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otherwise require many evaluations of time-expensive cost functions. We give a proof of
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we illustrate the convergence results derived.Finally, the performances of several variants of the
method are compared for some practical design problems in electromagnetics.
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1. INTRODUCTION

Optimization problems in practice often need function evaluations that are very expensive to
compute and, moreover, gradient information is in most of these situations unavailable, e.g.,
optimal design problems based on complex finite element simulations. As a consequence,
many optimization processes may require very long computing times.

Surrogates have been used since long in analysis and design in engineering [2, 3, 4] and
recently they have been successfully applied to the solving of very time-consuming optimiza-
tion problems [5, 6, 7, 8]. In surrogate optimization the quality of the initial approximation
is iteratively improved. This first surrogate yields the first iterant and with the use of it, the
surrogate is improved. This iterative procedure is repeated until some stopping criteria is
met.

The nature of the surrogates is problem dependent. We can clearly distinguish two different
types of surrogates. If no information is a priori available, approximations can be obtained
from scratch, in most cases combining experiment design strategies (e.g., latin hypercube
sampling [9] or orthogonal arrays [10]) with interpolation/approximation techniques (e.g.,
low degree polynomials [11], kriging [12] or radial basis functions [13]). The second type
of approximations is found in situations where, because of e.g., experience or simple rules
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of thumb, the derivation of the surrogate is simplified. An example of this is the the use of
lumped parameter models (e.g., magnetic [1], electric [14] or thermal [15] equivalent circuits).

Space mapping [14, 16] is a well-known surrogate-based optimization technique. Though
it can be used in combination with any type of surrogate, it is traditionally applied with
approximations of the second type described above. The space-mapping technique has been
reported as an efficient minimization procedure in a large number of cases [14].

There are many variants of the original space-mapping algorithm: aggressive space map-
ping (ASM) [17], trust-region aggressive space mapping (TRASM) [18], neural space mapping
(NSM) [19] and implicit space mapping (ISM) [20] are the most significant examples. Al-
though all these schemes do not always converge to the right solution [1], the one obtained
is generally acceptable for practical purposes. Recently, in [21] the original space-mapping
approach is modified according to the framework proposed in [7]. At the expense of in-
corporating ezact gradient information, the new scheme yields convergence to the accurate
optimum.

Defect-correction theory [22] helps in understanding the space-mapping concept. Defect
correction is the underlying basis of a great number of mathematical techniques that essen-
tially solve a complex problem by the iterative use of a simpler one (e.g., Newton’s method,
relaxation procedures [23, 24|, iterative refinement [23] or multigrid methods [24]). Though
defect-correction theory was originally developed for nonlinear systems, it can also be applied
in optimization problems. Many space-mapping procedures can be seen as special cases of
the defect-correction iteration [1] and this fact can be used in analysis for explaining when
the space-mapping approach may fail to find the right solution.

Manifold mapping [1] is an alternative surrogate-based optimization technique. Manifold
mapping can be used without computing exact gradient information and it has provable
convergence to the right solution. This paper presents a thorough analysis of the manifold-
mapping approach and it is structured as follows. In Section 2 the basic terminology and
some general assumptions are introduced. The manifold-mapping approach, together with
the algorithms derived, are described in Section 3. It will be seen also in this section, that
under mild assumptions, the fixed point for all the algorithms/procedures is the accurate
optimum. Convergence theorems for all the schemes will be stated in Section 4 and they will
be illustrated by means of two simple design problems in Section 5. Also in this section, the
manifold-mapping technique will be eventually compared with other efficient methods, in the
case of optimal design problems from the field of electromagnetics.

2. THE PROBLEM

The optimization problem Let the specification of the aim (the data) in an optimization
problem be denoted by y € Y C R™. Since the true mechanism how this aim can be approx-
imated can be extremely complex, or even impossible to describe in all its details, we study it
by mathematical models. Often, such models appear in several degrees of sophistication. It is
the purpose of manifold mapping to exploit the simpler models by combining their efficiency
in computation with the accuracy of the more complex ones. Thus, we distinguish two types
of model: fine and coarse.

The fine model The fine model response function is denoted by f: X C R* — R™, and
x € X is the control variable. The set X of possible control variables is usually a closed and
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bounded subset of R”. The fine model is assumed to be accurate but expensive to evaluate.
We assume that f(x) is differentiable but its Jacobian matrix J¢ (x) = df/dx is generally
supposed to be unavailable.

For the optimization problem a fine model cost function, F(x) = || f(x) — y|| is defined,
which is a measure for the discrepancy between the aim and a particular response of the
mathematical model. This cost function should be minimized. So we look for

xp = argmin, e x || £(x) — y|| - (2.1)

For simplicity, in this paper we take for || - || the Euclidean norm on R™. Not every opti-
mization problem is of this type, but most practical design situations can finally be reduced
to this model-specification structure.

A design is called reachable if there exists an x§ € X such that f(xf) =y. This situation
can often be expected when n > m since in that situation the number of degrees of freedom
in the design is larger than or equal to the number of specifications. Reachable designs can
be formulated as equations and, hence, they can generally be solved as nonlinear systems.
The original defect-correction iteration [22] can be directly applied. For this reason, in this
work we will particularly analyze the overdetermined case n < m. We formulate this as our
first assumption.

Assumption 1 The dimension of the space of possible aims exceeds the dimension of the
control space: n < m.

The coarse model The coarse model is denoted by ¢ : Z C R* — R™ with z € Z the coarse
model control variable. In this work, for simplicity, we consider X = Z, but the general case
can be dealt with by the introduction of an additional mapping p : X — Z, as used in [1].
In contrast to the fine model, the coarse model is assumed to be cheap to evaluate but less
accurate. For the coarse model we have the coarse model cost function, C(z) = || c(z) — y|| .
We denote its minimizer by xg € Z,

X, = argmin, e[| c(z) —y|| . (2.2)

Again, for this cost function we consider the Fuclidean norm. The Jacobian matrix
Je (z) = de/dz is assumed to be available with no significant computational cost.

Manifolds and constraints If the functions f(x) and c(x) are sufficiently smooth, the sets
f(X) C R™ and c(X) C R™ can be considered as differential manifolds. In the appendix we
summarize a number of manifold-related definitions (from [25]) relevant for our discussion.
For simplicity and without loss of generality, we just consider one particular chart of the
manifold that covers a sufficiently large neighborhood of the solution region. We thus make
the following assumption.

Assumption 2 The sets f(X) and c(X) are differentiable manifolds of class C2.

We need the concept of the tangent plane for a manifold at a point, which is used throughout
this work.
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Definition 1 Let M be a differentiable manifold and v € M a point in that manifold. The
tangent plane for M at v € M is defined as the affine space spanned by the Jacobian of ¢ at
x, being ¢ any chart in the atlas of the manifold such that p(x) =v.

Since we only consider one chart we will denote the tangent plane for f(X) at f(x) simply
by the Jacobian of f at x, i.e., Jg(x). Thus the tangent plane is well defined. Similarly, Je(x)
will denote the tangent plane for ¢(X) at c(x).

We can state a general constrained optimization problem as follows

x; = argmingx[/f(x) -y, (2.3)
X = {xeR" ke(x)=0, ke(x)>0},

where f : R® — R™, k¢ : R — R™ and k¢ : R® — R™ are assumed to be differentiable,
and ny and 7, are the number of equality and inequality constraints respectively. In general
we cannot expect the model and constraints to be defined over the entire R®. For example,
it makes no sense in many cases to consider negative lengths. But it is common in practice
that f and k¢ are correctly defined in X , the set where the inequality constraints are feasible

X = {x € R"; ke(x) > 0}. (2.4)

It should be noted that box-constraints can be obtained with a proper choice for ke(x). The
inequality constraints do not generally reduce the dimensionality of the design space and
therefore we prefer to rewrite (2.3) as

X; = argmin{xg)?; kf(x):()}”f(x) -yl (2.5)

In order to have degrees of freedom left for optimization, the number of equality constraints
nx should be smaller than the number of design variables n, i.e., nx < n. We also assume that
the set X is a differentiable manifold in R®. We formalize this in the following assumption.

Assumption 3 The set X is either a subset of R" or a differentiable manifold in R™ of
dimension n — ny > 0.

Now we can write the constrained optimization problem (2.5) as (2.1), with X a differen-
tiable manifold.

In this work we only analyze those cases in which the functions kg (x) and k¢(x) are easy
to compute (and thus it makes sense to take Z = X). Below in Remark 3, we indicate how
more complex constraints can be handled.

If the equality constraints k¢(x) can be evaluated easily and a chart px for X = {x €
R"; ke(x) = 0} in the region of interest can be obtained with not significant computational
cost, then the constrained optimization problem can be restated with f o ¢ x as fine model
and a subset of R®"™™k as the control space.

By the above argument we assume that the equality constraints can be eliminated and,
hence, X can be considered as a subset of R™, understanding n as the number of design
variables left after removing the equality constraints. As a consequence, both Jacobians
Jg(x) and Je(x) have both rank n.
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If x§ is a local optimum of the constrained problem (2.3), then it satisfies the Karush-
Kuhn-Tucker (KKT) conditions [26], i.e., there are two Lagrange multiplier vectors A\§ € R
and A\; € R™ such that

d/dx (F —2\Tke — 2T ke) (x3) = 0O (2.6)
ke (xF) 0 (2.7)

ke(xf) > 0 (2.8)

A Af >0 (2.9)

diag (Af - ke(x§)) = O, (2.10)

where - denotes here the vector direct product.

Remark 1 In the case of an unconstrained optimization based on the Euclidean norm, the
KKT conditions represent the orthogonality between the tangent plane for f(X) at x§ and the
optimal model-specifications discrepancy f(x§) —y, i.e.,

Jf (x§) (E(xF) —y) = 0. (2.11)
The following concept will be very useful when formalizing the similarity between models.

Definition 2 We say that an optimization problem is locally convex at x € R™ if and only
if there is a neighborhood U of x such that every point in U satisfying the KKT conditions is
a local minimum.

The assumption for a well defined optimization problem In order to be sure that the prob-
lems we want to solve make sense, we have to assume that the there exist solutions for these
designs.

Assumption 4 The fine and coarse optimization problems, characterized by y, f and ¢ and
X, are uniquely solvable, i.e.,

VyeY AxgeX  xi(y) = argmingex|[E(x) — ¥, (2.12)
and
VyeY I xze X Xe(y) = argmin, . x||c(x) — y|| . (2.13)

In most practical cases this assumption is reasonable. If X is a closed and bounded non-
empty set and f and ¢ are continuous functions, the existence of the solutions is guaranteed.
Generally, uniqueness can be achieved by properly reducing the set X.

The assumption of well-posedness is particularly important for the coarse model and will
be discussed later (Assumption 12).

3. MANIFOLD MAPPING

3.1 Original manifold mapping

In [1] the manifold mapping S : ¢(X) — f(X) is introduced with the aim of correcting the
misalignment between the manifolds £(X) and ¢(X). With S, the point ¢(x}) is mapped to
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Figure 1: Manifold-mapping model alignment.

f(x}) and the tangent plane for c(X) at c(x}) to the tangent plane for f(X) at f(x}) (see
Figure 1). Other approaches are possible but in this work we define S as the affine mapping

Sc(x) = f(xf) + S (c(x) — c(x})), (3.1)

where

S = Je(x}) JI(x}). (3.2)
Here the pseudoinverse t is defined as J.I (x5) = Ve El UCT , being U¢, X and V, the factors
in the singular value decomposition of Je(x}) = Uc Xe VI. The matrix xl is the result of
inverting the nonzero entries in X, leaving the zeroes invariant. It should be noted that,
because Jg(x3) and Jc(xf) are both full rank, also the m X m matrix S has rank n.

The manifold-mapping solution x},,,, is defined as

(3.3)

Xmm = argminge x |[S c(x) —y||-

Now the combination S o ¢ acts as the surrogate model for f and under some assumptions
about the similarity between the fine and the coarse model that usually hold in practice, it
will be shown below that the manifold-mapping solution x},,,, is a local minimizer of the fine
cost function. As one may expect, not every coarse model can be successfully used within

the manifold-mapping framework. We partly formalize this by two assumptions:
Assumption 5 If ||f(x) —y|| is locally convex at X3 then ||S c(x) —y|| is also locally convex
at X;.

Assumption 6 If xi is a local optimum of ||S c(x) — y|| then x§ is the global optimum of
[Se(x) -yl

These are mild assumptions for the models used in practice. Assumption 5 specifies only
a similar local behavior in the region of interest, i.e., in a neighborhood of the specifications
y. Assumption 6 means that the surrogate optimization does not allow a spurious global

optimum near the true minimum xg.
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Lemma 1 Any (local) minimizer of the fine model cost function ||f(x) —y| is a (local)
minimizer of ||S c(x) — y]||.

Proof We denote a minimizer of the fine cost function by x. First we see that x§ satisfies
the KKT conditions associated with (3.3). From (3.1) and (3.2) we have S c(x;) = f(x;) and
Jsc(x}t) = S Jc(x}) = Je(x}). Thus, the first derivatives of F(x) and of the surrogate cost
function ||S c(x) —y|| coincide at x§. Since the constraints are the same in both optimization
problems and x} is a local optimum of F'(x) (i.e., the fine KKT conditions hold), we conclude
that x¢ satisfies the surrogate KKT conditions. The fine model cost function is locally
convex at x; . Because of Assumption 5, the fine model optimum is also a local minimum of

[Sex)-vyl. O

Lemma 2 x} . is a local minimizer of ||f(x) —y||.

m

Proof Use Lemma 1 and Assumption 6. O

Remark 2 We cannot directly conclude from Lemma 1 that X}, ts a minimizer of the fine
cost function because the point x3 in the lemma, could be just a local minimizer of ||S c¢(x)—y]||.
This agrees with the way the two-level approach is taken into practice, as a local manifold
correction.

Remark 3 Based on the proof for Lemma 1 we can think of an strategy for dealing with the
expensive constraints ke(x) and ke(x), provided some fast-to-compute approzimations Ke(x)

and ke(x x) are available. Analog manifold mappings for the constraints S : ke(X) — ke(X)
and Sg : ke(X) — ke(X) can be defined so that

kke(xp) = ke(xf) (3-4)

Skl_( (xf) = ke(x) (3-5)

Jsk c(xf) = Jie(xf) (3.6)

Ik (X5) = Jg, (xf) (3.7)

and thus again, the surrogate KKT conditions at X; reproduce the fine ones at the same point.
This constraint manifold mapping is the approach taken in [27].

The mapping S is not known a priori, because it depends on the solution of the optimization
problem. We propose an algorithm (see Figure 2) that, when it converges, yields —as we
shall see— both the mapping S and the desired fine model optimum x}. We will refer to this
scheme as the original manifold-mapping (OMM) algorithm. The model alignment can be
improved by an additional (right-preconditioning) mapping p : X — Z. This mapping p is
optional in the present case where the coarse and fine control spaces Z and X coincide, but
it is obligatory when those spaces differ. For simplicity, in the algorithm in Figure 2 we take
p = I, the identity. The optimization procedure needed to compute xx,1 is not essentially
different from the one to obtain the coarse model optimum xg. Therefore, we may expect
that optimization problem to be well defined in each iteration step. However, formally this
has to be introduced as an assumption.



ON THE MANIFOLD-MAPPING OPTIMIZATION TECHNIQUE 8

Xo = Xg = argmin, ¢ y[|c(x) — y||;
So o = f(XO) -+ (0 — C(Xo)) 3
for k=0,1,..., while ...
do
Xp41 = argminy x[|Sk(c(x)) — y|;
break if ...
AF = [f(xpq1) — £(xx), -+ 5 £(Xp11) — £(Xmax (k+1-n,0))] 5
AC = [e(xp+1) — €(Xk), =+ 5 ©(Xk+1) — €(Xmax (k+1-n,0))] 5
AC = U, X VI singular value decomposition ;
ACT =V . slUT,;
Spi1=AFACH;
Skt+10 = f(Xpp1) + Skt1 (@ — c(Xp41)) 5
enddo

Figure 2: The original manifold-mapping (OMM) algorithm.

Assumption 7 The minimization

Xp41 = argminge x||S(c(x)) — y/| (3:8)
is well defined for every k.

This assumption is the surrogate equivalent of Assumption 4.

For the proof that, if it converges, the OMM algorithm yields the fine model optimum, the
following lemma will be very useful.

Lemma 3 Let X € X be the minimizer of a surrogate model problem

% = argming x |8 c(x) — v, (3.9)
with

Sc(x) = £(X) + Je(X) JH(X) (c(x) — (X)), (3.10)
where ||f(x) — y|| is locally convex at X, then X is a (local) minimizer of ||f(x) — y||-

Proof Clearly, X satisfies the KKT conditions associated with ISe(x) — y||, and because of
(3.10) we have Sc(x) = f(x) and Jg_ (X) = J¢(X). Proceeding as in Lemma 1 we see that
the point X satisfies also the fine KKT conditions and, because ||f(x) — y]|| is locally convex
at X, this point is a (local) minimizer of the fine cost function F(x). O

Remark 4 Note that from Lemma 3 it also follows that S=Ss.

We can replace the requirement of ||f(x) — y|| being locally convex at X from Lemma 3 by
an assumption, very similar in nature to Assumption 5, and also likely to hold in practice:

Assumption 8 If||Sc(x) — y|| is locally convez at X, then ||f(x) — y|| is locally convez at X.
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Remark 5 The manifold-mapping theory is generally stated in terms of local alignment be-
tween the surrogate model and the fine model. As a consequence, we can only state results
concerning local optima of the fine cost function.

Now we will show that, if the OMM algorithm in Figure 2 converges to a fixed point x, this
fixed point is a (local) minimizer of the fine cost function. Studying the fixed point situation,
we may assume k > n. The iterants of the OMM algorithm are denoted by x.

Further, some more mild additional assumptions are needed for proving that x (locally)
minimizes ||f(x) — y||. Since the Jacobians J¢(x) and J¢(x) have both rank n, we expect
that the matrices AF and AC in the OMM algorithm are also full-rank. In practice, this
will generally be the case and for the exceptional situation where it is not, minor changes
in the algorithm with not real influence in the results can be made. So, to prevent minor
details in the discussion making the analysis much more complex, we introduce the following
assumption.

Assumption 9 For k large enough, the m x n matrices AF and AC have rank n and there
are constants Ky, Ko > 0 independent of k such that

(- max ||xk+1i—>_<||2> IAFTE < K (3.11)
1=0,...,n—1
(i:on.l.é)fz1||xk+li_x||2> 1ACTIE < K. (3.12)

We will see in Lemma 4 that Assumption 9 together with the next one guarantee, that
AF ACT converges to Jg(X) Jl()‘c) and thus that Lemma 3 can be applied.

Assumption 10 For k large enough the matrix AXg,1 defined by

AXpy1 = [Xpt1 — Xiy Xpg1 — Xp—1) -+ Xkp1 — Xk—nt1] - (3.13)

is reqular and there is a constant K3 > 0 independent of k such that

(gmox Ieas = %I ) 1AX LB < K. (3.14)
Remark 6 Assumption 10 refers to the condition of the matriz AXy; and equivalently to
the scaled step directions (Xg41—; —Xk—i, withi =0, ..., n—1). In the exceptional situations
where the condition becomes too bad, the algorithm can be easily modified in order to alleviate
that. Assumption 9 is related to Assumption 10 and to the well-posedness of the inverse model
operators (see Assumption 12 concerning the coarse model). Because c(X) is a differentiable
manifold we have AC = J¢(X) AXgi1 in a neighborhood of X, and thus, as it will become
clear in the proof for Lemma 4, that ACT ~ AX k- +11 Jl (x). Thus we can expect Assumption
9 to be satisfied if Assumption 10 holds and ||J;r(i)||% is bounded. This last fact can be

expressed as the inverse coarse model operator being Lipschitz in the region of interest. The
inequality (3.11) is the analogous relation with respect to the fine model.

Lemma 4 Let the sequence of iterants xi and operators Sii+1 be defined by the original
manifold-mapping algorithm (OMM). Then, under Assumptions 9 and 10 the operators Ski1
converge to Jg(X) JL(X), where % is the fized point of the iteration.
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Proof By Assumption 9 and because f and c are differentiable, we have

AF = Jp(x) AXiyy + Me O max |xps1-i — %% (3.15)
AC = Je(%) AXpi1+ Mc O( max |xps1-; — %), (3.16)

where Mg and M. are some m X n matrices that depend on the smoothness of the manifolds
f(X) and c(X) but not on k. We can use a generalization of the Banach Lemma for the
inverse of a perturbed matrix [28, Theorem 6.1-2] applied to AC and conclude that

IACT = AXZH TH®)la < 21| M2 max { Ko, K[| JE(%) 3} - (3.17)

Because of (3.15) and the fact that the norm of ACT— AX,~ +11 Ji(%) is bounded by a constant
independent of k, we obtain that Sk,1 = AF AC! converges to Jg() JI(%). O

Using this result, we can apply Lemma 3 and conclude that if the OMM algorithm con-
verges, then the fixed point of the iteration is a local minimizer of the fine model cost function
If(x) — y||. This is summarized in the following theorem.

Theorem 1 Let x be the fized point of the original manifold-mapping (OMM, Fig. 2) itera-
tion and let the fine model cost function F(x) = ||f(x) —y|| be locally convez at X, then under
Assumptions 2, 3, 4, 7, 9 and 10 the point X is a local minimizer of F(x).

Remark 7 The assumption of local convezity of F(x) can be replaced by Assumption 8
(model similarity) with S as in (3.1)-(3.2).

Remark 8 The results thus far presented for the mapping proposed in the original manifold-
mapping algorithm can be extended, by the same arguments, to any such algorithm based on
a matriz S satisfying S Jo(x}) = Je(x}). In fact there is complete freedom how S handles
components in the complement of the range of U.. The general case is S = Jg(x}) Ji (x§) +
A(I-UUY) with A any m x m matriz. This freedom can be used to stabilize the algorithm.

3.2 Manifold mapping

In the OMM algorithm, S; o ¢ is used as the surrogate model, i.e., it is updated during
iteration, and the aim y is kept constant. From an implementational point of view, it is
interesting to proceed the other way: the model is kept fixed and the aim is updated in each
step. Then it is particularly attractive to take for this model the available coarse model,
which is easily solved by assumption. This leads to a modification of the OMM algorithm.
The procedure is shown in Figure 3 and we denote it simply as the manifold-mapping (MM)
algorithm. As in the OMM algorithm we need an assumption to assure that x,; is well-
defined:

Assumption 11 In the MM algorithm, the updated aims satisfy yr € Y Vk.

With this assumption replacing Assumption 7, we can prove for MM a theorem similar to
Theorem 1.
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X = Xg = argmin,e x||¢(x) - y[;

T0:Im><m;
for k=0,1,..., while ...
do

Vi =c(xx) — Ti (f(xx) —y);
Xj+1 = argminge x [|c(x) — yxll;

break if ...
AF = [f(xp41) — £(xx), -+ 5 £(Xk11) — £ (Xmax (k+1-n,0))] ;
AC = [C(Xk+1) - C(Xk), R c(xk+1) - c(xma.x (k+1—n,0))] )

AF =Us X¢ VfT singular value decomposition ;
AFt =V 3l UF;
Tii1 = ACAFT,

enddo

Figure 3: The manifold-mapping (MM) algorithm. Note that T} = S,Z for all £ > 0.

Theorem 2 Let x be the fized point of the manifold-mapping (MM, Fig. 8) iteration, and let
the fine model cost function F(x) = ||f(x)—y]|| be locally convex at x, then under Assumptions
2, 3, 4, 9, 10 and 11 the point X is a local minimizer of F(x).

Proof Proceeding as in Lemma 4 we can see that the sequence of operators Ty11 = S,Z 11
converges to (Jg(X) Ji(i{))’r = Je(X) Jg(i). Also in the limit

x = argminye x [lc(x) — c(x) + (J¢(x) ()" (£(x) —y)|I. (3.18)
Since ¢(X) is a manifold of class C2, (3.18) is equivalent to

X = argminy || Je(%) (x — x) + (J(x) I (%) (E(x) - y)lI. (3.19)
Because J¢(x) and Jg(x) are full rank, we can write the former equality as

x = angmingey (%) JL() Jo(x)(x — %) + £(x) - ¥ (3.20)
And with the same reasoning as in (3.18)-(3.19), equation (3.20) is equivalent to

X = argminy || J¢(%) J{(%) (c(x) - e(x)) +£(%) — vl (3.21)

Then Lemma 3 is applied in order to show that X is a local minimizer of [|f(x) —y|. O

As a consequence of this theorem and by just rewriting (3.18) with x a local minimizer of
the fine cost function F'(x), the following interesting property for the fine model optimum
can be formulated.

Corollary 1 The fized point of the manifold-mapping (MM) iteration x§ satisfies
X§ = argminge y [ c(x) — c(xf) + ST (£(x) - y)| - (3.22)

In Section 4 we show that both schemes, OMM and MM, behave asymptotically the same
and that the convergence study for these two algorithms coincides.
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X = X¢ = argmin, e [[¢(x) - y[;

TOZIme;
for k=0,1,..., while ...
do

Vi =c(xx) — Ti (f(xz) —y);
Xp41 = argminge x [|c(x) — yil ;

break if ...
Ter1 = Je(Xp11) T3 (Xet1) ;
enddo

Figure 4: The Generalized Manifold-Mapping (GMM) algorithm. Note that T = SZ for all

k> 0. :ff(ka) is either Jg(xg11) in case it is available or, in other cases, it is an estimate
of it.

Remark 9 By a reasoning similar to that in Remark 8 it can be shown that the manifold-
mapping algorithm can be based on any matriz S satisfying Ji (x) St = J;»r (x3). In fact there
is complete freedom with respect to how S handles components in the complement of the range
of Ue. The general case is ST = J.(x}) Jg (x}) + (I = U UTL) A with A any m x m matriz. In
[1], the particular cases A= (I —UgU}) and A =1 are considered.

3.8 Generalized Manifold Mapping
The two algorithms, OMM and MM, can be generalized by selecting any Sj, for which Lemma
4 holds (i.e., Sy, converges to Jg(X) J§(X)). We call this more general scheme Generalized
Manifold Mapping (GMM). A natural choice for Sy would be Jg(xx) J& (xx). This makes
sense in particular in case the Jacobian of the fine model is available, e.g., via automatic
differentiation [29]. But in most cases that information cannot be obtained efficiently and,
therefore, we rather write Sy = jf(xk) Jg(xk), with .7f(xk) an approximation of Jg(xx), e.g.,
computed by means of Broyden’s method [30]. In Figure 4 the GMM scheme corresponding
to the MM algorithm is shown. If an approximation for Jg(xg) is available, To = Je(x0) J¢(%0)
could be used as initial guess instead of the identity matrix. We consider Assumption 11 to
be also applicable to GMM.

Under convergence of the GMM scheme, we can also see that the fixed point for the iteration
is again the accurate solution of the optimization problem, x;. The proof for the following
lemma is completely analogous to those given for Theorems 1 and 2 and is, therefore, omitted.

Theorem 3 Let X be the fixed point of the generalized manifold-mapping algorithms (GMM,
Figure 4) and let the fine model cost function F(x) = ||f(x) —y|| be locally convez at X, then
under Assumption 2, 8, 4, 9, 10 and 11 the point X is a local minimizer of F(x).

4. MANIFOLD-MAPPING CONVERGENCE PROOF

Here we first present conditions for convergence of the manifold-mapping (MM) algorithm
and then we show that the original manifold-mapping (OMM) iteration can be written in such
a way that an equivalent convergence theorem can be stated for it, with a proof analogous
to that for MM.
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We define the general inverse coarse operator ¢f : Y ¢ R™ — X C R™ by

c'y = argmin,c x[le(x) - ¥|l. (4.1)

We notice that this operator is well-defined because of Assumption 4. The coarse model is an
essential component of any manifold-mapping technique. We are interested in coarse models
whose associated inverse operators are well-posed. This is formalized in the next condition
that should be satisfied by any coarse model used in practice.

Assumption 12 The general inverse coarse model operator, c!, is Lipschitz with a Lipschitz
constant bounded by L.

We can write (3.22) and the expression for iterant xg;1 in the MM algorithm as

x; = cf(e(xf) - 5T (E(xf) - ¥)), (4.2)
Xy = cf (e(xi) — S} (F(xx) —¥))- (4.3)

Subtracting (4.2) from (4.3) and using Assumption 12, we get

k1 — XF] < Let [le(xx) — Sf(E(xk) — y) — e(xf) + 5T (£(xF) = y)ll. (4.4)
We can write the expresion in the norm at the right-hand side as

c(oxi) — S| (F(xk) —y) — e(x5) + 5T (E(xp) —y)) =
c(xk) — e(xf) — S (F(xi) — £(x7)) + (ST = S]) (F(xf) —y) =
(Je(xF) = S} e (xF)) (i —x¢) + (5T = S]) (B(x§) = ¥) + O(lIxi — x¢[)%). (4.5)

We now analyze the term (ST — S,Z) in (4.5). We proceed as in the proof of Lemma 4,
with the difference that we cannot assume convergence of the algorithm. Since we know
the possible fixed point of the iteration, with assumptions analogous to those for Lemma
4 (Assumptions 9 and 10), we will be able to establish a relation between ||ST — S;LH and
g — -

Assumption 13 For k large enough, there are constants K4, K5 > 0 independent of k such
that

INA

(o Ixes = xel?) AP < Ky (4.6)

IN

((apax Ikins = xusal?) ACTE

gy neey

Ks. (4.7)
Assumption 14 For k large enough, there is a constant K¢ > 0 independent of k such that

( e kan?) IAXL B < K. (4.8)

i=1,.

where AXyy1 s the square matriz defined in Assumption 10.
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Remark 10 We recognize in (maxizl,___,n |xg+1-i — xk+1||2) 1/2 a matriz-norm for AXp ;.
Thus, Assumption 14 can be stated in terms of k(AXky1) the condition number of AXyy1,
i.e., K(AXg11) < Kg, with Kg > 0 a constant independent of k. In the rare situations where
linear dependence in the step directions is obtained, the algorithm can be slightly modified,
with no significant influence in the final result, to cope with that issue. Assumption 18 can
be related to the condition number of AXyki1 and the well-posedness of the inverse model
operators in the region of interest.

Lemma 5 Under Assumptions 2, 8, 4, 8, 9, 10, 11, 18 and 14,
ISE = Je(x) JE(ee) | < My _maxflx—s — ¢, (4.9)

where My > 0 is a constant that depends on the smoothness of the manifolds f(X) and c(X)
but not on k.

Proof As in Lemma 4 we can write

AF = Jf(Xk+1) AXk—H + Mfk O(Z:Ii'la.xn ”xk—Hfi — Xk_|_1||2) (4.10)
AC = Jc(xk+1) AXk—i—l + Mck O(i:I{laXn ”xk—H—i — Xk+1||2) R (4.11)

where Mg, and M., are some m x n matrices that depend on the smoothness of the
manifolds f(X) and c¢(X) but not on k. Again with [28, Theorem 6.1-2] and by
Assumptions 13 and 14 we can conclude that SZ — Je(xx) J;r (xx) is bounded by a constant
multiplied by max;—1,.. n ||xx—; —xx||. Clearly, this is equivalent to S,Z — Je(xk) Jg (xx) being
bounded by M; max;—o, ... n—1 ||Xr—; — X§|| where My > 0 is a constant that depends on the
smoothness of f(X) and ¢(X) but not on k. O

Remark 11 The constant My depends on the smoothness of £(X) and ¢(X) (M1 = 0 if both
manifolds are linear in the neighborhood of the solution).

Lemma 6 Under Assumptions 2, 3, 4, 8, 9, 10, 11, 18 and 14,
157 = Je(xk) TE (e | < Mo 1xi — x|, (4.12)

where Ma > 0 is a constant that depends on the smoothness of the manifolds £(X) and c(X)
but not on k.

Proof We can write
ST — Jolxe) T (ki) = Je(x§) JE(xF) — Jo(xe) I (xx) (4.13)
= Je(x§) T} (xF) — Je(xi) JE(xF) +
(%) JE(xF) = Je(xk) T (%)
= (Je(xF) — Je(xx)) JE(xF) +
(%) (JF(xF) — T (xi)) -
Since f(X) and c(X) are manifolds of class C?, we can bound | ST — J.(xz) J;[(xk)H by

My ||xp — x§||, where My > 0 is a constant that depends on the smoothness of the two
manifolds but not on k. O
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Corollary 2 Under Assumptions 2, 8, 4, 8, 9, 10, 11, 18 and 14,

15T~ St < M _max_lxx—s — ¢l (4.14)

=V eeny

where M > 0 is a constant that depends on the smoothness of the manifolds f(X) and c(X)
but not on k.

Proof We apply Lemmas 5 and 6 and set M = max (M, Mz). O
Now, combining (4.4) and (4.5) we get

I%pr1 — x§|| < Lt | Je(xF) — S§ Je(x$)|| |1x — x| +
+ 118t = ST IE(xE) — vl + O(lIxk — x5]2) - (4.15)

Due to (4.14) we can finally write

Igsn = xil < Lo (k) = 8] eGe)l +
+ MEGE) —yl) _max [ — x|+

+ O(llxx — x¢[|%) - (4.16)
We formulate this result in the following theorem.
Theorem 4 Under Assumptions 2, 8, 4, 8, 9, 10, 11, 12, 18 and 14, and the condition
Let (Ie(xf) = SEJe(xp) | + M |£(xf) —yll) <1 for k> ko, (4.17)

where M > 0 is a constant that depends on the smoothness of the manifolds £(X) and c(Z)
but not on k, the manifold-mapping algorithm (MM, Fig. 3) yields (linear) convergence to
X;.

Corollary 3 If in addition to the assumptions for Theorem 4 we have f(x3) =y (i.e., a
reachable design), then the convergence of the MM algorithm is superlinear.

Corollary 4 If in addition to the assumptions for Theorem 4 we have
Sk =8 = Je(x§) J& (x§) for every k > ko, then the convergence of the MM algorithm is
quadratic.

As a corollary of the following two lemmas, we will see that —under convergence— the
original (OMM) and the manifold-mapping (MM) iterations are asymptotically equivalent.

Lemma 7 If the iteration in the original manifold-mapping (OMM) algorithm converges, for
a large enough k we find for its iterant Xp41

Xp 1 = argminge x [le(x) — e(xx) + Sf (£(xx) = ¥) + O([x — x[*)]|. (4.18)
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Proof Because ¢(X) is differentiable in a neighborhood of the fixed point, for a large enough
k we can write
Xp+1 = argmingcx|Skc(x) — Skpe(xk) + f(xx) — y|| (4.19)
= argminye x || SkJe(xx) (x — %) + £(xx) — ¥ + Sk O(||x — x[*) |
= argmingx||SeJe(xx) (x — xx) + £(xx) — ¥ + O(|x — x[|*)] -

and for the last equality we remember that Sy converges to S (Lemma 4).
The iterant x;,1 can be expressed as

Xp+1 = argmingex||Sx ACAX,! (x — xx) + (4.20)
+(x) =y + O(|lx —xi[*)]],

where, for a large enough k we have O(||x — x;||) = O(max;—1, ... n || Xk—i — Xg||) in the Taylor
expansions, since there is convergence. Because S, = AF ACT and ACT AC = I, we have

Xp+1 = argming yx|AFAX," (x —xi) + (4.21)
+H(xx) —y + O(||x — x|l -
Further, since AF and AC are full-rank and A X, is regular
Xpt1 = argming x[|ACAX " (x —xx) + (4.22)
+5] (E(xk) = ¥) + O([x = xx[*)]
The lemma follows immediately from this last equation. O

Lemma 8 If the iteration in the manifold-mapping (MM) algorithm converges, for a large
enough k we find for its iterant X1

Xpp+1 = argminy x| Sk (c(x) — e(xx)) + £(xx) =y + O(||x — x| - (4.23)
Proof Analogous to that for Lemma 7. O

Corollary 5 Under convergence, the OMM algorithm and the MM algorithm are asymptot-
ically equivalent.

Remark 12 Due to Corollary 5, Theorem 4 and Corollaries 3 and 4 are also valid for the
original manifold-mapping algorithm (OMM, Fig. 2) when Assumption 11 is replaced by
Assumption 7.

Remark 13 By similar arguments as given for mappings based on S = Jg(x}) Ji (x3), analo-
gous convergence results can be obtained for the other versions of the algorithms as introduced
in Remarks 8 and 9.

4.1 Generalized Manifold-Mapping Convergence Proof

The proof for generalized manifold mapping (GMM) is analogous to that for MM (by con-
struction of Si1 we fulfill the conditions for Lemma 5). The two possible GMM algorithms,
corresponding to OMM and MM, are also asymptotically equivalent. We formulate this in
the following theorem.
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Figure 5: Top: The sets f(X) and c(X), specifications y and f(z7) and c(zf) for the first
example. Bottom: the fine and coarse cost functions, ||f(z)—y]||2 and ||c(z)—y||2 respectively,
for the same example.

Theorem 5 Under Assumptions 2, 3, 4, 8, 9, 10, 11, 12, 18 and 14, and the condition
Lot (IJe(x7) = Sf Je(xp)| + M |[f(x3) —yl) <1 for k> ko, (4.24)

where M > 0 is a constant that depends on the smoothness of the manifolds £(X) and c(X)
but not on k, the generalized manifold-mapping algorithms (GMM) yield (linear) convergence
to X§.

Remark 14 In the case Spy1 = Je(Xpi1) Jd(Xip1) an analog to Lemma 5 can be trivially
stated. The constant introduced in that lemma for GMM could be in some situations smaller
than the one for MM. As a consequence, the (linear) convergence for the GMM schemes may
have smaller associated constants than that for the MM iterations (see Section 5.1).

5. EXAMPLES

5.1 Two Simple Examples

First simple problem With this simple example we illustrate the convergence Theorems 4
and 5. The fine model is defined over X = [—1, 1] by

f(z) = [z,2%]. (5.1)

The set f(X) C R? is part of a parabola and we want to find the point in that set closest in
Euclidean norm to the specifications y = [3/4, 0]. The coarse model is defined over Z = X
and is the linear c(z) = [z, (14+x)/2]. Figure 5 shows a representation of the problem and the
fine and coarse cost functions, ||f(z) — y||2 and ||c(z) — y||2 respectively. The corresponding
optima are zz = 0.5 and z; = 0.4.

Though the two models are not specially similar around the solution region the similarity
between them is enough for obtaining convergence with the manifold-mapping approach.
Since both manifolds f(X) and c¢(X) are smooth, we expect a reasonable small constant M
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X =%-MM not reachable

=X- GMM not reachable
. \* =X-MM reachable
0 "% MM not reachable ]

0 2 4 6 8 10 12 14 16 18
Iterations

Figure 6: Convergence history for |z, — x| for the manifold-mapping (MM) and generalized
manifold-mapping (GMM) iterations for a reachable and not reachable designs in the first
simple mathematical example. MM* denotes the MM algorithm with S = S.

in (4.17) for Theorem 4. The design is not reachable and therefore convergence is linear for
the manifold-mapping (MM) and the generalized manifold-mapping (GMM) iterations (see
Figure 6). In this problem it is easy to check that both original manifold mapping (OMM)
and MM coincide, iterant by iterant. We see that MM needs 17 iterations for getting |z — |
smaller than 1078. The GMM scheme, using the exact Jacobian, yields the same accuracy
in 13 iterations. In Figure 6 we also check that the constant in the linear convergence rate
is smaller for the latter algorithm. If the Jacobian is estimated by Broyden’s method, the
complete iteration history coincides with that for MM. The reason is that for a function
of one variable, Broyden’s method coincides with the secant algorithm for approximating a
derivative, and that procedure is essentially the one followed in the computation of AF and
AC in the MM algorithm (not only MM and GMM use the same Jacobian estimation, also
the iterants zo and z1 coincide). In the next example, when we consider a function of two
variables, we see that the Broyden-based GMM algorithm differs significantly from the MM
one.

In Figure 6 we also observe two cases of superlinear convergence for MM (cf, Corollaries 3
and 4). If we apply MM with Sy = S (denoted by MM* in Figure 6) we obtain a solution with
the same accuracy of 1078 in only four iterations. Nevertheless that situation is unrealistic
because the necessary information is not available before the optimization problem has been
solved. In the case of the reachable design, given by y = [1/2, 1/4] (yielding again z§ = 0.5),
the solution is obtained with an accuracy of 1072 in six iterations. The same superlinear
convergence is observed for the GMM algorithm.

Second simple problem By means of this example with two design variables we show that
different choices for the fine model Jacobian estimation at the k-th iteration, Je(xy), yield
distinct convergence histories: the better jf(xk) approximates Jg(xy), the smaller the con-
stant associated with the linear convergence. The example was introduced in [1] as a least
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Figure 7: Convergence history for ||x; —xz|| for the manifold-mapping (MM) and two different

generalized manifold-mapping (GMM) iterations in the second simple example (non-reachable

design and a bad correspondence between the fine and the coarse model). GMM-Exact

denotes the GMM scheme with the exact Jacobian J¢(xr). GMM-Broyden approximates
that Jacobian via Broyden’s method.

squares best approximation of the data vector y = [0, —0.4, 0.1] by the fine model
f(x) = f(z1,32) = [1 (w2 — 1)%, @1, @1 (w2 + 1)) (5.2)
defined over X = RR?. It can be seen that the design is not reachable. The coarse model
c(x) = c(z1,22) = [~21 + T2, T2, T1 + T2)] (5.3)

is again linear and it is also defined over Z = X.

We solve the problem with the manifold-mapping (MM) and the generalized manifold-
mapping (GMM) algorithms. For GMM, two variants are compared, one with the ex-
act Jacobian for the fine model and the other with an approximation based on Broyden’s
method. It should be noticed that for most time-expensive fine models, the availability of
the exact Jacobian is an unrealistic assumption. All the schemes yield the fine optimum
xg = [—0.101, —0.141]. The convergence history for the three methods is shown in Figure 7.
We clearly observe that the convergence is linear in all cases and that the constant M in the
convergence theorems (mean slope of the convergence history) is different for each algorithm.
In this problem the discrepancy between the fine and coarse models in the solution region is
large and this fact is recognized in a large number of iterations compared with the previous
example. In practice, fine and coarse models are much more similar and, hence, convergence
is generally achieved in much less iterations.

5.2 Practical Examples

The next two examples are design problems from practice [31, 27]. We show that that they
can be solved efficiently by the manifold-mapping approach. Since, in both cases, Jacobians
for the fine model are not available, Broyden’s method is used to estimate Jg(xj) when the
generalized manifold-mapping iteration is used. In the two optimal design problems, the

inequality constraints k(x) are easy to compute (box constraints).
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Figure 8: Geometries of the coreless (left) and automotive (right) actuators. The axis of
rotational symmetry is denoted by z.

Coreless Actuator [81] A magnetic actuator is a device that converts magnetic power into
mechanical force and motion. The one in Figure 8 (left) consists of a moving cylindrical
magnet and two fixed toroidal coils. It is called coreless because actuators usually have fer-
romagnetic cores. The specification y is a force response exerted on the magnet. This is
specified as the force at a finite number of displacements of the magnet along the symmetry
axis. The actuator geometry x = [x1, x2, T3, x4] (see Figure 8) has to be determined so that
the discrepancy in the Euclidean norm between the computed and specified force response is
minimized. The fine model is based on a calculation of the forces after a finite-element com-
putation of the vector magnetic potential formulation [32] of the axisymmetric magnetostatic
equations. In the coarse model, the force is computed for a much simplified model, where
the actuator is represented by only a (small) number of coils. Depending on the number of
coils in the simplification, several coarse models are obtained. The coarse model computation
used here is around 300 times faster than the fine model one. More details on this particular
problem can be found in [31].

The coreless actuator optimization results are shown in Table 1. Both the manifold and the
Broyden-based generalized manifold-mapping algorithms yield an acceptable design solution
after only two fine model evaluations. The number of coarse model evaluations is larger for
the second scheme because the coarse model Jacobian is approximated by finite differences in
each iteration step. The space-mapping technique was reported to be the best efficient solver
for this problem before [31]. In order for space mapping to obtain a comparable value for
the cost function as the one for the two manifold-mapping algorithms in Table 1, all coarse
models in [31] are considered. The best option found requires three fine model evaluations.

Automotive Actuator [27] Automotive actuators are used in devices such as electromagnetic
switches, relays, valves, etc. and they typically generate high levels of force. The one in
Figure 8 (right) consists of a core and a plunger, both made of iron, and a copper coil. The
design variables are the sizes x = [z1, 2] indicated in the figure. Again, the specification
y is a force response exerted over the plunger, when it moves vertically. The Euclidean
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Table 1: Optimizing the coreless actuator.

# (f, c) evals. | Cost function
MM (2, 132) 2.2
GMM (2, 148) 2.2
SM (3, 150) 2.3

MM: manifold mapping; GMM: generalized manifold mapping; SM: space mapping. The
second column shows the total amount of fine and coarse model evaluations needed in the
optimization. The coarse model used is approximately 300 times faster than the fine one.

Table 2: Optimizing the automotive actuator.

# (f, c) evals. | Cost function
MM (3, 66) 45.0
GMM (3, 78) 45.0
SM ( 6, 296) 45.3
SQP (12, 47) 45.0

MM: manifold mapping; GMM: generalized manifold mapping; SM: space mapping; SQP:
Sequential quadratic programming. The second column shows the total amount of fine and
coarse model evaluations needed in the optimization. The coarse model used is approximately
400 times faster than the fine one. SQP takes the coarse model optimum x} as its initial
guess.

norm of the difference between the computed force for a given x and the specification y is
minimized, keeping the device volume constant. (Elimination of this easy-to-compute equality
constraint leads to the two mentioned design variables.) Finite elements for the axisymmetric
magnetostatic equations plus a post-processing stage make the fine model. The coarse model
is based on an equivalent magnetic circuit [33] of the actuator (analogous to an electrical
circuit) and it is around 400 times faster than the fine one. It should be noticed that the
fine model optimum x§ lies on the boundary of the set X. Additional problem details can be
found in [27].

Table 2 shows the results for the automotive actuator optimization. The cost function
corresponding to the solutions has a considerably larger value than in the previous example
because the specification y is significantly higher and this cost function is not a relative
measure of the force discrepancy. When these facts are taken into account, the optimal cost
function values are similar for both design problems. The manifold-mapping algorithm yields
the solution after three fine model function evaluations. Generalized manifold mapping, with
the fine model Jacobian estimated via Broyden’s method, performs almost identically. (The
coarse model Jacobian computations are recognized in a small increase in the coarse model
function evaluations for the generalized manifold-mapping algorithm). The usual (standard)
optimization method for these problems, sequential quadratic programming (SQP) [26], is
applied to the fine model cost function with the coarse model optimum x7 as initial guess.
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A design with a cost function value comparable with the one obtained with the manifold-
mapping approach is obtained with almost four times the computational cost. Space mapping,
on the other side, performs faster than sequential quadratic programming but it is less efficient
than manifold mapping. In this case we observe the well-know fact that SM does not converge
to the accurate solution [1].

6. CONCLUSION

Manifold mapping was introduced in [1] as an efficient two-level approach for optimization, to
be considered for very time-demanding design problems. In this paper a number of possible
variants are identified: original manifold mapping (OMM), manifold mapping (MM) and
generalized manifold mapping (GMM). OMM and MM are asymptotically equivalent and
they perform identically in most practical situations. MM is preferred to OMM because it
is easier to implement. GMM represents a whole family of schemes based on the manifold-
mapping approach. If a better approximation for Jg(x;) than AF AX," ! is available, then
GMM is recommended. In all cases, if the iteration converges, the solution of the accurate
model is the fixed point of the iteration. Conditions for convergence have been given for
all the algorithms described. By two simple examples we illustrated some of the theoretical
aspects dealt with in the paper. The practical performance of the presented algorithms is
shown with two cases of optimal design in electromagnetics.

Acknowledgment. We thank W. Hoffmann and D. Lahaye for their fruitful discussions
for the development of this work.
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Appendix |

1. DEFINITIONS FOR DIFFERENTIABLE MANIFOLDS

Because the concept of manifold is central in our description of the optimization methods
studied in this paper, in this appendix we summarize a number of basic notions, from [25],
related with manifolds.

Definition 1 An n-dimensional differentiable manifold of class C* with 1 < k < oo is a pair
(M, F) consisting of an n-dimensional, second countable, locally Euclidean space M together
with a differentiable structure of class C*. Usually, the differentiable manifold (M,F) is
denoted as M.

Definition 2 A locally Fuclidean space M of dimension n is a Hausdorff topological space
M for which each point has a neighborhood homeomorphic to an open subset of the Fuclidean
space R™.

Definition 3 A differentiable structure F of class C* (1<k<oo0) on a locally Eu-
clidean space M is a collection of coordinate systems (also called an atlas of charts)

{(Ua, ¢a) : a € A} satisfying:
(@) Uaca Ua = M.
(b) a0 9051 is C* for every o, B € A.

(¢) The collection F is maximal with respect to (b); that is, if (U, ¢) is a coordinate system
such that @ o ' and o, 0 o~ ! are differentiable for all a € A, then (U, @) € F.



