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Armada: a reference model for an evolving database
system

ABSTRACT
The current database deployment palette ranges from networked sensor-based devices to large
data/compute Grids. Both extremes present common challenges for distributed DBMS
technology. The local storage per device/node/site is severely limited compared to the total data
volume being managed and the local processing power is too limited to handle a high query
load. In this paper, we propose Armada: a novel reference model for a distributed database
architecture to facilitate evolutionary growth. Participating systems can autonomously decide to
take responsibility in the distributed data management task. The system adapts to varying
workloads and supports dynamic system re-sizing, e.g. growing and shrinking of the system at
large. Armada uses lineage trails to capture the metadata and history. Lineage trails from the
basis to direct updates to the proper sites, break queries into multi-stage plans, and provides a
reference point for site consistency. The lineage trails are managed in a purely distributed way,
each Armada site is responsible for their persistency and long term availability. They provide a
minimal, but sufficient basis to handle all distributed query processing tasks. The analysis of the
Armada reference architecture depicts a path for innovative research at many levels of a DBMS.
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Keywords and Phrases: Distributed Database Systems; Distributed data structures; Data models; Data directory
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1. INTRODUCTION

Ambient, mobile and datagrid environments call for major changes in the design and implementation of dis-
tributed database systems. The ambient environment consists of a potentially large number of database empow-
ered sensory systems, which learn and exchange information to reach a common goal, e.g. increased experience
without computers in sight [ACvLdR03]. Mobile environments are characterised by a large number of clients
sharing information through multiple data brokers to realise e.g. a digitised community. The data ‘follows’
the device, which may be offline for lengthy periods [DHB97]. Datagrid environments emerge in scientific
settings as heterogeneous platforms providing compute and storage services to the science community. Data
and processing is distributed and managed using database technology [LF04].

Although in each environment the complexity can be controlled within the context of a single application
and strict separation of roles, current distributed database offerings stem from an era where a limited number of
always-on servers were prevalent. They lack functionality in a number of areas to provide a general solution.
A novel reference architecture for a distributed database is urgently needed.

First and foremost, the sites are not always connected to form a coherent distributed system. In mobile
settings the prevalent mode is to engage in short sessions to exchange and synchronise information until the
battery runs dry. In a grid environment sites may be offline for maintenance, or simply refuse providing services
due to local resource constraints. In the ambient environment sites can get broken or components with new
functionality are added over the years.
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A consequence is that datamanagement should take site autonomy and volatility as a driving force and a core
feature of a database system. A central broker to guide all interactions is a dead end for the scalable solutions
required. Several sites may take such a role for a limited period and only for part of the data space. Instead,
‘contractual’ arrangements and economic models are needed. They should facilitate a ‘device market’ to ensure
the desired system behaviour and be flexible to cope with temporal and evolutionary changes.

The role of the user also drastically changes. In an ambient setting his appearance is ‘sensed’ and indirectly
activates data management tasks. An avalanche of database queries and remote updates may emerge. In the
mobile and grid settings the real world monetary economics call for an active interaction to maximise the return
on investment. A better synergy between the tasks of the user and the database system is called for. The users
should again become drivers of the database interaction and they should be aware of cost.

Of course, the setting is not completely new. It is the natural step forward in the area of highly distributed
database technology. The underlying techniques are still based on data fragmentation and data replication to
break the database into manageable portions, and query shipping versus data shipping for efficiency [TOV99].
However, the volatile setting calls for better solutions to keep track of the data whereabouts, their status, and
their lineage in the grand scheme. A portion of the database may be broken into pieces and migrated to
autonomous sites with little control other than powerful re-conciliation algorithms when the pieces are fused
in the future. The long liveness of such networks makes legacy of information, e.g. out of date schemas and
queries, a ground rule rather then an exception. It calls for data management schemes optimised for incomplete
and only partially consistent information.

The database community missed the birth of the world-wide-web as the largest heterogeneous database. Do
we miss the emerging distributed database challenge, because we are too late to challenge our assumptions un-
derlying existing database architectures? The fulfilment of this dream has been put forward as the development
of organic database systems as a generic, self-managing and situation aware database system [KWF+03, KS99].

Within the Armada project we study the building blocks for an organic database. The main contribution of
this paper is a visionary description of the Armada model and its architecture, designed to facilitate evolutionary
growth in a distributed environment. It uses data fragmentation, data replication and data fusion as the minimal
basis for the lineage of data blocks, that allows maximal autonomy of the nodes cooperating in a distributed
application.

Sites can easily join an Armada alliance by donation of resources and taking responsibility for a portion of
the data space prescribed in the database schema. They can also leave the alliance with minimal detrimental
effect on its environment. The real size of the distributed system and data locality is largely hidden from
individual nodes. The Armada administration allows for localisation of data without need for a central entity
that becomes a bottle-neck, single point-of-failure and hot-spot in busy systems.

The user is back into the loop to steer query processing and distributed transaction management. Common
user policies can be captured in scenarios managed by a middleware software layer, but the autonomy of the
Armada sites ultimately relies on a cooperative user as well.

The remainder of the paper is structured as follows. Section 2 introduces the Armada model using analogy
reasoning, its notation and operations. The realisation of the model in terms of an architectural overview
is presented in Section 3. The effect of lineage trails on query processing and transaction management are
described in Sections 4 and 5, respectively. A sample embedding of the Armada model in the trend in distributed
database systems is indicated in Section 6. We conclude and give a short outlook in Section 7.

2. THE ARMADA MODEL

The main idea of this work is to create a reference model for a flexible, self-maintaining, efficient distributed
database architecture. To achieve this goal, we try to avoid the classical bottlenecks that limit the efficiency
of most existing and proposed architectures. These bottlenecks can be seen as the two extreme alternatives of
storing and maintaining the metadata that is necessary to ensure correct and efficient handling of the actual data.
Classical designs on the one end of the spectrum require a centralised server that holds all metadata, and hence
form a hotspot. Both operations that query or update the actual data and operations that change the structure of
the system at large, e.g. addition or removal of nodes and/or reorganising the data for load balancing purposes
need to access the central server to lookup or update the metadata. It creates a bottleneck that limits the overall
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performance and scalability of such systems. Designs on the opposite end of the spectrum avoid this hotspot by
fully replicating all metadata. However, such designs have to rely on the consistency of the replicated metadata,
and hence, each structural change requires the (synchronised) update on all nodes in the system. While making
data operations cheaper since all metadata is available locally at each site, it increases the price tag of structural
operations significantly, prohibiting efficient dynamic changes of the data distribution.

With the Armada model, we aim at finding a balance between these two extremes. On the one hand, Armada
does not come with a centralised server, and thus avoids the bottleneck of metadata lookups. On the other
hand, Armada does not require to replicate all metadata on all nodes. Instead, Armada finds a compromise by
replicating metadata partially only, and being able to cope with incomplete metadata. Obviously, each node
holds its own local metadata, e.g., schema information about the portion of the database stored, and keeps it
up-to-date. In addition, it holds some remote metadata, i.e., information from nodes in its vicinity. To limit
maintenance overhead, the idea is to limit remote updates of metadata to those nodes that exchange data due to
structural updates. Thus, remote metadata is not necessarily kept up-to-date at all times. Rather, an Armada-
node assumes that its remote metadata is an approximation or a past snapshot of the situation of a remote
node.

The inspiration for our new reference model comes from the Armada analogy. An Armada is a fleet of ships,
that forms a unity although each ship has a captain who is sovereign. The Armada model reflects this property
in a minimal set of relations between the captains of the ships. Each ship has cargo (data) stored in barrels
(boxes) that are addressed by cargo documents (trails) kept by the captain. A captain can repackage the cargo
on his ship, and/or hand over (parts of) his cargo to one or more other ships in the Armada (cloning, chunking).
Repackaging may also occur if barrels are empty or only partially used, such that multiple barrels are put in one
(combining). The cargo documents describe the content of each barrel as well as the lineage of the respective
cargo. A captain keeps one cargo document for each barrel he has aboard his ship. When handing over cargo
to other ships, the respective cargo documents are duplicated; the original copy stays with the captain on the
old ship and the other one accompanies the barrel to the new ship. Thus, each captain does not only know what
cargo his ship currently carries, but also where he sent the cargo that he once had aboard, and where any cargo
he ever transported came from. In fact, the cargo documents kept on each ship provide sufficient information
to allow the captain (or whoever has access to them) to locate any cargo item in the whole Armada 1.

In the remainder of this section, we will briefly formalise the key components of the Armada model. We start
by introducing the basic notation, terms, and definitions that make up the ‘static’ part of the Armada model,
i.e., the part that is used to describe how the metadata is represented. After that, we proceed with the ‘dynamic’
part that models operations to perform structural changes on the Armada.

The goal of this work is to establish the Armada model as a generic framework for distributed database
architectures. Hence, any discussion of actual instantiations of the model and related issues, like strategies as
to when, why and how to perform structural changes, is beyond the scope of this paper, and left for future work.

2.1 Notation, Terms and Definitions
We informally introduce the term (data) box to refer to the portion of the data that is hosted at a site. We
assume that the content of a box can be described by a arbitrary function g. The actual specification of such
function is left to the instantiation of a specific Armada system. In the course of this section, we will provide
some constraints for such functions. Section 3.2 will discuss the purpose and potential of these functions in
more detail and give some simple examples.

Further, we use the term structural operations to refer to operations that create and modify the data distri-
bution across sites, i.e., operations that replicate, (re-)fragment or merge portions of the data. Data boxes form
the entities that these structural operations operate on.

DEF. 1 Be B′
i,B

′
i+1, . . . ,B

′
i+n existing boxes in an Armada system with functions g′i,g

′
i+1, . . . ,g

′
i+n describing

the content of each box. A structural operation o operates on one or more boxes B′
i,B

′
i+1, . . . ,B

′
i+n and produces

1The trail adminstration for each box is only valid at the time it is created. Afterwards, its references to successors may be outdated.
For the site hosting the box this does mean, however, that it can reach the rest of the Armada through the sites it knows as stored in the
trails, even though that might not be the most up-to-date state.
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one or more new boxes B j,B j+1, . . . ,B j+m with functions g j,g j+1, . . . ,g j+m describing the content of these
new boxes. A structural operation cannot generate new data, i.e., we require that g j ∪ g j+1 ∪ ·· · ∪ g j+m =
g′i∪g′i+1∪ ·· ·∪g′i+n.

Inspired by the cargo documents of the Armada analogy, we introduce lineage steps and lineage trails to store
and administer metadata. A lineage step captures the logistic information of applying a structural operation to
a box: the function g that is applied (and hence describes the content of the new box), the site S that the new
box is shipped to and, for the convenience of later reference, the identifier of the new box B.

DEF. 2 A lineage step s = [ g , S ]:B is a composition that identifies the application of structural operation
o, resulting in a new box B on site S with function g describing the content of the new box. The box B′ that s is
applied to is identified by the lineage trail T ′ that s is appended to (see below).

Each box in the Armada is uniquely identified by a lineage trail that captures the whole history of the data
in the box.

DEF. 3 A lineage trail, or trail for short, T = s1.s2. · · · .sl is a sequence of l ∈ N lineage steps. With sl =
[ g , S ]:B , T identifies box B on site S.

DEF. 4 Be B′′, B′, and B boxes on sites S′′, S′, S with their content described by functions g′′, g′, g, respectively.
Further be B′′, B′, and B identified by the trails T ′′, T ′ = T ′′. [ g′ , S′ ]:B′ and T = T ′. [ g , S ]:B , respectively.
We call

T ′′ a predecessor trail of box B′,
s′ = [ g′ , S′ ]:B′ the local step of box B′,
T ′ = T ′′.s′ a local trail of box B′,
s = [ g , S ]:B a successor step of box B′,

and analogously for boxes B′′ and B.

The metadata maintained and stored for each box consists of a set of predecessor trails, exactly one local step
and a (possibly empty) set of successor steps. The predecessor trails represent the box’ heritage. The local step
describes the box itself, and the successor steps point to the box’ offspring. The predecessor trails and local
step are set upon creation of a box, while the successor steps are only set once a box participates in a structural
operation.

We assume that a structural operation (logically) removes all the data from its input boxes (transferring it to
the newly created boxes), and destroys the input boxes. Only the respective metadata is kept. This assumption
relieves us from the need to consider different versions of each box, and thus helps to simplify the model. The
assumption does not limit the generality of the model. In a practical implementation, this does not necessarily
require a (physical) copy of all data with each structural operation. Instead, simply renaming the box can be
sufficient.

To simplify the presentation, we will omit the set notation whenever a set of trails is empty or contains only
one trail. In the first case, we simply omit the empty trails set; in the latter case, we depict the only element as
singleton. Thus, the metadata for boxes B′′, B′ and B of Definition 4 is depicted as follows:

T ′′ = T ′′′ . [ g′′, S′′ ]:B′′ ; [ g′ , S′ ]:B′

T ′ = T ′′ . [ g′ , S′ ]:B′ ; [ g , S ]:B
T = T ′ . [ g , S ]:B ;

The set of successor steps is empty for all boxes to which no structural operation has been applied, yet. The set
of predecessor trails is empty only for one box in an Armada, its origin.

DEF. 5 An Armada instance is born as a single initial box Bo on site So. We call Bo the origin of the Armada
instance. Obviously, the origin has no predecessor trails. Further, since no structural operation is applied to
create the origin, there is no function that describes (restricts) Bo’s content. We indicate this by % in Bo’s local
step:

To = [ %, So ]:Bo ; .



2. The Armada Model 5

2.2 Structural Operations
To let an Armada evolve from the origin, we consider the following three structural operations.

Replication: the clone operation

DEF. 6 The clone operation operates on one box B′ with function g′ and generates one or more new boxes
B j, . . . ,B j+m that all contain a copy of B′’s data. Hence, their functions ri, . . . ,r j+m are all identical to g′.

Replicating a data box is the action of copying its content to a new location. We call it the clone operation,
denoted by function r. Consider the following example of cloning the origin box Bo:

To = [ %, S1 ]:Bo ;
{

[ r , S1 ]:B1
[ r , S2 ]:B2

T1 = [ %, S1 ]:Bo . [ r , S1 ]:B1 ;
T2 = [ %, S1 ]:Bo . [ r , S2 ]:B2 ;

In this example, the origin has two successors, B1 and B2, which themselves have no successors.
Following Definition 6 the number of new boxes produced can also be a single one. Strictly, this is no cloning

operation any more: since the original box is (logically) destroyed after the cloning, its data is not replicated,
but rather moved to a single new location. However, there is no reason to prohibit this in the model.

Although we use different site identifiers for the two new boxes in the above example, it is perfectly sound
with the model to produce two (or more) clones of a box on the same site. The question, whether this is
reasonable in practise, is not relevant in the context of a reference model.

Fragmentation: the chunk operation

DEF. 7 The chunk2 operation operates on one box B′ with function g′ and generates one or more new boxes
B j, . . . ,B j+m that all contain a fraction of B′’s data. We require that all fractions are disjunct, but no data is lost,
i.e., the following must hold for new boxes’ functions: f j ∪·· ·∪ f j+m = g′ and ∀k,l∈{ j,..., j+m},k, j : fk ∩ fl = /0.

Fragmenting data means it gets spread out over multiple boxes. We call this the chunk operation, denoted by
functions f , f ′, f ′′, . . . . Consider the following example of chunking the origin box Bo:

To = [ %, S1 ]:Bo ;
{

[ f , S1 ]:B1
[ f ′ , S2 ]:B2

T1 = [ %, S1 ]:Bo . [ f , S1 ]:B1 ;
T2 = [ %, S1 ]:Bo . [ f ′ , S2 ]:B2 ;

The origin has been chunked in two, using chunk functions f and f ′. Like with cloning, in case there is only
one result box, a move operation is effectively being executed.

Merging: the combine operation

DEF. 8 The combine operation operates on one or more boxes B′
i,B

′
i+1, . . . ,B

′
i+n with functions

g′i,g
′
i+1, . . . ,g

′
i+n, and produces a single new box B that combines all the data of the input boxes. The pro-

duced box’ function m spans the domain of g′i∪g′i+1∪·· ·∪g′i+n.

While cloning and chunking are growing operators, the combine operation is a shrink operation. Applying
it to a number of boxes merges them into one. Although this operation can act as an inverse-operation to the
clone and chunk operations, i.e., re-constructing a previously cloned or chunked box, its use is not restricted
to this. Our model allows to apply the combine operation to an arbitrary set of (independent) boxes. This is
depicted in the following example, where a clone (B4) and a chunk (B6) are combined into the a new box (B9),
creating a duplicate free combination of the inputs’ data.

2We felt free to ‘invent’ this verb.
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T4 = T3 . [ r , S1 ]:B4 ; [ m , S1 ]:B9
T6 = T2 . [ f ′′, S2 ]:B6 ; [ m , S1 ]:B9

T9 =
T4
T6

}
. [ m , S1 ]:B9 ;

Again, if there is just one box merged, the result is a move of data.

2.3 An Armada Database
In practise, databases that follow the Armada model, will evolve over time. For many reasons, boxes will
participate in operations, such as, chunking due to resource limitations, or cloning for redundancy reasons. We
present an example of a database consisting of 5 boxes, and discuss it shortly.

To = [ %, S1 ]:Bo ;
{

[ r , S1 ]:B1
[ r , S2 ]:B2

T1 = To . [ r , S1 ]:B1 ;
{

[ f , S1 ]:B3
[ f ′ , S3 ]:B4

T2 = To . [ r , S2 ]:B2 ;
T3 = T1 . [ f , S1 ]:B3 ; [ m , S3 ]:B5
T4 = T1 . [ f ′ , S3 ]:B4 ; [ m , S3 ]:B5

T5 =
T3
T4

}
. [ m , S3 ]:B5 ;

[ %, S1 ]:Bo

xxrrrrrrrrrr

&&LLLLLLLLLL

[ r , S1 ]:B1

@@

xxrrrrrrrrrr
@@

&&LLLLLLLLLL
[ r , S2 ]:B2

[ f , S1 ]:B3

&&LLLLLLLLLL
[ f ′ , S3 ]:B4

xxrrrrrrrrrr

[ m , S3 ]:B5

In the above example, the origin box Bo was first cloned into boxes B1 and B2, of which the first one was
then chunked into B3 and B4. Finally, both chunks were re-combined into B5. In the above figure, we use the
symbols , @@ and @@ to indicate the coverage of the functions applied in the operations on the boxes. The
symbol represents the full space as covered by the origin box, which is not changed by the clone operation. The
chunking operation in the example equally divides the full space in two parts, @@ and @@ , which are combined
again, resulting in the original coverage .

From the example it can be easily seen that the different functions r, f and m end up in the trails for the
various boxes. For each block a lineage can be seen in the predecessor trails, which grow every step by
extending the lineage information of the box being operated on.

2.4 Localisation
Successful and efficient localisation of the box(es) that (potentially) hold the requested data is a vital prerequi-
site to allow query execution on an Armada system. Using the above example, we will briefly sketch that the
lineage trails provide sufficient information to find the required box(es).

Suppose a client contacts site S2 with a query that requires data from values covered by ��AA . There is only
one trail available on site S2, namely trail T2. From this trail, the site can deduce that it has a full replica of
the whole data ( ) in the Armada. The function r is the generic replica function that does not impose any
limitation to the data coverage. Since the predecessor of T2 is the origin, this means all possible data is available
on the site and hence it can return a full (definite) query result to the client.

Now suppose a client contacts site S1 with a query that requires data from @@ . The trails available on site S1
— To, T1 and T3 — form the basis to what answer the client gets. Before the merge operation to box B5 had
taken place, site S1 could deduce from trail T3 that it can answer the query as box B3 contains the data. But
once the merge operation has taken place, B3 does not exist any more, and hence S1 lacks the data to answer the
query. However, since it still holds the metadata of B3 with the respective successor step now indicating that
the data of box B3 has been merged into box B5 on site S3, S1 can advise the client to contact site S3, instead.
In the given scenario, site S3 can successfully answer the client’s query, since it holds the requested data, as
indicated by trail T5.
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It must be noted that for this example we choose to have three different physical sites. This is merely for
explanatory purposes. It is very well possible for every box to be on its own site, or for all boxes to be on the
same site. There are currently no restrictions in the Armada model as to where boxes are hosted.

3. ARCHITECTURE OVERVIEW

In this section we illustrate the formation of an Armada, the role of the database schema, and decisions taken
by the sites regarding responsibilities for data management.

3.1 The Alliance
A collection of sites S provides the context to distribute the database. At any time only a subset of S is
actually involved in the Armada, i.e. those sites containing boxes and associated lineage trails. The subset of
participating sites is called the Armada alliance, or A ⊆ S . The starting phase for an alliance is a single site
A = {So}, i.e. the origin site.

The alliance A should be extended before a clone, chunk, or combine operation can deposit the result boxes
at a new site. A site Y can only be invited to join the alliance if a member of the alliance is willing to cooperate
with Y . For that, Y should follow the Armada charter or adhere to the Code of Conduct:

DEF. 9 A site Y becomes a member of the Armada alliance A iff

• it is nominated by an existing member,

• it donates resources to manage boxes,

• it keeps a permanent record of its lineage trails,

• it cooperates and faithfully answers queries,

• its existence may be published to other members.

Admission of sites is broadcasted to all members asynchronously or on a need to know basis. Due to update
propagation delays, at any time a member only knows a portion of the alliance A by inspection of the lineage
trails it receives together with new boxes.

A technical issue is to publish the site identities S of possible new members. In line with the dynamic nature
envisioned for Armada, every site X knows only a fraction SX and should be told about possibly new members
explicitly by intervention from an outside authority 3.

Selection of candidate sites to join the Armada is initiated by a member when it can no longer fully cooperate
due to resource constraints. Given the Armada charter, an open call is issued to sites SX for bidding on solving
a quantified resource problem, e.g. lack of storage or CPU units.

DEF. 10 A bid(X ,CPU,MEMORY) is an operation executed by site X ∈ S and returns {t ∈ R|0 ≤ t < 1}, a pos-
itive real number representing the value (eagerness) of X to participate with a minimum of CPU and MEMORY
units.

DEF. 11 Let X ∈ A be a site with a wish to offload (CPU, MEMORY) units. It issues bid requests to S′ ⊂ S and
grants the bid from site Y which supplies the most satisfying bid.

Calling for additional help by a site X ∈ A may lead to a situation that no other site Y ∈ S∪A is willing
or able to make resources available, effectively passing back the problem to the site X . This failure can not
be resolved at X . Instead, the process of finding, negotiating and bidding is then pushed back to the client by
rejecting queries due to resource overload. The client could attempt alternative sites to receive the attention
needed, or should contact an outside authority to increase the basis from which Armada members are recruited.
In our analogy, any Armada is limited in the ships it can deploy. An extension requires a governmental approval
(and new taxation).

3New members can be searched using a client application or could be hardwired in the implementation e.g. using an IP-range.
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3.2 Chunk Functions
Extending the Armada (or offloading work to others) is grounded in the ability to fragment and replicate por-
tions of the database. The Armada model captures the offloaded work in the lineage trail as the clone, combine
and chunk functions. The operations are precisely administered, such that at any time the lineage trail can be
re-interpreted to assess the past decisions.

The chunk function should satisfy the correctness criteria for distributed relational systems [TOV99]: the
function f is lossless, i.e. each possible data element can be associated with either box B f or B f̄ , it should
designate disjoint portions B f ∩B f̄ = /0, and the original box can be reconstructed from its components.

Note that a chunk function can be generalised to partition a space into multiple disjoint components. This
way it encompasses all known techniques from physical distributed database design. The function f could
be a simple hash or range distribution function, which derives the destination boxes based on the key value.
Scalable distributed data structures have been developed to support the evolutionary growth as well [LMS04].
Alternatively, the function f is a deterministic algorithm, solely based on time and location invariant data
properties.

It should be stressed that the nature of the chunk function can be decided upon at each site autonomously and
it may differ for each box being considered. The consequence is that chunking or cloning a box leads to a local
datamanagement optima, ignoring the goal of an Armada at large to form a coherent and effective distributed
system. Autonomy in this respect calls for a brokerage service, e.g. a client application, to mediate between
sites to balance their tasks.

3.3 Box Updates
A client application C interacts with the Armada sites on a one-by-one basis. To make it work, it is told the
identity of at least one Armada site X using publicly known information or through an authoritative outsider.
There is no a priori relationship, a client may pick any member from the alliance.

The client C can issue updates to the Armada using site X as a starting point. If X contains the boxes holding
the data of interest, updates follow the traditional local database patterns. However, if the lineage trails carried
at X denote existence of cloned versions or the updates have effect on remote boxes, it tells the client. Unlike
traditional distributed systems, it does not mediate directly in propagation of the update requests.

For example, for cloned boxes it returns a list of sites the client should contact to ensure global consistency
in due time. To implement this policy any of the known database update replication schemes can be used.
They can even be implemented with a few a priori defined Armada agents, who take over the role of the clients
responsibility.

Beware that this client-Armada relationship is built on mutual trust and persistency. If the client forfeits
its duty to forward updates to related sites, the outcome could be an inconsistent database. It does not render
the Armada useless, but may affect local decisions taken in the future. It mimics reality where decisions are
mostly based on locally consistent information only. See Section 5 for a broader perspective on transaction
management.

3.4 Armada Heterogeneity
A real Armada is formed out of different types of ships. To name a few, the galjoten, hoekers and spiegelschepen
all have different capabilities on storage, speed or defence. As such, different ships have different functionalities
and responsibilities within the Armada. Similarly, the sites in our Armada, can be of different types. Not only
their resources differ, but also their connection to the rest of the Armada, and the kind of data storage engine
they run. Actual storage may be done in a flat (log) file, or in an SQL database such as PostgreSQL, IBM DB2,
Oracle, MySQL, etc. which gives different properties to the sites.

The analogy goes further when it concerns the data boxes. Much like ships carried both barrels, boxes, and
crates, an Armada site carries data boxes of different flavours. Some might be designed to store particular data
items, e.g. blobs or multimedia images, while others are organised around the physical boundary conditions,
e.g. disk block sizes. In all situations the amount of lineage trail information is considered small compared to
the box itself. Thereby avoiding a bureaucracy.
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4. QUERY PROCESSING

The loose affiliation and strong autonomy of sites, combined with the pivotal role of the client calls for a fresh
look on distributed query processing. In such vision, any form of system induced centralised control over query
execution is ideally removed.

In this section we describe the mapping of the Armada reference model to a relational context and illustrate
the challenges for query processing. In the remainder of this section we assume the Armada to support a rela-
tional database, whose schema is made known upon creation of the original site. For simplicity of presentation,
we assume boxes to hold tuples of a single relation.

4.1 Relational Lineage Trails
The Armada reference model does not a priori prescribe the data model and query language. However, once we
deploy it in the context of a real application setting, it has to be fixed to delimit the scope. The first refinement
of the Armada model is geared towards relational systems, which calls for a redefinition of boxes and lineage
trails.

DEF. 12 A relational box Bi in a lineage trail Ti is a box whose content is covered by the relational schema DB
attached to the origin site DB = schema(origin(Ti)).

The data in the box should satisfy traditional key and domain constraints. However, the role of referential
and table constraints should be reconsidered in the light of the Armada autonomy. A discussion on this topic is
postponed until we look at transaction semantics in Section 5.

DEF. 13 A relational lineage trail is an Armada lineage trail Ti whose chunk, clone, and combine func-
tions f ,r,m are limited to relational algebra queries over the schema DB attached to the origin site,
DB = schema(origin(Ti)).

This definition emphasises the role of the origin site. Its schema determines the scope of the data space
managed. All boxes managed by the Armada can be phrased as relational queries, but care should be taken
to limit the expressiveness of the query language to also ensure a lossless Armada. The chunk function f is a
simple SELECT-FROM-WHERE query, such that the key attributes are retained in both derived boxes.

A relational lineage trail can be seen as a small snapshot of a relational catalog. It describes the data retained
in boxes in terms of a compound view over the origin schema. Furthermore, the relational trails contain
descriptions of database views once managed at remote sites. It forms a roadmap for referral queries and
decomposition into a distributed query.

4.2 Single Box Queries
Finding a box with data of interest in the Armada remains the most important query. However, the whereabouts
of the relevant box are not administered centrally; its location may even frequently change.

A client can send a query Q to any participating site where it can be validated against the database schema
for correctness using any of the relational trails. Subsequently, the query is replaced by a union-query Q =
Q0 ∪·· ·∪Qk such that term Qi represents a sub-query to be solved by site Si in the Armada. Splitting is based
on all lineage trails known locally. Algorithmically it requires a search for the union query with all known sites
holding boxes of interest. Given the nature of the successor trails known at the boxes, a query might be broken
up again when it turns out that the box it refers to was chunked afterwards.

Unlike traditional distributed databases, the subqueries Qi, . . . are not immediately forwarded to their destina-
tion site. Instead a query referral list Ql = [(Qi,Si)] is built and sent back to the client for further consideration.
To retrieve the answer the client should explicitly ask the sites for their result sets for the given query Qi. It
may iterate through the referral list, asking each site in turn to deliver it, or it may broadcast the complete list
at once. This control also gives the opportunity to the client to abort query processing after each sub query
issued. In all cases, the client is responsible to merge the results obtained and to deal with the interaction of the
sites. Connections to sites may time out. Sites may appear to be unreachable, reject connections or tell they
are too busy. In case of clones, this may even result in a redirect to one of the other clones. It is the client’s
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task to prevent an endless loop to arise if both clones appear to be too busy to handle the request of the client.
As remedy against unavailable or too busy sites, a client might inspect the lineage trails to see if there are any
clones in the lineage. Finding a clone may result in getting the data from another ‘branch’ in the Armada, if
available.

The autonomy of the Armada sites and its evolution complicate this scheme. Consider the query Qi arrived at
site Si for evaluation. Then a few cases should be considered. 1) The site Si accepts the query and can handle it
locally. A result set is prepared and shipped to the client. 2) The site Si accepts the query, but produces a partial
answer and an update for the query referral list. 3) The site Si runs out of resources and is not able to respond to
the query request. It returns the query to the client, which should decide on what to do. If the site knows about
other sites that could possibly handle the query (partially), it also sends an alternative update for the referral
list. Especially for clones this is a standard procedure. 4) The site Si detects that the boxes of interest have been
relocated. It sends a new query referral list back to the user. 5) The site Si runs out of resources and decides
to expand the Armada with new sites. The query is replaced by a new query referral list afterwards and sent
back. 6) The site Si breaks the connection after a partial result has been shipped. The client should re-submit
the query. 7) The client breaks the connection with site Si, which triggers a local transaction abort.

The scheme proposed shifts the burden of distributed query processing partly to the client. The rationale is
that the client ultimately resolves conflicts, e.g. time to wait for an answer and ‘money’ to spend. An actual
client implementation may be based on a library with a priori defined scenarios for dealing with the query
referrals.

A tricky part is detection of duplicate results, for it may potentially call a very large local memory at the
client side. The solution sought is based on keeping the lineage trails attached to the referral list. It can be used
to identify boxes with duplicate information (cloned). Judicious execution of the referral queries and early
diversion of result sets that are known to hold duplicates are the tools for the client to deal with this problem.

4.3 Query Evaluation
Query optimisation within Armada takes on a different flavour as well. Known techniques for semantic and
symbolic query optimisation still apply. However, reducing the amount of data shipped or minimising the
response time can not a priori be guaranteed using database statistics. When a task is taken from the referral list
there is still no guarantee on the responsiveness of the site being addressed. Therefore ruling out many query
execution plans upfront is not an option.

The approach taken is based on the rationale that subqueries can only be solved if the (partial) input data
resides at a single site. It leads to the refinement of the query referral list into a dependency graph, which
captures the processing dependencies. The client should obey these dependencies during query evaluation.

DEF. 14 A query referral graph QRG = (V,E,O) where V ⊂ S, E ⊂ V ×V and O ⊂ V ×L trail operations
issued at individual sites.

The elements V represent the Armada sites involved in the query. At each site a subquery is evaluated and/or
preparation steps are taken to bring boxes together for the next step. Preparation involves a decision on cloning,
chunking and combining pieces at a site with ample resources available. It is a variation on our initial bidding
process. For querying we are interested in temporary resources only. After the result has been produced and
shipped to the client, the storage could become available for re-use.

The query bid request ask(Qi,Ti) involves the subquery Qi and associated lineage trails Ti. It is sent to sites
of interest for a quote on its fictive cost.

A site S can respond in different ways. It may accept the task and reserves resources for the duration of the
query. Or, it may propose to initiate an Armada re-organisation first, e.g. cloning, chunking and combining the
operands. And finally, it may simply opt out.

For example, a distributed join involves chunking/cloning the operands, solicitation of sites to donate suffi-
cient resources to receive a part of all operands involved and to execute the partial join. The boxes produced
carry their own lineage trails. Although conceptually the Armada deals with static boxes, an actual implemen-
tation could opt for a more traditional stream/pipelining execution model.
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The effect at the client is that query evaluation becomes highly dynamic. Just in time decisions are taken on
where data should be sent and what order of evaluation is most effective. The query plan can be stopped at any
time to avoid spending resources on less interesting results.

Furthermore, the result sets remain at their site of origin until the client explicitly releases the resources.
The same holds for all intermediate results. The global effect is that the Armada becomes polluted with tem-
porary results. However, a site’s autonomy will permit unilateral disposal, provided the box discarded can be
reconstructed or a referral query can be issued to recover it from a dump site.

4.4 Armada User Interface
The novelty to put the client in the role of query coordinator calls for an easy to use administrative infrastruc-
ture and sufficient local resources to perform these tasks. Query formulation and result set inspection can be
supported with a traditional tabular interface.

Additionally, inspection of the site’s state requires different visual aids. A client roaming the Armada sites
can collect data to show the per site boxes, their usage, and how those boxes relate to each other. Provided the
sites are able and willing to share such information. The client could then construct a ‘map’ of the Armada to
give insight in its current state and supports tactical decisions of the client. The map becomes the focal point
for the Armada’s admiral to manage it globally.

5. TRANSACTIONS

The choice for autonomous site behaviour puts traditional database consistency at stake. A general applicable
transaction management scheme for an Armada system seems to lie beyond the horizon still. In Section 5.1
the prime approaches are reviewed in the light of the Armada vision. Section 5.2 reviews the consequences for
each site. Novel directions based on the intricate setting of an Armada system are pointed out in Section 5.3.

5.1 Transaction Policies
Consider a cloned chunk at two sites X and Y , and an update request to either one. Should the sites be forced
to cooperate to arrive at a consistent state? When is the update reflected in both instances? Or, is anarchy
unavoidable, where both versions diverge as time progresses?

The traditional approach in a distributed/federated DBMS is to put the update receiving site in control to
ensure that a transaction can only be committed when all related data has been updated as well. The drawback
is that sites get locked into a protocol with other sites that might temporarily or even permanently become
inaccessible. In this case there are many foreseeable policies, e.g. time-out and abort, or time-out and accept
inconsistency.

For Armada we consider the following policies:

• Anarchy Policy. Each site handles update requests and does not pay attention to the state of Armada at
large.

• Delegation Policy. Each site handles the update request and immediately propagates it to all sites to
which the update (may) apply.

• Mediator Policy. Updates are always sent to a special agent within the Armada that implements a scenario
to maintain global consistency.

• Resolution Policy. A dedicated site (group) is in charge to resolve global consistency using a mas-
ter/replica strategy.

Each policy leads to a quite different client perspective. They range from a situation where global consistency
of the Armada is unknown to the client, to a situation where global consistency can be guaranteed before a client
is informed on the status of his request.

In an anarchic situation the clients never know if the information accessed or stored is consistent with concur-
rent actions or even past behaviour. Such a situation seems only warranted if the Armada is used in a situation
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where data values stored locally do not affect the interpretation elsewhere. A prototypical case is a situation
with read-only data, such as transaction logging of production servers in for instance a telecom environment.

The delegation policy models the traditional distributed database view, where the ACID properties are en-
forced under all circumstances. It is known for quite some time that this rigidity hinders responsiveness of
business critical applications. Often a lower consistency level is deployed at the risk of mis-interpretation of
data accessed. From an implementation perspective, this policy also leads to a strong reliance of all participants
of the Armada, thereby greatly reducing the autonomy of sites aimed for.

The mediator policy suggests a solution that alleviates the sites of taking care of consistency. Instead, a
middleware solution of trusted agents takes care of reaching a consistent state. The strategy of the agent —
which can be located on one of the sites of the Armada — can be adjusted to the situation. An agent equipped
with a set of common policies could become part of the standard Armada infrastructure.

The resolution policy exploits the serialisation offered of pure master/replica techniques. It requires consen-
sus amongst all Armada sites of their role in consistency enforcement. For distributed constraints it creates a
dependency that challenges the autonomy of each site. However, the client is assured of consistency when it
interacts with a master site only.

5.2 Site Consistency
A straightforward realisation of an Armada site is to encapsulate an existing database system with the required
new functionality. Each site should then manage the data in the boxes hosted in a way traditional DBMS
systems would do. Thereby providing full ACID properties.

This requirement also holds for the metadata captured in the lineage trails. They form a catalog table in the
database subject to ordinary transaction rules.

From a client perspective, the autonomous Armada site is in no way different from an ordinary database
system. Except for the ability of the site to autonomously decide to cease operation. However, this is not
distinct from experiencing a crashing server. Multi-statement transactions follow the same approach.

5.3 Armada Consistency Model
Forcing ACID properties on the global state of the Armada, forces the autonomy of all the sites to a bare
minimum, as they may have to start a global transaction for every action they take. A heterogeneous pool of
sites will not support this, hence a different consistency vision is required.

Regardless of the autonomy attributed to all sites, it remains of crucial importance to assess the system state.
Applying an update to a site may lead to a database inconsistency that requires timely detection or a scheme to
reconcile the differences at some point in the future, preferably without client interaction. In all circumstances
it is the client’s interest to see the outcome of his transaction.

Two different routes for the Armada are conceivable: control consistency by design or authoritative guid-
ance. Control consistency by design is a scheme to avoid any distributed consistency problems upfront. Dis-
tributed transactions are forbidden from the outset. Instead, such a transaction first calls for bringing the relevant
boxes together on a single site, where it can be dealt with as a pure local transaction.

Of course, the drawback of this scheme is that global aggregate constraints are disallowed from the outset.
They would require a site with unlimited resources to hold the complete database. However, we conceive the
restriction on consistency rules as natural in a setting where sites do not have (or can, or will) provide the
information needed in the first place.

In Armada this puts constraints on the lineage trails that can be constructed by the autonomous sites. Chunk
operations should be chosen such that all consistency related information stays within a single box. The com-
bine operation is immune to the consistency rules under this scheme. The clone operation is problematic,
because conceptually the cloned boxes should be brought together first using the combine operation. When in
a single place, the update takes place on the combined box, whereafter a series of clone operations could move
the boxes back into their original sites again.

The alternative, an authoritative guidance approach exploits the information stored in the lineage trails. For,
each distributed transaction received by a site can be analysed against its locally maintained trails. The referral
query list or query graph models the subqueries and sites involved. This can be sent back to the client as a
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recipe to execute the global transaction. The prime disadvantage is that a two-phase, client initiated commit
is needed to finalise the transaction. During this process boxes kept at participating sites are locked or an
optimistic concurrency scheme should be implemented.

For the client it provides an easy decision. Given an update request ask any site for the query plan to execute.
It will be limited to sites that can locally check constraints, possibly after receiving complementary information
from subqueries. Global consistency has been achieved if the complete plan can be successfully executed.

Following the discussion on the various policies in Section 5, global consistency is either strictly enforced
or left open for an external entity to solve. Depending on how the Armada is used, a different policy might be
appropriate. Mainly query-intensive areas, with less or no updates, are served fine by an anarchy policy.

6. RELATED RESEARCH

Research on federated/distributed database architectures has a long history. All major DBMS suppliers provide
technology to realise a distributed database. However, they are also optimised for a limited number of servers,
e.g. running on a cluster computer composed of several tens of processors with a NAS service. Wide area
distributed databases benefit from a plethora of publish/subscribe techniques, e.g. Oracle Streams [Tum04] and
Microsoft’s Message Queues [BCR+04].

In recent years two research trends in distributed databases have emerged: sensor network databases and
P2P systems. Sensor network databases are characterised by a large number of resource limited receptors
at the edge of a network to collect mission critical data. Prototypical building blocks are small ‘Motes’, a
single-board-computer (SBC) equipped with a limited memory, limited network capabilities, and limited en-
ergy, glued together to realise a distributed information system to feed the upstream applications. On each
site we find one or more sensors and an embedded SQL database engine for storage management and query
processing [MFHH05, FJK+05, BBC+04, AAB+05]. However, their underlying architectures ignore the au-
tonomy target set for Armada. In essence they are built from functionally scaled-down versions of relational
database systems.

The focus of Peer-to-Peer systems is efficient query routing and localisation [PKP04, MM02]. Armada
differentiates from this approach in having a data centric view: the data, in terms of boxes, filled with relations
are aimed at evolutionary growth starting from a single node. P2P techniques assume the data is already in
place and numerous, usually in the form of files, like in PIER [HCH+05]. Unlike P2P, Armada has functions
that define how data is split over a number of boxes, which allow for concise localisation of data.

Research of scalable data structures has overcome the limitation in P2P systems using a globally known, but
locally adaptive partitioning function [LMS04, KK00]. Also the client behaviour bears some similarity with
the Armada approach. They manage a cache with metadata to direct data lookups. The main difference with
the Armada vision is its level of abstraction. SDDS solutions are focused on single key-based retrieval. In our
model we extend the scope to the complete functionality of a database system. Furthermore, the lineage trails
capture the complete history of a box, something not considered in an SDDS. It maintains the latest, locally
consistent distribution status.

Over their life span, database systems experience a continuous change (usually growth) of the amount of
data stored. Likewise, usage patterns and workloads keep on changing. For example, more recent data is
often accessed more frequently than older data, creating a “continuously moving access hotspot”. Classical
distributed database architectures do not provide any means to adapt to these changes automatically. Rather,
increasing the systems capacity (by adding additional nodes) and re-distributing the data to balance the load
are measures that have to be initiated and executed by some human DBA [TOV99]. Additionally, client/server
settings form the base of dealing with the work, thereby greatly reducing the autonomy of the participating
servers, as in [MA05].

The area of self managing and self tuning databases limits itself by only advising the DBA [RZLM02,
ZRL+04] or only dealing with indices and materialised views [ACK+04] — the metadata. Combinations of
replication and fragmentation are not supported, and only on the whole table data, where fragmentation is
only horizontally applied. Armada, on the other hand, can be considered a self-adaptive model to meet the
environment requirements and reconfigure when they change.
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7. CONCLUSIONS AND OUTLOOK

Emerging applications based on large numbers of autonomous systems challenge the assumptions of underlying
traditional distributed database technology. The storage and processing requirements encountered are often
modest compared to the servers on which commercial databases run. Instead, they stress the need for autonomy
in managing a portion of the database in a cooperative setting. The system volatility, devices join and leave the
ensemble, calls for a fresh look on metadata, query processing and transaction management.

In this paper, we introduced Armada, a reference model and system architecture for distributed datamanage-
ment. The research methodology is purposely focused on the introduction of a concise model based on lineage
trails. The exploratory description of the envisioned architecture into several dimensions charters a rich re-
search landscape ahead. The issues identified may stimulate a larger audience to join our quest to renovate the
foundations of distributed datamanagement. The analogy of a real-world Armada, a fleet of autonomous ships
sailing under authoritative goal and charter, provides the necessary insight in alternative solutions herewith
no-go areas for distributed database systems.

A simulator for the Armada model has been developed to experiment with large examples and study the
effect of lineage trail management. Its next incarnation provides quantitative data on the robustness of the
model against (deliberately) unavailability of physical sites.

Other priorities on the Armada research agenda include development of economic models to steer the in-
teraction between clients and Armada sites and fleet formation reorganisation. Finally, a real Armada system
implementation based on existing database technology should proof that the database community is ready to
take its role in emerging domains.
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[TOV99] M. Tamer Özsu and Patrick Valduriez. Principles of distributed database systems. Prentice Hall,
2nd edition, 1999.

[Tum04] Madhu Tumma. Oracle Streams: High Speed Replication and Data Sharing. Oracle In-Focus
Series, 2004.

[ZRL+04] Daniel C. Zilio, Jun Rao, Sam Lightstone, Guy Lohman, Adam Storm, Christian Garcia-Arellano,
and Scott Fadden. DB2 Design Advisor: Integrated Physical Database Design. In Proc. VLDB
Conf., 2004.


