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Heavy-traffic approximations for linear networks
operating under alpha-fair bandwidth-sharing policies

ABSTRACT

We consider the flow-level performance of a linear network supporting elastic traffic, where the
service capacity is shared among the various classes of users according to a weighted alpha-
fair policy. Assuming Poisson arrivals and exponentially distributed service requirements for
each class, the dynamics of the user population may be described by a Markov process. While
valuable stability results have been established for the family of alpha-fair policies, the
distribution of the number of active users has remained intractable in all but a few special cases.
In order to gain further insight in the flow-level performance in more general scenarios, we
develop approximations for the mean number of users based on the assumption that one or two
of the nodes experience heavy-traffic conditions. In case of just a single “bottleneck' node, we
exploit the fact that this node approximately behaves as a two-class Discriminatory Processor-
Sharing model. In the case that there are two nodes critically loaded, we rely on the observation
that the joint workload process at these nodes is asymptotically independent of the fairness
coefficient alpha, provided all classes have equal weights. In particular, the distribution of the
joint workload process is roughly equal to that for an unweighted Proportional Fair policy, which
is exactly known. In both cases, the numbers of users at non-bottleneck nodes can be
approximated by that in an M/M/1 queue with reduced service capacity. Extensive numerical
experiments indicate that the resulting approximations tend to be reasonably accurate across a
wide range of parameters, even at relatively moderate load values. The approximations for the
mean number of users also provide useful estimates for the mean transfer delays and user
throughputs.
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1 Introduction

Over the past several years, the Processor-Sharing discipline has emerged as a useful paradigm
for evaluating the flow-level performance of elastic data transfers competing for bandwidth on
a single bottleneck link. Bandwidth-sharing networks as considered by Massoulié & Roberts [9]
provide a natural extension for modeling the dynamic interaction among competing elastic flows
that traverse several links.

It is well known that the queue length distribution in a single-server Processor-Sharing
system with Poisson arrivals has a simple geometric distribution that only depends on the service
requirement distribution through its mean. In contrast, the distribution of the number of active
users in bandwidth-sharing networks with several nodes has remained generally intractable,
even for exponentially distributed service requirements. Bonald & Massoulié [1] established the
crucial result that a wide family of alpha-fair bandwidth-sharing policies as introduced by Mo &
Walrand [10] achieve stability under the simple (and necessary) condition that no individual link
is overloaded and a € (0,00). The family of alpha-fair policies covers several common notions
of fairness as special cases, such as max-min fairness (¢ — 00), Proportional Fairness (a — 1),
and maximum throughput (e | 0). In [11] it has also been shown that the case a = 2, with
additional class weights set inversely proportional to the respective round trip times, provides
a reasonable modeling abstraction for the bandwidth sharing realized by TCP (Transmission
Control Protocol) in the Internet.

The above-mentioned stability results imply that flow-level performance measures such as
transfer delays are finite provided that no individual link is overloaded. However, the derivation
of the exact transfer delays and actual user throughputs has proven largely elusive, except in the
special case of an unweighted Proportional Fair bandwidth-sharing policy in certain topologies,
such as linear networks. In particular, it is not well understood how the flow-level performance
measures depend on the specific choice of the fairness coefficient alpha and the possible additional
weight factors associated with the various classes.

In order to gain further insight in the latter issues, we develop in the present paper approxi-
mations for the mean number of users in linear networks operating under alpha-fair bandwidth-
sharing policies. The approximations are based on the assumption that one or two of the nodes
experience heavy-traffic conditions. In case of just a single ‘bottleneck’ node, we exploit the fact
that this node approximately behaves as a two-class Discriminatory Processor-Sharing queue.
The mean number of users can thus be calculated from the results of Fayolle et al. [5]. In the
case that there are two nodes critically loaded, we rely on the following two observations. First,
the heavy-traffic results of Kang et al. [7] and Kelly & Williams [8] show that with equal class
weights, the joint workload process is asymptotically independent of the fairness coefficient al-
pha. Second, the joint workload process for a Proportional Fair policy can be exactly computed
from the known distribution of the number of users [9]. Combining these two observations,
we obtain simple explicit estimates for the workloads at the two bottleneck nodes, which we
also numerically validate. We then develop various approximation methods by using the latter
estimates in conjunction with characterizations of invariant states from [7, 8] that relate the
number of users of the various classes to the workloads at the various nodes.

Extensive numerical experiments indicate that the resulting approximations tend to be rea-
sonably accurate across a wide range of parameters, even at relatively moderate load values.
The approximations for the mean number of users also provide useful estimates for the mean
transfer delays and user throughputs. In addition, the numerical results offer valuable insight
into the impact of the choice of the fairness coefficient alpha and the possible additional weight
factors, and how the performance impact depends on the traffic characteristics.



Figure 1: A linear bandwidth-sharing network.

The remainder of the paper is organized as follows. In Section 2 we provide a detailed model
description and discuss some preliminaries. In Section 3 we present some results for the known
distribution of the user population for a Proportional Fair policy, and use these to obtain the
Laplace-Stieltjes Transform (LST) of the joint workload process at the various nodes. Section 4
reviews the heavy-traffic results of [7, 8], which provide the basis for the approximations that we
develop subsequently. In Section 5 we focus on the case of a single bottleneck node, and exploit
the fact that this node approximately behaves as a two-class Discriminatory Processor-Sharing
model to obtain approximations for the mean number of users. Next, in Section 6 we turn
the attention to a scenario with two bottleneck nodes, and invoke the principle that the joint
workload process can be approximated by the known behavior for a Proportional Fair policy,
provided all classes have equal weights. In conjunction with a few equivalent characterizations
of invariant states from [7, 8|, the latter principle is then leveraged in Section 7 to devise various
approximation methods. Section 8 concludes with some final observations.

2 Model description

We consider a linear network as depicted in Figure 1. The network consists of L nodes, each
with unit service rate. There are L+ 1 classes of users: each class corresponds to a specific route
in the network. Class-i users require service at node ¢ only, ¢ = 1,..., L, whereas class-0 users
require service at all L nodes simultaneously.

We assume that class-i users arrive according to a Poisson process of rate )\;, and have ex-
ponentially distributed service requirements with mean u;l, 1 =0,...,L. The arrival processes
are all independent. The traffic load of class ¢ is then p; = )\iui_l. Note that the traffic load at
node i is given by pg + p;, ¢ = 1,..., L. Let n = (ng,ny,...,nr) be the state of the network,
with n; representing the number of class-i users.

The network operates under a so-called alpha-fair sharing policy, as introduced in [10]. When
the network is in state n # 0, the service rate z allocated to each of the class-¢ users is obtained
by solving the optimization problem:

l1-a
max Ez‘L:O /‘éini%
s.t. noxo+nix; <1, i=1,...,L,
where the k;s are non-negative class weights, and @ € (0,00)/{1} may be interpreted as a
fairness coeflicient. The cases a | 0, @ — 1 and a — oo correspond to allocations which

achieve mazimum throughput, proportional fairness, and maz-min fairness, respectively. Let
si(n) := z¥n; denote the total service rate allocated to class 7. In [1] it was shown that

(kon§)"/®

(ko) Ve + (S 5y k) Ve’

so(n) = si(n) =1-so(n), i=1,...,L, (1)

if n # 0.



Let N(t) denote the state of the network at time t. Then N(¢) is a Markov process with
transition rates:

qgn,n+e;)=XN; q(n,n—e)=psi(n), i=0,...,L,

where e; denotes the (i + 1)th unit vector in RE+L. Evidently, po + p; < 1,4 =1,...,L, is a
necessary condition for the process N(t) to be ergodic. In [1] it was shown that this condition
is in fact also sufficient for every a € (0, 00).

In general there are no closed-form expressions available for the steady-state distribution of
N(t). However, for the case & =1 and k; = k an explicit expression has been derived in [9], as
will be presented in the next section.

3 Unweighted Proportional Fairness

In this section we consider the case « = 1 and k; = k, @ = 0,..., L. The following theorem
appeared in slightly different form in [9].

Theorem 3.1 Under the stability condition max;<i<r, po+p; < 1, the process N(t) is reversible,
with steady-state distribution given by

rmy =01 Ziom) 1:IOp ®)

0

where the normalization constant C equals

o= AP (3)

I (1= po—pi)

The mean number of class-0 users in steady state is given by

and fori=1,...,L,

Pi
E(N;)) = ——.
(i) 1—po—pi
Let W;(t) denote the workload, i.e., the unfinished amount of work at node ¢ at time ¢,
i=1,..., L. Thus W;(¢) consists of the remaining service requirements of all class-0 and class-i

users at time ¢. Theorem 3.1 enables us to derive the Laplace-Stieltjes Transform (LST) of the
joint distribution of W(t) = (W1(¢),...,WL(t)) in steady state.

Theorem 3.2 Under the stability condition maxi<;<r, po + pi < 1, the LST of W (t) in steady
state is given by

A L-1
L ey L 1—po—p
~ ~ o L s — po — pi
W(T) = W(Tl, . ,TL) = #:)” 1_ o : N (4)
i=1 li0+2f:1 7 ity



Proof: Due to the memoryless property of the exponential distribution, the residual service

requirement of a class-i user is also exponentially distributed with mean ui_l, 1 =0,...,L
Therefore W;(t) is distributed as Z;.V:ogt) By,; + E;V:i(lt) B; j, where B;; are ii.d. copies of an
exponentially distributed variable with mean p; 1i=1,...,L. Now

W(r) = E<efzf=1 riWi) —-F (e L 7300 Boj— Zle(ri PN Bm‘)) ‘

Conditioning on the values of N;, i =0, ..., L, we obtain that W (r) equals

o0

Z i 71- ( 2—1 Ti ZJ 1 Bo,j Zf:l (Ti Z;Zl BM))

no=0 nr=0
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Substituting (2) and invoking that p; = Aju; !, we obtain that W (r) is equivalent to

L oo Dilki n; 00 EL N ol no
ot <) <FOJ>< ko )
. . L
Enz:o pi + i noz::o no Ho+ 22517

L o . 7172(1:1 nj
_ i )m Ao !
1 ‘3
= 1—- 20
112 <ﬂz+” < uo+Zf:1Tj>

:LLO_l_Zz 17

i=1n;=
1 L o A i
_ -1 Hitri
ST I D
po+Xj_yrj =1ni=0 po+ 517
L
1 1
P |
=1l y
HO‘FE]-:I T =1 1— 71_ Ll ;1
po+3I g v
L
_ 1 1—po—pi (5)
A '
1—— 2 }(1— L-1 ;=1 _ M+q~
( po+Yj Tj) (1= o) 1 1—— 2o
0+Z

The second equality above follows by applying the negative binomial formula: (1 — z)~¢ =
—1
Yoo < d n+ n ) x™. The final equality follows by substituting (3). Rearranging (5) finally

gives (4), and completes the proof. a

Remark. We now provide some interpretation f9r the expression for W(r) given in Theorem 3.2.
Consider an M/Hz/1 queue with arrival rate A9 + \; and service requirements that are expo-

nentially distributed with mean 1/fig (1/u;) with probability % (ioﬁ )‘.), where Ag := Ag/L




and fip := po/L. The LST of the workload V;(t) in steady state of this M/Hy/1 queue is given
by the well-known Pollaczek-Khinchin formula

f/';(rz) — _ (1~_p0 _pz)Tz~ ,
(Mo +X)B(ri) +7i — (Ao + Ni)
where
B Ao fo Ai Wi

'_5\0+/\il~10+7'i 5\0+/\iﬂi+7'i.

Substituting B(r;) we find

- 1 —po—pi
V. ) — _
z("“z) 1 % M

Bo+ri  paitr

Let us assume we have L of these M/Hs/1 queues, all independent, indexed by ¢, ¢ =1,..., L.
Then the joint LST of the workload V() is given by

L

L
V) = Virsrn) = ][0 = I L fo—p (6)

11— Ao As
Z_

fo+rs  pitry

Comparing (6) with (4) indeed shows some similar terms. Obviously, the two expressions cannot
be expected to be identical, because the linear network is different from L independent M/Ha/1

queues. Taking r; =r,i=1,...,L, (4) can however be rewritten as
-\ T po—p
~ _ fio+r —po — Pi
Wi(r,...,r) = T~ o Hl Y
=1 N0+7‘ HitT

The above provides some interpretation for the LST (4). It says that V(r,...,r) = W(r,...,r)U(r),
where

L—1
- 1—
U(r) = —”0

1- H0+7‘

is a term that accounts for the dependence and interaction among the L M/Hy/1 queues. Note
that the LST of the workload S(¢) in steady state in an M/M/1 queue with arrival rate Ag and
uo+r . Hence, U(r) is the LST of the sum of
the workloads in L — 1 of these M/M/1 queues (all independent). The above shows that

service rate fig is given by S(r) = (1 — pg)/ (1 -

L L-1 . L

WA W

i=1 i=1 i=1
where U;, 1 = 1,...,L — 1 are i.i.d. copies of U, and 2 indicates that both sides are equal in
distribution.

If « # 1 or k; # K, then there are no explicit expressions available for the steady-state
distribution of N (t).



4 Fluid and diffusion models

In this section we discuss the heavy-traffic results of [7, 8], which provide the basis for the
approximations developed in Sections 6-7. Define the following fluid scaled processes:

N*(t) := N(kt)/k and W (t) := W(kt)/E,
where W;(t) = No(t)/po + Ni(t)/pi, ¢ = 1,..., L. The fluid model can then be obtained from
the original model by letting k — co. For ease of notation, let N (t) be denoted by N(t), and
W (t) by W(N(t)). Define

-~ 1/a
koNo(t)® .
so(t) = —— (l/a ()L) — ;o si(t):=1—s0(t), i=1,...,L,
(koNo(t)2) ™" + (i miNa(t)) e
i.e., s;(t) denotes the total service rate allocated to class ¢ at time ¢, ¢ = 0,...,L. Then the
evolution of the workload process can be described as follows:
d

aﬁz(t) = X\ — u;si(t), for 1=0,...,L;

N;(t) >0, for ¢=0,...,L.
A fluid model solution is an absolutely continuous function N :[0,00) = Rﬁ“, such that at
each regular point ¢ for N(-), we have that for ¢ =0,...,L,
d = i — pisi(t) i N, ;
AN = { 3 pisi(t) i Ngg > 8
and fort=1,...,L,
s0(t)Io(t) + po(1 — Io(t)) + s:()Li(t) + ps(1 — Li(t)) < 1,

where I;(t) = 1 if N;(t) > 0, and 0 otherwise. A state N is called invariant if there is a fluid
model solution such that N(t) = N for all t > 0. Let J :={j € {1,...,L}: po+p; = 1} # 0 be
the set of nodes that are critically loaded.

The following theorem appeared in slightly different form in [8].

Theorem 4.1 The following statements are equivalent:
(i) N is an invariant state;

(ii) s;(t) = p; for all i such that N; > 0;

(iii) There is a g € RY such that

ZjeJ qj ) He

Ko

7

Wozp0<

forie J,

L gi 1/a
Ks

and for i ¢ J,_Niz 0; B
(iv) N = A(W(N)), where A(z) is the unique value of N € REY™ that solves the optimization
problem:

_ ~ \ a+1
min F(N) = %_H Z’iLZO /\mi,uf‘_l <J)\‘I—Z)
s.t. NO/HO+Ni/Ni>xi7 1 € J;

N; >0, i=0,...,L.



In the remainder of this section we assume that there are L = 2 nodes, and that kg = k1 =
k2 = k. Furthermore, we assume heavy-traffic conditions at both nodes, i.e., J = {1,2}. Define
the diffusion scaled processes:

N*¥(t) := N(k*t)/k and W*(t) := W (k%) /K,

where W;(t) = No(t)/mo + Ni(t)/pmi, © = 1,2, as before. In [7] the authors show (under the
assumptions mentioned above) that W¥(t) converges in distribution to a continuous process
W(t) as k — oo. The process W (t) is a so-called Semimartingale Reflecting Brownian Motion
(SRBM) that lives in the cone

1/& . . l/a
wwz:@<w) +&<&) ’q17QQZOai:172 .
Ho K Hi \K

In [7] it was shown that for all & € (0, 00) this is the same as the cone

]__
{(wl,w):wlzo, wr po/ to <w <w1( po)/uz+po/uo},

(1=po)/p1+po/po — =~ 0/ 1o
as depicted in Figure 2. The state space is an infinite two-dimensional wedge, and the process

behaves in the interior of the wedge like a two-dimensional Brownian motion with zero drift and
covariance matrix

PO P1 PO
2 (uo + Ml) 2#0
PO Po P2
2#0 2 <M0 + #2)

The process reflects instantaneously at the boundary of the wedge, the angle of reflection
being constant along each side. Vertical (horizontal) reflection on the bounding face ws =

__ pofpo — oy, A=P0)/p2+po/po : . : :
W1 = p5) /x0T i0 <w2 =un o0/ 110 ) can be interpreted as a manifestation of so-called

entrainment: congestion at node 1 (node 2) prevents node 2 (node 1) from utilizing the full
service rate. In [12] it was shown that the process is transient in the cone, i.e., no steady-state
distribution exists.

5 Single bottleneck node

In this section we propose a method for approximating EN;, ¢+ = 0,..., L, in case of a single
bottleneck node, i.e., |J| = 1. In case just a single node, say z, z € {1,...,L}, is critically
loaded, statement (7i7) of Theorem 4.1 suggests that the number of class-i users, i = 1,..., L,
1 # z, will be negligible compared to the number of class-0 and class-z users. Hence, the service
rates allocated to the various classes will be predominantly determined by the number of class-0
and class-z users, and approximately equal

so(n) = (rong) " IO ) .
- 1/a ™ 1/a 1/~ o* *p )
(kom§) 4+ (Shey wgng) " (Ron§)"7 o (meng)!/ Ao in
1/a
L
s(n) = (Zjeamimg) _ Rn
i(n) =

1/a 7™ jox *m )
1/a L Kono + KNz
(kong) fe 4 (§ il ﬂjn;*) 0 z



— qpy E=p0)/tatpo/ 10

w:
2 Po/Mo

_ po/ko
W2 = WL T=50)/ur+po/ho

Figure 2: The workload cone.

. 1 1 ..
fori=1,...,L, where Ky = KJO/ % and K} = KJz/ %, Thus, node z roughly behaves as a Discrimina-

tory Processor-Sharing model with relative weights x; and x} for classes 0 and z, respectively.
The results of [5] then imply that ENy and EN, satisfy the set of linear equations

" M ENg + MEN,
z * * ~ pO;
Kolo + KMz

MENy + AEN
EN, — p,EN, — s o0 T AR
K’Oﬂo—i_ﬂzlu’z

from which we deduce that

ENg — poENg — &

ENo~ — 20— <1+ ___pope(: — ) )
1—po—p2 ﬁoNO(l_pO)'*‘Hf;Nz(l_pz)
EN, ~ — 2 (1 bt~ k) ) .
1—po—p. Koro(l — po) + Kiu:(1 — p2)
Let EN; denote the approximation for EN;, ¢ = 0, z. Then
B KEN,
" Kk{ENp + K:EN,
can be regarded as an approximation for the service rate allocated to classesi=1,...,L, i # z.
The number of class-i users, ¢ = 1,...,L, i # z, will approximately behave as in an M/M/1

queue with arrival rate \; and service rate u;s. This gives the approximation

EN; ~ PP =1L i+#-=

S—pi
Note that the values of k;, ¢ = 1,...,L, i # 2, do not appear in this approximation. This
suggests that the weights of classes that do not traverse the bottleneck node, will tend to have
limited impact on the flow-level performance.



We now discuss the numerical experiments that we conducted to examine the accuracy of
the above-described method. We first test this approach for a linear network with L = 2 nodes,
a =1, and k; = K, i1 = 0,1,2, for which we have exact expressions for EN;, ¢ = 0,1, 2, see
Theorem 3.1. We fix pg = 0.6 and p; = 0.39, so that node 1 is highly loaded (z = 1), and
vary the value of ps. Note that in case of equal weights, the approximations only depend on
the traffic characteristics through the class loads, and not on the specific values of the \;s and
w;s. The results are presented in Table 1, and indicate that the approximations are remarkably
accurate. As could be expected, the smaller the value of pa, the better the approximations.

In case a # 1 or k; # K, there are no exact expressions available for EN;, i = 0,1,2, and
we need to resort to simulation experiments to investigate the accuracy of the approximations.
Throughout this paper, the simulation numbers are obtained as averages over 10000 busy peri-
ods. We choose the same setting as above, but with kg = 2, k1 = 0.5 and ko = 1. In this case
the approximations do depend on the specific values of the u;s. We consider two scenarios: in
Scenario 1 we take g = g1 = p2 = 1, while in Scenario 2 we set pp = 0.75, 1 = 1 and po = 1.5.
The results are presented in Tables 2-3.

Note that the approximations for [ENy and EN; do not depend on the presence of class-2
users, and are in particular independent of the value of ps. Further observe that if @ — oo,
then k§,x7 — 1, and as a consequence EN; =~ p;/(1 — po — pi), + = 0,1. The results are
surprisingly accurate, even if node 2 is also relatively highly loaded (pp + p2 = 0.9). Note that
EN$™ is increasing in pa, as could be expected. The influence of py on EN§™ and EN™ is
more subtle, as closer inspection of Tables 2-3 demonstrates. It might be natural to expect that
increasing p2 would also have an adverse impact on EN§™ and EN{"™. As the value of py and
the number of class-2 users increases, however, the service rate so(n) will decrease, whereas the
service rate sg(n) will increase. The resulting increase in the number of class-0 users will have
the counteracting effect of decreasing sa2(n), and conversely the expected decrease in the number
of class-2 users will have the opposite effect of increasing so(n). Because of these interacting
effects, the net impact basically remains unpredictable, and as Tables 2-3 reveal, IENgim and
EN$"™ do not necessarily change in a monotone manner as the value of py increases.

6 Two bottleneck nodes and equal weights: workload invariance

In this section we consider the scenario that there are two nodes critically loaded, i.e., |J| = 2.
Since the nodes can be indexed arbitrarily, we may assume without loss of generality that
J ={1,2}. Also, suppose that k; = k,7=0,..., L.

Let W(t) be the workload process associated with the two bottleneck nodes. The results
from [7, 8] as reviewed in Section 4 indicate that the behavior of W (t) is asymptotically inde-
pendent of the value of a. In particular, this suggests that the behavior of the workload process
can be approximated by the known distribution for & = 1. In order to examine this hypothesis,
we calculated the mean workload (using Theorem 3.2)

L

i/ 12 Ao/ 1 Pj
EWEect (o = 1) = BWgeact (1) = =00 4 20000 [y N~ A 7
Fe=n=Ewre ) = T\ R T (7

with ¢ € J, and compared it with simulation for the case of L = 2 nodes, pg+p1 = pg+p2 = 0.99,
ie, |[J| =2,and u; = k; = 1,1 =0,1,2. We also considered the asymmetric case pgp + p1 =
po+p2=099 k;=1,1=0,1,2, uo =0.75, u1 = 1 and pe = 1.5.

Define

X; := EW5™ (o) JEWF®* (1) =1, i€ J.

10



The results, summarized in Table 4, indicate that the mean workload for a = 1 indeed provides
a reasonably accurate approximation for a wide range of o values. Note that X; should be equal
to 0 for all cases with @ = 1. In most cases with o > 1, EW#®(1) is larger than EW ™ (),
and thus seems to yield a conservative approximation. Below we provide an explanation for this
observation. In preparation for that, we first present the following proposition.

Proposition 6.1 For fized n = (ng,...,nr) and k; = k, ¢ = 0,..., L, the service rate so(n)
allocated to class-0 users is increasing in .

Proof: For fixed n = (ng,...,nr) and k; =k, 1 =0,..., L, we obtain from (1) that

so(n) -0
0 == .
no + (X7, ng)l/e
L a

j=1"%

ny" 4+ +ng < (nf+--+ng)

Equivalently, we have to prove that (> )1/e is decreasing in . First note that

for all 7 > 1. Therefore,

L 1/8 L 1/ar L 1/a

(Z TL;B) = (Z n?ﬂ‘> — (nflxr 4+ 4 n%r)l/ar < (’I’L? 4ot n%)r/ar — <Z nf‘) ,
i=1 ; .

for all 8 > «a, which proves the stated. O

Now observe that the workload at each of the nodes is minimized (sample-path-wise in fact)
when class 0 receives priority over classes i € J. Since the capacity allocated to class-0 users is
increasing in @, it is thus plausible that more generally the mean workload EW£*%? (o) decreases
as function of «, which implies that X; is smaller than 0 for « > 1, ¢ € J. This provides an
explanation for the negative values in Table 4. The latter property can in fact be rigorously
proved using Proposition 6.1 and stochastic coupling arguments. Due to page limitations, we
omit the proof.

7 Two bottleneck nodes and equal weights: approximation meth-
ods

In this section we develop three methods for approximating EN;, ¢ = 0,1,2. Recall that we
suppose that J = {1,2} and k; =k, ¢ =0, ..., L. The various methods differ in some technical
details, but they all rely on the insights from the heavy-traffic results as reviewed in Section 4.
In Section 7.4 we present approximations for EN;, 1 = 3,..., L.

7.1 Method 1

The numerical results presented in the previous section indicate that EW £ (o) is nearly con-
stant in « € (0, 00), provided that the load at all nodes i € J is sufficiently high. In particular,
it is approximately equal to the known value for & = 1 as given by (7). Further observe that
EWgrect (o) = ENg/po + EN; /ui, i € J. Thus, we obtain

Aif u? Ao/ L P;
ENy /o + EN; /s ~ i 1+ — P ) ey 9
/1 i/ s o0 T T po gl_po_pj (9)
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i.e., a set of two linear equations with three unknowns. If we can find one additional constraint,
then we should be able to determine EN;, i = 0, 1,2 (as long as the resulting system of equations
is non-singular).

Now observe that Theorem 4.1 shows that an invariant state N in the fluid model can be
expressed as

L ) A /e o A\ 1o
N0=P0<Z%;qz) ; Nizpi<%> , 1€ J, qGJRfL.
1

This suggests the following approximation:

(ENp, ENy, ENy) ~

o . Z 1/a 1/ 1/a
/ / (Po (M) y P1 (q_1> y P2 (q—2> )dP(Ql <q1,Q2 < q) =
q1=0 J q2=0 K K K

1/a
F.',l% polE <Z Qi) ;pE (an) ,p2E <Q;/a)

ieJ

Using the additional approximation

1/a
(ENo, ENy, ENg) ~ — PO(ZEQi> o1 (EQ1)Y™, pa (BQ2)V/* |, (10)

1/
K ict

with v some multiplicative constant, and substituting (10) in (9) then yields a system of two
equations with two unknowns. Numerically solving this system yields v*EQ;, i = 1,2, from
which we can obtain EN;, ¢ = 0,1, 2, using (10). Note that

:((59) ) <ge(e

ied ieJ

if @ € (1, 00), which would provide an upper bound for ENj relative to EN;, ¢ € J. Likewise, if
a € (0,1), then this would give a lower bound for ENj relative to EN;, i € J.

We tested this approach by comparing the results with simulation figures. We took the
same simulation parameters as in the previous section. The results are presented in Tables 5-6.
Throughout this paper, ENZ-M 7 denotes the approximation of EN; that is obtained by using
Method j. Note that in Table 5 we have ENM! = ENM! by symmetry. The tables indicate that
Method 1 gives reasonably accurate estimates for [EV;, particularly [ENy. Note that Method 1
is fast as well: it suffices to solve a system of two equations with two unknowns.

7.2 Method 2

We now discuss a second method for approximating EN;, ¢ = 0,1,2. Again, we start from
Equation (9) as in Method 1. The difference with Method 1 is that we now use statement (iv)
(instead of (73¢)) of Theorem 4.1. Statement (4v) implies that a workload vector w = (w1, ws)
uniquely determines a state vector n that solves the optimization problem:

1 L 1 (N atl

. — 1

min  F(ng,ni,...,ng) = ] E kit (/\-)
i=0 '
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s.t. no/po +mni/ui > wi, i€ J; (11)
’I’L,ZO, Z:0,7L

The method now works as follows. We determine the vector (ENg, ENy,...,EN}) that minimizes
the function F(ENy, ENy, ..., ENL) subject to the constraints in Equation (9). Note that EN; =
0,7=3,...,L.

As it turns out, Methods 1 and 2 result in similar approximations for EN;, i = 0,1,2. This
is not too surprising: the only difference between the methods is that we use statement (4i7) in
one case, and (iv) in the other. However, statements (ii¢) and (iv) are in fact equivalent in case
of heavy traffic, so both methods should roughly agree when the load is sufficiently high.

Remark. Method 2 uses the mean workloads to approximate the mean number of users. However,
we can potentially improve the accuracy of the approximation if we use the distribution of
the workloads, which is also asymptotically independent of « in heavy traffic. The resulting
approximation is then given by

EN; =Y Ai(w(n))w(n), i=0,1,2,
n>0

where w;(n) = ng/po + ni/pi, i € J, A(z) is as in Theorem 4.1, and 7(n) is given by (2). This
will typically result in a different approximation for EN; than Method 2, since the optimization
problem (11) is non-linear. The disadvantage is that it is very time-consuming.

7.3 Method 3

This method is similar to both previous methods, i.e., we again start from Equation (9) to obtain
a set of two equations with three unknowns EN;, i = 0,1, 2. Statement (¢7) of Theorem 4.1 pro-
vides an additional equation, which allows us to numerically solve to above system of equations.
First note from (8) that

1o -

(n) = so(n)&(n) = po,

L a 1/(17T
wso o+ (L nf) n>0
where 7(n) is the steady-state distribution of N(¢) in case a € (0,00)/{1}. The additional

equation is then obtained by replacing the latter equation by the approximation

EN() ~ IEJVO
ENo + (S, ENp)/e  ENo + (e, ENF)'/®

= po-

We numerically solved the above system of equations for both the symmetric and asymmetric
scenarios considered in the previous section. The results are presented in Tables 7-8. Note that
the approximations obtained from Method 3 slightly differ from those of Methods 1 and 2. This
may be explained from the fact that statement (i7) of Theorem 4.1 (for ¢ = 0) is only partly
satisfied.

7.4 Approximation for non-bottleneck nodes

In the previous subsections we presented three methods for approximating the mean number of
users at the bottleneck nodes. We now provide an approximation for the number of users at the
remaining nodes, i.e., EN;, i = 3, ..., L. The method is similar in nature as the one presented in

13



Section 5 for the case of a single bottleneck node. Let EN; denote the approximations obtained
for EN;, i =0,1,2. In view of (8), define

EN,

~ ~ a\l/a
ENo + (e, EN;®)

S0 ‘=

as an approximation for the service rate allocated to class 0. As before, the number of class-i
users, i = 3, ..., L, will roughly behave as in an M/M/1 queue with arrival rate A; and service
rate p;(1 — Sp). This gives the approximation

EN; ~ —P -3 .. L
1—30—p;

Remark. In [3] the authors characterized the class of allocation functions that have the property
that the steady-state distribution of the number of users is insensitive, i.e., only depends on
the traffic characteristics of the various classes through their respective loads. In addition,
they introduced the notion of balanced fairness, which refers to the most efficient insensitive
allocation. For the linear network (see Figure 1) it was shown in [4] that balanced fairness
is equivalent to unweighted proportional fairness, i.e., « = 1 and k; = k, ¢ = 0,..., L. Note
that the steady-state distribution in Theorem 3.1 indeed only depends on the loads, and not
on any higher-order traffic characteristics. In [2] it was shown that balanced fairness provides a
good approximation for unweighted proportional fairness and unweighted max-min fairness. The
results of this section, though, illustrate that the accuracy of the balanced fairness approximation
for unweighted max-min fairness degrades in heavy-traffic conditions.

8 Conclusion

We analyzed the flow-level performance of a linear network carrying elastic traffic, where the
service capacity is shared according to a weighted alpha-fair policy. We devised approximations
for the mean number of users based on the assumption that one or two of the nodes operate
under heavy-traffic conditions. The approximations for the mean number of users also yield
simple estimates for the mean transfer delays and user throughputs.

In case just a single node operates in heavy traffic, we exploited the fact that the user
population at this node approximately evolves as in a two-class Discriminatory Processor-Sharing
model. Numerical tests indicate that the resulting approximations based on the results of [5]
are remarkably accurate.

In the case that there are two nodes critically loaded, we relied on the principle that the
joint workload process at these nodes is asymptotically independent of the fairness coefficient
alpha, provided all classes have equal weights. In particular, we derived the joint workload
process for an unweighted Proportional Fair policy, and used this as an approximation for all
unweighted alpha-fair policies. We then presented three approximation methods for the mean
number of users based on the results of [7, 8], which relate the mean number of users to the
mean workloads at the critically loaded nodes. Extensive numerical tests demonstrated that the
resulting approximations are similar for the three methods, and tend to be reasonably accurate
across a wide range of settings, even at relatively moderate load values. Irrespective of the
number of critically loaded nodes, the numbers of users at the other (less loaded) nodes roughly
behave as in an M/M/1 queue with reduced service capacity, and are hardly influenced by the
corresponding class weights.

14



It is substantially more difficult to handle the cases in which there are 1) two nodes critically
loaded and not all class weights are equal, or 2) more than two bottleneck nodes. Although the
mean number of users can still be related to the mean workloads in these scenarios, the joint
workload process at these nodes is no longer independent of the fairness coeflicient alpha. In
addition, even for a weighted Proportional Fair policy the workload distribution is no longer
known. Hence, we cannot apply the three methods mentioned above for approximating the
mean number of users. One option to obtain conservative estimates in case 2) would be to use
the property that the mean workload for an unweighted alpha-fair policy, with alpha larger than
one, is smaller than for an unweighted Proportional Fairness policy as mentioned in Section 6.
Alternatively, as in Section 4, we can approximate the workload process by an SRBM living in
a cone that now does depend on the fairness coefficient alpha. Subsequently, we can derive the
steady-state distribution of the process, thus having an approximation for the mean workloads.
If we succeeded in this, then we could obtain approximations for the mean number of users by
applying one of the three methods. However, it turns out to be extremely hard to derive the
steady-state distribution for an SRBM living in a multi-dimensional cone, see [6]. The latter
suggests that it is also hard to determine the steady-state distribution of the approximation for
the workload process, if possible at all.

A natural extension of the present work is to consider generally distributed service require-
ments. One can expect that some of the results carry over in heavy-traffic conditions. Another
future research direction includes extending the results to general network topologies, e.g., cyclic
networks and grid networks. The method presented for the single bottleneck node in the linear
network, should also be effective in network topologies that have multiple bottleneck nodes, but
where classes of users require service at just one bottleneck node.
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02 ENgzact EN(‘;nethod ENlezact EN{nethod ENZemact ENgnethod
0.1 60.50 60.00 39.00 39.00 0.33 0.34
0.2 61.50 60.00 39.00 39.00 1.00 1.03
0.3 64.50 60.00 39.00 39.00 3.00 3.19
Table 1: Results for « = 1 and kg = k1 = K2 = k.
02 a EN(.)sim ENgnethod ENisi'm EN{nethod ]EN;im EN2method
011 27.88 28.24 69.12 70.76 0.35 0.35
02 1 27.54 28.24 67.25 70.76 1.06 1.08
03| 1 34.51 28.24 80.19 70.76 3.34 3.52
01| 2 49.76 43.40 63.75 55.60 0.36 0.34
02| 2 45.08 43.40 57.55 55.60 1.08 1.05
03| 2 41.59 43.40 52.34 55.60 3.46 3.32
01| 5 61.35 53.43 52.03 45.57 0.35 0.34
02| 5 54.37 53.43 46.40 45.57 1.08 1.04
03| 5 50.23 53.43 42.52 45.57 3.47 3.24
0.1 | co | 60.09 60.00 39.20 39.00 0.36 0.34
0.2 | co | 60.68 60.00 39.52 39.00 1.08 1.03
03 | oo | 63.72 60.00 40.99 39.00 3.52 3.19
Table 2: Results for Scenario 1.
P2 a EN(‘)szm EN(’;nethod ENiszm ENlm,ethod ENészm ENémethOd
01| 1 35.72 30.91 89.57 77.78 0.34 0.35
02| 1 26.21 30.91 63.59 77.78 1.06 1.07
03| 1 34.84 30.91 81.73 77.78 3.37 3.48
01| 2 45.85 45.60 58.73 58.34 0.35 0.34
02| 2 50.17 45.60 63.96 58.34 1.09 1.04
03| 2 58.57 45.50 74.97 58.34 3.51 3.31
01 5 54.47 54.43 46.59 46.43 0.36 0.34
02 5 63.51 54.43 53.81 46.43 1.09 1.04
03| 5 55.19 54.43 46.88 46.43 3.59 3.24
0.1 | oo | 44.16 60.00 28.72 39.00 0.36 0.34
0.2 | co | 78.66 60.00 50.98 39.00 1.12 1.03
0.3 | oo | 53.80 60.00 34.60 39.00 3.72 3.19

Table 3: Results for Scenario 2.
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po | pr=p2 | @ Xy X5 Po | pr=p2 | @ Xy X

0.3 0.69 1 | 0.001 | 0.019 0.3 0.69 1 | 0.006 | -0.009
0.5 0.49 1 | 0.006 | 0.020 0.5 0.49 1 | -0.046 | -0.033
0.7 0.29 1 | -0.015 | -0.024 0.7 0.29 1 | 0.048 | 0.042
0.3 0.69 2 | -0.042 | -0.047 0.3 0.69 2 | -0.065 | -0.077
0.5 0.49 2 | -0.041 | -0.056 0.5 0.49 2 | -0.025 | -0.038
0.7 0.29 2 | -0.039 | -0.040 0.7 0.29 2 | -0.039 | -0.049
0.3 0.69 5 | -0.027 | -0.065 0.3 0.69 5 | -0.040 | -0.036
0.5 0.49 5 | -0.005 | 0.003 0.5 0.49 5 | -0.055 | -0.057
0.7 0.29 5 | -0.058 | -0.069 0.7 0.29 5 | -0.037 | -0.035
0.3 0.69 oo | -0.007 | 0.011 0.3 0.69 oo | -0.028 | -0.022
0.5 0.49 oo | -0.043 | -0.063 0.5 0.49 oo | -0.048 | -0.076
0.7 0.29 oo | -0.061 | -0.055 0.7 0.29 oo | -0.003 | -0.009

Table 4: Testing whether W (¢) is independent of a. Left (Right): the symmetric (asymmetric)

case.

00 p1 = P2 a ]EN(.)szm ENé\/Il ENiszm ]ENfzm ENIJ\/II ZENQIMI
0.3 0.69 1 60.20 59.80 68.58 70.81 68.77
0.5 0.49 1 | 100.27 | 99.33 48.61 50.66 48.67
0.7 0.29 1 | 135.01 | 138.07 | 29.19 27.67 28.60
0.3 0.69 2 50.21 48.95 72.98 72.36 79.62
0.5 0.49 2 86.98 87.42 54.90 52.79 60.58
0.7 0.29 2 | 126.62 | 128.91 | 33.59 33.38 37.76
0.3 0.69 5 47.86 42.83 77.25 72.40 85.75
0.5 0.49 5 88.24 79.86 58.97 60.25 68.14
0.7 0.29 5 | 120.76 | 122.49 | 36.22 34.38 44.18
0.3 0.69 oo | 49.75 39.02 77.94 80.25 89.55
0.5 0.49 oo | 82.62 74.83 59.02 56.06 73.17
0.7 0.29 oo | 120.81 | 117.92 | 35.64 36.67 48.75

Table 5: Results for Method 1: the symmetric case.

po | pr=p2 | @ | ENg™ | ENMT [ EN3™ | ENMT | ENgi™ | ENMT
03] 069 | 1 | 59.40 | 59.75 | 70.06 | 68.77 | 67.58 | 68.65
05| 049 | 1 | 9519 | 99.22 | 45.80 | 48.70 | 48.46 | 48.55
0.7 029 | 1 |143.78 | 137.93 | 31.01 | 28.66 | 29.58 | 28.48
03] 069 | 2 | 50.17 | 5112 | 71.83 | 80.27 | 73.27 | 85.91
05| 049 | 2 | 90.58 | 90.72 | 55.61 | 60.04 | 56.49 | 65.56
07| 029 | 2 | 127.79 | 131.91 | 33.86 | 36.68 | 33.78 | 40.51
03| 069 | 5 | 4980 | 45.99 | 75.98 | 87.11 | 81.50 | 96.17
05| 049 | 5 | 85.94 | 85.16 | 56.51 | 67.46 | 61.03 | 76.68
0.7 029 | 5 | 127.15 | 127.71 | 35.20 | 42.27 | 39.39 | 48.90
03| 0.69 |oo| 50.20 | 43.75 | 77.31 | 90.08 | 83.68 | 100.64
05| 049 |oo| 84.83 | 82.88 | 59.16 | 70.49 | 58.67 | 81.23
0.7 029 |oco| 13052 | 126.06 | 37.72 | 44.48 | 40.41 | 52.22

Table 6: Results for Method 1: the asymmetric case.
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Po p1 = p2 a ENglm EN&\/IS ENis‘zm ENfzm EN{WBZENéM‘g
0.3 0.69 1 60.20 59.34 68.58 70.81 69.23
0.5 0.49 1 100.27 | 98.67 48.61 50.66 49.33
0.7 0.29 1 135.01 | 137.26 29.19 27.67 29.41
0.3 0.69 2 50.21 48.52 72.98 72.36 80.05
0.5 0.49 2 86.98 86.70 54.90 52.79 61.30
0.7 0.29 2 126.62 | 127.91 33.59 33.38 38.76
0.3 0.69 5 | 47.86 42.41 77.25 72.40 86.16
0.5 0.49 5 | 88.24 79.12 58.97 60.25 68.88
0.7 0.29 5 120.76 | 121.38 36.22 34.38 45.29
0.3 0.69 oo | 49.75 38.63 77.94 80.25 89.94
0.5 0.49 oo | 82.62 74.08 59.02 56.06 73.92
0.7 0.29 oo | 120.81 | 116.74 | 35.64 36.67 49.93
Table 7: Results for Method 3: the symmetric case.
po | pr=p2 | o | EN§™ | ENM® | ENy'™ | ENM3 | ENs'™ | EN}M3
0.3 0.69 1 59.40 59.40 70.06 69.24 67.58 69.35
0.5 0.49 1 95.19 98.77 45.80 49.31 48.46 49.46
0.7 0.29 1 143.78 | 137.40 | 31.01 29.35 29.58 29.53
0.3 0.69 2 50.17 50.76 71.83 80.75 73.27 86.63
0.5 0.49 2 90.58 90.18 55.61 60.76 56.49 66.64
0.7 0.29 2 127.79 | 131.24 | 33.86 37.57 33.78 41.86
0.3 0.69 5 | 49.89 45.63 75.98 87.58 81.50 96.88
0.5 0.49 5 85.94 84.59 56.51 68.21 61.03 77.82
0.7 0.29 5 127.15 | 126.97 | 35.20 43.27 39.39 50.40
0.3 0.69 oo | 50.20 43.42 77.31 90.54 83.68 101.31
0.5 0.49 oo | 84.83 82.33 59.16 71.22 58.67 82.33
0.7 0.29 oo | 130.52 | 125.31 37.72 45.37 40.41 53.71

Table 8: Results for Method 3: the asymmetric case.
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