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Minimal length uncertainty relation and gravitational
quantum well

ABSTRACT
The dynamics of a particle in a gravitational quantum well is studied in the context of
nonrelativistic quantum mechanics with a particular deformation of a two-dimensional
Heisenberg algebra. This deformation yields a new short-distance structure characterized by a
finite minimal uncertainty in position measurements, a feature it shares with noncommutative
theories. We show that an analytical solution can be found in perturbation and we compare our
results to those published recently where noncommutative geometry at the quantum mechanical
level was considered. We find that the perturbations of the gravitational quantum well spectrum
in these two approaches have different signatures. We also compare our modified energy
spectrum to the results obtained with the GRANIT experiment, where the effects of the Earth's
gravitational field on quantum states of ultra cold neutrons moving above a mirror are studied.
This comparison leads to an upper bound on the minimal length scale induced by the deformed
algebra we use. This upper bound is weaker than the one obtained in the context of the
hydrogen atom but could still be useful if the deformation parameter of the Heisenberg algebra
is not a universal constant but a quantity that depends on the energetic content of the system.
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The dynamics of a particle in a gravitational quantum well is studied in the context of nonrela-
tivistic quantum mechanics with a particular deformation of a two-dimensional Heisenberg algebra.
This deformation yields a new short-distance structure characterized by a finite minimal uncer-
tainty in position measurements, a feature it shares with noncommutative theories. We show that
an analytical solution can be found in perturbation and we compare our results to those published
recently where noncommutative geometry at the quantum mechanical level was considered. We find
that the perturbations of the gravitational quantum well spectrum in these two approaches have
different signatures. We also compare our modified energy spectrum to the results obtained with
the GRANIT experiment, where the effects of the Earth’s gravitational field on quantum states of
ultra cold neutrons moving above a mirror are studied. This comparison leads to an upper bound on
the minimal length scale induced by the deformed algebra we use. This upper bound is weaker than
the one obtained in the context of the hydrogen atom but could still be useful if the deformation
parameter of the Heisenberg algebra is not a universal constant but a quantity that depends on the
energetic content of the system.

I. INTRODUCTION

The study of theories characterized by a minimal ob-
servable length is an active area in theoretical physics,
not only because of their intrinsic interest, but also be-
cause their existence is suggested by string theory and
quantum gravity [1–6]. These theories rely mainly on a
modification of the canonical commutation relations be-
tween the position and momentum operators. We will
consider in this paper a particular case of such a modifi-
cation, which has been previously obtained in the context
of perturbative string theory (see for example Ref. [2]).
As an illustration, in one dimension, and in units such as
h̄ = c = 1, it reads

[

X̂, P̂
]

= i(1 + βP̂ 2). (1)

β is a small parameter, assumed to be positive. If β = 0,
Eq. (1) clearly reduces to the ordinary Heisenberg alge-
bra. Such a commutation relation leads to the following
uncertainty relation

∆X̂ ≥
1

2

(

1

∆P̂
+ β∆P̂

)

, (2)

which implies the existence of a minimal length [7]

∆x0 =
√

β. (3)

This particular modification of the Heisenberg algebra,
and its extension to higher dimensions, has been exten-
sively studied recently, see for example Refs. [8–20].
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Remark that it has also been argued that such a de-
formed Heisenberg algebra could also be used to describe,
as an effective theory, non-pointlike particles: Hadrons,
quasi-particles, collective excitations,. . . [21].

A recent experiment, called GRANIT, is devoted to
the study of quantum states of neutrons in the Earth’s
gravitational field. Roughly speaking, in this experiment,
ultra cold neutrons are freely moving in the gravitational
field above a mirror. This particular setup gives rise to a
so-called gravitational quantum well. As a consequence,
the energy spectrum of the neutrons in the gravitational
field’s direction is quantized, and the probability of ob-
serving a particle at a given height will be maximum at
the classical turning point hn = En/mg, for each energy
En. That is indeed what is observed. More details can be
found in Refs. [22–24]. This experiment gives an oppor-
tunity to make a confrontation between observations and
various theoretical models concerning quantum effects in
gravity, including eventual signatures of the existence of
an intrinsic minimal length.

A first study of the gravitational quantum well in
a noncommutative geometry has been performed in
Ref. [25]. It was based on the two dimensional commu-
tation relations

[x1, x2] = iθ, [p1, p2] = iη, [xj , pk] = iδjk, (4)

and upper bounds on the parameters θ, η have been ob-
tained by comparison with the experimental results of
Ref. [24]. Let us note that Eqs. (4) lead to the following
uncertainty relations

∆x1 ∆x2 ≥
|θ|

2
, ∆p1 ∆p2 ≥

|η|

2
, ∆xj ∆pj ≥

1

2
, (5)

also suggesting the existence of a minimal length accessi-
ble by measurement. A discussion about the distinctions
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and links between the minimal length uncertainty rela-
tion (2) and space uncertainty relations of the form (5)
can be found in Ref. [26].

Our goal is to study the deviations from the usual grav-
itational quantum well caused by a two dimensional ana-
log of the modified Heisenberg algebra (1), instead of the
relations (4) already used in Ref. [25]. Our paper is or-
ganized as follows. In Sec. II, we present the Schrödinger
equation with a deformed Heisenberg algebra following
Ref. [27]. We particularize it to the case of the gravi-
tational quantum well, and obtain an analytic form for
the energy spectrum in perturbation in Sec. III. Then,
we discuss the comparison between our results, those of
Ref. [25], and those of GRANIT in Sec. IV. Finally, our
conclusions are given in Sec. V.

II. THE MAIN EQUATION FOR A GENERAL

POTENTIAL

The method we use is essentially the same than the one
developed in Ref. [27]. Nevertheless we recall in this sec-
tion the main lines to make the paper self-contained. The
modified Heisenberg algebra studied here is defined in d
dimensions by the following commutation relations [9, 21]

[

X̂i, P̂j

]

= i
(

δij + βδijP̂
2 + β′P̂iP̂j

)

, (6a)
[

P̂i, P̂j

]

= 0, (6b)

[

X̂i, X̂j

]

= i
(2β − β′) + (2β + β′)βP̂ 2

(1 + βP̂ 2)
P̂[i X̂ j], (6c)

where P̂ 2 =
∑d

i=1 P̂iP̂i and where β, β′ > 0 are con-
sidered as small quantities of the first order. Let us note
that P̂[i X̂ j] = P̂iX̂j − P̂jX̂i. In this paper, we only study
the case β′ = 2β, which leaves the commutation relations
between the operators X̂i unchanged at the first order in
β, i.e.

[

X̂i, P̂j

]

= i
(

δij + βδijP̂
2 + 2βP̂iP̂j

)

, (7a)
[

P̂i, P̂j

]

= 0 ≈
[

X̂i, X̂j

]

. (7b)

The commutation relations (7) constitute the minimal
extension of the Heisenberg algebra and are thus of spe-
cial interest. In this case, the minimal length is given by
[21]

∆x0 =
√

(d+ 2)β. (8)

To calculate a spectrum for a given potential, we must
find a representation of the operators X̂i and P̂i, involv-
ing position variables xi and partial derivatives with re-
spect to these position variables, which satisfies Eqs. (7),
and then solve the corresponding Schrödinger equation:

[

P̂ 2

2m
+ V

(

~̂
X

)

]

Ψ(~x ) = EΨ(~x ). (9)

It is straightforward to verify that the following repre-
sentation fulfills the relations (7), in the first order in
β,

X̂i Ψ(~x ) = xiΨ(~x ),

P̂i Ψ(~x ) = pi

(

1 + β~p 2
)

Ψ(~x ), (10)

with pi = −i ∂/∂xi. Neglecting terms of order β2, the
Schrödinger equation (9) takes the form

[

~p 2

2m
+
β

m
~p 4 + V (~x )

]

Ψ(~x ) = EΨ(~x ). (11)

This is the main equation from which the influence of a
non vanishing β can be studied. It also allows to compute
upper bounds on this deformation parameter by compar-
ison with experimental results. This equation is just the
ordinary Schrödinger equation with an additional term
proportional to ~p 4. As this correction is assumed to be
small, we will compute its effects on the energy spectrum
at the first order in perturbation.

III. THE MAIN EQUATION FOR A

GRAVITATIONAL QUANTUM WELL

Let us now consider the case of a particle of mass m,
moving in a zy plane, and subject to the Earth’s grav-
itational field: ~g = −g ~ez, where g = 9.80665 m s−2.
In order to form a gravitational quantum well, a mirror
is placed at z = 0 and acts as an hardcore interaction.
This corresponds to the experimental setup described in
Refs. [22–24]. It is reasonable to keep a constant value
for g because of the small size of the experiment. Tak-
ing into account the variation of the gravitational field
would only introduce higher order corrections that can
be neglected in this first order calculation. For the same
reason, corrections coming from the fact that the mirror
is not a perfect hardcore will not be included here. The
potential which enters in Eq. (11) is then V (~x ) = V (z)
with

V (z) = +∞ for z ≤ 0

= mgz for z > 0. (12)

An infinite potential in z = 0 is a very good description
of the mirror, at least for the lowest eigenstates.

A. The case β = 0

The solution of the Schrödinger equation in this con-
text for β = 0 is well known [28, p. 101]. We write

Ψ(~x ) = ψn(z)ψ(y). (13)

The wave function along the z axis then reads

ψn(z) = An Ai(z̄), with z̄ = γz + αn and

γ = (2m2g)1/3, (14)
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where the function Ai(z̄) is the normalizable Airy func-
tion and where αn are the zeros of this function. Their
values can be found for example in Ref. [29, p. 478]. The
normalization factor An is given by

An =

[

1

γ

∫ +∞

αn

dz̄Ai2(z̄)

]−1/2

=
γ1/2

|Ai′(αn)|
, (15)

where Ai′(x) is the derivative of the Airy function. The
eigenvalues are related to the zeros of the Airy function
as follows

E0
n = −

mg

γ
αn, (16)

and consequently, the most probable heights where a par-
ticle can be detected are given by

h0
n = −

αn

γ
. (17)

Along the y axis, the particle is free and the wave function
takes the form

ψ(y) =

∫ +∞

−∞

dk g(k) eiky, (18)

where g(k) determines the shape of the wave packet in
momentum space.

B. The case β > 0

As E0
n denotes the eigenvalues for β = 0, the energy

spectrum to the first order in the deformation parameter
β is given by

En = E0
n + ∆En. (19)

It can be seen from Eq. (11) that the correction to the
energy ∆En at the first order in β reads

∆En =
β

m
〈Ψ(~x )|~p 4|Ψ(~x )〉,

=
β

m

[

〈ψn(z)|p4
z|ψn(z)〉

+ 2〈ψn(z)|p2
z|ψn(z)〉〈ψ(y)|p2

y|ψ(y)〉
]

, (20)

where a term proportional to 〈ψ(y)|p4
y|ψ(y)〉 has been

omitted since it only leads to a global shift of the energy
spectrum and has thus no interest. This last relation can
be written as

∆En =
β

m

[

4m2〈(E0
n − V (z))2〉 + 8m2Ec〈E

0
n − V (z)〉

]

,

= 4βm
[

E0
n(E0

n + 2Ec) − 2(E0
n + Ec)〈V (z)〉

+ 〈V (z)2〉
]

, (21)

where Ec = m〈ψ(y)|v2
y|ψ(y)〉/2 is the kinetic energy of

the particle along the y axis. The averages appearing in

Eq. (21) are obviously computed with ψn(z). Since we
consider here a power-law potential, V (z) ∼ z, the virial
theorem gives

〈V (z)〉 =
2

3
E0

n, (22)

and the relation (21) reduces to

∆En = 4βm

[

−
E0

n

3
(E0

n − 2Ec) + 〈V (z)2〉

]

,

= 4βm

[

−
E0

n

3
(E0

n − 2Ec)

+ (mg)2A2
n

∫ +∞

0

dz z2 Ai2(γz + αn)

]

. (23)

The last integral in (23) can be computed explicitly. We
obtain

(mg)2A2
n

∫ +∞

0

dz z2 Ai2(γz + αn) =
8

15
(E0

n)2. (24)

The final result is then

∆En =
4

5
βm(E0

n)2
(

1 +
10Ec

3E0
n

)

. (25)

IV. DISCUSSION OF THE RESULTS

A. Comparison with noncommutative geometry

Formula (25) involves the kinetic energy of the neu-
trons along the y axis. The last term in the parenthe-
sis of this formula is much larger than 1 (about 6 or-
der of magnitude larger): E0

n has a value around few
peV on Earth (see Eqs. (16) and (31)), and even for
the nonrelativistic neutrons of Ref. [24], the kinetic en-
ergy is around 100 neV. More precisely, the neutrons
mean horizontal velocity was measured to be around 6.5
ms−1 [24]. So, the kinetic energy is roughly equal to
Ec ≃ m〈vy〉

2/2 ≃ 0.221 µeV (taking for the neutron
mass the experimental value m = 939.57 MeV [30]).
Clearly, we can thus use in a very good approximation

∆En
∼=

8

3
mβEcE

0
n. (26)

This result can be compared to the energy shifts obtained
with the noncommutative geometry (4). To the first or-
der in the small parameters θ, η, it is shown in Ref. [25]

that these shifts, denoted ∆Ẽn, are given by

∆Ẽn =
η〈vy〉

2

[

γ−2A2
n

∫ +∞

αn

ds s Ai2(s) −
αn

γ

]

. (27)

The integral appearing in Eq. (27) can be computed and
we obtain

∆Ẽn =
η〈vy〉

3mg
E0

n. (28)
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A nonzero parameter β leads, independently of its
actual value, to a larger value for the heights since
hn = h0

n + ∆hn, with ∆hn = ∆En/mg and ∆En given
by Eq. (26). We recall indeed that β was assumed to
be positive. The signature of the modified Heisenberg
algebra (7) would then be ∆hn > 0 and

∆hn ∝ 〈vy〉
2

[

3π

2
(n− 1/4)

]2/3

, (29)

the second factor being a WKB approximation of the
zeros of the Airy function [29, p. 450]. This effect is
different of the one predicted by the relation (28), since
in this case we should observe

∆h̃n ∝ ±〈vy〉

[

3π

2
(n− 1/4)

]2/3

. (30)

The ± factor in Eq. (30) arises from the fact that the sign
of η is a priori unspecified. So, if η < 0, noncommutative
geometry could cause a decrease of the heights instead
of the increase predicted by our deformed algebra. Even
if we suppose that η > 0, the heights shifts (29) and
(30) can be distinguished in principle since their depen-
dence on 〈vy〉 is different. Another important difference

between ∆hn and ∆h̃n concerns their dependence on the
mass of the particle: ∆hn ∝ m4/3 whereas ∆h̃n ∝ m−5/3.

B. Comparison with GRANIT experiment

We turn now our attention to the comparison between
formula (26) and GRANIT results. Following Eqs. (16)
and (17), the theoretical energies and heights for the two
first eigenstates are

E0
1 = 1.407 peV, E0

2 = 2.461 peV,

h0
1 = 13.7 µm, h0

2 = 24.0 µm. (31)

The experimental results concerning these states are [24]

hexp
1 = 12.2 µm ± 1.8syst ± 0.7stat,

hexp
2 = 21.6 µm ± 2.2syst ± 0.7stat. (32)

The theoretical values are contained in the error bars.
The energy shifts due to eventual new physical mecha-
nisms are thus bounded. They can not exceed

∆Eexp
1 = 0.102 peV,

∆Eexp
2 = 0.051 peV, (33)

since ∆En has been shown to be positive, see Eq. (26).
Consequently, we have to satisfy the constraint

∆En < ∆Eexp
n , (34)

with ∆En given by Eq. (26). Let us discuss the possible
values of β. There are two possibilities, following the
status of this parameter.

The first possibility is that β could be a new univer-
sal constant, or a function of the already known con-
stants. Then, its value could be equally measured by
independent experiments and a unique value (within er-
ror bars) would be found. It was shown in Ref. [27] how
the spectrum of the hydrogen atom would be affected
by the deformed Heisenberg algebra we use, and an up-
per bound ∆x0 < 10−2 fm was derived, or equivalently
β < 2 10−5 fm2 ≃ 5 10−22 eV−2. This estimation was
based on a very precise (up to 1kHz) measurement of the
radiation emitted during the transition 1S-2S of the hy-
drogen atom [31]. With this upper bound, it is readily
computed that

∆E1 ≃ ∆E2
<
∼ 10−19 peV. (35)

If β is a universal constant, the upper bounds (35) tell us
that the effects of the existence of a minimal observable
length are largely unobservable in the GRANIT experi-
ment, since the maximal precision is 10−2 peV [24].

The second possibility is that β could vary from one
system to another depending for example on the energetic
content of the system (mass of the particles, strength of
the interactions,. . . ). If β is such a quantity, the upper
bound of Ref. [27] is no longer relevant for our study of
neutrons in a gravitational quantum well (the mass of
the particle and the interaction are different), and a new
upper bound has to be determined from the experimental
results. Equation (26), together with the relation (8) for
d = 2 leads to

∆x0 < 2

√

3∆Eexp
n

8mE0
nEc

. (36)

For n = 2 we find ∆x0 < 0.012 eV−1 = 2.41 nm, or
β < 1.46 nm2. The case n = 1 does not lead to a better
upper bound. This new upper bound for β could be used
to restrict the possible choices for an explicit expression
of this parameter, in a similar way as the upper bound
found in Ref. [27] was used in Ref. [32] to show that
β could not be identify to the Compton length of the
particle as proposed in Ref. [33] (the effects of a minimal
length ∆x0 on the energy spectrum would then be too
large in the case of the hydrogen atom).

At last, remark that if ∆x0 was related to the size of
the particle, as suggested in Ref. [21], and discussed in the
case of an electron in Ref. [27], then ∆E1 ≃ ∆E2

<
∼ 10−15

peV, since the size of the neutron is around 1 fm.

V. SUMMARY OF THE RESULTS

We have found in perturbation the energy spectrum of
a gravitational quantum well with a one-parameter de-
formed Heisenberg algebra. This deformation implies in
particular the existence of a minimal observable length,
which is a feature it shares with usual noncommutative
theories. We found that the energy shifts caused by this
deformed algebra are positive with a linear dependence
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on the kinetic energy of the particles. This signature is
different from the one coming from a previously studied
noncommutative geometry [25]. In this case indeed, the
energy shifts can be either positive or negative, following
the sign of the noncommutativity parameter, and they
depend on the square root of the kinetic energy. The
gravitational quantum well thus appears as an interest-
ing physical system which allows, at least in principle, to
distinguish between several approaches predicting differ-
ent modifications of the Heisenberg algebra.

By particularizing our results to the case of a neutron
in the Earth’s gravitational field, we are able to compare
them to those of the GRANIT experiment. Our conclu-
sion is twofold, following the status of the deformation

parameter β. If β is a universal constant, we can use an
upper bound obtained previously by analysis of the hy-
drogen atom spectrum [27], and we find that the energy
shifts due to a nonzero value of β are around 10−19 peV.
This is far beyond the experimental precision. However,
if β is a quantity that depends on the energetic content
of the system (like the mass of the particle), we can de-
rive a new upper bound from the GRANIT results. We
conclude in that case that the minimal length scale as-
sociated to neutrons moving in a gravitational quantum
well is smaller than few nanometers. This new upper
bound could be used to constrain possible choices for an
explicit expression of β.
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