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ABSTRACT 
This paper studies the Candy model, a marked point process introduced by Stoica et a.I. 
(2000). We prove Ruelle and local stability, investigate its Markov properties, and diaeUSll 
how the model may be sampled. Finally, we consider estimation of the model pa.ramet.ers 
and present some examples. 
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1. SET-UP AND NOTATION 

In [36, 37], Stoica, Descombes and Zerubia introduced a marked point process model for line 
segments - dubbed Candy - as prior distribution for the image analysis problem of extracting 
linear networks such as roads or rivers from images (usually obtained by aerial photography 
or satellites). In this paper we investigate the analytical properties of the model, focusing on 
the Ruelle condition, local stability and the interaction structure. We also study statistical 
aspects, including simulation by Markov chain Monte Carlo and parameter estimation. 

We shall represent a line segment as a point in some compact subset K C JR2 of strictly 
positive volume 0 < v(K) < oo with an attached mark taking values in the Cartt~sian 
product [lmini lmax] X [O, 11") for some 0 < lmin < lmax < oo. Each marked point (k, l, 0) can be 
interpreted as a line segment with midpoint k, length l, and orientation 9. If required, an extra 
mark for the width of the segment may be added. Note that in the original formulation [36, 
37], the mark space for orientations is [O, 211"]. 

A configuration of line segments is a finite set of marked points. Thus, for n E No, write Sn 
for the set of all (unordered) configurations s = { s1, ... , Sn} that consist of n, not necessarily 
distinct, marked points Si ES= K x [lmin, lmax] x [O, 11"). Hence, the configuration space can 
be written as 0 = U~0Sn, which may be equipped with the a-algebra :F generated by the 
mappings {s1,. .. , sn} t-+ 2:~~ 1 l{ Si E A} that count the number of marked points in Borel 
sets A ~ S = K x [lmin, lmax] x [O, 11"). If the marks are discarded, the configuration space of 
midpoints is OK = U~=0K11 , where K 11 is the set of all configurations x = { k1, ... , k,1} that 
consist of n, not necessarily distinct, points ki E K; the associated a-algebra :F K is generated 
by the mappings counting the number of points falling in Borel subsets of K. 

A point process on K is a measurable mapping from some probability space into ( n K, :F K): 
a marked point process with points in K and marks in [lmin, lmax] x [O, ?r) is a point process 
on the product space K x [lmini lmax] x [O, 11") with the additional property that the marginal 
process of segment centers is a point process on K. For further details, see [4]. 
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Perhaps the simplest marked point process model is the Poisson process defined by the 
probability measure 

µ(F) = 

on ( n, F). In other words, under µ, midpoints are placed in K according to a Poisson 
process with intensity measure v, to which points independent, uniformly distributed marks 
are assigned to determine the length and orientation. Exhibiting no interactions, the above 
Poisson marked point process is the ideal reference process. Indeed, one may define more 
complicated models by specifying a Radon-Nikodym derivative p with respect to µ. For the 
Candy model, at s = {Si, ... , sn} with Si = (ki, li,(Ji) E K X [lmin, lmax] X [O, 7r), i = 1, ... , n, 

( ) /3n(s) {rrn [li - lmax]} n1(s) n.(s) nr(s) no(s) p s =a exp l x / 1 1'2 /3 /4 
i=l max 

(1.1) 

where 'Yli 12 , 13 , 14 E (0, 1) and /3 > 0 are the model parameters. Stoica et al. recommend 
11 < 1'2· The sufficient statistics n(s), n1(s), n8 (s), nr(s), no(s) represent respectively the 
total number of segments, the number of 'free' ones, the number of segments with a single one 
of its endpoints near another segment endpoint, the number of pairs of segments crossing at 
too sharp angles, and the number of pairs that are disoriented. A more precise definition will 
be given in section 2 below. Intuitively speaking, there are penalties attached to each free 
and singly connected segment, as well as to each sharp crossing and to every disagreement 
in orientation. 

The plan of this paper is as follows. In section 2, a rigorous definition of the Candy model 
is given. We establish the Ruelle condition and local stability. Furthermore, we define several 
relations on the configuration space, and investigate the Markov behavior of the Candy model. 
In section 3, a Metropolis-Hastings algorithm based on births and deaths is suggested for 
sampling from the Candy model. We discuss the convergence of the algorithm, and prove 
geometric ergodicity. More sophisticated updates including non-uniform births and deaths, 
and changes in the marks are discussed subsequently. Section 4 builds on the results obtained 
in previous sections to perform maximum likelihood based inference. The paper is concluded 
by some examples. 

2. THE CANDY MODEL: STABILITY AND MARKOV PROPERTIES 

2.1 Model specification 
The Candy model was developed in the context of a concrete image analysis problem [37], 
where, in order to decide whether two line segments were connected, discretization effects 
had to be taken into account. From a theoretical point of view, under the reference Poisson 
process almost surely no exact join between a pair of segments occurs. Such considerations 
motivate the following definition. 

Definition 1. Let x = (kx,lxJJx) and y = (ky,ly,(}y) be two distinct marked points. Then, 
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for some re < lmin. 

The relation of definition! is reflexive, that is any :I: E S is connected to itself. Similarly, an 
endpoint e of a segment x is said to he connected in the configurat.ion s if another in s 
can be found with at least one endpoint closer than r, to e. Following [36, 37]. we distinguish 
between singly connected segments with exactly one connected endpoint and connected 
ones for which both endpoints are connected. A segment that is not connected is said to be 
free. 

Lemma 1. The mappings n f and ns assigning to a configuration s E n the number of 
respectively singly connected segments are measurable with to F. 

Proof: First, consider n f· By its very nature, the mapping that counts the number of free 
segments in a configuration is a symmetric function of its argument. Thus, it is sufficient [30] 
to check that the function j : sn -+ R defined by 

n 

f(si, ... ,sn) = l:l{si is free} 
i=l 

is Borel measurable for each n E N(i. Now, for fixed i- J E {l .... , n }, the function 
Jl)B1, ... , sn) defined by 

1 {ll(ki + ~licosfi;,ki + ~lisinfii)- (kj + ~ljcosfij,kj + ~l1 sin01)ll >re} 
is Borel mea..c;urable as a mapping on sn. Here, we use the notation S; = ( ki' li, ei). Analo­
gously, JlJ' Jt1 and Jt1 defined similar to fi~j but using the second up to fourth condition of 
definition 1 instead of the first are Borel measurable. Consequently, 
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1 { s i is free } = II II f['/ ( s 1 , ... , Sn ) 

jfi m=l 

is Borel measurable, and so is the sum of these functions over i. A similar argument implies 
that ns is measurable with respect to :F. D 

Next, define two neighborhood relations on S. 
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Definition 2. Let Omin > 0. The relation "'r on S is defined by 

max{lx, ly} II B I /21 J: X ""'r y - II kx - ky II :S 2 · and Bx - y - 7r > Umin 

for any pair of distinct marked points x = ( kx, lx, Ox) and Y = ( ky, ly, By). 

The relation ""'r is reflexive if Omin < 7r /2. 

Definition 3. The influence zone Z(s) of a marked points= (k, l, 0) ES is given by 

the union of balls around the endpoints. The relation ,..._,o on S is defined by x ""'o y -
llkx-kyll > ~max{lx,ly} and either exactly one endpoint (kx±~lxcosOx,kx±~lxsinBx) of 
:i; is a member of Z (y) or exactly one endpoint ( ky ± ~ ly cos By, ky ± ~ly sin Oy) of y is a member 
of Z(x). Here x = (kx, lx, Ox) and y = (ky, ly, Oy) are distinct elements of S. 

Note that ""'o is not reflexive. 
We are now ready to complete the specification of the sufficient statistics in ( 1.1). For a 

given configuration s, write nr(s) for the number of ""'r neighbor pairs ins; similarly no(s) 
denotes the number of "'o neighbor pairs { x, y} in s with the extra property that 

(2.1) 

for some threshold value Tmax > 0. 

Lemma 2. The mappings nr and n 0 assigning to a configuration s E 0 the number of its ""'r 
neighbor pairs, respectively the number of its ""'o neighbor pairs satisfying (2.1) are measurable 
with respect to :F. 

Proof: The counting of marked point pairs satisfying a certain condition is a symmetric 
operation. Regarding nr, for each (x,y), l{x "'r y} is a Borel measurable function on S 2, 

from which observation the result follows as in the proof of lemma l. A similar, slightly more 
involved, argument applies to n 0 . D 

We could have included (2.1) in the definition of "'o· The reason for not doing so is that 
in the 'modified Caudy model' [36] both no and the function na defined as the number of ""'o 

neighbor pairs not satisfying the alignment property (2.1) are featured. 

2. 2 Stability 
The existence of any point process specified in terms of an unnorrnalized, measurable density 
p with respect to a Poisson point process is ensured by Ruelle's stability condition [7, 35]. 
This condition requires the energy E(s) = - log(p(s)/p(0)) to be bounded from below by a 
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linear term in the number of marked points ins, i.e. E(s) ;'.:: -Cn(s) for some C > O, in which 
case the density (or the corresponding energy) is called stable. For the Candy model (1.1), 

n(s) l · - l 
E(s) = -n(s)log,B-L i max 

i=l lmax 

-n1(s) log-y1 - ns(s) log')'2 - nr(s) log-y3 - n0 (s) log-y4 

> -n(s) log ,B. 

If f3 > 1, take C = log,8; otherwise E(s);::: 0 ;'.:: -Cn(s) for any C > O. 

Theorem 1. The unnormalized Candy density (1.1) is (O,:F)-measurable and integrable, 
hence specifies a well-defined marked point process. 

Proof: Measurability follows from lemmata 1-2, integrability is implied by the Ruelle 
condition, as 

D 

A stronger stability condition is that of local stability, which requires the ratio p(s U 
{77})/p(s) to be uniformly bounded from above, both ins E 0and11 ES, whenever p(s) > 0. 

Lemma 3. The Candy model (1.1} is locally stable. 

Proof: Lets E 0, and11 = (k,l,O) ES. Sincep > 0, theratiop(sU{11})/p(s) is well-defined. 
Clearly, the addition of 11 results in an extra term ,Bexp {(l - lmax)/lmax} :::; f3 regardless of 
the position of 11 with respect to s. The effect on the other four terms does depend on the 
type of connections introduced by 11, which we investigate separately below. 

First consider n1(s U { 77}) - n1 (s). If 11 is not connected to any segment ins, the difference 
in free segments is 1. If 11 is singly connected, say through its endpoint e, by the addition of 
11 to s the number of free segments decreases by the number of segments connected to e that 
were free ins; since at most 6 segment endpoints separated by at least a distance re can be 
placed in a ball ofradius re centered ate, in this case n1(sU{11})-n1(s) ;'.:: -6. Analogously, 
for doubly connected segments 11, n1(su {77}) -n1(s) ;'.:: -12. 

Next, turn to n 8 (sU{77})-n8 (s). If 11 is free, the number of singly connected segments does 
not change. If 11 is singly connected through its endpoint e, since the status of segments not 
connected to 11 is not affected, we have to examine segments connected to e. Now, segments 
that were free with respect to s get singly connected in s U { 77 }; if both endpoints of a segment 
were connected ins, so are they ins U {77}. Segments for which the endpoint connected toe 
was also connected in s and the other endpoint was free in s remain singly connected in the 
new configuration s U { 77 }. On the other hand, a segment that was singly connected in s but 
whose s-free endpoint is connected to e becomes doubly connected after the addition of 'f/· 
Hence n 5 (s U { 77}) - n8 (s) increases by 1 plus the number of free members of s, and decreases 
by the number of segments that were singly connected in s with the free endpoint connected 
to e. Since there could be at most 6 segments of the latter type, n 5 (sU{77})-ns(s) ;'.:: -5. 
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In case r7 is doubly connected, again we may restrict ourselves to considering the status of 
segments connected to 'fl· As before, n8 (s U {'fl}) - n 8 (s) decreases by at most (since both 
endpoints of a segment s E s could be connected to 'T/) the number of segments that were 
singly connected ins with the free endpoint connected to 'fl, a number that is bounded by 12. 

Finally, note that nr(s U {fJ}) 2: nr(s) and n 0 (s U {71}) 2: n 0 (s). If we collect all terms 
examined above, we obtain 

p(sU{r1}) < r~( ) 12 
p(s) _ tJ 'Y1 'Y2 

and the proof is complete. D 

2.:J Markov properties 
A marked point process is said to be Ripley-Kelly Markov [31] with respect to some symmetric 
relation "' on S if its density is hereditary (that is p(s) > 0 implies p(s') > 0 for all s' ~ s), 
and if for alls such that p(s) > 0, and all f/ tf. s, the ratio p(s U {fJ})/p(s) depends only on 'T/ 
and those s Es satisfying s '""'fl· In physical terms, the energy required to add 'T/ to s depends 
only on r7 and its rv-neighbors in s. See the recent monograph [20] for further details. 

Proposition 1. For 'Y E (0, 1), the partial Candy model with probability density 

s En, 

with respect toµ is Markov with respect to the relation '""r· 

Proof: The density is strictly positive, hence hereditary. Furthermore, for 'f7 tf. s E n, 

p(s U {fJ}) = 'Yn,(sU{r1})-n,(s) = 'Yn({sEs:s~,ry}) 
p(s) 

depends only on the number of '""'r-neighbors of 1J in s. D 

Proposition 2. For 'YE (0, 1), the partial Candy model with probability density 

p(s) ex: ')'710 (s), s E 0, 

with respect to µ is Markov with respect to the relation '""o· 

As an aside, it should be noted that a similar result could be derived for the modified 
Candy model. 

Proof: The density is strictly positive, hence hereditary. Furthermore, for 'T/ = (k1" lry, {}11 ) ~ 
s E 0, 

p(s U {17}) = 'Yna(sU{ry})-no(s) = 'Yn({s=(ks,ls,Os)Es:s"-'o7);min{I011 -O,l,tr-lll 11 --08 l}>Tmax}) 
p(s) 

depends only on 'T/ and its '"'-' 0 -neighbors ins. D 



and that of 

i} 

to d•:cide whether a 
examine the eomu•eted to ii. 
m is defined as follows. 

an' connected 

y - .r ""c y or 3.z Es: ""c.::. "'c y 

for :r. y E 8 and s E 0. A process with density p is 
lo ""'l iu the sense of and Moller 

s such that 1>{s) > 0, and all 11 <f. s. the ratio 
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the first condition of Baddeley and 
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interactions 

1 frir tlw 

since in 
one needi' to 

relation. also studied 
x ......_( u if and 

in some s1 2 s but is in s1 U }, then s contains only {u does not 
so that two-step pairwise interaction models are ruled out, the following theorem 

concerns an of a process that is r>.farkov with to '""'.!· 

1). the density 

p(s) :x SE 

to the relation "'c on S. 

Proof: of lemma ~t 

and. that of the segments connected to it. To decide the status 
of 11. knowledge of its s1tfi:kes: to assess the connection type of these neighbors. 
their have to he taken into account. The same is true for 

Consequently. p is a two-step iterated neighbors Markov point process with respect to the 
connection rdation ~,. D 

As a consequence of proposit iom; l ·· 2 and theorem 2, the Candy model is Markov at fixed 
nu1~e , of tlu• marks. i.e. with rPspect to the relation '"" defined hy 

_I l< 
I -
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3. METROPOLIS-HASTINGS ALGORITHMS 

3.1 Review 
The Candy model (1.1) is too complicated to sample from directly. Rather, we apply Markov 
chain Monte Carlo techniques [9, 12, 24] to construct a Markov chain that has the Candy 
model as its equilibrium distribution 7r, i.e. 

7r(F) = kp(s)µ(ds) (3.1) 

for all F E :F; as before, µ denotes the distribution of the reference Poisson process. An 
example of such a Markov chain is the Metropolis-Hastings sampler, originally introduced 
in statistical physics [2, 21 ]. It is a :flexible proposal-acceptance technique [17, 27] that is 
well adapted to point processes [10, 14, 25]. In that context, transitions much at least 
include births and deaths. The generic choice is as follows. Suppose a birth is proposed with 
probability Pb, and a death with the complimentary probability Pd = 1 - Pb· In case of a 
birth, a new segment is sampled uniformly, so that the birth proposal density can be written 
as 

1 
b(s, TJ) = v(K)' s E 0,1] ES, (3.2) 

with respect to the product da(TJ) = (v(dk) dl d0)/(7r (lma.x-lmin)) of Lebesgue measure on K 
and uniform distributions on [lmin,lmax] and [0,7r). It should be noted that (3.2) does not 
depend on the current configuration s. The probability mass function of death proposals for 
points 1J E s is given by 

1 
d(s,TJ) = n(s) (3.3) 

for s #- 0, and each point 1J has the same probability of being removed. In case s = 0, the 
new state is empty too. 

A transition from s to s' is subsequently accepted with probability a(s, s'). The detailed 
balance equations require that, under the target equilibrium density p, the addition of 'fJ E S 
to s E 0 is matched by a death of 1J from s U {TJ}, that is 

Pb b(s, TJ) a(s, s U { 1J}) p(s) =Pd d(s U { 1J }, TJ) a(s U { 1J }, s) p(s U { 1J} ). (3.4) 

A solution is 

( U{ }) - . {l Pdd(sU{TJ},TJ)p(sU{TJ})} a s, s 1J - mm , -----,--,----~--"-
Pb b(s, 1]) p(s )" (3.5) 

with a(s U {TJ},s) given by substitution of (3.5) into (3.4). By the results in [10, section 4], 
the algorithm converges in total variation to 7r for 'If-almost all initial configurations provided 
Pb E (0, 1). The theorem applies equally to any pair of strictly positive proposal distributions, 
not necessarily equal to (3.2)-(3.3). 



9 

• hir~ h death with 

wit b at lt>ast. two 

• birth and death of a 

such moves are tailored to obtain conrn'eted ""''•ncrn but the subsets of S to 
which new of a umHt fo!i 

to use of the "'""".'"''' that 
the convngence of the ~farkov chain to the correct distribution. 

A more tractable alternative is to a that tend:; to propose seg-
rrn•utH near to and with tlw current network. The idea is thai should be 

that 'fit' the current configuration. More might 

Figure 1: How to extend tlw network. 

Let us consider an endpoint e of a 'TJ. cf. figure l. To sample a segment. connected 
to e. we an orientation 0, say according to a probability density f with 

to the uniform distribution on Let ff 11) be the half at e 

.. v,-..v,n•• to that does not contain ~/. Now, since the center of the new segment must 
be an element of the set Kn H(e. , the length cannot exceed twice the distance 

of e to K' the line e with orit>ntation 0 restricted to the half plane 

H(e, Consequently, conditional on 0, wt> assume the length law to posHess a density 
17. fJ) with to the uniform distribution on lmax] that is concentrated on 

The update is completed by )!;Cnerating a midpoint k. uniformly or 
11. O. l) ::.c: e. sin re) n K, the sign chosen so as to belong to 

Ii (e, \Ve will denote the probability density with rnsped to v by h(kje, 1/, (), l). Clearly. 
the birth is possible only if the interval }] and the set Af(e,17,0,l) both 
have strictly positive measure. In that case. the proposal density at endpoint e of 

"'~ ............ !J is by 

1/. • l. 0) = 1/,0,l) (3.tl) 
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where e E [O, n), l E [lmin, min{2le,TJ(O), lmax}], and k E M(e, 'f/, e, l); otherwise, b(e, 'f), (k, l, 0)) = 
0. In summary, provided A(s) -:f 0 for s En, the proposal density for prolonging the segment 
configuration s is given by the average 

1 '\:"""" -
bp(s,(k,Z,e))=n(A(s)) ~ b(e,'f),(k,l,B)) 

(e,TJ)EA(s) 
(3.7) 

of (3.6) over A(s), the set of endpoint-segment pairs (e, 'fJ), 7/ Es, allowing addition of a new 
segment to e. If n(A(s)) = 0, a uniformly distributed birth is proposed. 

Figure 2: Extremities marked by triangles are connected and further than ~lmax +re to the 
boundary, those labeled by a black disk are closer than ~lmax +re to the boundary of K. 

Examples of (3.6) include uniform updates 

f ( 0) 
g(lJe, rJ, fJ) 

h(kle, ry, 0) 

= 1; 

= 
(lmax-lmin) l{!E[lmi 1,,min{2le,~(&),lmax}]}. 

min{2le, 11 (B),lmax} --lmin ' 
= l{kEM(e,TJ,B,l)} 

v(M(e,TJ,e,l)nK)' 

(3.8) 

again assuming non-zero denominators. Alternatively, the orientation could be centered 
around that of r1, for example by means of a Beta distribution, to favor a better alignment. 

In the simulations of section 5 we connect only to segment endpoints e E 'f/ further than 
~lmax +re away from Kc; the current connections to e may be taken into account as well, 
as illustrated in figure 2. With this convention, for any B, g(·le,ry,B) may be positive on the 
maximal interval llrnin, lmax] and the putative midpoint is sampled on a full ball of area TIT~. 

Back bends, although penalized by the model for most values of /'4 and Tmax (see (2.1) ), 
may be formalized by sampling a new center in H(e, 'fJ)c as indicated in figure 1. Note that 
the two directed distances to the boundary of K along a line through e with orientation () 
may well be different, leading to conditional length distributions that are concentrated on 
different supports. In practice, we restrict ourselves to extremities that are far away from the 
boundary, hence both distributions are concentrated on the full support [lmin, lroax]· Thus, 
a mixture proposal distribution for prolongations and back bends could take the following 
form. Choose an orientation () according to a probability density f with respect to the uniform 
distribution on [O, n). Conditionally given B, the length is sampled according to a density 
g(·le,17,B) with respect to the uniform distribution on [lrnin,lrnax]· Finally, with probability 
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PM a midpoint is sampled on M(e,_17, (), l), say uniformly; with the complementary probability 
1 - PM, a center is generated on M(e, 17, (), l). 

Modifying the segment characteristics 
To improve the mixing of the Markov chain, apart from adapting the birth proposal density 
to the target density, a common strategy is to include transition types other than births and 
deaths. Thus, in [36, 37], the following updates are considered: 

e changing the orientation of a singly connected segment; 

e changing the length of a singly connected segment; 

e changing the position of a singly connected segment with a single "'cneighbor; 

• changing the position of a singly connected segment with at least two ""cneighbors. 

The partition in connection types has the same drawback as for the birth/ death moves of 
section 3.2. Here we present some alternatives that are easier to implement. 

In the set-up described in [10, 25], transitions from s # 0 to s' = (s \ {17)}) U {(} for 
'f/ E s and ( E S = K x [lmin,lmax] x [O, 7r) are governed by the proposal kernel c(s, r7, () 
and acceptance probabilities a(s, (s \ {17}) U {(}). Thus, for each choice of s En and 17 E 
s, c(s, 17, ·) is a probability density (with respect to the intensity measure of the reference 
Poisson process law µ) governing the change of 7} E s, and the proposal to replace 17 by 
( is accepted with probability a(s, (s \ {17}) U {(}). If a member 17 of configurations is 
selected for modification with probability q(s, r1), the detailed balance equations require that 
p( s) q(s, 17) c(s, 17, () a(s, (s \ { 7}}) U { (}) = p( (s \ { 17}) U { (}) q( (s \ { 17}) U { (}, () c( (s \ { 1J}) U 
{ (}, (, 17) a((s \ {77}) U { (}, s) whenever p(s), p((s \ {77}) U { (}) > 0. We assume the selection 
probabilities are strictly positive, and impose the condition that c(s, 17, () > 0 if and only if 
c( ( s \ { 17}) U { (}, (, 17) > 0. In words, if 17 E s may be changed into (, the reverse update is 
also possible. Then, 

a(s, (s \ {77}) U {(}) := 

min { l, P( (s \ { 1J}) U { (}) q( (s \ { 17}) U { (}, () c( (s \ { 17}) U { (}, (, 17) } 
p(s) q(s, 17) c(s, 17, () 

is well-defined and solves the detailed balance equations. 

(3.9) 

Within the general context described above, there are many valid choices for the pro­
posal kernel. To implement uniformly distributed joint 'local' changes, let C(77) = Ck(1Jk) x 
Cm ( % 178) ~ K x ([lmin ,lrnax] x [O, 7r)) be a neighborhood of the segment 1J = ( 17k, 'r/l, 1JB) such 
that v(Ck(17k)) and length( Cm(% 'l]e)) are both strictly positive, and set 

( (k l ())) = l{k E Ck(1Jk)} (lmax - lmin) 7rl{(l,O) E Cm(1Jl,170)} 
c s, 17, ' ' ( ) ( ( . v(Ck 1Jk) length Cm 1JL,17e)) 

In order to ensure reversibility, we have to require that ( E C(17) whenever 'I] E C((). Typi­
cally, C(TJ) will be relatively small and centered at 'f/· If C(TJ) = S, the local character is lost, 
and a new segment is proposed uniformly over the whole space. The latter has the potential 
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advantage of moving faster through the state space, the former of fine tuning likely configura­
tions without destroying the overall appearance of the network. If Cm is of Cartesian product 
form, and the proposal density factorizes with respect to its position, length and orientation 
component, the modification may be implemented sequentially. 

Change transitions are also useful for performing a death followed by a birth in one step, 
especially if the acceptance probability for the death is low. Thus, as in section 3, let b( ·, ·) 
and d( ·, ·) be strictly positive, and set 

q(s, ri) = d(s, ri); c(s, ri, () = b(s \ {ri}, () (3.10) 

for the proposal to move from s En to (s \ {ri}) U {(}for some 'f/ Es, (ES. 
A second type of update is to change a single segment component, say the orientation. 

Thus, for each 'f/ = ('T/k,'f/l,'T/e) Es En, we define a probability density co(s,ri, ·)with respect 
to the uniform distribution on [O, 11'). Given a neighborhood Co(rJo) ~ [O, 7r) of 'f/O with positive 
length, one might set 

11'1{0 E Ce(rJo)} 
co(s, 'f/, O) = length(Ce('f/o)) · (3.ll) 

If Ce(T/e) = [O, 11'), the new orientation is sampled uniformly over its full range; more com­
monly, a value in some small neighborhood of the current one is proposed. Again, we denote 
the probability that 'f/ E sis selected for modification by q(s, rJ), and assume positivity. Then, 
the detailed balance equations read 

p(s)q(s,rJ)co(s,ri,O)a(s,(s \ {77}) U{('f/k,'TJl,0)}) = 

p((s \ {T/}) U {('T/k1%0)})q((s \{"I}) U {(rJk,'f/liO)}, (rJk,'f/l,O)) x 

co ( (s \ { 'f/}) U { ( 'f/k, 'f/l, 0) }, ( 'f/k, 'f/l, 0), 'f/B) a( (s \ { 'f/}) U { ( 'f/k, '% 0)}, s) 

whenever p(s), p((s \ {rJ}) U {('f/k,'TJl,0)}) are positive. We assume that co(s,rJ,(o) > 0 if 
and only if co ( ( s \ { 'f/}) U { (}, (, 'f/O) > 0 whenever 'f} and ( differ only in their orientation 
component. Then, 

a(s, (s \ {T/}) U {(}) := 

. {i p((s\{"l})U{(})q((s\{rJ})U{(},()co((s\{"l})U{(},(,'f/o)} 
mm' p(s)q(s,.,,)ce(s,rJ,(o) 

(3.12) 

is well-defined and solves the detailed balance equations. 
Similarly, one may define a proposal density ck(s, 'f/, ·) with respect to v on K for modifying 

the position of a segment, or ci(s, 'f/, ·) with respect to the uniform distribution on [lmin, lmax] 
for the length. 

3.3 Convergence 
In this section, we investigate the limit behavior of the Metropolis-Hastings algorithm with 
transitions as described in sections 3.1 and 3.2. As before, write 7r for the law of the Candy 
model and denote the product measure on S by a. More formally, the transition kernel is 

P(0,F) = Pb ls b(0,rJ)a(0,{77}) lp({77})da(ri) 

+ lp(0) [1-pb fsb(0,ri)a(0,{ri})da(77)] (3.13) 
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for s = 0, F E :F, and P(s, F) equals 

Pb 1 b(s,17) a(s,s' := s U {17}) lp(s') dcr(17) +Pd L d(s,si) a(s,s' := s \ {si}) lp(s') 
s ~a 

Pk L q(s, si) 1 ck(s, Si, k) a(s, s' := (s \ { si}) U { (k, sil, sio)}) lp(s') dv(k)+ 
s;Es K 

lp(s) [ 1 - Pol b(s, ~) a(s, s U { ~}) d<Y{~) - Pd~ d(s, s;) a(s, s \ { s;} )+ 

{~ dO 
-po L q(s, si) Jo ce(s, si, 0) a(s, (s \ { si}) U {(sik, siz, O)}) -+ 

s;Es 0 7r 

- Pk L q(s, Si) 1 ck(s, si, k) a(s, (s \ {si}) U {(k, sil, sio)}) dv(k)l 
s;Es K 

(3.14) 

otherwise. Here, Pc, Po and Pk are the probabilities of performing a change update, a mod­
ification of orientation and position respectively. The densities associated with the various 
transition proposals and the acceptance probabilities are as described in sections 3.1 and 3.2. 

Let L(s, F) be the probability that the Markov chain started at s E n ever hits the set 
F E :F. The chain is said to be Harris recurrent [9, 22] if L(s, F) = 1 for alls E n and all 
F E :F with 7r(F) > 0. In words, all 7r-positive sets F are almost surely reached eventually 
from every initial state. Moreover, such sets will be visited infinitely often [22, 24]. The 
weaker condition of 7r-irreducibility requires only L(s, F) > 0 for all s E n and all 7r-positive 
F, or equivalently pn(s, F) > 0 for some n E N0 . 

An even stronger property than Harris recurrence is geometric ergodicity [22], that is geo­
metric convergence in total variation: 
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for some constant 'Y < 1 and some n-integrable, non-negative function c. This property is 
important in establishing a central limit theorem for the sample path average of certain n­

integrable functions [9, 22, 24]. Geometric ergodicity can be proved by means of the so-called 
geometric drift condition [22]. In order to state this condition, we need to recall the concept 
of a small set. A set C is small if n( C) > 0 and there exists a probability measure c.p on F, 
a constant E > 0, and an integer n E No such that 

for all s E C and all F E F. Now, the geometric drift condition entails the existence of a 
function V : n--+ [1, oo), constants a< 1 and b < oo, and a small set C E F such that 

In V(s') P(s,ds')::; a V(s) + bl{s EC} (3.15) 

for alls E 0. 
For further details on Markov chains on general state spaces, see e.g. the textbook by 

Meyn and Tweedie [22]. 

Theorem 3. Let the functions b, d, c, C(Ji ck and a be as described in sections 3.1-3. 2, and 
in particular suppose that the birth proposal density and the death proposal probabilities are 
strictly positive. Assume that 

d(s, 17) 
Un = sup -- -7 0 

71ES,sESn b(s, 17) 

as n--+ oo, and that Pb+ Pd+ Pc+ Pk+ PO = 1 with Pb,Pd E (0, 1) and Pc, Pk, PO E [0, 1). 
Then the Metropolis-Hastings sampler for the Candy model (1.1) defined by (3.13)-(3.14) is 
geometrically ergodic. 

The proof is an adaptation to the Candy model of the proof of [9, Proposition 3]. 

Proof: By lemma 3, the Candy model is locally stable. Let >. > 0 be an upper bound to 
the likelihood ratio, and set V(s) = An(s) for some A> l. 

The acceptance probability (3.5) for adding 17 rt s to s is 

which, as Un tends to 0, does not exceed a prefixed constant E > 0 if n(s) is sufficiently large. 
Similarly, the acceptance probability for removing r1 tf. s from s U rJ equals 

. {l b(s,ry)pbp(s) } > . {l. f [b(s,17)] Pb } m1n , m1n ,m -- x -
d(s,17)pdp(s U {11}) - d(s,17) PdA 

which reduces to 1 since the assumptions of the theorem imply 

. f b(s, ry) 
m d(s, rJ) --+ oo 
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as n(s) tends to infinity. 
For the Metropolis-Hastings transition kernel P, 

l V(s')P(s,ds') = PbAn(s) lb(s,ry)(A-l)a(s,sU{ry})dCY('TJ) 

+ PdAn(s) L d(s,ry) (A- 1 -1) a(s,s \ {ry}) + An(s)_ (3.16) 
77Es 

For line segment configurations s of sufficiently large cardinality, say n(s) >Ne, a(s, s\ {'TJ}) = 
1 and a(s,s U {77}) ~ E, hence, recalling A> 1, (3.16) is less than or equal to 

[Pb (A -1) E +Pd (A-1 - 1) + l] V(s). 

Since we have not yet specified E, and the multiplier of V(s) in the right hand side converges 
to 1 +Pd (A- 1 -1) =Pb +Pc+ Pk +Po+ Pd/A< 1 as E tends to zero, we can pick E such that 
Jn V(s') P(s, ds') ~a V(s) for some a< 1. 

Now, the set C = {s E 0 : n(s) ~ Ne} is small. Indeed, the acceptance probability of a 
down step exceeds 6 := min{pb/(unPd >.) : n ~NE}· Without loss of generality, 6 is strictly 
less than 1. Moreover, P(0, So) ?.. Pd· Hence, 

pN< (s S ) > pn(s) (s Si )PN,-n(s) (0 Si ) > (p <S)N• ,o_ ,o ,o_ d 

for any configuration s consisting of at most NE segments. Hence, C is small with scalar 
multiplier (pd<S)N• to the Dirac measure on 0. 

We have seen that (3.15) is satisfied for s <f. C. For s E C, the geometric drift condition 
holds if we take b = AN•+1• D 

Since self-transitions occur with positive probability, the Metropolis-Hastings chain is ape­
riodic, and the proof of theorem 3 implies the chain is Harris recurrent [9]. 

3.4 Discussion 
In the preceding sections we discussed a range of updates that may be used as ingredients 
for a Metropolis-Hastings sampler. Although we tried to be rather general, yet other type of 
moves can be envisaged. For instance, it is possibly to merge two close segments into one, or 
reversely split a large one in two [15, 32, 33, 34]. However, one would have to be careful in 
order to guarantee that the length of the new segment is in the interval [lmin, lmaxl· It would 
also be possible to update several segments at the same time. 

It is important to stress that a uniformly optimal sampler does not exist. For 'Yi = 1 for 
i = 1, ... , 4, the Candy model reduces to a Poisson line segment process, and simple uniform 
birth and death proposals will suffice. For stronger interaction, more weight should be given 
to updates that result in more likely patterns. In practice, in order to build a sampler that 
convergences in a reasonable time, some experimentation is needed to find a balance between 
the various moves that accomplishes these objectives. 

Finally, note that in order to assess whether the algorithm has converged, diagnostic tests 
based on the sufficient statistics of the model are widely used, see e.g. [36]. However, such 
tests only serve to falsify, that is indicate convergence is not reached yet. Theoretically, since 
the Candy model is locally stable (cf. lemma 3), coupling into and from the past [19, 29] can 
be used to obtain exact samples from (1.1), but due to the lack of monotonicity, it may be 
rather cumbersome in practice, especially in case of strong interaction between the segments. 



16 

4. MAXIMUM LIKELIHOOD ESTIMATION 

The Candy model (1.1) is a five-parameter exponential family 

Pe(s) = a(8) h(s) exp [t(sf log&] 

with normalizing constant a(O), h(s) = TI~~~ exp [l;!~:ax J, canonical sufficient statistic 

t(S) = (n(S), n1(S), n8 (S), nr(S), n0 (S)f, and parameter vector 8 = (/3,11 1 ')'2,f'3,')'4)r. 
Upon observing a pattern s, consider the log likelihood ratio 

Z((}) =log Pe((s)) =log a(((}(}))+ t(sf (loge - log Bo) 
Plio s a o 

with respect to some reference value 80 E (0, oo) x (0, 1 )4 • For notational convenience, from 
now on we shall write w =loge component wise. It is well known [9, 11] that a(wo)/a(w) = 

Ew0 exp [t(S)T(w - wo)]. Hence, the log likelihood ratio can be rewritten as follows 

l(w) = t(sf (w- wo) - logEw0 exp [t(Sf (w -wo)] ( 4.1) 

from which it is easy to derive the score equations V'l(w) = t(s) - Ewt(S) and Fisher infor­
mation matrix -V'2l(w) = Varwt(S). In summary, the maximum likelihood equations 

Ewt(S) = t(s) (4.2) 

state that under w, the expected values of the sufficient statistics must be equal to the 
observed values. Now, since the covariance matrix oft( S) is positive definite, ( 4.1) is concave 
in w. Therefore, provided the score equations have a solution win .IRx JR.~, a unique maximum 
likelihood estimator exists and equals w. Otherwise, a maximum may be found on the 
boundary of the parameter space. 

To solve (4.2), [8, 9, 11] suggested to approximate the expectation in (4.1) by its Monte 
Carlo counterpart L~=l exp [t(Si)T(w - wo)] /n based on a single sample S1, ... , Sn from Pwo· 
If we write wn for the Monte Carlo approximation to the true maximum likelihood estimator 
w, under mild regularity conditions [8, Theorem 7], this Monte Carlo maximum likelihood 
estimator is consistent and satisfies the following central limit theorem 

where E is the asymptotic covariance matrix of the normalized Monte Carlo score y'n\l ln ( w) 
and I(w) = Varwt(S) = -\72l(w) denotes the Fisher information matrix at the maximum 
likelihood estimator. Clearly, I(w) can be estimated by 

where as before S1, ... , Sn is a sample from Pwo; an estimator for E is given by 

~ L~=l (t(s) - t(Si)) 2 exp [2t(Sif (wn - wo)] 

{ ~ L~=l exp [t(Si)(wn - wo)l} 2 
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Importance sampling (4.1) relies on a reference value wo that is not too far from the 
maximum likelihood estimator. One could use a grid of such values, with linear interpolation, 
or use a preliminary iteration. The Monte Carlo Newton-Raphson method [26] iteratively 
updates the parameters by 

Wk+l = Wk - '\7 2 ln(wk)-1'\7ln(wk) 

k = 1, 2, ... , where ln(·) denotes the Monte Carlo approximation to the log likelihood (4.1) 
based on a sample of size n from Pwk· Since Vl(wk) = t(s) - Ewkt(S), another possibility is 
to set 

for decreasing step sizes Ek > 0 and single realizations Sk from Pwk, a technique known as 
stochastic approximation [23, 39]. As k tends to infinity, under regularity conditions, Wk 
approaches the maximum likelihood estimator, but no central limit theorem appears to be 
known for either method, although recent hybrid stochastic approximation techniques seem 
promising [5, 16]. Here we use the iterative gradient method, a variation on Newton-Raphson 
that guarantees convergence towards the local optimum in the vicinity of the initial point 
w1 [3, 28], i.e. 

{ ln(Wk + p(wk)Vln(wk)) = maxpEIR ln(Wk + p'\7ln(wk)) 
Wk+l = Wk + p(wk)Vln(wk) 

(4.3) 

where p(wk) is computed using a one-dimensional minimization of the log likelihood ratio. 
With occasional re-sampling to avoid numerical instability, the following algorithm [6, 36] 
was used. 
1. Initialize w1 and k = 1; 
2. Generate a sample of size n from Pwk and compute Vln(wk)i 
3. For every component i = {1, ... , 5} and gradient component 6.i, compute the intervals 
I~ = [w~ - A6i, w1 + A6i] with scalar precision parameter A > 0, and maximize the log 
likelihood ratio in every such interval by golden section search to obtain a new value wk+li 
4. If II Wk+l - wk II> T1, then k = k + 1 and go to the step 2. T1 is a fixed threshold; 
5. If 11 '\7ln(wk+1) - Vln(wk) II> T2, then k = k + 1 and go to the step 3, else stop the 
algorithm. T2 is a fixed threshold. 

5. EXAMPLES 

This section is devoted to a simulation study of the Candy model, a realization of which is 
shown in figure 3. The parameters are given in the figure, writing Wt = log /3, and nt for 
the total number of points. We suppress the dependence of the sufficient statistics on the 
realization for brevity. Throughout, the point space K = [O, 256] x [O, 256], and marks take 
values in [30, 40] x [O, 7r). The connection radius is rc = 1/ ..[ir. The threshold values clmin and 
Tmax are 0.057r and 0.27r respectively. 

In our first experiment, we ran the Metropolis-Hastings algorithm defined by the kernel 
(3.14) with Pb = 0.6, Pd = 0.2, Pc = 0.1, P6 = 0.1 and Pk = 0.0 from an empty initial 
configuration for 2 x 107 iterations, sub sampling the sufficient statistics every 103 steps. 
The birth proposal density b(s, 17) was a mixture of (3.2) and (3.7) with respective weights 
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Model parameters 
Wt= 2.5 
Wj = -11.0 
Ws = -5.5 
Wr = -2.5 
W 0 = -2.5 

Sufficient statistics 
nt = 98 
n1=7 
n8 = 32 
nr = 11 
n0 = 12 

Figure 3: Realization (left) of the Candy model with parameter values as listed in the middle 
table. The observed values of the sufficient statistics are listed in the rightmost table. 

Plb = 0.2 and P2b = 0.8; for the network extension, we used the uniform laws (3.8) and 
PM =PM= 0.5. For a configurations the set A(s) is the union of all the extremities of the 
segments which are not connected and which are further than ~lmax +re to the boundary of 
K. 

The death proposal probabilities were as in (3.3). Regarding the change updates, in all 
cases q(s,si) = 1/n(s), while c(s,si,'TJ) = b(s \ {si},7J) and ce(s,si,O) was as in (3.11) with 
Ce(si8 ) = [O,n-). 

Figure 4 gives an idea of how the topology of typical configurations depends upon the 
model parameters. It can be seen that the connectivity of the network can be controlled by 
the parameters We and Wf, the curvature by w 0,wn and the density by Wt· 

Our second experiment aimed to assess the performance of the Metropolis-Hastings algo­
rithm by investigating the effect of the initial configuration and the various move types on 
the convergence speed. Figures 5 and 6 show realizations of the reference Candy model (pa­
rameters as in figure 3) obtained by the sampler described above, but initialized respectively 
with a realization of a binomial process consisting of 200 line segments and a random network 
rather than an empty configuration. To obtain the random network, we ran the Metropolis­
Hastings sampler using change moves only, i.e. Pb =Pd =Pk = 0.0, Pc = 0.5,pB = 0.5 with 
c(s,si,7J) and ce(s,si,rJ) as before and a realization of a binomial process of 200 points as 
inital state. As for figure 3, we carried out 2 x 107 iterations; the sufficient statistics were sub 
sampled every 103 steps. The estimated means fit, . .. , n0 of the sufficient statistics based on 
the three runs are close, and their evolution during the simulation does not seem to evoke 
doubts about convergence. 

Next, we varied the mixture weights of the various moves. Figure 7 shows a realization and 
time series of the cumulative means for the weights Pb = 0.45, Pd = 0.15, Pc = 0.3, PB = 0.1. 
In figure 8 the modified weights were Pb = 0.7, Pd = 0.1, Pc = 0.1, and PB = 0.1. In both 
cases, Pk= 0, and P1b = 0.2,P2b = 0.8,pM =PM.= 0.5. 

The results indicate that neither the choice of initial state nor that of the mixture weights 
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is crucial in the investigated range. However, p2b should not drop so far as to effectively 
exclude the tailored moves, as we show in figure 9, a simulation in which only uniform birth 
and death moves were used (i.e. Pb= 0.75,pd = 0.25 and Plb = 1.0, P2b = 0.0 =Pc= Pe =Pk)· 

From the plots, it can be observed that after a large number of iterations a connected net­
work emerges, but that the evolution of the sufficient statistics still indicates non-stationarity, 
in contrast to the previous examples. 

To illustrate parameter estimation (section 4), suppose the data consist of the segment 
pattern shown in figure 3. We implemented the procedure explained in section 4, and ini­
tialized the iterative gradient algorithm ( 4.3) with arbitrary initial values listed in the first 
column of figure 10. For the fixed thresholds .A = 10-3 

1 T1 = 3.0 and T2 = 10-6 , we obtained 
the output shown in figure 10 (second column). Taking these values as reference parameter, 
we computed the Monte Carlo log likelihood ratio based on a Metropolis-Hastings run of 
2 x 107 iterations, sub sampling the sufficient statistics every 103 steps. The weights of the 
various moves were the same as in the simulation of the reference model in figure 3. Cross 
sections of the Monte Carlo log likelihood ratio thus obtained are presented in figure 11. The 
maximum of ln(w) is located at wn, which vector is listed in the third column of figure 10. 
The asymptotic standard deviation of the unknown maximum likelihood estimator w, and 
the Monte Carlo standard error (MCSE) are tabulated in figure 12. 

6. CONCLUSION 

In the first part of this paper, we recalled the definition of the Candy model, and studied 
its analytical properties, concentrating on the Ruelle condition, local stability and Markov 
properties. The second part was devoted to statistical inference by Markov chain Monte 
Carlo. We suggested a variety of tailor-made updates, and proved convergence of the resulting 
transition kernel. Finally, we applied the sampler in a parameter estimation scheme, and 
performed a simulation study which shows the importance of a reasonable mix of updates 
that balance quick moves through the state space with tailor build ones for fine tuning and 
enhancement. The relative weights of the moves may be adapted to the model parameters. 
Simple statistics, such as the number of free segments, converge faster than more complex 
ones like the average fraction of doubly connected segments. 

Since the Candy model was conceived in the context of road extraction from satellite 
images, we expect the results presented in this paper to be a starting point in unsupervised 
network extraction. This can be done by adding to the Candy model a term [36, 37] which 
adapts the location of the road network to the data. As road density depends on geographical 
location, we expect to be able to improve the detection by defining a Candy model with 
respect to a non-homogeneous Poisson point process [38]. Another important point is to 
study the feasibility of exact simulation algorithms for the Candy model. 
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Model parameters 
Wt= 2.5 
Wj = -11.0 
W 8 = -4.5 
Wr = -2.5 
Wo = -2.5 

Model parameters 
Wt= 2.5 
Wj = -7.5 
Ws = -5.5 
Wr = -2.5 
Wo = -2.5 

Model parameters 
Wt= 2.5 
Wj = -11.0 
Ws = -5.5 
Wr = -6.5 
Wo = -6.5 

Model parameters 
Wt= 4.0 
Wj = -12.5 
Ws = -7.0 
Wr = -2.5 
W 0 = -2.5 

Sufficient statistics 
nt = 114 
n1=1 
n 8 = 58 
nr = 11 
n0 = 7 

Sufficient statistics 
nt = 127 
n1=68 
n 8 = 20 
nr = 15 
n 0 =4 

Sufficient statistics 
nt = 72 
n1=1 
ns = 24 
nr = 0 
n0 = 0 

Sufficient statistics 
nt = 137 
n1=0 
n 8 = 30 
nr = 14 
n0 = 23 

Figure 4: Realizations (left plot) of the Candy model for a range of parameters values (middle 
table) with observed values of the sufficient statistics (right table). 
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Figure 5: Time series of the cumulative means of the sufficient statistics during a run of 
the Metropolis-·Hastings sampler described in the text. The initial state (a realization of a 
binomial process of 200 segments) is shown in the top left plot, the final configuration in the 
top right figure. 
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Figure 6: Time series of the cumulative means of the sufficient statistics during a run of the 
Metropolis-Hastings sampler described in the text. The initial state is shown in the top left 
plot, the final configuration in the top right figure. 
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Figure 7: Time series of the cumulative means of the sufficient statistics during a run of the 
Metropolis Hastings sampler with mixture weights Pb= 0.45, Pd = 0.15, Pc = 0.3, PB = 0.1. 
The initial state is the empty configuration, the final configuration is plotted in the top figure. 
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Figure 8: Time series of the cumulative means of the sufficient statistics during a run of the 

Metropolis-Hastings sampler with mixture weights Pb = 0.7, Pd = 0.1, Pc = 0.1, PB = 0.1. 
The initial state is the empty configuration, the final configuration is plotted in the top figure. 
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Figure 9: Time series of the cumulative means of the sufficient statistics during a run of 
the Metropolis Hastings sampler with mixture weights Pb = 0.75,pd = 0.25 and Plb = 1.0, 
P2b = Pc = J>e = 0.0. The initial state is the empty configuration, the final configuration is 
plotted in the top figure. 



26 

Initial value Iterative method Monte Carlo MLE 

wi = 1.5 w~ = 2.28 wf = 2.24 
w} = -11.00 ~~: -10.11 Cl}= -10.08 
w~ = -5.5 ws - -5.18 w~ = -5.09 
w~ = -3.5 w~ = -2.22 w~ = -2.23 
w~ = -3.5 w~ = -2.00 w~ = -2.06 

Figure 10: Estimating the parameters for the data of figure 3. 
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Figure 11: Monte Carlo approximation of the log likelihood function for the data of figure 3. 
The X axis represents the variation of a single component. The Y axis represents the values 
of the Monte Carlo log likelihood with all other components of w0 fixed. 
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Asymptotic standard deviation Monte Car lo standard deviation 
0.17 0.004 
0.39 0.002 
0.25 0.003 
0.33 0.002 
0.29 0.004 ______ _, ___________ 

Figure 12: Estimation errors. 
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