that is either built
from the program code (e.g., an abstract syntax tree,
AST), or from runtime information during its execu-
tion (such as a stack trace). Therefore we define a
joinpoint property as follows:

DEFINITION: A joinpoint property is a
structural property of a program representa-
tion that can be built from static or dynamic
program information.

Pointcuts specify different kinds of joinpoint prop-
erties and thus refer to different information of a pro-
gram. In recent publications [6, 1, 10, 2] various
joinpoint properties, like naming, containment, in-
heritance relationships, method execution order and
instance reachability in object-graphs, have been pro-
posed for joinpoint selection in pointcuts.
From a software evolution point of view all these
properties can be altered by different changes in a
program’s source. Two limitations need to be consid-
ered if the change impact on every property should be
determined: how specific a property is defined within
a pointcut and how good it can be approximated dur-
ing evaluation.
Name patterns which are provided by most AOP ap-
proaches, allow a very fuzzy specification. Method
executions of certain methods can be selected using
AspectJ syntax[11] by expressing only some parts of
the signature, like execution(* *.foo(..)).
In this case only the method name can be used to
decide whether additional joinpoints are intended.
More recent approaches, e.g., stateful aspects in
JAsCo[10] or Tracematches[1], allow to specify more
”semantic” joinpoint properties1. They allow to spec-

1The term semantic is used here in the context of program
execution, to indicate that a joinpoint property associated with
the behavior that the program exhibits.

ify a certain execution sequence as joinpoints, i.e.,
whenever this sequence is executed an associated ad-
vice will be invoked. The use of an arbitrary execu-
tion sequence causes another kind of problems. Sit-
uations in which a certain sequence appears can be
approximated only in some cases and the reasons for
an altered situations can rarely be determined from
the static structure of a program.

3 An Example ”Push Down
Method”

In the following, we will be using the source code
example from Listing 1, which is implemented in
AspectJ[3].

Listing 1: Code Example
1 package p1 ;
2 pub l i c aspect A {
3 po i n t cu t posChanged ( ) : s e t ( i n t ∗ ) ;
4 be fo re ( ) : posChanged ( ) {
5 System . out . p r i n t l n ( ”Changing

p o s i t i o n ” ) ;
6 }
7 }

9 package p1 ;
10 pub l i c c l a s s B {
11 i n t pos ;
12 s t a t i c vo id main ( S t r i n g [ ] a r g s ) {
13 C c = new C( ) ;
14 c . s e tPos (1 ) ;
15 c . update ( ) ;
16 }
17 vo id s e tPos ( i n t pos ) {
18 t h i s . pos = pos ;
19 }
20 // w i l l be moved du r i ng the r e f a c t o r i n g
21 vo id update ( ) {
22 pos = pos + 10 ;
23 }
24 }

26 package p1 ;
27 c l a s s C extends B {
28 }

The main method in class B creates a new
instance of class C, sets the value of field pos to
1 by invoking C.setPos(int) and calls the method
C.update() to increase the field pos by 10.
The aspect A intercepts the executions of any
assignment to field pos and prints some status infor-
mation to the console before the field pos is modified.

In a small experiment we now modify the code us-
ing the standard Java ”Push Down Method” refac-

2



toring pattern (see [5] page 328). The refactoring is
applied to method B.update() in order to move it to
the subclass C. By moving the update() method also
the contained joinpoint shadows are transfered to a
new place.
In the following we present how the standard Java
refactoring pattern influences the pointcut of aspect
A, how this can be determined by a refactoring tool,
and how a tool can calculate whether the pointcut
needs to be updated.

4 Assessing the Change Impact
on Pointcuts

A pointcut binds a set of joinpoints to an advice in or-
der to have the advice executed at every bound join-
point. Stoerzer and Graf have classified code changes
that influence the program behavior defined by such
advice bindings. In [9] they distinguish between three
different kinds of changes:

• change of joinpoint property specifications in
pointcuts

• change of implementation of the bound advice

• change of the base code which exhibits the ad-
dressed joinpoints

For brevity and because its the most difficult one, we
focus in this paper on base code changes.

Representing base code changes. Very different
changes can be applied to a software system. They
differ in extent and complexity, and can range from a
local text edit with no further impact, to huge adap-
tations that affects multiple implementation modules.
Similar to Ryder et al. in [8, 7], we have devel-
oped an abstract change representation that consists
of atomic changes.
These atomic changes represent modifications to
program elements at any level of detail, such as type,
field and expression. Smaller changes either can be
ignored, or are represented as a property of a specific
program element. More complex base code changes
are then composed of atomic changes. This leads to
several advantages and simplifies the change analysis.
If we consider the Push Down Method Refactoring in
our example code the change representation would
look like the change tree shown in Figure 1. The tree
contains every changed program element as well as
its parents. Each element is associated to an atomic

P: p1

T: B T: C

M: p1.C.update(): 

PRJ: Experiement-AJ1

AC: childModified

AC: childModified

M: p1.B.update()

AC: childModified

AC: MethodRemoved

R: Moved(B, C)

AC: childModified

AC: MethodAdded

R: Moved(B, C)

atomic change

change reason

program element (AST node)

Legend

Figure 1: Atomic Change Tree representing the
change for Push Down Method

change that stores the change reason. For the ex-
ample, the tree in the figure shows the removal of
method update() in class B and the addition of the
method in class C. The associated reason indicates
that both changes are caused by this method move.

Calculate a pointcut’s selection. A pointcut
specifies joinpoint properties to bind an advice to a
set of joinpoints, i.e., an associated advice is bound to
every pointcut match. A pointcut, however, may also
refer to other program elements that are used to ex-
press a certain joinpoint property. For example, the
pointcut call(public void p1.B.update()) would
refer to the fully qualified name of class B, even
if the actual joinpoint may be located somewhere
else. For the specification of every joinpoint prop-
erty a pointcut selects other program elements. In
the following, we distinguish between partial pointcut
matches (only a subset of the joinpoint properties)
and complete pointcut matches (all joinpoint proper-
ties). Based on this distinction we define a pointcut
selection as follows:

DEFINITION: A pointcut selection con-
tains the mapping of partial or complete
matches to the matched program elements
as well as all program elements referenced
by the pointcut.

In other words, a pointcut selection holds every infor-
mation of a certain program that is needed to deter-
mine the pointcut’s matches, including every partial
match.
Figure 2 shows the pointcut selection for set(int
*) of our example program. It holds all program el-
ements that are directly referenced by the pointcut,

3



P: p1

T: B

PRJ: Experiement-AJ1

M: p1.B.update()F: p1.B.pos

NameMatch: RT=int

M:p1.B.setPos(int)

FS: p1.B.pos

SetMatch(p1.B.pos)

FS: p1.B.pos

SetMatch(p1.B.pos)

PT: int

JProp: field(type(int) *)

JProp: set(field(type(int) *))

joinpoint property match

joinpoint property specification

program element (AST node)

Legend

pointcut match  

NameMatch(int)

JProp: type(int)

JProp: set(field(type(int) *))

Figure 2: Pointcut Selection for pointcut set(int
*) before the change

including their parent nodes, before the refactoring is
applied.

In our example the pointcut would match at the
field assignments in setPos(int) and update() of
class B, as shown in the selection tree. Additionally
both SetMatch matches refer to the field pos with
one NameMatch match which in turn references the
primitive type int.

Determine the change impact. The Push Down
Method Refactoring is virtually applied to get the
change information. For the modified program a sec-
ond pointcut selection is calculated for every point-
cut in the system. Both versions are compared and
a pointcut selection delta is produced. This delta
contains all partial and complete pointcut matches
that aren’t equal in both versions. In this way the
impact of a source code change can be represented in
terms of a pointcut.
For our code example the pointcut selection delta is
shown in Figure 3. It contains two matches (one
added and one removed) as well as all enclosing and
referenced elements. The SetMatch matches at both
field sets FS of pos are indicated as modified, because
the matches are identified by a fully qualified name2.

5 Propose a Pointcut Update

The overall goal in a refactoring process is to keep
the set of selected joinpoints semantically equal. In
particular, this means a pointcut is updated in a way
that it matches the same program elements as be-

2 Statement level pointcut matches may have an ambiguous
fully qualified name. For a unique identification their number
of appearance in the enclosing block is added to the name.

joinpoint property match

joinpoint property specification

program element (AST node)

Legend

pointcut match

match delta information

P: p1

T: B T: C

PRJ: Experiement-AJ1

M: p1.B.update()

FS: p1.B.pos

SetMatch(p1.B.pos)

M: p1.C.update()

FS: p1.B.pos

SetMatch(p1.B.pos)

F: p1.B.pos

- +

JProp: set(field(type(int) *)) JProp: set(field(type(int) *))

UsageMatch(RT=int)

JProp: field(type(int) *)

PT: int

NameMatch(int)

JProp: type(int)

Figure 3: Pointcut Selection Delta for pointcut
set(int *)

fore3. In the following we briefly discuss different
update situations.

No update required. We’ve identified three sit-
uations in which a pointcut might be affected but
doesn’t need an update.

• Unaffected pointcut: The pointcut selection
delta is empty, i.e., all program elements refer-
enced by this pointcut are not effected by the
change.

• Unaffected pointcut matches: The pointcut se-
lection delta is not empty, but no complete point-
cut match can be found in the delta. I.e., all
matches in the delta are partial and thus not
relevant for the advice execution. In such cases
the pointcut refers to affected program elements
but the resulting set of pointcut matches is not
altered.

• No affected joinpoint property specification: The
delta contains added and removed (complete)
pointcut matches. However, for every removed
pointcut match an equivalent added match can
be found. This seems often the case when some
program elements were moved around, but its
actual location isn’t specified in the pointcut.

Update required. If some complete pointcut
matches have been added or removed, an update of
the actual pointcut is necessary in order to ensure
behavior preservation. Updating a pointcut means

3Since pointcut matching is done on program representa-
tions, a pointcut can match either at a program element itself
(static) or at the execution of the program element (dynamic).

4



updating every specification of an added or removed
joinpoint property match. For every altered pointcut
match, the referenced joinpoint property matches are
analyzed. If an equivalent joinpoint property specifi-
cation can be calculated, an update is proposed. Oth-
erwise the update is unresolvable. Both these cases
as well as relevant causes are briefly discussed in the
following:

• Resolvable Update: If the affected joinpoint
property specification can be directly mapped to
a base code change, then the refactoring together
with this change are sufficient to derive an up-
dated joinpoint specification. Interestingly, this
often seems to be the case when program ele-
ments are renamed, extracted, inlined or moved.

• Unresolvable Update: Until now we have some
possible reasons identified in which our approach
cannot provide sufficient impact information.
Joinpoint property removal: A source code
change removes a program element or a struc-
ture that is directly referenced by a pointcut. A
new joinpoint property needs to be found to se-
lect the joinpoint.
Fuzzy joinpoint property meaning: Some point-
cuts specify only very few concrete information,
e.g., together with name patterns. A name pat-
tern can partially specify the name of a program
element, such as call(* * get*(..)). If an
additional match with such a name is detected
a tool has only the three letters ’set’ to decide
whether the new match is valid.
Insufficient approximation of dynamic pointcut
matches: Our approach is based on static pro-
gram analysis. Therefore, all dynamic joinpoint
properties needs to be approximated, i.e., actu-
ally the employed program representation. For
example, used of runtime values such as in if()
pointcuts cannot be approximated at all.
Modified aspect interaction: If the proposed
pointcut update would refer to a joinpoint that is
also selected by another pointcut, a tool couldn’t
decide in which order the advices should be per-
formed.
In such situations the developer at least should
be provided with sufficiently detailed informa-
tion about identified conflicts or limitations.

Pointcut update calculation. Figure 4 presents
the complete change impact tree for the refactor-
ing in our example. In this case all affected point-

P: p1

T: B T: C

PRJ: Experiement-AJ1

M: p1.B.update()

Set: p1.B.pos

SetMatch(p1.B.pos)

M: p1.C.update()

Set: p1.B.pos

SetMatch(p1.B.pos)

AC: MethodRemoved

R: Moved(C, B)

AC: MethodAdded

R: Moved(C, B)

+-

JProp: set(field(int *)) JProp: set(field(int *))

joinpoint property match

joinpoint property specification

program element (AST node)

Legend

pointcut match (complete)  

match delta information

atomic change

change reason

Figure 4: Change impact representation for pointcut
set(int *))

cut matches can be directly mapped to a base code
change of an enclosing element, i.e., no pointcut
match (not even a partial match) is affected by the
refactoring. In this case the pointcut would be left
unchanged, because no program information refer-
enced by a pointcut is affected.

6 Conclusions and Future
Work

We have shown how static program analysis can be
used to determine the change impact on pointcuts
and how the impact can be represented in order
to calculate an adequate update proposal within
a refactoring process. We have briefly discussed
different factors that influence the calculation of a
pointcut update and illustrated our approach with
an example.
The program analysis approach presented in this
paper has been implemented by a small analysis
framework called ”Soothsayer”. The implementation
is part of the ObjectTeams/Java IDE[4] and based
on Eclipse data structures. In previous work some
Java refactoring patterns have been adapted for
ObjectTeams/Java that were not concerned about
pointcuts. The Soothsayer framework aims to extend
this implementation in order to cope with pointcuts
during a refactoring’s application. Currently only
of few kinds of joinpoint properties are supported,
like name patterns, containment and inheritance
relationships.

5



First experiences have shown that our analysis suf-
ficiently represents the impact information, so in sev-
eral situations an adequate pointcut update can be
proposed. In the near future we are going to test
our program analysis with more kinds of joinpoint
properties and improve the calculation of pointcut
updates, to consider more situations for resolvable
updates. Soothsayer isn’t currently really integrated
with the refactoring capability of Eclipse, so the anal-
ysis results cannot be used to apply the actual point-
cut updates. We are also going to do that.

Acknowledgements

Thanks to Thomas Dudziak for providing valuable
comments on an earlier draft of the paper.

References

[1] Chris Allan, Pavel Avgustinov, Aske Simon
Christensen, Laurie Hendren, Sascha Kuzins,
Ondrej Lhotk, Oege de Moor, Damien Sereni,
Ganesh Sittampalam, and Julian Tibble. Adding
trace matching to AspectJ. Technical Report
abc-2005-1, Programming Tools Group, Univer-
sity of Oxford University, UK; BRICS, Group of
Aarhus, Denmark; Sable Research, McGill Uni-
versity, Montreal, Canada, 2005.

[2] Michael Eichberg, Mira Mezini, and Klaus
Ostermann. Pointcuts as functional queries.
In Wei-Ngan Chin, editor, Programming Lan-
guages and Systems: Second Asian Symposium,
APLAS 2004, Lecture Notes in Computer Sci-
ence, pages 366–382, Taipei, Taiwan, November
2004. Springer-Verlag Heidelberg.

[3] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An overview of
AspectJ. In J. L. Knudsen, editor, Proc. ECOOP
2001, LNCS 2072, pages 327–353, Berlin, June
2001. Springer-Verlag.

[4] Object Teams home page.
http://www.ObjectTeams.org.

[5] M. Fowler, K. Beck, J. Brant, W. Opdyke and
D. Roberts. Refactoring: Improving the Design
of Existing Code. Addison-Wesley, 1999.

[6] Klaus Ostermann, Mira Mezini, and Christoph
Bockisch. Expressive pointcuts for increased
modularity. In Olaf Spinczyk, Andreas Gal, and
Michael Schoettner, editors, ECOOP Workshop
on Programming Languages and Operating Sys-
tems, 2004.

[7] Xiaoxia Ren, Barbara G. Ryder, Maximilian
Stoerzer, and Frank Tip. Chianti: a change im-
pact analysis tool for java programs. In ICSE
’05: Proceedings of the 27th international con-
ference on Software engineering, pages 664–665,
New York, NY, USA, 2005. ACM Press.

[8] Barbara G. Ryder and Frank Tip. Change
impact analysis for object-oriented programs.
In PASTE ’01: Proceedings of the 2001
ACM SIGPLAN-SIGSOFT workshop on Pro-
gram analysis for software tools and engineering,
pages 46–53, New York, NY, USA, 2001. ACM
Press.

[9] Maximilian Störzer and Jürgen Graf. Using
pointcut delta analysis to support evolution of
aspect-oriented software. In ICSM, pages 653–
656. IEEE Computer Society, 2005.

[10] System and Software Engineering lab
(SSEL) at the Department of (Applied)
Computer Science (Faculty of Sciences)
at Vrije Universiteit Brussel (VUB).
JAsCo Language Reference. available from
http://ssel.vub.ac.be/jasco/documentation:main.

[11] Xerox Corporation. AspectJ Programming
Guide. available from http://eclipse.org/aspectj.

6


	wloka.pdf
	Introduction
	Specifying Joinpoint Properties
	An Example "Push Down Method"
	Assessing the Change Impact on Pointcuts
	Propose a Pointcut Update
	Conclusions and Future Work


