(o)

Centrum voor Wiskunde en Informatica

REPORTRAPPORT

RIPE integrity primitives Part Il
Final report of RACE 1040

RIPE Consortium

Computer Science/Department of Algorithmics and Architecture

Report CS-R9325 April 1993

CWI is the National Research Institute for Mathematics and Computer Science. CWI is part
of the Stichting Mathematisch Centrum (SMC), the Dutch foundation for promotion of
mathematics and computer science and their applications. SMC is sponsored by the
Netherlands Organization for Scientific Research (NWO). CWI is a member of ERCIM, the
European Research Consortium for Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 4079, 1009 AB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

RIPE Integrity Primitives
Part Il
Final Report of RACE Integrity Primitives Evaluation (R1040)

B. den Boer, Philips Crypto B.V., Eindhoven (NL)
J.P. Boly, PTT Research, Leidschendam (NL)
A. Bosselaers, ESAT Lab, K.U. Leuven (B)
J. Brandt, Aarhus Universitet, Arhus (DK)
D. Chaum, CWI, Amsterdam (NL)
I. Damgard, Aarhus Universitet, Arhus (DK)
M. Dichtl, Siemens AG, Miinchen (D)
W. Fumy, Siemens AG, Erlangen (D)

M. van der Ham, CWI, Amsterdam (NL)
C.J.A. Jansen, Philips Crypto B.V., Eindhoven (NL)
P. Landrock, Aarhus Universitet, Arhus (DK)
B. Preneel, ESAT Lab, K.U. Leuven (B)

G. Roelofsen, PTT Research, Leidschendam (NL)
P. de Rooij, PTT Research, Leidschendam (NL)
J. Vandewalle, ESAT Lab, K.U. Leuven (B)

Abstract

This is a manual intended for those seeking to secure information systems by applying modern cryptography.
It represents the successful attainment of goals by RIPE (RACE Integrity Primitives Evaluation), a 350 man-
month project funded by the Commission of the European Communities. The recommended portfolio of integrity
primitives, which is the main product of the project, forms the heart of this volume.

By integrity, we mean the kinds of security that can be achieved through cryptography, apart from keeping
messages secret. Thus included are ways to ensure that stored or communicated data is not illicitly modified,
that parties exchanging messages are actually present, and that “signed” electronic messages can be recognised

as authentic by anyone.

Of particular concern to the project were the high-speed requirements of broad-band communication. But the
project also aimed for completeness in its recommendations. As a result, the portfolio contains primitives, i.e.
building blocks, that can meet most of today's perceived needs for integrity.

AMS Subject Classification (1991): 94A60

CR Subject Classification (1991): D.4.6

Keywords & Phrases: Integrity Primitives, Security Services, Integrity Mechanisms, Data Origin Authenti-
cation, Entity Authentication, Access Control, Data Integrity, Non-repudiation, Signature, Key Exchange.
Note: The work described in this report is the result of a research project carried out during the period 1989
to June 1992. While the project received support under the EC RACE programme the results should not be
interpreted as given a view on the Community policy in this area.

Report CSR9325

ISSN 0169-118X

CWwWiI

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

112 RIPE Integrity Primitives

Contents

1

2

7

Introduction

Definitions and Notation

2.1 Introductiono

2.2 General

Description of the Primitive

3.1 Outline of RIPE-MAC1 and RIPE-MAC3
3.2 Expanding the Message
3.3 The Compression Functions compressl and compress3

Use of the Primitive

Security Evaluation

5.1 Claimed Properties
5.2 Algebraic Evaluation

Performance Evaluation

6.1 Software Implementations
6.2 Hardware Implementations

Guidelines for Software Implementation

References

A C Implementation of the Primitive

A.1 The Header File for RIPE-MAC
A.2 C Source Code for RIPE-MAC
A.3 An Example Program

Test Values

.........

..........................

2.3 Representation of Numbers.
2.4 Definitions and Basic Operations
2.5 Functions used by the Primitive

.........

.........

.........

113

114
114
114
114
115
115

117
117
118
118

120

121
121
121

123
123
123

124

126

127
127
130
135

140

RIPE-MAC 113

1 Introduction

This chapter describes the integrity primitives RIPE-MAC1 and RIPE-MAC3, commonly
denoted as RIPE-MAC. Both are so-called message authentication codes (MACs) or
keyed hash functions that, under control of a (secret) key, compress messages of arbi-
trary length to a 64-bit output block, the hashcode of the message. RIPE-MACI uses a
56-bit key and RIPE-MAC3 a 112-bit key. It is conjectured that for someone not in pos-
session of the secret key it is computationally infeasible to produce for a given message
the corresponding hashcode, or to produce, given a message and the corresponding
hashcode, a different message having the same hashcode (i.e., a second preimage).
Moreover it is conjectured that even when a large number of message-hashcode pairs
are known, where the messages are selected by the opponent, it is computationally
infeasible to determine the key or to produce the hashcode of a message not in this set
of selected messages. Keyed hash functions with these properties are used in message
authentication applications providing both data integrity and data origin authentica-
tion, as well as in identification schemes (see Section 4 of this chapter and Part II of
this report).

The RIPE-MAC algorithm is based on the ISO/IEC standard 9797 data integrity
mechanism using a cryptographic check function employing a block cipher [ISO89],
but differs from it with respect to the internal structure of the compression function,
the padding mechanism and the final processing. It consists of three parts. First the
message is expanded to a length that is a multiple of 64 bits. Next the expanded
message is divided up in blocks of 64 bits. A keyed compression function is used to
iteratively compress these blocks under control of the secret key to a single block of 64
bits. For this keyed compression function a keyed one-way function is used based on
the DES [NBS77] or a triple encryption mode of the DES, in order to provide a higher
security level. The numbers at the end of the names RIPE-MAC1 and RIPE-MAC3 refer
to.the number of DES operations in a single application of this compression function.
Finally the output of this iterative compression is subjected to a DES based encryption
with a different key, derived from the key used in the compression.

Since the RIPE-MAC algorithm uses essentially one or three DES operations per
message block, its design is oriented towards implementations using fast DES hardware.
The performance of a pure software implementation will suffer from the low software
performance of the DES. However, as the same key is used throughout the compression,
the slow DES key scheduling has to be done only twice: once for the entire compression
and once for the encryption at the end. Moreover, the inverse initial permutation has -
to be done only once at the end of the MAC calculation. This will help the software
speed.

The structure of this chapter is as follows. In order to avoid any ambiguities in the
description of the primitive, the notation and definitions in this chapter are fixed in
Section 2. Section 3 contains a description of the primitive and in Section 4 the possible
modes of use of the primitive are considered. The security aspects of the primitive
are discussed in Section 5. These include the claimed properties and the algebraic
evaluation of the primitive. Finally, in Section 6 the performance aspects of RIPE-

114 RIPE integrity Primitives

MAC are considered, and Section 7 gives some guidelines for software implementation.

This chapter has two appendices. Appendix A contains a straightforward software
implementation of RIPE-MAC in the programming language C and in Appendix B test
values for the primitive are given.

2 Definitions and Notation

2.1 Introduction

In order to obtain a clear description of the primitive, the notation and definitions used
in this chapter are fully described in this section. These include the representation of
the numbers in the description, and the operations, functions and constants used by
the primitive.

2.2 General

The symbol “:=” is used for the assignment of a value or a meaning to a variable or
symbol. That is, a := b either means that the variable a gets the value of the variable
b, or it means that a is defined as “b”. It will be obvious from the context which
meaning is intended.

The equality-sign “=" is used for equality only. That is, it indicates that the two
entities on either side are equal.

Note that in C-source code, ‘=" denotes assignment, while comparison is denoted
by ‘==".

13

An ellipsis (“...”) denotes an implicit enumeration. For example, “4 =0, 1, ...,
"

n” is meant to represent the sentence “for i = 0, ¢ = 1, and so on, up to i =n”.

2.3 Representation of Numbers

In this chapter a word is defined as a 64-bit quantity. A word is considered to
be a nonnegative integer. That is, it can take on the values 0 through 2% — 1 =
18446744073709551615. Normally the value of a word will be given in hexadecimal
form. In that case the number is written as ‘0x’ followed immediately by at most 16
hexadecimal digits, the most significant first. For example, the hexadecimal represen-
tation of the 64-bit number 7017280452245743464 is 0x6162636465666768.

A sequence of 64n bits wg, w1, . .., Wesn—1 is interpreted as a sequence of n words in
the following way. Each group of 64 consecutive bits is considered as a word, the first
bit of such a group being the most significant bit of that word. Hence,

63
W= weit;2%7 i=0,1,...,n—1 (1)

=0

In this chapter, words are always denoted by uppercase letters and the bits of this
word by the corresponding lowercase letter with indices as in Equation (1).

RIPE-MAC 115

2.4 Definitions and Basic Operations

e A string is a sequence of bits. If X is a string consisting of n bits, then those
bits are denoted from left to right by zq, z1, ..., Zn—2, Tn—1. X is said to be an
n-bit string.

e For two n-bit strings X and Y the 2n-bit string W = X || Y is defined as the
concatenation of the strings X and Y. That is, according to the definition of a
string above,

w;, = I;
Witn = Ui

e A 64-bit string will also be considered as a word according to the representation
defined by Equation (1), and vice versa. That is, if X is an n-bit string, then
the corresponding word is equal to

63
X = in263—1-
=0

Note that the same symbol is used for both the string and the corresponding
word. It will be clear from the context which representation is intended.

e For a nonnegative integer A and a positive integer B, the numbers A div B and
A mod B are defined as the nonnegative integers @, respectively R, such that

A=QB+R and 0<R<B.

That is, A mod B is the remainder, and A div B is the quotient of an integer
division of A by B.

e For two words X and Y, the word U = X @ Y is defined as the bitwise XOR of
X and Y, respectively. Hence, according to Equation (1):

u; := (z; + y;) mod 2, i=0,1,...,63.

2.5 Functions used by the Primitive

RIPE-MAC1 uses a single application and RIPE-MAC3 uses three applications of the
Data Encryption Standard (DES) [NBS77] to map a word under control of a secret
parameter, called the key, onto another word.

A DES encryption operation F(-) will be graphically represented as shown in Fig-
ure 1 and mathematically written as

Y = E(K, X).

The key K is represented as a word, but the eight parity bits are ignored. That is, the
bits k7, k15, k23, k‘3g, k47, k‘55 and k}63 of K = (ko,kl, .. .,]{?63) are not used. Hence K

116 riPE Integrity Primitives

key K (56 out of 64 bits)

l

[~

plaintext X (64 bits) —— E —— ciphertext Y (64 bits)

Figure 1: The basic DES encryption operation.

has in effect only a length of 56 bits. Whenever a reference is made to a 56-bit key K,
the length of the string representing K will be 64 bits of which only 56 are used.

A DES decryption operation D(-) will be graphically and mathematically repre-
sented in the same way as the encryption operation, with F replaced by D. Hence,

D(K,E(K, X)) = X.

RIPE-MACS3 obtains a higher security level than RIPE-MAC1 by replacing the single
DES encryption operation with a triple DES operation F3(-) with two different 56-bit
keys K; and K, [MeMag2]:

Y = E3(K, X) := E(K1, D(K,, E(K1, X)),

where K = K || K, is a single 112-bit key. Once again both K; and K, are represented
as words, but their parity bits are ignored. Whenever a reference is made to a 112-bit
key K, the length of the bit string representing K will be 128 bits of which only 112
are used. This primitive is depicted in Figure 2, together with a shorthand. Note that
for K7 = K, the result of E3(-) is reduced to a single DES encryption with that same
key:

Es{K | K,X) = E(K, X).

Hence an implementation of RIPE-MAC3 can be used to simulate RIPE-MAC1, although
it will of course be slower (see Sections 6 and 7).

K, K, K, K=K | K
X— F > D » FE ——Y X—> E3 —>Y

Figure 2: The triple DES operation, together with a shorthand.

In the description of the RIPE-MAC scheme, the encryption functions F(-) or E;3(-)
can be substituted by other encryption functions. However the security of these new
schemes has to be re-evaluated, as they depend on the properties of the new encryption
function. In this chapter only the DES-based functions E(-) and Es(-) are considered.

RIPE-MAC 117

3 Description of the Primitive

3.1 Outline of RIPE-MAC1 and RIPE-MAC3

RIPE-MAC1 is a keyed hash function that maps a message M of arbitrary length under
control of a 56-bit K onto a 64-bit block RIPE-MAC1(K, M). The basis of RIPE-MAC1
is the keyed compression function compressl(-). This function compresses a two word
input to a single word output under control of the 56-bit key. This function is used in
the following way.

First, the message M is expanded to an appropriate length and represented as a
sequence of words X. Then, starting with a one-word initial vector, the sequence X
is compressed by repeatedly appending a message word and compressing the resulting
two words to one by applying compressl(-) until the message is exhausted. Finally,
this single word result is encrypted with the function E(-) using a 56-bit K' derived
from K. Below this is explained in detail.

Let M = (mg,ms,...,m,—1) be a message of n bits long. The 64-bit message
authentication code RIPE-MAC1(K, M) of M is computed in three steps, see also Fig-
ure 4.

expansion: M is expanded to a sequence X consisting of N words X, X1, ..., Xn-1,
where N = ((n + 64) div 64) + 1. First, the message is expanded such that its
length becomes a multiple of 64 bits. This padding is done even if the original
message length is a multiple of 64 bits. Next, to complete X, an additional word
representing the length of the original message is appended.

compression: Define the word Hy as the all zero sequence:
Hy := 0x0000000000000000

Fori=0,1,...,N — 1, the words H;,; is computed from the words H; and the
message word X; under control of the key K as follows:

H;.1 := compressl(K, H;, X;).

encryption: The hashcode RIPE-MACL(K, M) is equal to the 64-bit block E(K', Hy),
where
K':= K @ 0xf0f0£0£0f0£0£0£0.

That is, every other 4 bits of K are complemented.

RIPE-MAC3 is described in exactly the same way as RIPE-MACL, except that it
uses a 112-bit key. A message M of arbitrary length is compressed under control
of this 112-bit key K by means of the compression compress3(-) to a 64-bit block
Hy. The hashcode RIPE-MAC3(K, M) is equal to the 64-bit block E5(K’, Hy), where
K' = K{ || K3 is derived from K = K; || K» by complementing every other 4 bits of
K. That is,

K. := K; ® 0xf0£f0£f0£f0£f0f0£0£f0, for:=1,2.

118 RIPE Integrity Primitives

3.2 Expanding the Message

Let N = (n div 64) + 2. The n-bit message M = (mq,my, ..., mn_1) is expanded to
the N-word message X = (Xo, X1, ..., Xn-1) in the following three steps.

1. Append a single 1-bit and k = 63 — (n mod 64) 0-bits to the message M:

My =1,
Mpy1 = Mpgg 1=+ 1= Mpyg = 0.

That is, append a single 1-bit and as few (possibly none) 0-bits as necessary to
obtain an expanded message that is a multiple of 64 bits. Note that padding is
done even if the length of M is already a multiple of 64 bits.

2. Transform this (n + k + 1)-bit extended message into the ’-‘iélf;*—l = N — 1 words
Xo, X1, ..., Xn_o according to the conventions defined in Section 2.3. Hence,

63
Xi = Zm64i+j263"j 1= 0, 1, ceey N —2.

=0

3. Complete the expansion by appending the length n of the original message:

Xn_1:=n mod 2%

3.3 The Compression Functions compressl and compress3

For the word H;, the message word X; and the 56-bit key K the word function value
compress1(-) is defined as (see also Figure 3):

compressl(K, H;, X;) = E(K,H;® X;) ® X..

Similarly, for the word H;, the message word X; and the 112-bit key K the word
function value compress3(-) is defined as:

compress3(K, H,;, Xl) = E3(K, Hz ©) X,) D Xi.

RIPE-MAC 119

HZ X, Hi Xz
K (56 bits) —— E K (112 bits) ——b Es
Hipy Hip

Figure 3: Outline of the two compression function compressl(-) (left, used in RIPE-
MAC1) and compress3(-) (right, used in RIPE-MAC3).

Hy X X1 XN-2 Xn-1
| SN T S T I R 2 Y S |

K —»{ compress | | j —» compress | | j —» compress || j —s compress

. | !

H, H, . Hy_1 K'—{ encrypt

Y

RIPE-MAC(K, M)

Figure 4: Outline of RIPE-MAC. The message M is first expanded to X, which is a
multiple of 64 bits long. Then X is processed as in this picture. The final result is
either RIPE-MAC1(K, M) or RIPE-MAC3(K, M), depending on the compression and
encryption function used (respectively compressl and E, or compress3 and F3). The
key K’ is derived from the key K.

120 RIPE integrity Primitives

4 Use of the Primitive

The primitive RIPE-MAC has two intended applications:

e to be used in a data integrity mechanism, to provide both data integrity and
data origin authentication,

e to be used in secret key identification schemes.

Below this is explained in detail.

Use in data integrity mechanisms Before a message is sent, the secret key is used
to compute a MAC or keyed hashcode from it. This value is sent along with the message
and can be checked by the legitimate recipient using the common secret key. If the
calculated hashcode is equal to the original, received value, it is reasonable to assume
that the original hashcode is computed from the same message. This holds, since
computation of another message with the same hashcode is claimed to be infeasible for
someone not in possession of the secret key (see Section 5). Moreover, it is reasonable
to assume that the message is authentic, as it is infeasible for someone who does not
know the secret key to produce a hashcode for a given message (see Section 5). The
latter furthermore allows to link the hashcode to the originator of the information.
Therefore, the primitive provides both data integrity and data origin authentication
(see Part II of this report).

Use in secret key identification schemes Secret key identification schemes allow
parties to establish that their secret key sharing counterpart is actually communicating
with them at a particular moment. One party supplies the other party a random
challenge. The other applies the primitive to the challenge sent and returns the result.
The challenging party does the same and compares the calculated hashcode with the
returned one. If they are the same, it is reasonable to assume that the other party is
in possession of the secret key. Of course the roles can be reversed, so that each party
is able to challenge the other. For this unilateral and bilateral authentication it is
suggested to use, respectively, the RIPE primitives SKID2 and SKID3, for a description
of which we refer to Chapter 6 of this document.

RIPE-MAC 121

5 Security Evaluation

5.1 Claimed Properties

RIPE-MAC1 and RIPE-MAC3 are both claimed to be keyed one-way hash functions.
That is, they should satisfy the following conditions:

1. It is computationally infeasible for someone not in possession of the key K to
compute for a given message M the hashcode RIPE-MAC(K, M). Even when a
large number of pairs {M;, RIPE-MAC(K, M;)} are known, where the M; have
been selected by this opponent, it is computationally infeasible to determine the
key K or to compute RIPE-MAC(K, M') for any M' # M;. This attack is called
an adaptive chosen text attack. A function that satisfies this property is called
keyed.

2. It is computationally infeasible for someone who does not know the key K to
compute, given a message and its corresponding hashcode, a second message
having the same hashcode. That is, given a message M and its correspond-
ing hashcode RIPE-MAC(K, M) it is infeasible to find a message M' # M such
that RIPE-MAC(K, M') = RIPE-MAC(K, M). Such a message is called a second
preimage. A hash function that satisfies this property is called one-way.

By “computationally infeasible” we mean to express the impossibility of computing
something with the technology that is currently available or can be foreseen to become
available in the near future.

It is hard to give a bound beyond which a computation is infeasible, but certainly,
a computation requiring 2% (or 10'®) operations is computationally infeasible. On
the other hand a computation taking 2%° (about 10'?) operations is hard, but not
impossible. .

5.2 Algebraic Evaluation

The security of the RIPE-MAC scheme is intimately related with the security of the
DES. Up to this point in time there is no reason to doubt it. The most effective known
attack on the DES is the so-called ‘differential cryptanalysis’ [BiSh91a, BiSh91b]. This
is a probabilistic attack based on the relation between the XOR of two different inputs
and the XOR’s of the respective intermediate results and outputs. Note that two °
message blocks such that their XOR is preserved by the DES yield the same output of
the compression function, as the XOR’s cancel out. Hence, differential cryptanalysis
is in principle applicable to RIPE-MAC.

To obtain the key K of RIPE-MAC1, an adaptive chosen text attack using differential
cryptanalysis will require in the order of 247 steps. The best one can do to find the
key of RIPE-MAC3 is an exhaustive search requiring 2''2? steps. The best one can do
to obtain the hashcode of a message for RIPE-MAC1 or RIPE-MAC3 is to guess it with
a probability of success of 27%4.

122 RIPE Integrity Primitives

The encryption of the hash value at the end of the compression chain and, to a
lesser extent, the expansion of the original message are essential to prevent a chosen
text attack on the RIPE-MAC scheme. Without these two steps it is possible, given
the hashcodes H,, H, and H; of three messages chosen by the user, to calculate the
hashcode of a fourth message. Denote by RIPE-MAC' the RIPE-MAC scheme without
the encryption and the expansion. Then, given

H, = RIPE-MAC'(K, M)
H, = RIPE-MAC'(K, M)
H; = RIPE-MAC'(K, M, || M3),

where each of the M; is a 64-bit message block, the hashcode of the message M, || (M3
H, & H,) equals

RIPE-MAC'(K, M, || (Ms & Hy & Hy)) = Hy & Hy & Hj.

Moreover the compression functions used in this scheme have the advantage that
they strengthen the one-way character of the hash function: even for someone in
possession of the secret key it requires in the order of 232 steps to find a preimage of
a given value. Here each step essentially consists of an application of compressl or
compress3. It is trivial to produce a so called pseudo-preimage, that is, a preimage
for an initial value different from the (fixed) proposed one. This follows from the fact
that for someone who knows the key K, the scheme is invertible: given H,,1, it is easy
to find a pair (H;, X;). Hence, he can work his way back through all the stages of
the MAC making choices for the message blocks X; and calculating the corresponding
intermediate hashvalues H;, until he reaches an initial value Hy. This value will of
course be different from the proposed initial value (the zero word). Therefore someone
in possession of the secret key can construct a preimage of a given hashvalue with a
so-called ‘meet in the middle attack’, that requires in the order of 232 steps and storage.

RIPE-MAC 123

6 Performance Evaluation

6.1 Software Implementations

The figures for a highly performant software implementation of RIPE-MAC1 and RIPE-
MACS3 are given in Table 1. They use the ideas introduced in Section 7 to improve
the DES performance as well as the performance of the compression functions com-
pressl and compress3. Both a C and a 80386 Assembly language implementation are
considered. The C version has the advantage of being portable (and has been ported,
see Appendix A). It is in this configuration only marginally slower than the Assembly.
language implementation. However, as explained in Section 7, this is not necessarily
the case for other configurations. All versions use the same tables totalling 80K of
memory, and the same keyschedule, which uses no tables and about 6.5K of code. The
figures are for an IBM-compatible 33 MHz 80386DX based PC with 64K cache memory
using WATCOM C/386 9.0 in combination with the DOS/4GW DOS extender. Hence
all code runs in protected mode. The codesize entry in Table 1 refers to the size of the
compression function code.

C Assembly language
Codesize Speed Codesize Speed
RIPE-MACT | 1383 1.27 Mbit/s | 1126 1.50 Mbit/s
RIPE-MAC3 | 3763 0.50 Mbit/s | 3018 0.60 Mbit/s

Table 1: Software performance of RIPE-MAC on a 33 MHz 80386DX based PC with
a 64K memory cache using WATCOM C/386 9.0 in combination with the DOS/4GW
DOS extender. All versions use 80K of data.

6.2 Hardware Implementations

The DES algorithm has been designed for hardware implementations. Hence high
performance is only attainable in hardware. With current submicron CMOS technology
and a clock of 25 MHz a data rate of 90 Mbit/s on chip has been achieved [VHVMSS,
VHVM91, Cry89, Pij92]. A faster clock of 40 MHz would allow for data rates of up to
150 Mbit/s on chip. However at such speeds the critical path does not run through the
DES module, but is situated in the I/O interface. The actual data rates will therefore
be lower, but 50 to 60 Mbits/s is achievable.

124 RIPE integrity Primitives

7 Guidelines for Software Implementation

The C-implementation given in Appendix A can be used as a starting point for
an implementation. Every application of the compression functions compressl(-) or
compress3(-) merely involves, respectively, one or three DES applications. Therefore
the speed of a software implementation of RIPE-MAC will be determined by the effi-
ciency with which a DES encryption can be performed. In the code of Appendix A both
the DES key scheduling and the DES encryption are shown as function calls only. The
software implementation of the DES, let alone an efficient implementation, is beyond
the scope of this document. Only some rough guidelines for such an implementation
are given. As the key scheduling is used only twice for each MAC calculation, or even
less if the same key is used for subsequent MACs, there is no need for an efficient im-
plementation of the key scheduling. Moreover, it is shown how in the implementation
of RIPE-MAC one can get rid of all the inverse initial permutations of the DES, except
for the last one.

The key to fast software implementation of the DES is the use of equivalent repre-
sentations of the algorithm [DDFG83, DDGH84, FeKa89]. In general, the implemen-
tation of these representations is a time-memory trade-off. The more memory is used
for tables, the more instructions can be replaced by a single table lookup, the faster
the code will be. The combination of a number of small tables into a fewer number
of big tables will reduce the number of these table lookups, and hence will further
increase the speed. Moreover, both the initial and inverse initial permutation, as well
as the expansion operation contain a lot of structure. A rearrangement of the bit order
therefore allows for a very efficient implementation of the expansion operation, while
the bit rearrangement can be combined with the already available permutation tables
of initial, inverse initial and P permutation. This way typically about 20% of the time
for a single DES encryption is spent on the initial and inverse initial permutation, while
about 75% is used for running through the 16 rounds. The remaining 5% is spent on
the subroutine call and the initialization of some variables. In the case of triple DES
the inverse initial permutations at the end of the first two DES applications cancel
out against the initial permutations at the beginning of the last two DES applications.
This way typically less than 10% of the time for a triple DES application is spent on
the initial and inverse initial permutation, while about 90% is used for running through
the 48 rounds.

However one must be careful with this analysis. The speed of a computer is (for our
purposes) determined by two things: the speed of the central processing unit (CPU)
and the speed by which memory can be accessed. On many computers nowadays
the speed of the CPU has become so enormous with respect to the speed of memory
access, that a program with extensive memory access actually gets slowed down quite
significantly. This means that a program with more instructions but less memory access
might be faster than a program with less instructions but more memory access. A way
around this problem is the use of a (small) amount of very fast (but very expensive)
memory, so called cache memory. This way programs with extensive memory access,
but which fit in cache memory are significantly faster than programs that only partially

RIPE-MAC 125

can use the benefit of this cache, because the amount of memory they need is larger
than the size of the cache. Hence, a program that is perfect for one computer (in
the sense that it has minimal execution time) is therefore not necessarily optimal for
another configuration. That is, there is no such thing as a single program being optimal
for every configuration.

Almost all of the time of RIPE-MAC1 and RIPE-MACS3 spent on the inverse initial
permutation can be saved by noting that the initial permutation can be moved upwards
over the initial combining XOR towards the inputs H; and X;, while similarly the
inverse initial permutation can be moved downwards over the final combining XOR
towards the output H;yq, see Figure 5. This way the initial permutation of H; cancels
out against the inverse initial permutation at the end of the previous stage. This means
that only the message blocks X; have to be initially permuted, and that only the result
at the end of the RIPE-MAC chain has to be inverse initially permuted to obtain the
hashcode RIPE-MAC1(K, M) or RIPE-MAC3(K, M).

H; X

Lp| 1P]

16 or 48

|

|

[

—D
% 16 or 48 : _ K rounds
, rounds | -
| | Y
| | &
[!]
IP!
Hi+1 Hi+1

Figure 5: Equivalent representations of a RIPE-MAC stage.

126 RIPE Integrity Primitives

References

[BiSh91a]

[BiSho1b]

[Cry89]
[DDFG83]

[DDGHS4]

[FeKag9]

[1SO89]

[NBS77]

[MeMag2]

[Pij02]

E. Biham and A. Shamir, “Differential Cryptanalysis of DES-like Cryp-
tosystems,” Journal of Cryptology, Vol. 4, no. 1, 1991, pp. 3-72.

E. Biham and A. Shamir, “Differential Cryptanalysis of the full 16-round
DES,” Technion Technical Report # 708, December 1991.

Cryptech: CRY12C102 DES chip, 1989.

M. Davio, Y. Desmedt, M. Fosseprez, R. Govaerts, J. Hulsbosch, P. Neut--
jens, P. Piret, J.-J. Quisquater, J. Vandewalle and P. Wouters, “Analytical
Characteristics of the DES,” in: Advances in Cryptology - CRYPTO’83,
D. Chaum ed., Plenum Press, New York-London, pp. 171-202, 1984.

M. Davio, Y. Desmedt, J. Goubert, J. Hoornaert and J.-J. Quisquater “Ef-
ficient hardware and software implementations of the DES,” in: Advances
in Cryptology - CRYPTO’84, G.R. Blakely and D. Chaum eds., Lecture
Notes in Computer Science no. 196, Springer-Verlag, Berlin-Heidelberg-
New York, pp. 144-146, 1985.

D.C. Feldmeier and P.R. Karn, “UNIX password security - Ten years later,”
in: Advances in Cryptology - CRYPTO’89, G. Brassard ed., Lecture Notes
in Computer Science no. 435, Springer-Verlag, Berlin-Heidelberg-New York,
pp. 44-63, 1990.

ISO/IEC International Standard 9797, Data Integrity Mechanism Using a
Cryptographic Check Function Employing a Block Cipher Algorithm, 1989.

National Bureau of Standards, Data Encryption Standard , Federal Infor-
mation Processing Standard, Publication 46, US Department of Commerce,
January 1977.

C.H. Meyer and S.M. Matyas, “Cryptography: a new dimension in data
security,” Wiley & Sons, 1982.

Pijnenburg micro-electronics & software: PCC100 Data Encryption Device,
1992.

[VHVMS88] I. Verbauwhede, J. Hoornaert, J. Vandewalle and H. De Man, “Security

and performance optimization of a new DES data encryption chip,” IEEFE
Journal on Solid-State Circuits, vol. 3, pp. 647-656, 1988.

[VHVMO1] I. Verbauwhede, J. Hoornaert, J. Vandewalle and H. De Man, “ASIC Cryp-

tographic Processor based on DES,” Proceedings of the EuroAsic’91 Con-
ference, Paris, France, May 1991.

RIPE-MAC 127

A C Implementation of the Primitive

This section provides a C implementation of the primitives RIPE-MAC1 and RIPE-
MAC3. It includes an example program that uses these primitives to authenticate
messages with a key chosen by the user. This example program can be used for testing
purposes as well, as it can provide the test values of Appendix B.

Note that this implementation is designed for readability rather than speed. More-
over both the DES key scheduling and the DES encryption are shown as function
calls only. No DES source code is included. Hence the speed of this implementation
will mainly be determined by the quality of the DES implementation used with this:
program. For more details we refer to Section 7.

The functions in this implementation can be used in the following way. Compile the
file ripemac.c (Appendix A.2) with an (ANSI) C compiler. Furthermore, provide a file
that contains the definition of the DES functions keyinit () and endes() according to
the prototypes given in the header file ripemac.h (Appendix A.1), taking into account
the value of NBYTES_KEY defined in the same file. This value is either 8 or 16, and
specifies the length in bytes of the data structure containing the key. Hence a value
of 8 produces a RIPE-MAC1 implementation (56-bit key), and a value of 16 produces
a RIPE-MAC3 implementation (112-bit key) (see comments in ripemac.h for more
details). Next, provide a file that #includes the header file ripemac.h and contains
a main() function calling RIPEMAC() or RIPEMACfile(). The function RIPEMAC()
computes the hashcode of a ‘\0’ terminated string, and the function RIPEMACfile ()
computes the hashcode of a binary file. The file mactest.c, given in Appendix A.3,
can be used for this purpose. Finally link the resulting object files.

This implementation has been tested on a wide variety of environments, so it should
be portable or at least easy to port. The testing environments include VAX/VMS, MS-
DOS both with 16-bit and 32-bit compilers (Intel 80386 processor), RISC ULTRIX,
Apollo DN3500 Domain/OS (Motorola 68030 processor).

A.1 The Header File for RIPE-MAC

/ ek ek sk ke sk ke ke ok s s ks ok ok o ks ke sk o ko ks ks ks ke e o s ko o ok ok o o sk ko s sk o o ok ok sk ok \
* *
Header file for the Implementation of RIPE-MAC

Copyright (c)
Centre for Mathematics and Computer Science, Amsterdam
Siemens AG
Philips Crypto BV
PTT Research, the Netherlands
Katholieke Universiteit Leuven
Aarhus University
1992, All Rights Reserved

Date : 05/06/92
Version : 1.0

X X K K X K K X X X ¥ X X
¥ OH X K K K K X K X K X X K

128 RIPE Integrity Primitives

***/

/*

typedef 8, 16, and 32 bit types, respectively.
adapt these if necessary for your environment

*/

typedef unsigned char byte;
typedef unsigned short word;
typedef unsigned long dword;

/***/

/*

NBYTES_KEY is the length of the key in bytes. It must be either 8 or
16 bytes, for respectively a 56-bit (RIPE-MAC1) or 112-bit key
(RIPE-MAC3). The rightmost bit of each byte (parity bit) is ignored.
The functions keyinit() and endes() should be accordingly adapted.
That is, for NBYTES_KEY == 8 keyinit() should install a single DES-key
and endes() should perform a single DES encryption with this key.

For NBYTES_KEY == 16 keyinit() should install two DES-keys and endes()
should perform consecutively a DES encryption with the first key,

a DES decryption with the second key and once again a DES encryption

with the first key.
*/
#define NBYTES_KEY 8

/***/

/* Data strucure for RIPE-MAC computation */

typedef struct {
byte key[NBYTES_KEY];
byte buffer[8];
dword count[2];
byte done;

} MACstruct, *MACptr;

/%
/%
/%
/*

Holds 56 or 112-bit key of MAC computation */
Holds 64-bit result of MAC computation */

Holds number of 64-bit blocks processed so far */
Nonzero means computation finished */

/***/

/* prototypes of DES functions */

void keyinit(byte *key);
/*

installs a single or two new DES key. That is, keyinit() calculates
the round keys for one or two DES keys. key is a pointer to an
NBYTES_KEY-byte array. The parity bits are ignored.

*/

void endes(byte *inp, byte *outp);

/*

a single DES encryption or a triple DES encryption-decryption-encryption
operation with the key(s) installed by keyinit(). inp points to an
8-byte array containing the plaintext, outp points to an 8-byte array
that will contain the ciphertext.

RIPE-MAC

*/
/***/

/* prototypes of RIPE-MAC functions */

void MACinit(MACptr MACp);

void MACupdate(MACptr MACp, byte *X, dword nrofblocks);
void MACfinal (MACptr MACp, byte *X, word count);

byte *RIPEMAC(byte *message, byte *key);

byte *RIPEMACfile(char *fname, byte *key);

[*dkkkkkkkkkkkkkkkkkkk end of file ripemac.h st ke e oo ok ok K K K K 3 kK ok o ok ok sk ook ok sk ok sk ok ok /

129

130 RIPE Integrity Primitives

A.2 C Source Code for RIPE-MAC

[etk ek ek s sk ok sk ok stk ok sk ko sk sk kel ek s ko sk sk ook ok Rk sk sk sk ek ook ke \
* *
ripe-mac.c

A sample C-implementation of the RIPE-MAC message
authentication code.

Copyright (c)
Centre for Mathematics and Computer Science, Amsterdam
Siemens AG
Philips Crypto BV
PTT Research, the Netherlands
Katholieke Universiteit Leuven
Aarhus University
1992, All Rights Reserved

Date : 05/06/92
Version : 1.0
* *

¥ K K K K X K X K K K K K X ¥ *
X O X K K K X K X K X X X X ¥ ¥

***/

/* header files */
include <stdio.h>
include <stdlib.h>
include <string.h>
include "ripemac.h"

/***/

void MACinit (MACptr MACp)
/*
Initialize MAC computation.
*/
{

int i;

keyinit (MACp->key) ;
for (i=0; i<8; i++)
MACp->buffer[i] = 0;
for (i=0; i<2; i++)
MACp->count[i] = 0;
MACp->done = O;
}

/***/

void MACupdate (MACptr MACp, byte *X, dword nrofblocks)
/*
compresses nrofblocks 8-byte message blocks contained in X.
The result is returned in MACp->buffer.
The MAC calculation should be finished up with a call to MACfinal().

*/

¥

register int j;
dword i;
byte H[8];

/* Initialize 8-byte buffer H[8] */
for (i=0; i<8; i++)
H[i] = MACp->buffer[il;

for (i=0; i<nrofblocks; i++) {

/* the compression function */
for (j=0; j<8; j++)
H[j1 ~= X[j];
endes(H, H);
for (j=0; j<8; j++)
H[j1 ~= x[j];

for (i=0; i<8; i++)
MACp->buffer[i] = H[il;

/* Add count to MACp->count */

if (nrofblocks + MACp->count[0] < MACp->count[0])
/* overflow to msdw of MACp->count */

MACp->count [1]++;
MACp->count [0] += nrofblocks;

RIPE-MAC 131

/***/

void MACfinal (MACptr MACp, byte *X, word count)

/*

*/

Put bytes from X into XX and pad out; compress this last block.
count contains number of message bits in last block (between zero

63, inclusive).

word i, cbit, cbyte;
byte XX[8], mask;
dword 1s32, ms32;

if (count == 0 && MACp->done) return;

if (MACp->domne) {

printf ("Error: MACfinal already domne.\n");

return;

132 RIPE Integrity Primitives

/* Add count to MACp->count */
ms32 = (MACp->count[1] << 6) | (MACp->count[0] >> 26);
1s32 = (MACp->count[0] << 6) + count;
/* Process data */
if (count == 64) {
/* Full block of data to handle */
printf("Error: MACupdate should be called.\n");
return;
} else if (count > 64) {
/* Check for count too large */
printf ("Error: MACfinal called with illegal count value %d.\n",count) ;
return;
} else {
/* partial block -- must be last block so finish up */
cbyte = count >> 3;
cbit = count & 7;
for (i=0; i<=cbyte; i++)

Xx[il = X[il;
for (i=cbyte+l; i<8; i++)
XX[i] = 0;

mask = 1 << (7 - cbit);
XX[cbyte] = (XX[cbyte] | mask) & ~(mask - 1);
MACupdate (MACp, XX, 1UL);

/* final block with length */
XX[3] = (byte)ms32;

XX[2] = (byte) (ms32 >> 8);
XX[1] = (byte) (ms32 >> 16);
XX[0] = (byte) (ms32 >> 24);
XX[7] = (byte)1ls32;

XX[6] = (byte)(1s32 >> 8);
XX[5] = (byte) (1s32 >> 16);

XX[4] = (byte) (1832 >> 24);
MACupdate (MACp, XX, 1UL); .

/* encrypt final block with different key */
for (i=0; i<NBYTES_KEY; i++)
MACp->key[i] ~= O0xFO;
keyinit (MACp->key) ;
endes (MACp->buffer, MACp->buffer);

MACp->done = 1;
)

/***/

byte *RIPEMAC(byte *message, byte *key)

/*
computes RIPE-MAC(message,key) and returns the result as
an array of 8-bytes.

*/

{

}

RIPE-MAC

word i;
dword length;
MACstruct MAC;
static byte mac[8];

length = (dword)strlen((char*)message);
for (i=0; i<NBYTES_KEY; i++)
MAC.key[i] = keyl[il;

MACinit (&MAC) ;
MACupdate (&MAC, message, length >> 3);
MACfinal (§MAC, message+(length & OxFFFFFFF8UL), 8%(length & 0x7));

for (i=0; i<8; i++)
mac[i] = MAC.buffer[i];
return mac;

/***/

byte *RIPEMACfile(char *fname, byte *key)

/*

*/

computes RIPE-MAC(contents of file <fname>,key) and
returns the result as an array of 8-bytes.
The contents of the file are interpreted as binary data.

word i;

dword length;
MACstruct MAC;

static byte mac[8];
byte data[1024];
FILE *f;

if ((f = fopen(fname,"rb")) == NULL) {
fprintf (stderr, "RIPEMACfile: cannot open file \"%s\".\n",fname);
exit(1);

}

for (i=0; i<NBYTES_KEY; i++)
MAC.key[i] = key[il;

MACinit (&MAC) ;
do {
length = fread(data, 1, 1024, f);
MACupdate (§MAC, data, length >> 3);
} while (length && ((length & 0x7) == 0));
MACfinal(&MAC, data+(length & O0x7F8UL), 8%(length & 0x7));

fclose(f);

for (i=0; i<8; i++)
mac[i] = MAC.buffer[i];

133

134 RIPE Integrity Primitives

return mac;

}

[Rkkkkkkkkkkkrkrkkkkk end of file ripemac.c ¥kkkkkkkskskskksksdkkkkkkkiokikk/

RIPE-MAC 135

A.3 An Example Program

Below an example program is given. It calls both RIPEMAC and RIPEMACfile. By
means of command line options several different tests can be performed (see comment
to main() function). Test values for both RIPE-MAC1 and RIPE-MAC3 can be found
in Appendix B.

/***\

* *
* mactest.c *
* *
* Test file for ripemac.c, a sample C-implementation of the *
* RIPE-MAC message authentication code. *
* *
* Copyright (c) *
* Centre for Mathematics and Computer Science, Amsterdam *
* Siemens AG *
* Philips Crypto BV *
* PTT Research, the Netherlands *
* Katholieke Universiteit Leuven *
* Aarhus University *
* 1992, All Rights Reserved *
* *
* Date : 056/06/92 *
* Version : 1.0 *
* *

***/

/* header files */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include "ripemac.h"

#define TEST_BLOCK_SIZE 4000UL /* length of buffer, in blocks */
#define TEST_BLOCKS 1000000L /* maximum number of test blocks */

#ifdef CLOCKS_PER_SEC
#define CLK_TCK CLOCKS_PER_SEC
#endif

/***/

void MACtimetrial(void)
/*
A time trial routine, to measure the speed of RIPE-MAC.
It measures processor time required to authenticate a message
of nrofblocks (<= TEST_BLOCKS) blocks of 64 bits.
*/
{
word i, j, rounds, remainder;
byte *X;

136 RIPE Integrity Primitives

dword nrofblocks;
MACstruct MAC;
double time_mac;

clock_t t1, t2;

do {
printf ("\nEnter number of input blocks (<=%lu): ", TEST_BLOCKS);
scanf ("%1lu", &nrofblocks);

} while (nrofblocks > TEST_BLOCKS);

srand (time (NULL)) ;

for (i=0; i<NBYTES_KEY; i++)
MAC.key[i] = (byte) (rand() >> 7);
MACinit (&MAC) ;
printf ("\nKey: ");
for (i=0; i<NBYTES_KEY; i++)
printf ("%02x", MAC.key[il]);
printf ("\n");

rounds = nrofblocks/TEST_BLOCK_SIZE;
remainder = nrofblocks % TEST_BLOCK_SIZE;
i = (rounds ? TEST_BLOCK_SIZE : remainder)*8;
if ((X = (byte *) malloc(i)) == NULL) {
fprintf (stderr,
"MACtimetrial: Could not allocate %u bytes - aborting\n", i);
exit(1);

time_mac = O;
for (j=0; j<rounds; j++) {
for (i=0; i<8*TEST_BLOCK_SIZE; i++)
X[i] = (byte) (rand() >> 7);

t1. = clock();
MACupdate (&MAC, (byte *)X, TEST_BLOCK_SIZE);
t2 = clock();

time_mac += (double) (t2-t1);
}
for (i=0; i<8*remainder; i++)
X[i] = (byte) (rand() >> 7);
t1 = clock();
MACupdate (&MAC, (byte *)X, remainder);
MACfinal (&MAC, (byte *)X, 0);
t2 = clock();
time_mac += (double) (t2-t1);
free(X);

time_mac /= (double)CLK_TCK;

printf ("\nRIPE-MAC%1d time trial results:\n", (NBYTES_KEY-4) >> 2);
printf("Test input processed in %g seconds\n", time_mac);

time_mac /= nrofblocks;

printf("Elapsed time per block: %g sec\n", time_mac);
printf("Characters processed per second: %lu.\n", (dword)(8/time_mac));

RIPE-MAC

printf("mac: ");
for (i=0; i<8; i++) printf("%02x", MAC.buffer[il]);
printf("\n");

}

/***/

void MACtestsuite(void)
/*
standard test suite
*/
{
byte key[NBYTES_KEY], temp;
byte *mac;
int 1i;

printf ("\nRIPE-MAC/,1d test suite results:\n", (NBYTES_KEY-4) >> 2);

printf("\nkey: ");

temp = 0x02;

for (i=0; i<NBYTES_KEY; i++) {
key[i] = temp | 0x10;
printf ("%02x", key[il);
temp += 0x22;
if (1 ==7)

temp = Ox8A;
}
printf("\n");

mac = RIPEMAC((byte *)"", key);
printf("\nmessage: \"\" (empty string)\mmac: ");
for (i=0; i<8; i++)

printf("%02x", mac[il);
printf("\n");

mac = RIPEMAC((byte *)"a", key);
printf ("\nmessage: \"a\"\mnmac: ");
for (i=0; i<8; i++)

printf ("%02x", mac[i]);
printf("\n");

mac = RIPEMAC((byte *)"abc", key);
printf("\nmessage: \"abc\"\nmac: ");
for (i=0; i<8; i++)

printf ("%02x", mac[il);
printf("\n");

mac = RIPEMAC((byte *)'"message authentication code", key);
printf("\nmessage: \"message authentication code\"\mmac: ");
for (i=0; i<8; i++)

printf ("%02x", mac[i]);
printf("\n");

137

138 RIPE integrity Primitives

mac = RIPEMAC((byte *)"abcdefghijklmnopgrstuvwxyz", key);
printf("\nmessage: \"abcdefghijklmnopgrstuvwxyz\"\nmac: ");
for (i=0; i<8; i++)

printf ("%02x", mac[i]);
printf("\n");

mac = RIPEMAC((byte *)"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijkl\
mnopqrstuvwxyz0123456789", key);
printf("\nmessage: alphabet in uppercase, in lower case and digits\
0 through 9\nmac: ");
for (i=0; i<8; i++)
printf ("%02x", mac[i]);
printf("\n");

mac = RIPEMAC((byte *)"123456789012345678901234567890123456789\
01234567890123456789012345678901234567890", key) ;
printf("\nmessage: 8 times \"1234567890\"\nmac: ");
for (i=0; i<8; i++)
printf ("%02x", mac[il);
printf("\n");
}

/***/

main(int argc, char *argv([])
/*
main program. It calls one or more of the test routines depending
on command line arguments:
filename prints filename and mac for key chosen by the user
-sstring prints string and mac for key chosen by the user
-t performs time trial
-X executes a standard suite of test data
*/
{
word i, j, temp;
byte *mac, key[NBYTES_KEY];

if (argec == 1) {
printf ("For each command line argument in turn:\n");
printf(" filename prints filename and mac\n");

printf(" -sstring prints string and mac\n");
printf(" -t performs time triall\n");
printf(" -x executes a standard suite of test data\n");
} else {
for (i=1; i<argc; i++)
if (argv[i][0] == ’-’ && argv[il[1] == ’s’) {

printf("\nEnter key (%d bytes, in hexadecimal): ",
NBYTES_KEY) ;
for (j=0; j<NBYTES_KEY; j++) {
scanf ("%2x", &temp);
key[j] = (byte)temp;

RIPE-MAC

printf ("\nkey: ");
for (j=0; j<NBYTES_KEY; j++)
printf ("%02x", key[jl);
printf ("\nmessage: %s", argv[i]+2);
mac = RIPEMAC((byte *) (argv[il+2), key);
printf ("\nmac: ");
for (j=0; j<8; j++)
printf ("%02x", mac[jl);
}
else if (strcmp(argv[i],"-t") == 0)
MACtimetrial();
else if (strcmp(argv[i],"-x") == 0)
MACtestsuite();
else {
printf("\nEnter key (%d bytes, in hexadecimal): ",
NBYTES_KEY) ;
for (j=0; j<NBYTES_KEY; j++) {
scanf ("%2x", &temp);
key[j]l = (byte)temp;
}
printf ("\nkey: ");
for (j=0; j<NBYTES_KEY; j++)
printf ("%02x", key[jl);
printf("\nmessagefile (binary): %s", argv[il);
mac = RIPEMACfile(argv[i], key);
printf("\nmac: ");
for (j=0; j<8; j++)
printf("%02x", mac[j]);

}
return;

}

[xFssdokskskkokdokokkkkkkkkkk end of file mactest.c sokkskkksokkiokskokokkskokkkkokkkskokkk /

139

140 RIPE integrity Primitives

B Test Values

The following test values were obtained by running mactest -x. The first set is for
RIPE-MAC1 (56-bit key, NBYTES KEY = 8), while the second set is for RIPE-MAC3
(112-bit key, NBYTES_KEY = 16).

RIPE-MAC1 test suite results:
key: 123456789abcdef0

message: "" (empty string)
mac: abc10317dc5aa355

message: "a"
mac: 598298ba39e8265b

message: "abc"
mac: 121db704b52f71aa

message: "message authentication code"
mac: 6288beba08a21bb9

message: "abcdefghijklmnopqrstuvwxyz"
mac: dd7a2a779098ac52

message: alphabet in uppercase, in lower case and digits O through 9
mac: 1ed27286699c3adb

message: 8 times "1234567890"

mac: ce4620b8fd9da619

RIPE-MAC3 test suite results:

key: 123456789abcdef09abcdef012345678

message: "" (empty string)
mac: 25159cblec098e62

message: "a'
mac: 55dc3747024f4fad

message: "abc"
mac: ce6d95e85f723caf

message: "message authentication code"
mac: d6661f40954ed8ed

message: "abcdefghijklmnopqrstuvwxyz"
mac: 693181c24eal85ae

message: alphabet in uppercase, in lower case and digits O through 9
mac: a87d471ba312d3fd

RIPE-MAC 141

message: 8 times "1234567890"
mac: 6ad4c6e7716ef7da3

Chapter 5

IBC hash

144 RIPE integrity Primitives

Contents

1

2

Introduction

Definitions and Notation

2.1 Introduction L
2.2 General e
2.3 Representation of the Numbers
2.4 Definitions and Basic Operations
2.5 Symbols Used by the Primitive

Description of the Primitive
Use of the Primitive

Security Evaluation

5.1 Claimed Properties
5.2 Algebraic Evaluation

Performance Evaluation

6.1 Software Implementations
6.2 Hardware Implementations

Guidelines for Software Implementation

C Implementation of the Primitive

A.1 C Source Code for IBChash
A.2 Program for Generating Test Programs
A3 Sample Key Files

Test Values

.........

.........

.........

.........

145

146
146
146
146
146
147

147

149

150
150
150

151
151
151

152

153
154
163
164

164

IBC hash 145

1 Introduction

This chapter describes the integrity primitive IBC hash. IBC hash is a keyed hash
function that maps messages to hashcodes. This function is provably secure: the
probability to find the correct hashcode of a message, without knowing the secret key,
is proven to be close to optimal (i.e., exponentially small in the hashcode size), even
when the hashcode of one other message is known. Furthermore, this probability is
independent of the computing power used.

IBC hash can be used for message authentication between parties who share a
secret key. The party who wants to send a message first computes the hashcode of this
message. It then sends both message and hashcode—a so called tagged message—to
the other party. The receiver of this tagged message also computes the hashcode of the
message and verifies that the outcome equals the received hashcode. If they are equal,
he has good reason to believe that the message is genuine, i.e., the message originated
from the party with whom he shares the key and was not modified in transit.

The design of the IBC hash function is such that it is both provably secure and
efficient. The basic operation is a simple modular reduction (giving the efficiency)
modulo a secret modulus (giving the security). Furthermore, the function is easy to
describe and understand.

On the other hand, there are also three disadvantages for IBC hash, the first of
which is inherent in provably secure schemes. As every tagged message reduces the
number of possible keys, each key can be used a limited number of times, but if you
only want cryptographic security you can just generate keys; for IBC hash a key can
be used for only one authentication.

Also, once the size of the hashcode is fixed, one has implicitly put a maximum to
- the message size, although it is much larger than the size of the hashcode. The last
disadvantage is in the number n of bits in the hashcode. To achieve a security level
of say 27%, n has to be larger than 64. Ideally the probability to find the correct
hashcode of a message is 27" (i.e., one divided by the number of possible hashcodes).
But IBC hash features a key size twice as long as the hashcode size and then, for long
messages, this probability is theoretically impossible.

Note that anyone in possession of the key can find messages that hash to a given
hashcode; therefore one should trust everyone in possession of the key.

The structure of this chapter is as follows. In order to avoid any ambiguities in the
description of the primitive, the notation and definitions in this chapter are fixed in
Section 2. Section 3 contains a description of the primitive and in Section 4 the possible
modes of use of the primitive are considered. The security aspects of the primitive
are discussed in Section 5. These include the claimed properties and the algebraic
evaluation of the primitive. Finally, in Section 6 the performance aspects of IBC hash
are considered, and Section 7 gives some guidelines for software implementation.

This chapter has two appendices. Appendix A contains a straightforward software

146 RIPE Integrity Primitives

implementation of IBC hash in the programming language C and in Appendix B test
values for the primitive are given.

2 Definitions and Notation

2.1 Introduction

In order to obtain a clear description of the primitive, the notation and definitions used
in this document are fully described in this chapter. These include the representation
of the numbers in the description, and the operations, functions and constants used by
the primitive. -

2.2 General

The symbol “:=" is used for the assignment of a value or a meaning to a variable or
symbol. That is, a := b either means that the variable a gets the value of the variable
b, or it means that a is defined as “b”. It will be obvious from the context which
meaning is intended.

The equality-sign “=" is used for equality only. That is, it indicates that the two
entities on either side are equal.

Note that in C-source code, ‘=" denotes assignment, while comparison is denoted
by ‘==".

An ellipsis (“...”) denotes an implicit enumeration. For example, “¢ =0, 1, ...,
n” is meant to represent the sentence “for i = 0, ¢ = 1, and so on, up to i =n”.

2.3 Representation of the Numbers

A sequence of n bits by, by, ..., by—1 corresponds to a nonnegative integer B as follows:
n—1)
B:=)Y b2 (1)
=0

Hence the first bit by of the sequence is the most significant bit of B.

2.4 Definitions and Basic Operations

e A string is a sequence of bits. If X is a string consisting of n bits, then those
bits are denoted from left to right by zo, z1, ..., Tn-2, Tn-1.

e For a string X the length of X is denoted as |X|. That is, |X| is the number of
bits in the string X. If | X| = n, then X is said to be an n-bit string.

IBC hash 147

e For two strings X and Y of length | X| = n respectively |Y| = m, the (n+m)-bit
string W = X||Y is defined as the concatenation of the strings X and Y. That
is

w; = T; 1=0,1,...,n—1

Witn Y i=0,1,...,m—1

e For an integer N, the length of N is defined as the length of the shortest binary
representation of N. This is the representation with most significant bit equal
to 1. (All “leading zeros” are removed.) The length of N is denoted as |N]|.

e For a nonnegative integer A and a positive integer B, the numbers “A div B”
and “A mod B” are defined as the nonnegative integers @, respectively R, such
that

A=@QB+R and 0<R<B.

That is, “A mod B” is the remainder, and “A div B” is the quotient of an integer
division of A by B.

e For two nonzero integers X and Y we say that X divides Y if Y mod X = 0.
That is, if Y is a multiple of X.

e A prime is an integer greater than 1 that is divisible only by 1 and by itself.

2.5 Symbols Used by the Primitive
o M message, input for IBC hash function,
o X expanded message,
o T hashcode, output of IBC hash function,
om message length in bits (|M| = m),
on hashcode length in bits (|7] < n),
o m* upper bound for m (m < m*),
o 63 — (m + 63 mod 64),
o s upper bound for length of m* (m* < 2°),
ot upper bound for n (n < t),
o P n-bit prime greater than 2771,
o V n-bit number,
e Hpy IBC hash function with key (P, V),
e Py ,P; impersonation and substitution probability, respectively.

3 Description of the Primitive

The IBC hash function maps messages of variable size to hashcodes of fixed size. Let
m and n denote the length in bits of messages and hashcodes, respectively. For the
description of the function also the numbers m*, s and ¢ are used. The number m* is

148 RIPE integrity Primitives

the maximum value of m as allowed by the security evaluation (for given n, see section
5) and s is a fixed number of bits that are used to describe m* (thus m < m* < 2°);
¢ is a fixed upper bound for the number of bits in a hashcode (hence n < t). The
numbers s and ¢ are both required to be multiples of 64 to make programming the
function more efficient. In practice one chooses them as small as possible within these
constraints: s and ¢ are the least multiple of 64 larger than or equal to [log, m*] and
n, respectively.

A key for the hash function is a pair of numbers (P, V), where P is a prime such
that 27! < P < 2™ and 0 < V < 2". To compute the hashcode T of a message M, M
is first expanded to a number X with a length that is a multiple of 64 bits and that
contains m and then compressed using the key.

1. Expansion of an m-bit message M = (bp, b1, ..., bm-1) to the number X:

e Append a string of zero bits to the message such that the expanded message
has a length that is a multiple of 64 bits (if the length is already a multiple
of 64 bits, then nothing is concatenated).

Thus, if [= 63 — (m + 63 mod 64) > 0, then
bnyi =0 fori=0,1,...,[—1.

e Append s bits containing the length of the original message in bits. Thus,
if m = Y522 m; 257! with 0 < m; < 2, then

bpiiei :=m; fori=0,1,...,8—1.
= Anpend t zero bits. Thuo
bm+l+s+i =0 fori=0,1,...,t—1.

e The number X is now defined as the number corresponding to the expanded
sequence

(bOa bl, o 7bma sy bm+l, R bm+l+sa s abm+l+s+t)-
Observe that the length of X is a multiple of 64 bits.

Note that if Y is the number corresponding to the string M, then the number X
is also given by the equation

X = (Y 2% 4m) 2,
2. Compression: the integer X is first reduced modulo P and the result is added to

V modulo 2™. Thus
Hp,v = [(X mod P) + V] mod 2".

Now the n-bit hashcode T of message M is the number Hpy:
T:= Hp,v.

IBC hash 149

4 TUse of the Primitive

The primitive IBC hash has two intended applications:

e to provide both data integrity and data origin authentication,

e to be used in identification schemes.

Before a message is sent, the secret key is used to compute a keyed hashcode
(sometimes also called MAC or tag) from it. This value is sent along with the message
and can be checked by the legitimate recipient using the common secret key. If the
calculated hashcode is equal to the received value, it is reasonable to assume that the
original hashcode was computed from the same message. This holds, since computation
of another message with the same hashcode is proven to be infeasible for someone not
in possession of the secret key (see next section). Moreover, it is reasonable to assume
that the message is authentic, as it is infeasible for someone who does not know the
secret key to produce a hashcode for a given message. The latter furthermore allows
linking of the hashcode to the originator of the information. Therefore, the primitive
provides both data integrity and data origin authentication.

Each key may be used only once however, because two tagged messages made with
the same key may reveal it. Thus each authentication requires its own secret key and
before the sender and receiver can communicate with each other, they must agree on
the key. Note that the provable security is only guaranteed if such a key exchange is also
~ performed in a provably secure way and not by some way that is only computationally
secure. This implies that IBC hash is better suited for few (long) messages rather than
for many (short) messages. Furthermore, the key must be kept secret, because anyone
in possession of the key can not only compute the hashcode for any message, but can
also compute (many) messages that hash to any given hashcode.

Another application for the primitive is identification schemes, which allow parties
to establish that their key sharing counterpart is actually communicating with them
at a particular moment. One party supplies the other party with a random challenge. -
The other party applies the primitive to the challenge sent, and returns the result.
The challenging party does the same and compares the calculated hashcode with the
returned one. If they are equal, it is reasonable to assume that the other party is in
possession of the secret key. Of course the roles can be reversed, so that each party
is able to challenge the other. For this unilateral and bilateral authentication it is
suggested to use, respectively, the RIPE primitives SKID2 and SKID3 (see Chapter 6).
However note that in SKID3 the hash function is used twice, and therefore—when using
IBC hash—two different keys must be used.

150 RIPE Integrity Primitives

5 Security Evaluation

5.1 Claimed Properties

In the usual model for authentication there are three parties: a sender, a receiver and
a tamperer. The sender wants to communicate some message to the receiver, using
a public communication channel; the receiver wants to be sure that the message he
receives did come from the sender and was not modified in transit. On the other
hand, the tamperer wants to deceive them by getting a message of his own accepted
by the receiver. Suppose that the tamperer has the ability to insert messages into the
channel and/or to modify existing messages. The first ability is called impersonation
and the second substitution. Let P, and P; denote the probability that the tamperer
can deceive the sender/receiver by impersonation and substitution, respectively.

The IBC hash function is provably secure: the probabilities for both abilities are
exponentially small in n. That is:

1
Py = o and
z t
P, < 3.m_+%f__

5.2 Algebraic Evaluation

In [CHB92] it is proven that a necessary and sufficient condition for a tamperer to insert
or substitute a message is that he knows a non-zero multiple of the prime number in
the used key. Furthermore, this multiple must also be less than 28(m*+s*%) and this
gives the equality and inequality of the previous section. Note that the probability to
substitute a message is maximal if m is maximal (m = m*), but that this probability is
much less for small messages. By choosing n and m* appropriately, we obtain that large
messages can be hashed while keeping the impersonation and substitution probabilities
as small as one may require. If m* is much larger than [+s+t, which is usually the case
when using hash functions, then a simple upper bound for the substitution probability
is P, <m*-2-("2),

Suggested parameter values.

Ifn=t=64, s =64 and m* = 232, then we have Py = 2% and P, <3-g§%‘§41i <
9-30 Thus the substitution probability is less than 273°, while messages can be up to
232 bits (or 2° = 512 Megabytes) long.

The substitution probability can be reduced by increasing n and/or decreasing m*.
Furthermore, increasing n allows that m* can be increased greatly: an upper bound
of 2760 for the substitution probability is obtained by choosing n and m* such that
n — 2 — log,m* = 60. For example n = 128, m* = 2% and n = 96, m* = 2** both
have P; < 279 while authenticating messages of 2** Megabytes and 2'* = 2048
Megabytes, respectively.

IBC hash 151

These suggestions are recapitulated in the table below.

n m* P() Pl
64 232 2—64 2—30
96 234 2—96 2—60
128 266 2—128 2-—60

6 Performance Evaluation

6.1 Software Implementations

The basic operation of IBC hash is a modular reduction. In practical systems the
modulus will be 64 or 128 bits long. The argument of the modular reduction is the
expanded message and will normally be several orders of magnitude larger as the
modulus. The most efficient algorithm will therefore be the classical algorithm as
described in [Knu81]. The implementation of this modular reduction can be very
compact.

Both a C and a 80386 Assembly language implementation are considered. The C
version has the advantage of being portable. The difference in performance between
the C and the Assembly language version is mainly due to the general nature of the
C version and the ability to use 64-bit integers in Assembly. The C version can be
used for moduli of arbitrary length, while its Assembly counterpart is restricted to a
64-bit modulus. The figures in Table 1 are for an IBM-compatible 33 MHz 80386DX
based PC with 64K cache memory using WATCOM C/386 9.0 in combination with
the DOS/4GW DOS extender. Hence all code runs in protected mode. The C version
of the compression function uses about 0.5K of memory, while the Assembly version is
about half as large. Doubling the modulus will about half the speed.

C Assembly
| IBC hash (64-bit modulus) | 305 Kbit/s | 5.27 Mbit /s

Table 1: Software performance of IBC hash with a 64-bit modulus on a 33 MHz
80386DX based PC with a 64K memory cache using WATCOM C/386 9.0 in combi-
nation with the DOS/4GW DOS extender.

6.2 Hardware Implementations

The implementation of a modular reduction with a 64-bit or 128-bit modulus can be
extremely fast in hardware. It is expected that a speed of up to a 100 Mbit/s is
achievable. However it must be borne in mind that at such speeds the critical path is
situated in the I/O interface. RSA implementations are existing alternatives, as they

152 RIPE Integrity Primitives

normally provide a modular reduction in their instruction set. The speed will however
be reduced with several orders of magnitude.

For a 64-bit modulus the modular reduction can be very efficiently implemented on
32-bit architectures. The modulus is kept in two registers. The message is then reduced
as follows. First, the next 32-bit message bits are appended to the 64-bit intermediate
reduction result. Next, this 96-bit number is divided by the most significant 32 bits
of the modulus. The result of this division is checked by a remultiplication and if
necessary adapted. The same ideas can be used to implement a 128-bit reduction.

7 Guidelines for Software Implementation

The implementation in the C language given in Appendix A can be used as a guideline
for software implementations. It also provides the test values given in Appendix B.
The basic operation of IBC hash is a modular reduction of the expanded message
modulo an n-bit integer. The value of n will be typically 64 or 128, but other values
are possible. As the message will normally be several orders of magnitude larger as

the modulus, the most efficient algorithm will be the classical algorithm as described
in [Knu81].

References

[CHB92] D. Chaum, M. van der Ham and B. den Boer, “A provably secure and efficient
message authentication scheme,” available from authors, 1992.

[Knu81] D.E. Knuth, The Art of Computer Programming, Vol. 2, Seminumerical
Algorithms, 2nd Edition, Addison-Wesley, Reading, Mass., 1981.

IBC hash 153

A C Implementation of the Primitive

This appendix provides an ANSI C implementation if the primitive IBC hash and an
example program that uses IBC hash to hash messages. This program can be used for
testing purposes as well, as it can provide the test values of Appendix B.

The IBC-HASH program computes the IBC hashcode of a file. It uses the following
values for the parameters s and ¢ of the description given in Section 3:

s = 64
t = 128

That is, 64 bits are used to represent the length of the original message and 128 zero
bits are subsequently appended. As the value of ¢ is an upper bound for the length n
of the hashcode, hashcodes up to 128 bits can be produced with this implementation.
The program imposes some additional restrictions on the value of n: it should be at
least 32 and a multiple of 16.

The IBC-HASH program ibc-hash.c consists of a single C source file. The full
listing is given in Appendix A.1. The program is written in ANSI-C. It uses only
standard library routines and should be easily portable. (Porting the code to a SPARC
station was quite simple.) The program accepts the name of the file to compute the
hash on as the argument. The key values are read from the file ibc-hash.key. The
result is printed on the standard output in hexadecimal format.

The file ibc-hash.key contains 2 lines of text. The first line is P and the second
line is V, both in hexadecimal. Three example key files can be found in Appendix A.3.

A separate program ibc-test.c is provided to generate test patterns. The listing
is given in Appendix A.2. It takes the length of the required testfile as a command line
argument. The testfile is named ibc-test.dat and is generated using a pseudorandom
generator and a initial seed. Together with the sample key files of Appendix A.3 the
testfile can be used to produce the test values of Appendix B.

154 RIPE Integrity Primitives

A.1 C Source Code for IBC hash

[stk seskok ok e s sk sk ok ok ook sk ik ok sk e koo ke ook o sk ok ko \
* *
IBCHASH.C Reference implementation for IBC hash

Copyright (c)
Centre for Mathematics and Computer Science, Amsterdam
Siemens AG
Philips Crypto BV
PTT Research, the Netherlands
Katholieke Universiteit Leuven
Aarhus University
1992, All Rights Reserved

This is a flexible and portable implementation. It is reasomnably

fast, but a machine-specific implementation would be much faster.
The size of the prime i3 variable in steps of 16 bits. The modulo
reduction routines are written for clarity, not speed.

This implementation was timed at about 150 Kbits per second on a

33 MHz 80386DX based IBM compatible.

* *

N\ sk sk sk ke ko ke ko sk ko o ok sk ok sk sk sk ok ook sk ok s ok ook s ook ok ks ks ko ok ek ok /

¥R K K X K X X K X X X X X X X ¥
X X K ¥ K K K K K X X K K X X K ¥

#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>

#define READ_BUF_LEN (16) /* prime at most 128 bits */

/*

*% A1l ANSI C implementations have the following properties:
** short unsigned integers are at least 16 bits

** long unsigned integers are at least 32 bits

** This program assumes an ANSI compatible C implementation.

*/

typedef unsigned short int digit;
typedef unsigned long int ddigit;
typedef unsigned char byte;
typedef int bool;

/% on a 32-bit architecture, it might be faster to replace
*% the short int for digit by a normal int.

*/

7% Do not alter these constants */
#define RADIX (0x10000L)
#define DIGIT_MASK (Oxffff)
#define MAX_DIGIT (oxffff)

#define DIGIT_LENGTH (16)
#define DIGIT_MSB_MASK (0x8000)

IBC hash 155

#define EFATAL (255) /* value passed to exit() on fatal error */

/*
**% We will store large numbers as an array of digits. The least significant
** digit is stored first

*/

/ " S—

** General routines

void fatal(char *format, ...)
{

va_list ap;

va_start(ap, format);

fprintf(stderr, "\nFatal Error:\n");
viprintf(stderr, format, ap);
va_end(ap);

exit(EFATAL);

}
void *alloc(size_t size)
{
void *p;
p = malloc(size);
if (p==NULL)
fatal("alloc(%d): not enough memory to allocate this", size);
return(p);
}
/* e e
** Modulo reduction routines.
%k================================ ======================================
*/

/* This part forms a separate module. For more speed, it can be implemented
**% in machine language. All names start with mod_ to prevent name conflicts.
** The interface has been designed so that the implementor of this module
** can choose his own internal data representation.

*/

int mod_len; /* must be >= 2 *x/

digit mod_MSd1; /* MDdigit of modulus */

digit mod_MSd2; /* next digit of modulus */
digit *mod_inv = NULL; /* 2’s complement of modulus */

digit *mod_buffer = NULL;

void mod_set_modulus(int len, byte *m)

156 RIPE Integrity Primitives

/* Specifies the modulus to be used for subsequent modulo operations

** m points to the modulus (MSbyte first), len is the # bytes.

** This routine can be used to do precomputations if a different modulo
** reduction algorithm is used.

*/
{
digit *p;
int i
if (len<4)
fatal("set_modulus(%d, *): length must be at least 4 bytes", len);
if (len&l)

fatal("set_modulus(%d, *): length must be even", len);

mod_len = len/2;
mod_MSd1 = (m[0]<<8) + m[1];
mod_MSd2 = (m[2]<<8) + m[3];

]

if ((mod_MSd1 & DIGIT_MSB_MASK) == 0)
fatal("set_modulus(%d, *): most significant bit is 0", len);

if (mod_buffer != NULL)
free(mod_buffer);
mod_buffer = alloc((mod_len+1)*sizeof(digit));

if (mod_inv != NULL)
free(mod_inv);
mod_inv = alloc(mod_len * sizeof(digit));

/* We now compute the 2’s complement by complementing and incrementing */
for (i=0; i<mod_len; i++)
mod_inv[i] = ~((m[len-2%i-2] << 8) + m[len-2*i-1]);
p = mod_inv;
while ((*p = (*p+1) & DIGIT_MASK) == 0) p++;
}

void mod_init_buffer(void)
/* Call this routine before any reduction to clear the internal buffer

*/

{
int i;
digit *p;
/* Clear the buffer to 0 */
for (p = mod_buffer, i = 0; i<mod_len; i++)
*pt+ = 0;
}

int mod_read_buffer(int len, byte *buf)
/* Read the contents of the reduced buffer into buf MSB first
** The return value is the length of the result in bytes.

*/

}

IBC hash

int i;

if (len < 2*mod_len)
fatal("mod_read_buffer(%d, *): buffer not long enough to contain"
"result", len);
for (i=mod_len-1; i>=0; i--) {
*buf++ = (mod_buffer[i] >> 8) & Oxff;
*buf++ = mod_buffer[i] & Oxff;
}

return(2*mod_len);

void mod_reduce_buffer(void)

/*
*%
*%
*%
*%
*/
{

The buffer contains a len+l sized number which is less than
2716 times the modulus. This routine reduces the buffer modulo
the modulus. For the algorithm of this routine, see Knuth, "The

art of computer programming", volume 2, ‘Seminumerical Algorithms’,
paragraph 4.3.1, pages 255..263.

int i;

digit q;

ddigit t;

/* Step D3 (page 258) */
t = ((ddigit) mod_buffer[mod_len] << DIGIT_LENGTH)
+ mod_buffer[mod_len-1];

if (mod_buffer[mod_len] == mod_MSdi)
q = MAX_DIGIT;

else
q = (digit) (t/(ddigit) mod_MSd1);

t -= (ddigit)q * mod_MSd1;
/*
** This is the loop that adjusts q. Note the special case when t is
** larger then MAX_DIGIT. This can occur if q was set to MAX_DIGIT
** instead of t/mod_MSdi. If the second formula had been used, then q
** would have had the value MAX_DIGIT+1, which would give an overflow.
** This special case occurs very infrequently.
** The loop body can also set t to a value larger than MAX_DIGIT.
*/
while (t <= MAX_DIGIT &&
mod_MSd2*(ddigit)q > (t<<DIGIT_LENGTH)+mod_buffer[mod_len-2]) {
/* now we decrease q by one and adjust t as well. */
q=-;
t += mod_MSdi;
}

/* Now we add q times mod_inv to mod_buffer */
t = 0;
for (i=0; i<mod_len; i++) {

157

158 RIPE integrity Primitives

}

t += (ddigit) q * mod_inv[i] + mod_buffer[i];
mod_buffer[i] = (digit) t & DIGIT_MASK;
t = (t>>DIGIT_LENGTH) & DIGIT_MASK; /* shift can be signed! */
X
if (((digit)t & DIGIT_MASK) + mod_buffer[mod_len] !'= q) {
/* A carry occured here, so q was one too large.
** Therefore, we will substract mod_inv once
** For efficiency reasons we reuse t as the carry variable
*/
q=0;
for (i=0; i<mod_len; i++) {
t = (ddigit) mod_buffer[i] - mod_inv[i] - q;
mod_buffer[i] = (digit) (t & DIGIT_MASK);
q = (digit)(t >> DIGIT_LENGTH) & 1;

void mod_reduce(size_t len, byte *buffer)

/*
*k
*k
*k
*k
x/
{

}

takes the data in the buffer as additional data to reduce

several calls of this routine can be used to reduce more data.

The size_t is an ANSI type that indicates a length of a memory block
It is either an unsigned int or long.

The length of the buffer should be a multiple of 8.

int 1i;

if ((len & 0x7) '=0)
fatal("mod_reduce(%uld, *): length is not a multiple of 8",
(unsigned long) len);
while (len) {
/* First we shift the buffer 1 digit and add the new digit */
for (i=mod_len; i>0; i--)
mod_buffer[i] = mod_buffer[i-1];
mod_buffer[0] = (buffer[0] << 8) + buffer[i];

/* Reduce the buffer modulo the modulus */
mod_reduce_buffer();

/* Adjust the loop pointers now */

buffer += 2;
len -= 2;

/ "

%%

File interface routines

kk========s=======sssssssssssssssssosssssos ====

*/

int read_len;
byte read_buf [READ_BUF_LEN]; /* number, MSbyte first */

IBC hash

int hexvalue(char c)
/* return the value of hex digit ¢ or -1 if not legal */

{
if (c<’0”) return(-1);
if (c<=’9’) return(c-’0’);
if (c<’A’) return(-1);
if (c<=’F’) return(c-’A’+10);
if (c<’a’) return(-1);
if (c<=’f’) return(c-’a’+10);
return(-1);
}
bool hexdigit(char c)
{
return(hexvalue(c) >= 0);
}

void read_hexnumber(FILE *f)

/* This routine reads a hexadecimal number from the file f

*% into read_buf and sets read_len. All leading white space and the first
** non-hexdigit character are discarded.

*/
{
int c;
char buf [READ_BUF_LEN#*2];
int len;
int i, j;

c = getc(£);
while (c==’ 7 || ¢ == \t’ || ¢ =
c = getc(£);

\n’)

len = 0;

while (len<=2+READ_BUF_LEN && c != EOF && hexdigit(c)) {
buf [len++] = c;
c = getc(£);

}

if (len == 0)
fatal("read_hexnumber(*): No hex number in file");

if (len > 2*READ_BUF_LEN)
fatal("read_hexnumber(*): Hex number too long");

read_len = (len + 1)/2; /* the number of bytes in the number */

/* We now convert the ascii to the binary buffer */
i=0;
for (i=0; i<read_len; i++) {
if (i==0 && (len & 1)) {
read_buf[i] = hexvalue(buf[j++]);
}

159

160 RIPE integrity Primitives

else {
read_buf[i]
read_buf [i]

hexvalue(buf [j++]);
16 * read_buf[i] + hexvalue(buf[j++]);

"

}

void read_modulus(FILE *f)
/* This routine reads a hexadecimal number from the file f
** and sets it as the modulus. All leading white space and the first
** non-hexdigit character are discarded.
*/
{
read_hexnumber(f);
mod_set_modulus(read_len, read_buf);

#define BUF_LEN (1U<<15) /* The U’ makes this value unsigned */

void reduce_file(FILE *f)

/* Reads the file and reduces it modulo the modulus.

%% It clears the buffer at the start, padds the file with 0’s so that

** the length is a multiple of 8 bytes,

**x appends a 64-bit length of the file and then 16 O bytes. The

** whole sequence of bytes is reduced modulo the modulus.

** This routine can be speeded up significantly by using a bigger buffer.

*/

{
unsigned long f1;
byte buf [8];
byte *bp;
unsigned 1;

bp = alloc(BUF_LEN);
mod_init_buffer();
fl = 0;

while ((1 = fread(bp, 1, BUF_LEN, f)) == BUF_LEV) {
mod_reduce(BUF_LEN, bp);
f1 += 1;

X

f1l += 1;

/* Read the last block, padd to multiple of 8 */

while (1&7) {
*(bp+l++) = 03

X

mod_reduce(1, bp);

buf [0] = buf[1] = buf[2] = buf[3] = 0;
buf[7] = (£f1 >> 0) & Oxff;
buf[6] = (f1 >> 8) & O0xff;

buf [5]

(£f1 >> 16) & Oxff;

IBC hash

buf[4] = (f1 >> 24) & Oxff;
mod_reduce(8, buf);

buf[4] = buf[5] = buf[6] = buf[7] = 0;
mod_reduce(8, buf);
mod_reduce(8, buf);
free(bp);
}

void ibc_hash(FILE *f_mess, FILE *f_key, FILE *f_result)
/* Computes ibc_hash of file f_mess using key in file f_key
** result is written in hex to file f_result

*/

{
byte buf [16] ;
int i;
int 1;

unsigned c;

read_modulus(f_key);
reduce_file(f_mess);
read_hexnumber(f_key);

1 = mod_read_buffer(16, buf);

if (1 '= read_len)
fatal("ibc_hash(*, *, *): prime length != blinding term length");

/* Add the blinding term */

c = 0;

for (i=1-1; i>=0; i--) {
c += buf[i] + read_bufl[il;
buf[i] = ¢ % 256;
c /= 256;

}

for (i=0; i<1l; i++)
fprintf(f_result, "%02X", bufl[i]);
fprintf(f_result, "\n");
}

** Main routine
¥k===================================SSo=S-S==Ssos=sS===S======================

*/

int main(int argc, char *argv[])

{
FILE *fi, *fk;

printf("IBC-HASH computation program version 0.0\n");

if (arge !=2) {
printf("Usage: IBC-HASH <filename>\n"

161

162 RIPE Integrity Primitives

"Computes hash for file using keys in \"ibc-hash.key\"\n"
)5
exit(1);
}
fi = fopen(argv[1], "rb");
if (fi==NULL) {
printf("Sorry, I canmnot find the file \"%s\"\n", argv[1]);
exit(2);
}
fk = fopen("ibc-hash.key", "rt");
if (fk==NULL) {
printf("Sorry, I cannot find the file \"ibc-hash.key\"\n");
exit(3);
}
ibc_hash(fi, fk, stdout);
return(0);

}

[*k==== end of IBCHASH.C =============

IBC hash 163

A.2 Program for Generating Test Programs

[ks ok sk ok ek sk s ok s ok s ok s ks ko sk ko ko ke s e sk s ks ke ke ks ke ks ok s ke ok sk e e ke sk o sk ko ke \
* *
ibc-test.c A program to generate test files to be used with

ibc-hash.c

Copyright (c)
Centre for Mathematics and Computer Science, Amsterdam
Siemens AG
Philips Crypto BV
PTT Research, the Netherlands
Katholieke Universiteit Leuven
Aarhus University
1992, All Rights Reserved
* *
\ e o ek ko e ok ks e o ke ok o ok ok ok sk ok ks s ok sk ks ok sk o ke o sk ke ko ko ks o sk sk ok sk o s ko o ok o ok ok ok /

LR BEE R S JEE B B R R
EIEE N 2 B T K R NN N R

#include <stdio.h>
#include <stdlib.h>

typedef unsigned char byte;

byte buf[55]= "IBC-HASH test. Copyright (c) 1992 by RIPE consortium ";
int bp= 0;

int write_testfile(unsigned long 1, FILE *f)

{
while (1--) {
if (putc(buff[bpl, £) != buf[bp]) {
fprintf(stderr, "\nError while writing output file");
return(1);
}
buf [bp] = (buf[bp] + buf[(bp+55-24)%55]) % 256;
bp = (bp+1)%55;
}
return(0);
}

void main(int argc, char *argv[])

{
FILE *f;

printf("IBC-TEST program to generate IBC-HASH test files\n");

f = fopen("ibc-test.dat", "wb");
if (£ == NULL)
fprintf(stderr, "\nCould not create file \"ibc-test.dat\"\n");
else
if (arge '=2) {
fprintf(stderr, "Usage: IBC-TEST <size>");
}

164 RIPE integrity Primitives

else {
long 1 = atol(argv[i]);
if (1<0 || 1>16777216L)
fprintf(stderr, "\nlIllegal size paramter\n");
else
write_testfile(1, f);

A.3 Sample Key Files

The following three files are sample key files. They all contain 2 lines. The first line is
P and the second is V, both in hexadecimal.

IBC-HASH.KE1:

8537366B9856CCE7
7589024781647928

IBC-HASH.KE2:

AECSE2D5F4BAA261
FFOO55AAFFO055AA

IBC-HASH.KE3:

FFAEF21A73E83E3F
4782901478657483

B Test Values

The following table gives the hashcodes of 4 different files produced by the program of
Appendix A.2 for the 3 keys given in Appendix A.3.

Size | Keyl Key?2 Key3
0 | 7589024781647928 FFOO55AAFFOO55AA 4782901478657483
55 | C8612196C379F9EA 2099C76293A7BE70 DB10CD3111A31F47
100000 | DA3EO2BD71232B61 6BB6E2714051B6F4 D1A85FDF233EA996
1048575‘ E40FFB3AD650EB92 51E2A0B8245FB653 B12B20E9E1D6A2E4

Chapter 6

SKID

166 RIPE Integrity Primitives

Contents

1 Introduction 167

2 Definitions and Notation 167
2.1 Introduction e 167
2.2 General e 167
2.3 Representation of the Numbers 168
2.4 Definitions and Basic Operations 168

3 Description of the Primitive 169

4 Use of the Protocol 170

5 Security 171
5.1 Claimed Properties oo 171
5.2 Algebraic Evaluation 171

6 Performance Evaluation 172

skip 167

1 Introduction

The secret key identification protocols SKID2 and SKID3 provide entity authentica-
tion.

SKID2 provides unidirectional authentication after two passes. That means after
having sent out a challenge to her/his communication partner and having received
the correct reply, a user of this protocol has good reason to assume that she/he is
communicating with whom she/he thinks.

Using SKID2, the authentication is unidirectional, the authenticity of the other
partner is not checked. However, an extension of the protocol, SKID3, which provides
authentication of the other partner as well by an additional pass, is also described.

Both SKID2 and SKID3 are based on a secret key only known to the two parties
involved, and the application of a keyed hash function using this key. The keyed hash
function to use is not specified, but it is suggested to use RIPE-MAC described in
Chapter 4 of this report. Random numbers are used so that with high probability in
different invocations of the protocol different values are exchanged.

It should be noted that entity authentication can also be achieved by using asym-
metric cryptographic algorithms. Examples are the primitives RSA and COMSET
described in Chapter 7 and Chapter 8 of this report.

The structure of this description of SKID2 and SKID3 is as follows. In order to
avoid any ambiguities in the description, the notation and definitions used are fixed
in section 2. In section 3 the primitive is described and in section 4 its purpose is
explained. In section 5 security aspects of the primitive are discussed. This includes
claimed properties and the results of the algebraic evaluation of the primitive. Finally,
in section 6 the performance of the protocol is considered.

2 Definitions and Notation

2.1 Introduction

In order to obtain a clear description of the primitive, the notation and definitions used
in this document are fully described in this chapter. These include the representation
of the numbers in the description, and the operations, functions and constants used by
the primitive.

2.2 General

”

The symbol “:=” is used for the assignment of a value or a meaning to a variable or
symbol. That is, a := b either means that the variable a gets the value of the variable
b, or it means that a is defined as “b”. It will be obvious from the context which
meaning is intended.

The equality-sign is used for equality only. That is, it indicates that the two
entities on either side are equal.

“__n

168 RIPE Integrity Primitives

An ellipsis (“...”) denotes an implicit enumeration. For example, “4 =0, 1, ...,

" is meant to represent the sentence “for i = 0, 7 = 1, and so on, up to i =n".

n’

2.3 Representation of the Numbers

In this document a byte is defined as an 8-bit quantity and a word as a 64-bit quantity.
A byte is considered to be a nonnegative integer. That is, it can take on the values
0 through 2% — 1 = 255. Likewise, a word is considered to be a nonnegative integer,
hence it takes on the values 0 through 284 — 1.

A sequence of 8n bits by, by, ..., bg,—1 is interpreted as a sequence of n bytes in
the following way. Each group of 8 consecutive bits is considered as a byte, the first
bit of such a group being the most significant bit of that byte. Hence,

B; := b8i27+bgi+126+"'+bgi+7, 1=0,1,...,n—1. (1)
A sequence of 8/ bytes By, Bi, ..., Bg_1 is interpreted as a sequence of words W,
Wi, ..., Wi_; in the following way. Each group of 8 consecutive bytes is considered

as a word, the first byte of such a word being the most significant byte of that word.
Hence,

7
Wi =3 Baiyx(256)"*, i=0,1,...,1—1 (2)
k=0
In accordance with the notations above, the bits of a word W are denoted as

Wz(w07w1a-"7w63)’ (3)
where
63 ‘
W => w2%" (4)
i=0

The ordering of bytes in a word is given by Equation (2).

2.4 Definitions and Basic Operations

e A string is a sequence of bits. If X is a string consisting of n bits, then those
bits are denoted from left to right by zg, z1, ..., Tn-2, Tn-1.

e For a string X the length of X is denoted as |X|. That is, |X| is the number of
bits in the string X. If |X| = n, then X is said to be an n-bit string.

e For two strings X = zg, 71, ..., Tn_2, Tn—1 Of length |X| =n and Y = yo, y1,
.o Yn-2, Ym—1 of length |Y| = m , the (n + m)-bit string W = wy, wy, ...,
Wnem—1 = X||Y is defined as the concatenation of the strings X and Y. That is
w; = T; 1=0,1,...,n—-1
Witn = Y; 1=0,1,...,m—1

If the operation || is applied to operands which are words, the corresponding
representation as a sequence of bits is to be used.

skip 169

3 Description of the Primitive

SKID2 and SKID3 are secret key identification protocols. In the participants in the
protocol are denoted by A (Alice) and B (Bob). SKID2 provides entity authentication
of B, SKID3 provides mutual entity authentication of A and B.

The SKID2 protocol for participants A and B is based on the following require-
ments:

1. The secret key K is only known to .4 and B.

2. A wants to communicate with B and knows his distinguished name B. This
distinguished name must identify B uniquely.

3. The keyed hash function Hg() to use must be specified. This concept is defined
in Part II of this report. The requirements for this function are discussed in
section 5.2 . It is suggested to use the primitive RIPE-MAC described in chapter
4 of this report.

The protocol SKID2 consists of the following steps:

e A chooses a random 64-bit word R4. Each of the possible 2% words should

be selected with equal probability. This random word is also the first message
M, := R4. A sends M; to B.

e B chooses a random 64-bit word Rs. Each of the possible 2% words should
be selected with equal probability. The message he sends to A is defined by

M, := Rg||Hx (RallEsl|B) -

o A extract the 64-bit word Rg from M,, computes Hy(Ra4||Rg||B) and checks
whether the result is the same as the corresponding part of the message M, she
received. If it is, she has good reason to assume that she is communicating with
B, otherwise the authentication failed.

These are also the first steps of the protocol SKID3, but, if everything went well so
far, SKID3 consists of two more steps:

e A computes her message M3 defined by Mj; := Hg(Rs||A) and sends it to B.

e B computes Hg(Rs||A) and checks whether the result is equal to the received
M,. If it is he has good reason to assume that he is communicating with A,
otherwise the authentication failed.

For SKID3, in addition to the requirements given for SKID2, B should want to
communicate with A and know her distinguished name A.

The descriptions of the protocols can be summarized in the following bird’s eye
views.

170 riPE Integrity Primitives

A
choose random word R4
M1 = RA
My
—_
Mz

verify Hy (R4||Rs||B)

choose random word Rg
compute M, := Rg||Hk(R4l||Rsl|B)

Figure 1. The SKID2 protocol

A

choose random word Ry

M1 = RA
an,
M2

verify Hy (Ral|Rs|| B)

compute M3 := Hy(Rs||A)
M3

choose random word Rg
compute M, := Rg||Hx(Ra||Rsl|B)

verify Hyc(Rl|A)

Figure 2.

4 Use of the Protocol

SKID2 provides entity authentication of B. This means that A has, after having
completed the protocol successfully, good reason to believe that she is communicating

with B.

Note that for SKID2 B has no reason to believe that he is communicating with
A. If this is desired as well, SKID3 can be used which additionally provides entity

authentication of A.

The SKID3 protocol

skip 171

5 Security

5.1 Claimed Properties

If initially, the key K is known to users A and B only, the SKID2 and SKID3 protocols
are expected to satisfy the following:

e If the users share the same key, and both follow the instructions, both SKID2
and SKID3 will always complete successfully.

e Even after watching a large number of conversations between A and B, or having
taken part in a number of conversations with B, it is infeasible for any third
party on his own to execute SKID2 successfully with .A. This remains true, even
if different instances of the protocol are allowed to take place simultaneously.

e Even after watching a large number of conversations between A and B, or having
taken part in a number of conversations with .4 and B, it is infeasible for any
third party on his own to execute SKID3 successfully with A or with B. This
remains true, even if different instances of the protocol are allowed to take place
simultaneously.

Here, and in what follows, by “infeasible” we mean computationally far out of reach
of current technology.

5.2 Algebraic Evaluation

The properties claimed rely on the following property, which we assume is satisfied by

HK()I

e If the key K is not known, the following problem is infeasible to solve: first choose
some inputs Ry, Ry, ... and receive Hg (R}), Hx(R5), .., where R; is a prefix of R;.
This is precisely the situation an attacker will find himself in by eavesdropping
previous SKID protocols. Now compute some Ry and Hg(Ryp), such that Ry is
not equal to any of R}, Rj,

Consider an enemy trying to impersonate 3 when talking to 4 in the SKID2 proto-
col. If the inputs to Hg () are chosen at random, there is only a negligible probability
that the current random input received from .4 has been used before. The assumption
above on Hy () therefore implies that the enemy cannot on his own compute the Hx ()
value he needs to complete the protocol.

Hence the only remaining possibility is to fool a user that knows K (i.e., A or B)
into computing the value needed. This must be done while the current instance of the
protocol is still running.

The only way to get answers from A or B is of course to start an instance of the
protocol with them. Doing this with B would mean that the enemy would merely act
as a relay between A and B. However this is not a successful attack for the enemy:

172 rIPE Integrity Primitives

the purpose of the protocol is to prove to A that B is active in the current protocol-
instance, and this would in fact be the case here. The only remaining possibility is
to start a simultaneous protocol instance with A, set up such that A is the party
supplying the Hy()-output. However, any Hg()-input used here will have the name
of party A inserted into it. Therefore the output will be useless to the enemy because
his original purpose was to impersonate B.

The only remaining attack to consider is an intermediate person, who simply for-
wards the different parts of the protocol, acting as a relay so to speak. However,
this attacker would never be able to learn the secret key. In fact this type of attack,
known as the mafia attack, will only work in one of the following instances in general,
completely independent of the actual schemes:

1. Key exchange without authentication.

2. An identification scheme with no connection to the subsequent communication
(access control).

A similar argument can be made for SKID3: the enemy cannot impersonate B for
the same reasons as above (the first part of SKID3 equals SKID2). If the enemy is
trying to impersonate A, starting a parallel session with A as above does not make
sense. Likewise, a parallel session with B will be useless because of the names inserted
on the Hx()-inputs, and by the property of Hx(), the value he receives from B in the
second protocol message will not help him either.

6 Performance Evaluation

SKID?2 requires 2 passes of communication. The computations required in total are:
the generation of two 64-bit random integers, and two applications of the keyed one-
way function. SKID3 requires 3 passes of communication. The computations required
in total are: the generation of two 64-bit random integers, and four applications of the
keyed one-way function. The computational effort is equally balanced between A and
B. The actual performance depends on the choice and implementation of the function

Hk().

Chapter 7

RSA

174 RIPE integrity Primitives

Contents
1 Introduction 175
2 Definitions and Notation 175
2.1 Introduction 175
2.2 General 175
2.3 Representation of the Numbers 175
2.4 Definitions and Basic Operations 176
25 Symbols 177
2.6 The Redundancy Function RR. 178
3 Description of the Primitive 180
3.1 Plain RSA 180
3.2 TheRabin Variant 181
4 Use of the Primitive 181
4.1 Digital Signatureso 181
4.2 Forwarding of Authentication Keys 181
5 Security 182
5.1 Claimed Properties 182
5.2 Algebraic Evaluation 183
5.2.1 Security of the Signature Mode 184
5.2.2 Security of the Forward Authentication Key Mode 184
6 Performance Evaluation 185
6.1 Software Implementations 185
6.2 Hardware Implementations 186
7 Guidelines to Software Implementation 187
References | 187

A Test Values for Signature Mode 188

rRsa 175

1 Introduction

This chapter describes the integrity primitive RSA.

RSA in its basic form is a so called public key system, where each user has a private
key, known only to him. Corresponding to this private key, there exists a public one,
which may be known to anyone. Data processed by one key can be recovered using
the other one. Yet, there is no feasible way known by which the private key can be
found from the public one. In the case of RSA, the difficulty of finding the secret key
is based on the difficulty of factoring large numbers.

Using proper modes of use, RSA can be used for digital signatures, and for dis-
tributing keys for authentication systems. :

The name RSA is derived from the inventors of the algorithm: Rivest, Shamir and
Adleman, who presented the algorithm in [RSAT78].

In Section 2 of this chapter, we present the definitions and notation used, in order
to avoid ambiguities in the description. Section 3 describes the primitive proper, Sec-
tion 4 gives the recommended modes of use. Section 5 contains results of the algebraic
evaluation of the primitive, while Section 6 contains the results of the performance
evaluation. Finally, Section 7 gives some guidelines to software implementation of the
primitive, and there is an appendix containing some test values.

2 Definitions and Notation

2.1 Introduction

In order to obtain a clear description of the primitive, the notation and definitions used
in this document are fully described in this section. These include the representation
of the numbers in the description, and the operations, functions and constants used by
the primitive.

2.2 General

The symbol “:=" is used for the assignment of a value or a meaning to a variable or
symbol. That is, a := b either means that the variable a gets the value of the variable
b, or it means that a is defined as “b”. It will be obvious from the context which
meaning is intended.

The equality-sign is used for equality only. That is, it indicates that the two
entities on either side are equal.

w__m

143

An ellipsis (“...”) denotes an implicit enumeration. For example, “4 =0, 1, ...,
is meant to represent the sentence “for i = 0,7 =1, and so on, up to 2 =n”.

b

n’

2.3 Representation of the Numbers

In this document a byte is defined as an 8-bit quantity. A byte is considered to be a
nonnegative integer. That is, it can take on the values 0 through 28 — 1 = 255.

176 RIPE Integrity Primitives

A sequence of n bits by, b1, ..., by_; is interpreted as an nonnegative integer B in
the following way. The bits are considered as the binary representation of B, the more
significant bits being first in the sequence. That is,

n—1
B:=Y b2l

1=0

Conversely, an interpretation of a number as a sequence of bits is defined by this
equation, if a bit length for this number is fixed.

A sequence of 8n bits by, by, ..., bg,—1 is interpreted as a sequence of n bytes in
the following way. Each group of 8 consecutive bits is considered as a byte, the first
bit of such a group being the most significant bit of that byte. Hence,

Bi Z=b3i27+b8i+126+"'+bgi+7, Z=0, 1,...,n—1.

2.4 Definitions and Basic Operations

e A string is a sequence of bits.

e For a string X the length of X is denoted as | X|. That is, |X| is the number of
bits in the string X. If | X| = n, then X is said to be an n-bit string.

e For an integer N, the length of N is defined as the length of the shortest binary
representation of N. The length of N is denoted as |N].

e For two strings X = z9,21,...,Zn—1 and Y = yo,Y1,- -, Ym—1, the (n + m)-bit
string W = X||Y is defined as the concatenation of the strings X and Y. That

is,

w; = T; 1=0,1,...,n—-1

Witn Yi z=0,1,...,m—1.
e For a nonnegative integer A and a positive integer B, the numbers A div B and
A mod B are defined as the nonnegative integers @, respectively R, such that

A=@QB+R and 0L R<B.

That is, A mod B is the remainder, and A div B is the quotient of an integer &
division of A by B.

e For two strings X = zg,21,...,Zn—1 and Y = 4o,%1,...,Ym-1, the string U =
X @Y, is defined as the bitwise XOR of X and Y, where, if the strings are of
different length, the shorter of the two is preceeded by 0-bits in order to make the
lengths equal. For two bits z and y the XOR is defined as (z + y) mod 2. This
notation is also used for nonnegative integers. In this case its shortest binary
representation as described above is used.

rsa 177

The notation “X =Y (mod N)” (X is equivalent to Y modulo N) is used to
indicate that X mod N =Y mod N.

For two nonzero integers X and Y we say that X divides Y if Y mod X = 0.
That is, if Y is a multiple of X.

For two nonnegative integers X and Y, not both zero, the greatest common
divisor ged(X,Y) is defined as the greatest positive integer that divides both X
and Y.

An integer X is invertible modulo N if ged(X, N) = 1.

An integer X that is invertible modulo N is said to be a quadratic residue modulo
N if there is an integer Y such that X = Y? (mod N).

A prime is an integer greater than 1 that is divisible only by 1 and by itself.

A composite is an integer greater than 1 that is not a prime. A composite can
uniquely be written as the product of at least two (not necessarily different)
primes.

When a is invertible modulo n, we let (2) denote the Jacobi symbol of a modulo
n (see [Kob87]). When n = pq, where p and g are primes, the Jacobi symbol of
a modulo n can be defined as

(E) = (a»V/2 mod p) - (09712 mod q).
n
Note that this number is always 1 or —1. See [Kob87] for the mathematical
background.
Symbols

2.5

In what follows we also use lower case letters for numbers to facillitate the reading of
formulas.

e p,q will denote prime numbers.

n will be the modulus, the product of p and gq.
k will denote |n|, the bit length of n.
e,d will denote the public, respectively the secret exponent.

P, S denote the operation with the public, respectively the secret key in the RSA
system.

h denotes a hash function.

178 RIPE Integrity Primitives

e RR(z) denotes the representative element for the hashcode z, computed as de-
fined below in this section.

o SIGs(M) is the digital signature of M, computed using secret key S.

o [denotes the length of an authentication key to be exchanged.

2.6 The Redundancy Function RR

The ISO/IEC standard 9796 ([ISO91]) describes a redundancy function RR. The
scheme described in the standard works for any length of input, in this document only
the special case of input lengths which are multiples of 8 bits is given. In our case, the
input will always be a hashcode.

Let the hashcode H be the concatenation of z bytes h;

H=hol h -l hemsr.

The redundancy scheme requires that the inequality 162 < k+2 holds. This should
be no problem for the value 16 of z, as suggested in this report, since RSA moduli
should be larger anyway.

A number t is determined from k by

t := (k + 14) div 16.
Now ¢ bytes w; (0 < i < t) are determined from the hashcode by
Wi = h,1_((t-1-i)modz))-

Basically this just means that the bytes of H are inserted at the beginning of the
string multiply until a length of ¢ bytes is reached.
For 0 <i < 2t the byte u; is determined by

w = J Wa-1)diva if 7 is odd
" Sh(wg-1)aive) if @ is even,

where for nonnegative integers a and b less than 16
Sh(16a + b) := 16I1(a) + II(b)

and the values of the function II() are determined by the following table:

r | 0]1]2;3[4]|5]6]7[8]9]10|11]12|13|14]15
M(z) |14 |3 |5|8|9|4(2|15/0(13|11|6 |7 10|12 1

The bytes u; are concatenated to form a string

U=wug | u |l - || vor—2 || vat—1-

rRsa 179

The bits of U are denoted by b;
U =bo,by,...,b1e—2,b16t1-

The k — 1 bit number I is defined by
k—2 '
[:=) vp_g; 2%,
=0

where the bits v; are

(1 ifi=0
b; if0<i<k+6-—16z
1—-b; ifi=k+6-—162
b; ifk+6—-162<i1<k-—10
v;={ by Hk—-10<i<k-—6
0 ifi=k-5
1 ifi=k—4
1 fi=k-3
[0 ifi==~kF—2.

In the case of plain RSA (see section 3.1) the redundancy scheme is finished, so we
define

RR(H)=1.

In the case of the Rabin variant of RSA (see section 3.2) the result RR(H) of the
redundancy function is defined by

I (L) =+
RR(H) =
/2 if (1) = -1.

For the Rabin variant we therefore need to compute the Jacobi symbol, or equivalent
information. To this end, any of the following 3 methods can be used:

1. If the prime factors of n are available (which will often be the case due to opti-
mization of arithmetic modulo n), one can simply use the definition

I
(ﬁ) = (I®Y/2 mod p) - (1272 mod q).

However this is not very effective, so the following two methods are preferable.

2. Without knowledge of the factors of n one can calculate the value of the Jacobi
symbol as described in Chapter 10 of this report.

180 RIPE Integrity Primitives

3. This final method does not require explicit computation of the Jacobi symbol,
and is particularly efficient if the public exponent e is small. For maximum
efficiency, it requires that the number T := 27¢ mod n has been precomputed
and stored as part of the secret key.

The goal is to compute directly S(RR(H)). To do this, we first compute V :=
I¢¥ mod n and V¢ mod n. Then,

1% fVemodn=JorV®modn=n-1
S(RR(H)) =
VT mod n otherwise.

3 Description of the Primitive

3.1 Plain RSA

Any user of the RSA system must generate a pair of keys, a secret and a public one.
This is done by choosing at random two large primes p, ¢, and an odd public exponent
e, which must satisfy that

ged(e, (p—1)(g—1)) = 1.
The secret exponent d is defined to be the smallest non-negative integer satisfying
ed mod (p—1)(¢g—1)=1.

See Chapter 9 for detailed information on how to generate these numbers and for
possible refinements.

The number n is defined to be n = pq and is called the modulus. It is recommended
to choose p, g such that &, the bit length of n is between 512 and 1024. See Chapter 9
for details.

We can now define the public and secret keys:

e Public key P: n = pq and e.
e Secret key S: n, d, and optionally p, g.

The operations with the public and secret key can take any number m as input,
that satisfies 0 < m < n. They produce as output a number in the same range. The
public key operation is defined as follows (for notational convenience we shall reuse the
symbols P and S. It will be clear from the context exactly which meaning is intended):

P(m) :=m° mod n
and the secret key operation is defined by:
S(m) := m? mod n.
It is shown in [RSA78] that P and S are inverses of each other, i.e.,
P(5(m)) = S(P(m)) = m

for all m in the range.

rRsa 181

3.2 The Rabin Variant

A variant of RSA is known as the Rabin system. In this variant, p, q are chosen such
that

p mod 8=3 and ¢ mod 8=T7.

Chapter 9 contains guidelines for generating p, g to satisfy this. The public exponent
e is always 2, while the secret exponent d is defined to be

(p—1)(g—-1)+4
g .

The definitions of P and S are the same as for RSA. Using similar methods as in
[RSA78] it can be shown that P(S(m)) = S(P(m)) = mif0 < m <nand misa
quadratic residue modulo n.

d:=

4 Use of the Primitive

4.1 Digital Signatures

We describe here a mode of use for RSA that allows generation of a digital signature
on a binary string M of arbitrary length. Let h denote one of the hash functions
recommended in this report. Then h(M), i.e., the hashcode of M, is a binary string of
length 128 bits, independently of the length of M.

The other ingredient we need is the ISO/IEC standard 9796 [ISO91], which contains
the description of a redundancy function which takes a binary string as input and
produces an output at least twice as long. We denote the final result of these operations
by RR(X) where X was the original input to the redundancy function. This number
is known in the terminology of the standard as the representative element. In the
section 2.6, we give details on how to compute the RR function. We now define the
digital signature on M using secret key operation S as:

SIGs(M) := the smallest of S(RR(h(M))) and n — S(RR(h(M))).

A digital signature may be checked as follows: given the message M, the signature
SIGs(M), and the public key operation P corresponding to S, we define the signature
to be valid, if and only if

P(SIGs(M)) = RR(M(M)) or P(SIGs(M))=n — RR(h(M)).

This holds for both plain RSA and for the Rabin variant (e=2).

4.2 Forwarding of Authentication Keys

This mode of use enables user B to send a message to user A, such that after A has
processed the message, the two users share a key to a system for conventional message
authentication, such as RIPE-MAC described in Chapter 4 of this report.

182 RIPE Integrity Primitives

We assume that both A and B have generated a pair of RSA keys, (Pa, S4), (Pg, SB),
and that each knows the public key of the other. This can be accomplished using a
public key directory or public key certificates. Let n4 be the modulus used by A, of
length k4, and let np be the modulus used by B, of length kp.

We let | denote the length in bits of the key to be shared. In general, [will depend
on the message authentication system where the key will be used. But we require that
[is at most ka/2.

B will now execute the following:

1. Choose at random a number r, such that 0 < r < n, and the length of r is at
least k4/2 (see Chapter 9 for a discussion of random numbers). If P, is a key
for the Rabin variant of RSA, i.e., public exponent 2, then put z := 72 mod n4.
Otherwise, put z := 1.

2. Compute y := P4(z), and let the key K be the least significant [bits of y.

3. Compute the digital signature SIGg,(z). Put ¢ := SIGgs,(z) ® RR(h(z)). Also
compute z := P4(y). Send ¢, z to A.

After receiving c, z, A does the following:
1. Put z := Sa(54(2)).

2. Put 0 := ¢ ® RR(h(z)). Using Pg, test whether 0 = SIGg,(x). If not, reject
the message and stop (in practice, more may have to be done, depending on the
application — such as notifying B that the message was rejected). Otherwise
continue.

3. Compute the key K as the least significant [bits of P4(z).

The above description of A’s algorithm has been optimized for the case where a
small public exponent is used, so that the P-operation is much faster than the S-
operation: if d?> mod (p — 1)(¢ — 1) has been precomputed and stored as part of the
secret key, z can be computed in one exponentiation as r = 24 med(p-1)(a=1) mod n.
The subsequent cost of computing P4(z) is negligible if e is small. If e is as large as d,
the intermediate result S4(z) = Pa(z) of step 1 should be saved.

5 Security

5.1 Claimed Properties
The signature mode is expected to have the following property:

e given a public key P, and valid signatures on messages in a set M, it is infeasible
to come up with a message m not in M and a valid signature on m. This remains
true, even if the attacker gets to choose the messages in M.

The forward authentication key mode is expected to satisfy the following:

rRsa 183

o If A accepts the message he gets, the owners of S, and Sp are both capable of
computing the same K, and it is infeasible for any third party to compute K.

e For large key lengths (which in practice means [> 56), the key resulting from an
execution of B’s algorithm is not easily controllable. More precisely, let Ky be
an [-bit key selected by some efficient method. Then the following is infeasible:
given Ky, choose the initial input z such that the resulting message c,z will
be accepted by A, and such that the key associated with ¢,z equals K with
probability significantly larger than 27,

Remark: one reason for considering the second property is that it gives some extra
protection against the case where B’s source of random bits is fallacious, and outputs
for example a highly patterned string of bits (the all-1 string is an extreme example).
This situation will always be problematic because the number of possible keys will be
limited. However, direct use of such a bitstring as a key in subsequent authentication
could be particularly dangerous, because some authentication algorithms are weaker
when such keys are used. The second property ensures that no such pattern is likely
to show up in the key produced.

5.2 Algebraic Evaluation

The security of the use of RSA is based on the belief that factoring is a hard problem,
i.e., that computing p,q from n = pq is infeasible for large n. This is the problem
one needs to solve to find a secret RSA key from the corresponding public one. From
current state of the art in factoring algorithms, and the previous development, there is
no indication that factoring will become feasible in general. At present, factorization of
512-bit numbers with two primes factors of comparable size is out of reach, even with
the most efficient methods. From what is known today, the hardness of the problem
increases quickly with increasing bit size, and it will therefore be easy to defend against
developments in computing equipment that are unknown at present. Factoring of 1024-
bit numbers is generally thought to be totally out of the question in any forseeable
future. More details on this can be found in Chapter 9.

Breaking RSA is at most as hard as factoring the modulus used, and is in fact
precisely as hard as finding the secret key from the public one. Whether inverting
the P-function is also equivalent to factoring is an open problem, however, as far as
ordinary RSA is concerned. The P-function of the Rabin variant, however, is provably
equivalent to factoring, as long as one uses the algorithm in its pure form, i.e., without
a mode of use. This, on the other hand, means that the system is open to a chosen
message attack when used for signatures. Using the mode of use recommended here
solves this problem, but also means that the equivalence to factoring is not provable
anymore. Hence, ordinary RSA and Rabin are on equal footing as far as this aspect is
concerned.

184 RIPE integrity Primitives

5.2.1 Security of the Signature Mode

If RSA is used directly for digitial signatures, it is possible to use knowledge of legiti-
mately signed messages to generate new, signed messages, without knowing the secret
key. For example, it always holds that

S(M;) - S(Ms) mod n = S(M; - M3 mod n),

and so if signatures on M; and M, are known, an enemy can always sign the “message”
M; - My mod n. Another attack puts M := P(R) for some number R which then
becomes a valid signature of M. Although such new messages are unlikely to be
meaningful, the security of this system is clearly not optimal.

It is the purpose of the redundancy function RR to defend against these attacks.
The properties of RR were analyzed in [GQWL91], and the evaluation in RIPE has
revealed nothing that goes against the results obtained there. Using the hash function
before RR serves as an extra precaution, and adds the benefit that messages can be of
arbitrary lengths.

Note, however, that the hash function must be secure, i.e., it should be hard to
find different messages with the same hashcode. It is therefore recommended to use a
carefully analyzed hash function, such as RIPEMD or MDC-4 described in Chapter 2
and Chapter 3 of this report.

5.2.2 Security of the Forward Authentication Key Mode

For the first property of this mode, note that given a message c, z, it is clear that A can
compute a key with the right connection to z. On the other hand, no one else can do
this efficiently, since first z is an RSA ciphertext that requires knowledge of the secret
key for decryption, and second ¢’s only connection to z is that it depends on h(z) —
security of the hash function means that z cannot be computed efficiently from h(z).

Assume now that A accepts the message c, z as having originated from B, i.e., the
signature he checks turns out to be valid. We claim that this means that B must
have generated the message, and is the only other party capable of computing the key.
Since the processes leading from z to z and from z to ¢ are both one-way functions,
assuming security of RSA, it is a reasonable conjecture (supported in part by the
conjecture from [MiSc91]) that a valid pair ¢, z can only be generated by first choosing
z and then computing the pair. Hence the fact that A accepts the pair is evidence
that some other user knows z and therefore the key. Moreover, because RR(h(z)) is
XORed onto the signature to produce ¢, h(z) is difficult to compute from c¢. Therefore,
once the pair is generated, the signature hidden in ¢ cannot be easily replaced by the
signature of another party, and so A can conclude that the other party capable of
computing the key must be B.

For the second property, note that the key K is extracted from the output of a
one-way function that B cannot easily invert, namely P4, and that B must know the
input value z in order to be able to sign it (A would not accept the message without

the signature). So to control the value of K, only three possibilities seem to be open
to B:

rRsa 185

e Invert P4 on a random output value producing the desired key. This is infeasible
because B does not know Sy4.

e Choose carefully an input value such that the intermediate results and the output
can be controlled. The obvious way to do this is to choose a small input value so
that no modular reductions will take place during the computation of P4. But
this is prevented by the conditions on the choice of z.

e Generate many keys with randomly chosen input, and hope that one will equal
the desired key value. With current state of the art, this is infeasible if the key
has length at least 56.

It therefore seems reasonable to conjecture that B cannot control the value of K.

6 Performance Evaluation

6.1 Software Implementations

Both the P and S operations in plain RSA (see Section 3.1) are modular exponenti-
ations, where the modulus is the product of two large primes. In practical systems
both primes are either 256, 384 or 512 bits long, resulting in, respectively a 512, 768
or 1024-bit modulus. The basic multiprecision operations needed to implement such a
modular exponentiation are the multiplication of two integers, the squaring of an inte-
ger and the modular reduction of a integer (see Chapter 10 for an algorithm). For the
multiplication and squaring optimized versions of the classical algorithms are used, as
described in [Knu81]. The modular reduction is implemented according a method due
to P.L. Montgomery, allowing a reduction in almost the same time as a multiplication
[Mon85].

Using knowledge of the prime factors of the modulus, the S operation can be
speeded up with a factor 3 to 4. That is, using the so-called Chinese Remainder
Theorem (CRT) the S operation is basically reduced to two exponentiations modulo
the two prime factors, being only half the length of the modulus, see [QuCo82]. To
improve the performance of the P operation of plain RSA a small public exponent can
be chosen in the key generation, such as 2!® + 1. Since the public exponent of the
Rabin variant is always 2, its P operation is just a modular squaring.

Both a C and a 80386 Assembly language implementation are considered. The C
version has the advantage of being portable. The considerable difference in performance
between the C and the Assembly language version is due to the general nature of the
C code: it can be used for integers of arbitrary length, whereas the Assembly versions
use different code for each length, which has been optimized for that particular length.
All figures of Table 1 are for an IBM-compatible 33 MHz 80386DX based PC with 64K
cache memory. The C version was compiled with the WATCOM C/386 9.0 and run
with the DOS/4GW DOS extender (i.e., in protected mode). The Assembly language
implementation was assembled with Turbo Assembler 2.5 and run in real mode.

186 RIPE Integrity Primitives

speed in bit/s
C Assembly
512 768 1024 | 512 768 1024
General exponentiation | 191 90 52 | 1045 485 280
P (plain RSA, 26 +1) | 4447 3126 2405 | 34K 24K 18K
P (Rabin variant) 120K 85K 66K | 662K 473K 356K
S (with CRT) 653 322 190 | 3460 1688 1042

Table 1: Software performance of the public key and secret key operations in plain
RSA and its Rabin variant on a 33 MHz 80386DX based PC with a 64K memory
cache using WATCOM C/386 9.0 in combination with the DOS/4GW DOS extender.

An interesting alternative to custom hardware is the implementation of RSA on a
digital signal processor (DSP) providing hardware speed yet software flexibility. The
figures of Table 2 were obtained on a 20 MHz Motorola DSP56001.

speed in bit/s
512 bits
General exponentiation 5K
P (plain RSA, 216 + 1) 184K
S (with CRT) 15K

Table 2: Software performance of the public key and secret key operations in plain
RSA on a 20 MHz Motorola DSP56001.

6.2 Hardware Implementations

The figures of Table 3 are for a general exponentiation on the fastest RSA chip yet
available [Pij92]. It uses a 25 MHz clock frequency. The speed of the S operation can
be improved as in the software case, but here the factor of improvement is only about
1.5.

speed in bit/s
512 768 1024
General exponentiation | 40K 30K 25K
S (with CRT) 60K 45K 40K

Table 3: Hardware performance of a general modular exponentiation on the PCC200
RSA Encryption Device.

RsA 187

7 Guidelines to Software Implementation

For generating keys for RSA, we refer to Chapter 9. For implementation of the multi-
precision arithmetic needed for RSA itself, we refer to Chapter 10. Implementing the
modes of use is straightforward, given an implementation of RSA.

References

[FiSh86]

[GQWL91]

[1SO91]

[Knu81]

[Kob87]

[MiSc91]

[Mon85]

[Pijo2]

[QuCo82]

[Rab79]

[RSAT8]

A. Fiat and A. Shamir, “How to prove yourself: practical solutions of
identification and signature problems,” in: Advances in Cryptology -
CRYPTO’86, A.M. Odlyzko ed., Lecture Notes in Computer Science no.
263, pp. 186-194, 1987.

L. Guillou, J.-J. Quisquater, M. Walker, P. Landrock and C. Shaer, “Pre-
cautions taken against various potential attacks in ISO/IEC 9796,” in:
Advances in Cryptology - EUROCRYPT’90, 1.B. Damgard ed., Lecture
Notes in Computer Science no. 473, Springer-Verlag, Berlin-Heidelberg-
New York, pp. 465-473, 1991.

ISO/IEC International Standard 9796, Digital Signature Scheme Giving
Message Recovery, 1991.

D.E. Knuth, The Art of Computer Programming, Vol. 2: Seminumerical
Algorithms, 2nd Edition, Addison-Wesley, Reading Mass., 1981.

N. Koblitz, A Course in Number Theory and Cryptography, Springer-
Verlag, Berlin-Heidelberg-New York, 1987.

S. Micali and C.P. Schnorr, “Efficient perfect polynomial random number
generators,” Journal of Cryptology, vol. 3, no. 3, pp.157-172, 1991.

P.L. Montgomery, “Modular multiplication without trial division,” Math-
ematics of Computation, vol. 44, pp. 519-521, 1985.

Pijnenburg micro-electronics & software: PCC200 RSA Encryption De-
vice, 1992.

J.-J. Quisquater, C. Couvreur, “Fast decipherment algorithm for RSA
public-key cryptosystems,” Electronic Letters, vol. 18, pp. 905-907, 1982.

M.O. Rabin, Digital Signatures and Public Key Functions as Intractable
as Factoring, Technical Memo TM-212, Laboratory of Computer Science,
Massachusetts Inst. of Technology, 1979.

R.L. Rivest, A. Shamir and L. Adleman, “A Method for obtaining digital
signature and public key cryptosystems,” Communications of the ACM,
vol. 21, pp. 120-126, 1978.

188 RrIPE Integrity Primitives

A Test Values for Signature Mode

The following shows some an example of the computation of a signature. The example
starts from the hashcode, which has size 128 bits in this example. To facilitate reference
to ISO/IEC 9796, we use the terminology from that standard but also refer to the

notation from section 2.6.

9796 TEST

Data in HEX notation and ordinary number format:

most significant digit first

modulus:

9FFC F9B7 B211 3D86 B214 4AQ7
3D24 4BA1 6AEF 4812 8D3A FE8B
FOC6 01E4 744D OOQE 13C8 0178

public exponent:
10001

secret exponent:

232C 329A 3803 A24B 228B 635B
E930 3990 5B3A OFD6 3EA9 B7DB
B5A0 A1E6 2F89 50ED CFF9 A505

hashcode:

6047
1626
46C9

0BC7
B667
B347

FFEEDDCCBBAA99887766554433221100

Padded and extended message

D24F
3E62
98B1

BE6C
B8DF
56EB

EB78 2369
EO2F 1260
9F

E38F 9DF9
86C8 CA96
81

(only bytes in non-redundant positions shown)

00..
44. .
88..

FF..
33..
77..

EE..
22..
66. .

DD..
11..
55..

cC..
00..
44 .,

BB..
FF..
33..

Message with redundancy bytes

0011 FFCC EEAA
4488 3355 2233
88FF 7722 6644

After truncate
4011 FFCC EEAA
4488 3355 2233
88FF 7722 6644

DD77 CC66
11EE 0010
5599 4488

and force
DD77 CC66
11EE 0010
5599 4438

BBBB
FFCC
3355

AA..
EE..
22..

¢\

AADD
EEAA
2233

99..
DD..
11..

88. .
cC..
00

77..
BB..

least sig.

BBBB AADD
FFCC EEAA
3355 2233

9900 88FF 7722
DD77 CC66 BBBB
11EE 00

byte (I)

9900 88FF 7722
DD77 CC66 BBBB
11EE 06

63F6
1BC5

6588
3991

66. .
AA..

6644
AADD

6644
AADD

36563
176F

9398
2438

55..
99..

5599
9900

5599
9900

Representative
4011 FFCC EEAA
4488 3355 2233
88FF 7722 6644

Signature

3F84 1031 166A
AD93 313C 844D
8FCA 25BA 7C20

element (RR)

DD77 CC66 BBBB AADD 9900 88FF 7722 6644 5599
11EE 0010 FFCC EEAA DD77 CC66 BBBB AADD 9900
5599 4488 3355 2233 11EE 06

4EA9 E956 CB0A 6B57 CF9A F3BO ADC8 AD9B 6ET7F
B12F F8C2 26DB 00B4 OF28 AODA 7E9B B559 40EB
2804 1521 8605 59D0 3FC8 15

rRsa 189

Chapter 8

COMSET

192 RIPE Integrity Primitives

Contents

1

2

7

Introduction

Definitions and Notation
2.1 Introduction
2.2 General e
2.3 Representation of the Numbers
2.4 Definitions and Basic Operations
2.5 Functions and Symbols Used by the Primitive

.................................
......................

Description of the Primitive
Use of the Primitive

Security
5.1 Claimed Properties
5.2 Algebraic Evaluation

Performance Evaluation
6.1 Software Implementations
6.2 Hardware Implementations

Guidelines for Implementation

References

193

193
193
193
194
194
195

195

197

198
198
198

199
199
200

200

201

comMseT 193

1 Introduction

COMSET is a cryptographic protocol that allows any two users to identify themselves
to each other, and also to exchange a secret key that they use for subsequent data origin
authentication. Such interaction will typically occur at the beginning of a session, and
this led to the acronym

COMSET for COMmunication SETup.

The essential idea of the protocol is that in order to identify a user in a system
with public key cryptography, it is sufficient to establish authenticity of his public key
and subsequently to be convinced that the user is in possession of the corresponding
secret key. The first task can be solved by a public key directory, or by certificates (cf.
[CCI89]); this is not part of COMSET. COMSET concentrates on the second task:
how can A (Alice) convince B (Bob) that she possesses the corresponding secret key, if
B knows the public key of \A? Further, COMSET provides the two users with a secret
key know only to them. In many situations this is desirable for subsequent data origin
authentication using a symmetric cryptosystem. These concepts are explained in Part
IT of this report.

The underlying mathematical principle of COMSET is the Rabin variant (cf. [Rab79])
of the RSA scheme (cf. [RSAT78]), which is also a primitive described in Chapter 7 of
this report.

Originally COMSET was suggested by J. Brandt, I. Damgérd, P. Landrock and T.
Pedersen in [BDLP88].

The structure of this description of COMSET is as follows. In order to avoid any
ambiguities in the description, the notation and definitions used are fixed in section 2.
In section 3 the primitive is described and in section 4 its use is explained. In section
5 security aspects of the primitive are discussed. This includes claimed properties
and the results of the algebraic evaluation of the primitive. Finally, in section 6 the
performance of the protocol is considered. Section 7 refers the reader to the Appendix
B “Implementation Guidelines for Arithmetic Computations”.

2 Definitions and Notation

2.1 Introduction

In order to obtain a clear description of the primitive, the notation and definitions used -
in this chapter are fully described in this section. These include the representation of
the numbers in the description as well as the operations, functions and constants used
by the primitive.

2.2 General

”

The symbol “:=” is used for the assignment of a value or a meaning to a variable or
symbol. That is, a := b either means that the variable a gets the value of the variable

194 RIPE integrity Primitives

b, or it means that a is defined as “b”. It will be obvious from the context which
meaning is intended.

The equality-sign “=” is used for equality only. That is, it indicates that the two
entities on either side are equal.

An ellipsis (“...”) denotes an implicit enumeration. For example, “s =0, 1, ...,
n” is meant to represent the sentence “for i = 0,7 = 1, and so on, up to i =n”.

2.3 Representation of the Numbers

A sequence of n bits by, by, ..., b,_; is interpreted as an nonnegative integer B in the
following way. The bits are considered as the binary representation of B, the more
significant bits being first in the sequence. That is,
n—1)
B := Z bi2n—z_1.
=0
Conversly, an interpretation of a number as a sequence of bits is defined by this equa-

tion, if a bit length for this number is fixed. In this chapter only the bit length L of
the modulus is used.

2.4 Definitions and Basic Operations

e A string is a sequence of bits.

e For a bit string X the length of X is denoted as |X|. That is, | X| is the number
of bits in the string X. If | X| = n, then X is said to be an n-bit string.

o For an nonnegative integer N, the length of N is defined as the length of the
shortest binary representation of N. This is the representation with most sig-
nificant bit equal to 1. (All “leading zeros” are removed.) The length of NV is
denoted as | N|.

e For astring X = zo,71,...,Zn1, the string z;, z;41,...,2; with 0 < i < j < | X|,
is denoted as X;;. This notation is also used for nonnegative integers. In this
case its binary representation as an L-bit number is used to take the substring
from.

e For a nonnegative integer A and a positive integer B, the numbers A div B and
A mod B are defined as the nonnegative integers @, respectively R, such that

A=@QB+ R and 0<R<B.

That is, A mod B is the remainder, and A div B is the quotient of an integer
division of A by B.

e The notation “X =Y (mod N)” (X is equivalent to Y modulo N) is used to
indicate that X mod N =Y mod N.

coMseT 195

e For two nonzero integers X and Y we say that X divides Y if ¥ mod X = 0.
That is, if Y is a multiple of X.

e For two nonnegative integers X and Y, not both zero, the greatest common
divisor ged(X,Y) is defined as the greatest positive integer that divides both X
and Y.

e An integer X is invertible modulo N if gcd(X, N) = 1, see [Kob87].

e Aninteger X that is invertible modulo N is said to be a quadratic residue modulo
N if there is an integer Y such that X = Y? (mod N).

e A prime is an integer greater than 1 that is divisible only by 1 and by itself.

2.5 Functions and Symbols Used by the Primitive
e The users of the protocol are denoted by A (for Alice) and B (Bob).

e p4 and gp are the secret prime factors of the modulus n 4 of A.
e [is the bit length of L.

e The public encryption function of A is denoted by F4() . It is defined by By(m) =
m? mod n 4

e The secret decryption function of A is denoted by S4() . It is defined by Ss(c) =
¢ mod n 4, where
(pa—1)(ga—1)+4
S :

dg =

e m denotes the message in the protocol.
e c denotes the challenge in the protocol.
e v denotes the challenge validator in the protocol.

e The secret key exchanged in the protocol is denoted by k.

3 Description of the Primitive

COMSET is a public key identification protocol. It provides entity authentication of
its user A. It also provides exchange of secret keys.

Each potential participant A of the protocol must have secretly selected two primes
p4 and g4 of L/2 bits each with py =3 (mod 8) and g4 =7 (mod 8). L is a security
parameter whose meaning is discussed in Appendix A of this report, it must be at
least 512. Note that for security reasons p4 and g4 have to meet additional conditions
which are also described in Appendix A.

196 RIPE Integrity Primitives

A publishes the product n4 = paqa as her public key P4. She must keep secret the
prime factors p4 and q4 .

The public encryption function of A is given by By(m) = m? mod ns. It is only
used for quadratic residues m modulo n4.

Only A knows her secret decryption function $4(c) = c* mod n4, where

(Pa—-1)(ga~1)+4

dg = 3

An explanation of why this Rabin variant (cf. [Rab79]) of the RSA scheme (cf.
[RSA78] and Chapter 7 of this report) works may be found in [Kob87].

The COMSET protocol for participants A and B is as follows.

B chooses a random integer r with 2 < z < ny. Each number in this interval
should be selected with equal probability. The message m is determined by the
equation m := z? mod ny. He encrypts m to the challenge ¢ := F4(m) using
the public key P4 of A. He sends the challenge ¢ together with a challenge
validator v := mp_gs -1 1. €., the 64 least significant bits of m to A.

e A decrypts c into m’ := S4(c) and compares m} _g, ;_; With v: if equality holds,
she sends the answer w := m/_ 55 _¢5 to B. If m}_g,;_; and v are not equal,
she compares (n4 — m')_es,r—1 With v. If equality holds, she sends the answer
w = (ng — m')p_1281-65 to B. If this check also fails, A sends the message
“stop” to B, the execution of the protocol failed.

e B compares w with mp_128 1—6s; if equality holds, the authentication has been
successful.

e Finally, both .4 and B determine their shared secret key. Let [be the bit length
of the key to use later for symmetrical message authentication. B takes as secret
key k := mp_198-11-120 - A finds the secret key by using the equation k =
™M _198-1,—129, if Mp_g4 -1 = v holds, and k = (na = m')p—128-1,L-129 if (N4 —
m')L—64,L—1 =.

The description can be summarized in the following bird’s eye view of the protocol.

comseT 197

A B

choose random square m
compute ¢ := By(m)
define v := ™M[—64,L—1

SV
compute m' := Sx(c)
if v="mp_g 11
then define w := mj_ 951 65
else if (ng —m')p—eap-1 =0
then define w := (ng — m')r_128.1-65
else failure —
verify that w = mp_128 165
if v=ml_g 1 compute k := mp_128-1,r-129

. —_ !
then compute & :=m}_j55 ;1199
: !
if (na—m')p-6sa0-1 =70
then compute k := (ng — m')L_128-1,L-120

Figure 1. The COMSET protocol

4 Use of the Primitive

COMSET provides entity authentication of A, where the entity A is identified by her
knowledge of the factorization of an L-bit public number, combined with the exchange
of a secret key that can be used for subsequent message authentication. This means
that B has good reason to believe that he is communicating with .A, and that the secret
key exchanged is only known to him and .A.

Note that A has no reason to believe that she is communicating with B, or that the
one she shares the secret key with is indeed B. If this is desired as well, the protocol
has also to be executed with the roles of A and B interchanged. Both authentication
processes can be executed at essentially the same time. This means that while B is
computing in the first step of the protocol message and challenge validator, A executes -
the first step of the protocol as well (of course she uses the public key of B to determine
the challenge validator). Then A and B exchange their ¢ and v values. After that both
can execute the second step of the protocol at essentially the same time, and so on.
At the end, each user has two keys. The bitwise exclusive or of these is used as the
common secret key of A and B.

Note that B must establish the authenticity of the public key of A. This is not
achieved by the COMSET protocol, but can be realized using a public key directory
or certificates (cf. [CCI89]).

198 RIPE integrity Primitives

5 Security

5.1 Claimed Properties
The COMSET protocol is claimed to satisfy the following:

e If both parties follow the protocol, all checks will be satisfied, and the protocol
will complete successfully.

e It is infeasible for any user X to claim he is \A and on his own complete the
protocol successfully with B, unless X’ possesses the secret key of .A.

e COMSET is a zero-knowledge protocol (see [GMRA89] for a formal definition),
i.e., after completing the protocol with A, B has obtained no information that
he could not have computed efficiently by himself. In particular, he has learnt
nothing that could help him to impersonate A later.

e If A and B complete the protocol successfully, B can assume that the key k has
been received by A. Moreover, it is infeasible for any third party observing the
communication to guess the value of k essentially better than at random.

Here, and in what follows, by “infeasible” we mean computationally far out of reach
of current technology.

5.2 Algebraic Evaluation

The properties claimed rely on the following two assumptions:

1. Given only m? mod n and n, the least significant half of the bits of m are si-
multaneously secure, i.e., even if some of the bits are revealed, it is infeasible to
guess any of the remaining bits essentially better than at random. In particular,
this means that from only n and (¢, v) it is infeasible to guess m or w, and also
that from n, (c,v) and w it is infeasible to guess any bit of k.

2. Given only n, it is infeasible to compute a pair (c,v) that will pass A’s check
without also being able to compute m; in other words it is infeasible for B to
come up with a quadratic residue and many bits of a square root without in fact
being able to compute the entire square root.

The first assumption made is a special case of the conjecture made by Micali and
Schnorr in [MiSc91], this conjecture is in turn based on the assumption that modular
squaring is a one-way function, in other words that RSA and Rabin’s variant of RSA
are secure. Therefore the first assumption is reasonable.

The second assumption is also supported in part by [MiSc91]: their conjecture says
that the least significant bits of a modular square root are simultaneously secure (see
explanation above). This implies that the most obvious way of trying to break the
assumption, namely by selecting a random number and trying to compute the least

comseT 199

significant bits of a square root, will not be feasible. It is therefore conjectured that
essentially the only feasible way of computing a valid pair (c,v) is by first selecting m
and then computing the pair, and this is just the content of the second assumption.

Assuming 1. and 2., the only remaining attack to consider is an intermediate person,
who simply forwards the different parts of the protocol, acting as a relay so to speak.
However, this attacker would never be able to learn the common key, as this requires
knowledge of the secret key. In fact this type of attack, known as the mafia attack,
will only work in one of the following instances in general, completely independent of
the actual schemes:

1. Key exchange without authentication.

2. An identification scheme with no connection to the subsequent communication
(access control).

"6 Performance Evaluation

In the protocol B has to perform only two modular squarings, i.e., one squaring to
choose m and one squaring to compute c¢. This is negligible compared to the general
modular exponentiation A has to perform: the length of the exponent e is about the
same as that of the modulus n. Therefore, the performance of COMSET is completely
determined by the time needed to perform one general modular exponentiation. This
still holds if both A and B have to prove themselves to each other, because in that
case the two general exponentiations can be done simultaneously.

6.1 Software Implementations

In practical systems both primes of the modulus are either 256, 384 or 512 bits long,
resulting in, respectively a 512, 768 or 1024-bit modulus. The basic multiprecision
operations needed to implement such a modular exponentiation are the multiplication
of two integers, the squaring of an integer and the modular reduction of a integer (see
Appendix B for an algorithm). For the multiplication and squaring optimized versions
of the classical algorithms are used, as described in [Knu81]. The modular reduction
is implemented according a method due to P.L. Montgomery, allowing a reduction in
almost the same time as a multiplication [Mon85].

Using knowledge of the prime factors of the modulus, the S, operation can be
speeded up with a factor 3 to 4. That is, using the so-called Chinese Remainder Theo-
rem (CRT) the S, operation can be reduced to basically two general exponentiations
modulo the two prime factors, being only half the length of the modulus, see [QuCo82].

Both a C and a 80386 Assembly language implementation are considered. The C
version has the advantage of being portable. The considerable difference in performance
between the C and the Assembly language version is due to the general nature of the
C code: it can be used for integers of arbitrary length, whereas the Assembly versions
use different code for each length, which has been optimized for that particular length.

200 RIPE Integrity Primitives

All figures of Table 1 are for an IBM-compatible 33 MHz 80386DX based PC with 64K
cache memory. The C version was compiled with the WATCOM C/386 9.0 and run
with the DOS/4GW DOS extender (i.e., in protected mode). The Assembly language
implementation was assembled with Turbo Assembler 2.5 and run in real mode.

An interesting alternative to custom hardware is the implementation of a modular
exponentiation on a digital signal processor (DSP) providing hardware speed yet soft-
ware flexibility. The figures of Table 2 were obtained on a 20 MHz Motorola DSP56001.

speed in bit/s
C Assembly
512 768 1024 | 512 768 1024
General exponentiation | 191 90 52 | 1045 485 280
S (with CRT) 653 322 190 | 3460 1688 1042

Table 1: Software performance of the secret key operation S4 on a 33 MHz 80386DX
based PC with a 64K memory cache using WATCOM C/386 9.0 in combination with
the DOS/4GW DOS extender.

speed in bit/s
512 bits
General exponentiation 5K
S (with CRT) 15K

Table 2: Software performance of the secret key operation S4 on a 20 MHz Motorola
DSP56001.

6.2 Hardware Implementations

The figures of Table 3 are for a general exponentiation on the fastest RSA chip yet
available [Pij92]. It uses a 25 MHz clock frequency. The speed of the S4 operation can
be improved as in the software case, but here the factor of improvement is only about
1.5.

7 Guidelines for Implementation

The implementation of the protocol is straightforward. For multiprecision arithmetic

which is needed for the computations required by the protocol we refer to Appendix
B.

comseT 201

speed in bit/s
512 768 1024
General exponentiation | 40K 30K 25K
S, (with CRT) 60K 45K 40K

Table 3: Hardware performance of a general modular exponentiation on the PCC200
RSA Encryption Device.

References

[BDLP88] J. Brandt, [.B. Damgérd, P. Landrock and T. Pedersen, “Zero-knowledge

[CCI8Y)]

[GMRSY]

[Knu81]

[Kob87]

[MiSc91]

[Mon85]

[Pij92]

[QuCo82]

[Rab79]

[RSATS]

authentication scheme with secret key exchange,” in: Advances in Cryptol-
ogy - CRYPTO’88, S. Goldwasser ed., Lecture Notes in Computer Science
no. 403, Springer-Verlag, Berlin-Heidelberg-New York, pp. 583-588, 1990.

CCITT Recommendation X.509, The Directory-Authentication Frame-
work, 1989.

S. Goldwasser, S. Micali and C. Rackoff, “The knowledge complexity of
interactive proof systems,” SIAM Journal on Computing, vol. 18, no. 1, pp.
186-208, 1989.

D.E. Knuth, The Art of Computer Programming, Vol. 2: Seminumerical
Algorithms, 2nd Edition, Addison-Wesley, Reading Mass., 1981.

N. Koblitz, A Course in Number Theory and Cryptography, Springer-
Verlag, Berlin-Heidelberg-New York, 1987.

S. Micali and C.P. Schnorr, “Efficient perfect polynomial random number
generators,” Journal of Cryptology, vol. 3, no. 3, pp. 157-172, 1991.

P.L. Montgomery, “Modular multiplication without trial division,” Mathe-
matics of Computation, vol. 44, pp. 519-521, 1985.

Pijnenburg micro-electronics & software: PCC200 RSA Encryption Device,
1992.

J.-J. Quisquater, C. Couvreur, “Fast decipherment algorithm for RSA -
public-key cryptosystems,” Electronic Letters, vol. 18, pp. 905-907, 1982.

M.O. Rabin, Digital Signatures and Public Key Functions as Intractable
as Factoring, Technical Memo TM-212, Laboratory of Computer Science,
Massachusetts Institute of Technology, 1979.

R. Rivest, A. Shamir and L. Adleman, “A Method for obtaining digital
signature and public key cryptosystems, Communications of the ACM, vol.
21, pp. 120-126, 1978.

Chapter 9

RSA Key Generation

204 RIPE Integrity Primitives

Contents
1 Introduction

2 High Level Algorithm
2.1 Management of Secret Data
2.2 Choice of Public Exponent e
2.3 Choice of the Bitlength &
2.4 Choice of the Seeds s, s,
2.5 Rabin’s RSA Variant

........................
........................
..........................
..........................

3 Security Constraints
3.1 Precautions against Factoring Algorithms
3.1.1 General Factoring Algorithms

3.1.2 The p—1 and the Elliptic Curve Method

3.1.3 The Cyclotomic Polynomial Method

3.2 Precautions against Iterated Encryption
3.3 Summary of Constraints

4 Generation of Primes
4.1 Probable Primes
4.1.1 TheRabin Test
4.1.2 Uniform Probable Primes
4.1.3 Incremental Search
4.1.4 Satisfying Security Constraints
4.2 Provable Primes
4.2.1 Maurer’s Algorithmo
4.2.2 Various Tricks for Optimization

4.2.3 Satisfying Security Constraints
43 A Hybrid Method

5 Generation of Pseudorandom Bits
6 Conclusion, Choice of Algorithm

References

205

205
207
207
207
207
208

208
208
209
209
209
210
210

210
211
211
212
213
214
215
215
216
217
218

219

219

220

RSA Key Generation 205

1 Introduction

This appendix gives an overview of state-of-the-art of key generation for the RSA public
key cryptosystem (see Chapter 7). It contains a minimum of theoretical background,
and a maximum of practically oriented information.

The appendix treats RSA key generation by a top-down approach, and ends with
a conclusion on which methods are preferable in various situations.

All the definitions and notation from the RSA-chapter 7 of this report are also used

in this appendix. Let us recall the most important symbols: RSA uses the following
key data:

Public Key: Modulus 7, Public exponent e.

Secret Key: Prime numbers p,q such that pg = n. Secret exponent d, such that
ed=1mod (p—1)(g—1) "

The public key operation P is defined by P(m) = m® mod n for any 0 < m < n,
while the secret key operation S is defined by S(c) = ¢? mod n for any 0 < ¢ < n. The
choice of e, d ensures that P and S are the inverses of each other.

The primes are not really needed to execute the S-operation, except for some
optimized versions of it. Nevertheless, they need to be computed during the key
generation phase, in order to correctly generate the rest of the key data.

The Chapter is structured as follows: Section 2 describes a generic algorithm for key
generation, and Section 3 discusses the security constraints needed to ensure that the
RSA key is sufficiently protected against the known attacks. Section 4 then explains
different ways of generating primes for use in RSA, probable as well as provable. Section
5 briefly mentions the problem of randomness, and finally Section 6 discusses the
cryptographic aspects of the choice of algorithm.

2 High Level Algorithm

This section describes a generic algorithm keygen for RSA key generation. We will
assume that it is given a public exponent e as input, such that the goal is to generate
the rest of the key material to fit e. This is because some applications of RSA need
the public exponent to be a constant which is the same for all users. Moreover, one
may wish to choose a small public exponent since this makes the P-operation more .
efficient. We will also assume that keygen is given an exact bit length & for the modulus
produced, and random seeds s,, s, from which the two primes are to be generated.
keygen assumes the existence of two procedures:

e generateprime(s, I,e), which returns a random prime p in the interval I, gener-
ated from random seed (bit string) s, such that e and p—1 have greatest common

1The least common multiple of (p — 1) and (g — 1) could be used instead and results in slightly
shorter exponents

206 RIPE integrity Primitives

divisor 1. The last condition is necessary to ensure that we can find a suitable
secret exponent. Section 4.1 shows one concrete implementation, strongprime
and some simpler methods probprime and probprimeinc. Another alternative
is the procedure hybridprime from Section 4.3 or methods derived from Section
4.2. Section 6 gives a discussion on the choice of method.

e inverse(a,m), which returns a number b, such that ab = 1 mod m. A stan-
dard algorithm for implementing it can be found in any textbook on numerical
algorithms (e.g., [Knu81)).

The input parameters to keygen leave open a choice for the interval in which to
generate the primes. The only constraint is that they must multiply together to a
number of the right length. For security reasons (see Section 3.1.1 for details) the
primes should be of approximately the same bit length. We take a simple approach,
and let the lengths of the primes be as close as possible, and ensure simultaneously
that the modulus will have exact bit length k.

An example: suppose k = 512. Then we will let each prime be of length 256, and
choose the interval such that both p and g have the two most significant bits set, i.e.,
p,q are in the interval]22%4 42255 ... 2256[This will ensure that n = pq is in the interval
]2511...2512[i.e., has bit length exactly 512. Generalizing this, we have the following

notation:
I (k) = |2K/2-1 4 ok/2=2 | k/2] if k is even
P() -]2(k+1)/2—1 + 2(k+1)/2——2 o 2(k+1)/2[otherwise

I (k) = J2k/2-1 4 ok/2=2 | ok/2] if k is even
a(k) = J2(k-1/2=1 4 9(k=1)/2=2 9(k=D/2[otherwise

With this in mind, we can describe the algorithm itself. Below follow subsections
explaining how to choose the input parameters:

PROCEDURE KEYGEN(seed s,, s,, integer k, exponent e)

output: RSA key set (with public exponent e) consisting of

n (k bits),
p,q (about k/2 bits each),
d (k bits)

1. p:= generateprime(s,, Ip(k),e)

2. q:= generateprime(sy, I4(k),€)

3. d := inverse(e,(p — 1)(g — 1))

4. n:=pq

5. return n,p,q,d

RSA Key Generation 207

2.1 Management of Secret Data

Although physical security is not a main subject of this appendix, we point out that
some of the data handled by keygen are of course to be kept secret, and should be
treated accordingly by the implementation.

It is important to realize that this is true, not only for the secret key, i.e., p,q,d,
but also for the random seeds s,, s,: with knowledge of the seeds, the entire RSA key
can be reconstructed. All the numbers s, s, p, g, d should therefore be treated at the
same level of security.

2.2 Choice of Public Exponent e

The definition of the secret key implies that e must be an odd number (there is a
variant of RSA that uses e = 2, the so called Rabin system — see Section 2.5 for a
description of the changes needed in the key generation to support this system).

Hence keygen should be called with an odd number e as input. It should have at
most & bits, but as mentioned above, a small e gives a much more efficient P-operation
(but does not affect the time for the S-operation). In general, the time to compute
m® mod n is directly proportional to the bit length of e.

There is nothing known to suggest that there is any difference in security between
a small e and a randomly chosen one, although it should be mentioned that when
using RSA for secrecy with very small values of e, one should not send messages that
are numerically extremely small, or send exactly the same message to many different
users. No such problems occur with the modes of use suggested in this report.

The smallest possible value of e is of course 3. Another popular value is e =
216 + 1. It has only two 1’s in its binary representation which makes the square-and-
multiply algorithm very efficient for this exponent compared to other 17 bit numbers
(see Appendix B).

2.3 Choice of the Bitlength k

The parameter k controls the size of the modulus generated. To attack the key gen-
erated, one may try to find p, g from n, i.e., factor the modulus. It is necessary that
k is large enough to make this a difficult task. State of the art suggests that k = 512
is the absolutely smallest value one should consider. At the other extreme, all experts
agree that it is not even remotely possible to factor a 1024-bit number in any forseeable
future. Already 600 bits is way out of reach currently. See Section 3.1.1 for details.

There is a trade-off here between security and performance. In practice, doubling
the length of the modulus will make the P and S operations 3-4 times slower in
software, and about 2 times slower in hardware.

2.4 Choice of the Seeds s,, s,

As mentioned above, the random seeds must be treated as secret data. This also means
that they must be hard to predict for an outsider. Therefore one should not rely only

208 RIPE Integrity Primitives

on approaches that are good enough in other contexts, like e.g., taking the system
time, or using the standard random number generator of the programming language
used. It is advisable to take at least some random input from the user, and of course
a hardware source of really random bits is preferable, if available.

To prevent an outsider from simply guessing the seeds, they should be at least 64
bits each, but k/2 bits each are required to ensure maximal diversity of the primes
generated.

2.5 Rabin’s RSA Variant

This system works essentially like RSA, except that we use e = 2. This means that the
E operation maps 4 different inputs to one output, while the D operation reconstructs
exactly 1 of these inputs. The problems caused by this can be solved in various ways,
and we will not give any details here, but refer to for instance [Kob87] for more details.

The most commonly used version of the Rabin system can be described as follows:

Public Key: Modulus n.

Secret Key: Prime numbers p, g such that pg = n and p is congruent to 3 modulo 8,
and g is congruent to 7 modulo 8. Secret exponent d = ((p — 1)(¢ — 1) +4)/8.

The procedures described in the sequel can be made to generate primes suitable
for this system, by calling generateprime with e = 1, and inside this procedure,
whenever a number is considered as a candidate prime, discard it immediately, if it is
not congruent to 3 modulo 8, respectively 7 modulo 8.

3 Security Constraints

Before we go into the actual algorithms for generating primes, we have to describe
some constraints that are necessary in order to ensure that the RSA key we generate
will in fact be hard to break with the known algorithms. It should be noted that the
example parameters given represent acceptable security today, but that higher values
might be needed in the future.

3.1 Precautions against Factoring Algorithms

It is clear that an enemy should not be able to find the prime factors p, ¢ from the RSA
modulus 7, i.e., it should be hard to factor n. There are a large number of factoring
algorithms known, out of which some are particularly efficient against numbers of
various special forms. We should make sure that the numbers we generate are not
of this kind. The subsections below list the relevant factoring algorithms, and the
constraints they imply.

RSA Key Generation 209

3.1.1 General Factoring Algorithms

These are algorithms that can be used against numbers that do not have properties
to make them vulnerable to special methods (see below). The best algorithm of this
type is currently the quadratic sieve algorithm. It may eventually be outperformed by
a variant known as the number field sieve [LLMP90]. The largest numbers without
special properties that can be factored using this type of algorithm are of length about
110-120 decimal digits. The factorization can be fornd in about 60 days real time,
using a large number of computers in parallel [LeMa90].

It is generally accepted that the hardest input for such algorithms are randomly
chosen numbers with two prime factors of approximately the same size. This is the
motivation for letting p and ¢ have the same bit length. It should be mentioned that
if p — q is relatively small (less than 275, say), there is an easy and elementary way
of factoring n = pq. However, for all the methods described below for prime number
generation, the diversity of the primes generated is large enough to make the probability
of having such a small p — ¢ completely negligible.

3.1.2 The p —1 and the Elliptic Curve Method

The p — 1 method is a factoring method suggested by Pollard, which will work if p — 1
has only small prime factors (which is called a“smooth” number), where p is some
prime factor in n. Lenstra found a generalization of this method that will work, if one
can find a so called elliptic curve over p, whose order is a smooth number. The orders
that are possible can be expected to be in the interval [p — /p...p + /7).

Although it is completely infeasible to check all possible orders of elliptic curves
for smoothness, it may still be a good idea to pay special attention to smoothness of
p — 1 since if p — 1 is indeed smooth, Pollards algorithm will be much more efficient
than the elliptic curve method, even if we get a smooth order curve for free.

Thus, we should ensure that the p, ¢ generated for RSA are such that none of p—1,
¢ — 1 are smooth. More concretely, with the current state of the art, this means that
p — 1 and ¢ — 1 should have at least one prime factor of at least 75 bits. If we look
for large enough numbers (about 350-400 bits), a randomly chosen prime will satisfy
the condition with very large probability. For smaller numbers, however, a special
algorithm is needed.

3.1.3 The Cyclotomic Polynomial Method

This is a factoring method suggested by Bach and Shallit [BaSh89]. It will be efficient if
n has a prime factor p, such that a particular function of p produces a smooth number.
There are several choices for this function. One possibility is p + 1, others are p — 1
and p? 4+ p + 1, and there are many others involving p? or larger powers of p.

Out of these possibilities, p — 1 has already been considered, and those involving p?
or larger powers can be neglected, because the function values will be much larger than
p (at least 512 bits) and will therefore have negligible probability of being smooth.

210 RIPE integrity Primitives

As far as p+1 is concerned, it can be as small as 256 bits in practice, and a random
number this size has a small, but non-negligible probability of being smooth. Therefore
the RSA key generation should make sure that p+1 and g+ 1 are not smooth, at least
if the modulus is less than 600-700 bits.

3.2 Precautions against Iterated Encryption

One potential way of breaking RSA without factoring is by repeated encryption, i.e.,
given ciphertext C, one encrypts C m times to get P(P(--- P(C)---)) = P™(C), for
increasing values of m, until we get to a point where for some m, C = P™(C). Then
the corresponding plaintext will in fact be P™~1(C).

For any instance of the RSA system, there is an m with this property. However, it
will almost always be the case that m is so large that the attack is infeasible.

If one knows a relatively large prime factor t, of r, — 1, where 7, is a prime that
divides p — 1 and similarly primes ¢, 7, for ¢, it is possible to check that the value of
m is not too small: if the public exponent e satisfies that e">=1/* =£ 1 mod rp and
e(ra=D/ta o£ 1 mod ry, then m is divisible by both ¢, and t,, so it is at least t,t,.

3.3 Summary of Constraints

In summary, we have the following demands to RSA key material of good quality:

1. p,q should be of approximately the same bit length, but p — ¢ must not be less
than 27°.

2. p—1,9—1,p+ 1,9+ 1 should have prime factors respectively r,, 7y, sp, Sq, all of
which should be of length at least 75 bits.

3. The multiplicative order of e modulo (p—1)(g—1) must be large. This is satisfied
if r, — 1 and 7, — 1 have prime factors t,, resp. t, such that e»=1/t% # 1 mod r,
and e("~Y/% = 1 mod ry; and such that t,t, is of length at least 75 bits.

Of these constraints, the first part of 1 has been taken care of by the construction
of keygen above. The second part is satisfied with overwhelming probability, if one
uses the methods described below for generating the primes. Of course, one may also
check it directly, if absolute certainty is desired.

Conditions 2 and 3 may be taken care of by integrating them in the method for
generating p and g. Details will be given below.

4 Generation of Primes

This section explains in detail ways of generating primes for use in RSA-keys. There are
several possibilities: One can use numbers generated such that it can only be asserted
with some (large) probability that they are primes, one can use numbers generated in
such a way that it can be proven that they are primes, or one can combine the two

RSA Key Generation 211

methods in various ways. The following subsections contain technical considerations
dealing with these aspects. For a conclusion see Section 6.

4.1 Probable Primes

Probable primes are numbers generated such that we can only assert with some (large)
probability that they are primes. Later we will look at other methods that provide ab-
solute certainty, and produce so called provable primes. In practice, however, probable
primes are sometimes preferable because they often can be generated more efficiently,
and nearly always lead to smaller program sizes than provable primes.

4.1.1 The Rabin Test

The Rabin test is a procedure that is called with an integer n as input. It will test
whether n is a prime and will accordingly return “fail” or “pass” as output. As we shall
see, the answer is not always correct, but we can gain larger certainty by repeating the
test.

rabintest works as follows:

PROCEDURE RABINTEST (integer n)
Output: “fail” or “pass”
1. define h,a by: n — 1 = a2", and a is odd.

2. choose b uniformly at random from the interval |]1...n — 1]

b:=b*modn

- W

if b = 1, return(pass)

5. if there is an 7, such that 0 <=7 < h and b mod n =n — 1 then

return(pass)
else
return(fail)

The number b is called the “base”. Note that the numbers b2 mod n can be com-
puted easily by repeated squaring of b.
The basic facts about this test are:

e If nis a prime, then rabintest(n) = “pass” always.
e If n is a composite, then rabintest(n) = “pass” with probability at most 1/4.

Note that these basic facts do not necessarily imply that a method for prime number
generation using ¢ iterations of the test will have an error probability less than (1/4).
The error probability depends on the distribution with which candidate primes are
chosen. More details are given below.

212 RIPE Integrity Primitives

E\t |11 2 3 4 5 6 7 8 9 10
100/1 9 15 21 26 30 33 36 39 41
150 {2 12 21 28 34 39 43 47 51 54
3
8

200 15 26 34 41 47 52 57 61 65
250 19 30 40 47 54 60 65 70 75
300 |16 26 35 45 53 60 67 73 78 84
400 | 35 42 50 58 66 73 80 87 93 99
500 | 53 60 67 74 81 88 94 101 107 114
600 |72 79 8 92 98 104 110 116 122 128

Figure 1: Bounds on error probability of probprime, with e = v = 1.

4.1.2 TUniform Probable Primes

We describe here one possible procedure, probprime, for generating a random prime
number in an interval. To facilitate the description of procedures later in this report,
we also give probprime the ability to ensure that the prime p generated satisfies that
some given integer v divides p— 1 and that p can be used with a given public exponent
e, i.e., gcd(p — 1,e) = 1. A totally random prime is obtained by setting e = v = 1.

It assumes the existence of the procedure randomchoice, which is called with an
interval I as input and returns a random odd number chosen from /. We will return
later to how this procedure will be realized in practice (see Section 5).

Also, a table is assumed that contains all odd primes less than some upper limit r,
where 7 is a constant chosen once and for all. Since dividing a candidate number by
a small prime is much faster than doing a Rabin test, the overall time to find a prime
will be smaller, if we subject candidates to the Rabin test only if they are not divisible
by the small primes in the table. Maurer [Mau89] has shown that the optimal value of
ris R/D, where R is the time needed to do one Rabin test, and D is the time needed
to divide a candidate prime number by one prime less than r.

Finally, we assume a function ged for computing the greatest common divisor of
two integers. The algorithm can be found in e.g., [Knu81] and in Appendix A.

If I is the interval [a...b], we let ¢/ denote the interval [ca. .. cb].

The procedure guarantees that if randomchoice returns uniformly distributed num-
bers, and v = e = 1 then the primes produced by probprime will be uniformly dis-
tributed in the interval specified as input.

PROCEDURE PROBPRIME(interval I, divisor v, exponent e)

Output: a probable prime number p chosen at random from I, such that p — 1 is
divisible by v and ged(p — 1,e) = 1.

1. n := 2v - randomchoice(1/(2v)I) + 1

2. if n is divisible by a prime less than r, or ged(n — 1,e) # 1, go to 1.

RSA Key Generation 213

E\t|1 2 3 4 5 6 7 8 9 10
100/0 2 9 15 19 23 27 30 33 36
150 |0 5 14 21 27 32 36 40 44 48
2000 8 18 27 34 39 45 49 54 58
250 |0 11 22 32 40 46 52 58 62 67
3000 13 26 36 45 52 59 65 70 75
400 |1 18 33 45 55 63 71 78 8 91
500 |2 22 39 52 63 73 82 90 97 104
600 (4 25 44 59 71 82 92 101 109 116

Figure 2: Bounds on error probability of probprimeinc, when e = v = 1.

3. for count = 1...t do: if rabintest(n) = “fail” go to 1

4. return(n)

In [DLP], the probability that this procedure outputs a composite number is ana-
lyzed, in the cases where the interval specified is of the form [257!...2%] for some &,
and e = v = 1. Upper bounds for the probability are given in table 1. The numbers
given are —log, of the bound for the probability. For example, if we look for 250-bit
primes and use ¢ = 6, the error probability is less than 27°%.

4.1.3 Incremental Search

An alternative to probprime, which is more economical in its use of random bits, is to
choose at random only some odd starting point ng, and then do an incremental search
for the smallest prime larger than ng, i.e. we look at ng,no +2,....

If we want the same enhancement as for probprime, i.e., ensuring that the result
minus 1 is divisible by a given v, we make sure that no—1 is divisible by v, and examine
Nng, Ng + 2’1), RN

One advantage of this approach is that the testdivision by small primes can be done
much more efficiently: first compute the residue of ny modulo each small prime in the
table. Each time we add 2v to the current current candidate, add 2v to each residue
modulo the small primes, and test that no residue becomes 0. In [BDL91] it is shown
that the optimal limit r for the small primes in this case is 7 = m@%ﬁ.

We have the following implementation of this idea:

PROCEDURE PROBPRIMEINC (interval I, divisor v, exponent e)

Output: a probable prime number p chosen at random from I by incremental search,
such that v divides p — 1 and ged(p — 1,e) = 1.

1. n = 2v - randomchoice(1/(2v)I) + 1, initialize testdivision.

214 RIPE integrity Primitives

2. n=mn+ 2v, if n is now not in I, go to 1.

3. if n is divisible by a prime less than r (use optimized test division), or ged(n —
1,e) # 1, go to 2.

4. for count = 1...t do if rabintest(n) = “fail" go to 2.

5. return(n).

In [BDL91], it is shown that if one accepts an upper limit on the number of can-
didates to be examined (and therefore a small probability that the algorithm fails
altogether), one can estimate the error probability of probprimeinc in the case where
v = e = 1. One takes the numbers in table 2 as the point of departure. If the maximal
number of candidates is c¢-log(2¥), then the numbers in the table should be multiplied
by 2. The algorithm will fail with probability ezp(—2c).

4.1,4 Satisfying Security Constraints

In this section, we will discuss ways to ensure that the primes we produce will satisfy
constraints 2 and 3 mentioned in Section 3.3.

To fix some notation, let p be the prime to be produced, such that r divides p — 1,
s divides p + 1, and ¢ divides r — 1, where r, s,? are prime numbers.

We show here a variant of an algorithm of Gordon [Gor84], which works by first
constructing ¢, s from scratch, then r from ¢, and finally p from r, s.

If I is the interval [a...b], we let v/T denote the interval [/a ... V).

We assume the existence of a procedure initrand, which will initialize a scheme
for generation of random or nearly random bits (see Section 5), using a random seed
which is passed as a parameter. All subsequent calls to randomchoice will refer to the
seed used with initrand.

A concrete implementation will have to choose fixed functions ¢, co which are used
in the procedure strongprime to control the size of the prime factors generated for
p=+1 and r — 1. We discuss below how to choose these functions.

PROCEDURE STRONGPRIME(seed se, interval I, exponent e)

Qutput: a prime p chosen at random from interval I based on seed s, such that it
can be used in RSA with public exponent e. Security conditions from Section
3.3 are satisfied.

1. initrand(se)
2. t := probprime(c,(I)V1,1,1)
3. s := probprime(cy(1)V1,1,1)

4. r := probprime(cy(I)V1,t,1)

RSA Key Generation 215

5. po =81 —r*Imodrs
6. if po is even then py = pg + 78

7. return probprime(I, po,e)

When the interval [is [a...b], one possible choice for the functions ¢y, ¢, is

1 1
= - y Cy =
2 - bitlength(a) 2 2 - y/bitlength(a)

This choice allows the maximum possible size of r, s,t such that we still have a good
chance of finding a prime in the interval [with the right properties. At the other
extreme, one can replace the constant 2 in the formulas for ¢, co by a larger number,
chosen such that r,s,¢ will be of the minimum required size (see Section 3.3). This
will give a larger number of primes to choose from in the interval I.

An even more advanced idea is to choose ¢, ¢; at random between the two extremes
each time these values are needed. This will make it possible to generate virtually every
existing prime that satisfies the security constraints.

The calls to probprime in the procedure may of course be replaced by calls to
probprimeinc, which will give an efficiency improvement.

C]_(I)

4.2 Provable Primes

Provable primes are numbers generated in such a way that one can prove with certainty
that they are primes. Even though primality tests that always give correct answers
are quite complicated and inefficient, it is possible to generate provable primes quite
efficiently. The reason for this is that when we generate a number from scratch, we
may know some side information which can help us in proving the number to be prime.

4.2.1 Maurer’s Algorithm

Maurer [Mau89] has proposed a recursive algorithm for generating provable primes,
based on the following number theoretic result by Pocklington:
Let n—1:= FR, and let q, ... q; be the distinct prime factors of F'. Suppose there
exists a number a such that
"' =1modn

and for all i =1...¢,
ged(a™ Ve — 1 n) =1,

then if F > \/n, n is a prime.

This suggests a straightforward algorithm for generating a random prime in some
interval [low...high]: first generate recursively qi, qs, ..., where g1 > go > This
goes on until F', the product of the ¢’s is larger than y/high. Then choose random
even R-values such that n = FR+1isin [low... high], until an n-value can be proven
prime.

216 RriPE Integrity Primitives

a | pla)

1.5 | 0.59453 48919
2.0 | 0.30685 28194
2.5 | 0.13031 95618
3.0 | 0.04860 83883
3.5 | 0.01622 95932
4.0 | 0.00491 09256
4.5 | 0.00137 01177
5.0 | 0.00035 47247
6.0 | 0.00001 96497
7.0 | 0.00000 08746
8.0 | 0.00000 00323
9.0 | 0.00000 00010

Table 1: Distribution of the largest prime factor.

Maurer shows that if the ¢’s are large, nearly any choice of a will suffice for proving
primality of n (provided n really is prime!), so we are not likely to miss a.y primes, even
if we only try once for each candidate. Furthermore, it is shown that if the number e is
used to prove primality of the prime factors of p— 1 and ¢ — 1, then the resulting RSA
system with e as public exponent will not be easy to break by repeated encryption.

If the goal is to generate a prime uniformly chosen from the interval, then we should
know something about the distribution of the prime factors of n — 1, in particular the
distribution of their sizes is necessary. Fortunately, the distribution of the size of the
largest prime factor of a number is well known. More precisely, for large N, one can
compute p(a), the fraction of numbers x less than N whose largest prime factor is
less than z!/®. In Table 1, sample values of this function are given. From heuristic
arguments, this distribution function seems to be also applicable if we add the condition
that the number we are looking at is a prime minus 1.

Finally, we note that by the recursive nature of the algorithm, it is of course nec-
essary to have some lower limit for the primes generated, below which one generates a
prime, simply by exhaustive search and test division.

4.2.2 Various Tricks for Optimization

What can be done to speed up this algorithm? First of all, we should of course use test
division by small primes on a candidate before going into expensive exponentiations.
Maurer suggests that since all candidates are of the form n = FR + 1 for fixed F’, one
can translate the condition that none of the small primes divide n into a condition on
R. This will be faster to check, since R is usually much smaller than n (and certainly
less than /n). More concretely, if n = FR +1 = 0 mod p, then R = —F~! mod p.
So we can precompute —F~! modulo each small prime used for test division, and for
every candidate check for each p if R has residue —F~! mod p.

RSA Key Generation 217

Furthermore, even if a candidate passes the test division, there is no need to try
immediately proving that it is prime. A better approach is to do a Rabin test with base
2 (see Section 4.1.1). Base 2 gives the most efficient Rabin test possible. Like any other
base, it will exclude no prime, and from practical experience, it will exclude virtually
all composites (this is also supported by theoretical results [Pom81]). If n passes this
test, we have implicitly checked that 2"~! = 1 mod n. It is therefore advantageous
to use Pocklingtons result with a = 2, since we have then already checked the first
condition.

A final optimization concerns Pocklingtons result, which has been improved by
Brillhart, Lehmer and Selfridge [BLS75]:

Given n = FR+1, suppose we have an a that satisfies the conditions of Pocklington.
Let R' be the odd part of R, and F’ = (n—1)/R’. Let r, s be defined by R' = 2F's+r,
where 1 <7 < 2F". Suppose F' > ¥n. Then n is prime if and only if s = 0 or 72 — 8s
is not a square.

This refined condition is slightly more computationally costly to verify. However,
this makes little difference in practice, at least if we look at the variation using the
Rabin test. For this variation, experience shows that the above result will only be
used on the final candidate, and the extra computation required is only some trivial
manipulations to find F’, R/, s,r, and perhaps a square root computation, which takes
time negligible compared to the exponentiations.

Furthermore, the distribution of the largest prime factor shows that only 5% of
the numbers z are expected to have all prime factors less than z'/3. We suggest that
we can easily live without these 5%, in which case we never have to generate more
than one prime factor of n — 1. This will simplify the code and save time compared
to Maurer’s original version for the approximately 30% of the numbers that have their
largest prime factor less than z'/2. It will, however, bias the distribution of the primes
generated slightly, compared to the uniform distribution over the primes. This is not
a problem for application to RSA, though, since the modification will tend to generate
primes p with larger prime factors of p — 1.

4.2.3 Satisfying Security Constraints

Of the conditions in Section 3.3, the ones on p — 1 and 7, — 1 are very easy to ensure
with Maurer’s algorithm: one simply sets up a lower limit for the size of q;, the largest
prime factor of the candidate prime minus 1. This limit may be set to, e.g., 75 and
40 bits on the first, respectivly second level of recursion. In addition, one should use
a = e when proving primality of 7.

The condition on p+ 1, can be solved similarly as for probable primes (once again,
our target is a prime in the interval [low... high]):

1. Using Maurer’s algorithm, generate primes r,s of at least 75 bits, such that
r > high.

2. Using the same method as in the strongprime procedure, find an odd pg, such
that pg =1 mod r and py = —1 mod s.

218 RIPE integrity Primitives

3. Choose random values of L in some appropriate interval, until a number of the
form p = 2Lrs + po can be proved prime by Maurer’s method (or Theorem 3).

po is likely to have about the same bit length as rs, so since s must be of length
at least 75 bits, this means that r can be of length at most length(py) — 75. This
introduces a slight deviation from the uniformity of primes otherwise produced by
Maurer’s method. Table 1 indicates that for 256 bit primes and a 75 bit s, we loose at
most 20% of the primes this way.

4.3 A Hybrid Method

It is possible to combine the provable and the probable method. Using the notation
from the strongprime procedure, this works roughly as follows:

PROCEDURE HYBRIDPRIME(seed se, interval I, exponent)

Output: a prime p chosen at random from interval I based on seed s, such that it
can be used in RSA with public exponent e. Security conditions from Section
3.3 are satisfied.

1. initrand(se)
t := probprime(c; (1)V1,1,1)
s := probprime(cy(I)VI,1,1)

Ll

Search through numbers of the form r = 2kt + 1, k£ chosen such that 7 is in
co(I)V/I, until r can be proved prime using Pocklingtons result, with F = ¢ and
a=e.

5. pg=s"'—r*"'modrs
6. if py is even then pg = pg + rs

7. Search through numbers of the form p = 2krs + po, k chosen such that p is in
and ged(p — 1,e) = 1, until p can be proved prime using (the improvement of)
Pocklingtons result, with F' = r. Return p.

This procedure is constructed such that IF t is prime then r» and p MUST be
primes. Thus, we only have to worry about the error probability when generating ¢
and s. Since these primes are generated “from scratch”, the estimates for the error
probability given earlier will apply directly. Moreover, this method will be faster than
Maurer’s method, since we can get rid of all of the recursion below the level of ¢. It
is also faster than strongprime because we do not have to do many Rabin tests on r
and p, in particular all the tricks for speedup of Maurer’s algorithm apply here.

Finally, note that by using a = e when proving primality of r, we have implicitly
checked that the condition on iterated encryption is satisfied: the multiplicative order
of e, i.e., the number of encryptions needed to reconstruct the plaintext, is at least
divisible by t¢.

RSA Key Generation 219

5 Generation of Pseudorandom Bits

If a hardware source of randomness is not available (which will be the case in many
environments), it is likely that only a very limited number of random bits will be at
our disposal: for example, there is a limit to how many random characters we can ask
a user to type.

What is needed in this situation is a method that will take a short random bit
string and stretch it to a much longer string that is SEEMINGLY random, e.g. for
any practical purpose, it is as good as a really random string.

An example: suppose we have a strong encryption algorithm FE, where Ex(M)
denotes encryption of M under key K. Then the procedure initrand would interpret
its input as a pair of plaintext, key M, K and store this in a fixed memory location.
Later, the procedure randomchoice could obtain a seemingly random bit string of any
length by computing Ex (M), Ex(Ex(M)),.. ..

Many variations on this theme are possible. Also, good methods exist that use
modular arithmetic [MiSc91].

6 Conclusion, Choice of Algorithm

From a cryptographic point of view, there is not much practical reason for using prov-
able primes rather than probable ones. Any application will rely on secrecy of a number
of keys. There is always a non-zero probability that these keys are guessed by an en-
emy, so removing error-probability from the prime generation will never remove all
error probabilities from the system.

Hence the question rather is whether one can efficiently bring down the error prob-
ability to an acceptable level. We have seen that for the Rabin test, only a small
number (less than 5) tests are enough to get a probability that is comparable to the
probability of guessing e.g., a random DES key.

Taking this to be an acceptable error probability, probable primes tend to be a bit
faster than provable ones. Moreover, in applications where only a small amount of
storage for program and data is available, probable primes have a distinct advantage:
the Rabin test is simple enough to make a very compact implementation possible.

However, as we have seen in Section 4.3, the methods that provable primes are
based on can still be very useful.

Finally, we discuss the security constraints: the (rather complicated) methods de-
scribed by strongprime and hybridprime are necessary if we want to check with cer-
tainty that the constraints are satisfied. This is motivated by the fact that for primes
of less than 300-400 bits, there is some nonnegligible (but small) probability that a
random prime will not satisfy the constraints (see table 1). With increasing size of
primes, this probability rapidly becomes completely negligible, however. Therefore, a
much simpler solution than strongprime, for example a single call to probprime, can
safely be used for primes above 300-400 bits. For smaller primes, the simple solution
may still be used, if one is prepared to take a small risk that one of the primes does
not quite satisfy the demands. Depending on the application, this may be acceptable.

220 RIPE Integrity Primitives

However, it should be noted that, independently of the security considerations, there
is an efficiency benefit in building a large prime p from factor(s) of p — 1, similarly to
what is done in hybridprime.

References

[BaSh89]
[BDL91]

[BLS75]

[DLP]

[Gor84]

[Knu81]
[Kob87]

[LeMa90]

[LLMP90]

[Mau89]

[MiSc91]

[Pom81]

E. Bach and J. Shallit, “Factoring with cyclotomic polynomials,” Mathe-
matics of Computation, vol. 52, pp. 201-219, 1989.

J. Brandt, I.B. Damgard and P. Landrock, “Speeding up prime number
generation,” Abstracts of ASTACRYPT"91, Fujiyoshida, Japan.

J.Brillhart, D.H.Lehmer and J.L.Selfridge, “New primality criteria and fac-
torizations of 2™ 4 1, Mathematics of Computation, vol. 29, pp. 620-647,
1975.

I.B. Damgard, P. Landrock and C. Pomerance, “Improved bounds for the
Rabin primality test,” to appear in: Mathematics of Computation.

J. Gordon, “Strong primes are easy to find,” in: Advances in Cryptology -
EUROCRYPT’84, T. Beth, N. Cot and I. Ingemarsson eds., Lecture Notes
in Computer Science no. 209, Springer-Verlag, Berlin-Heidelberg-New York,
pp. 216-223, 1985.

D.E. Knuth, The Art of Computer Programming, Vol. 2: Seminumerical
Algorithms, 2nd Edition, Addison-Wesley, Reading Mass., 1981.

N. Koblitz, A Course in Number Theory and Cryptography, Springer-
Verlag, Berlin-Heidelberg-New York, 1987.

A K. Lenstra and M.S. Manasse, “Factoring with two large primes,” in:
Advances in Cryptology - EUROCRYPT’90, 1.B. Damgard ed., Lecture
Notes in Computer Science no. 473, Springer-Verlag, Berlin-Heidelberg-
New York, pp. 72-82, 1991.

A K. Lenstra, H.W. Lenstra Jr., M.S. Manasse and J.M. Pollard, “The
number field sieve,” Proceedings of STOC’90,, 1990.

U.M. Maurer, “Fast generation of secure RSA-products with almost max-
imal diversity,” in: Advances in Cryptology - EUROCRYPT’89, J.-J.
Quisquater and J. Vandewalle eds., Lecture Notes in Computer Science
no. 434, Springer-Verlag, Berlin-Heidelberg-New York, pp. 636-647, 1990.

S. Micali and C.P. Schnorr, “Efficient perfect polynor..ial random number
generators,” Journal of Cryptology, vol. 3, no. 3, pp. 157-172, 1991.

C.Pomerance, “On the distribution of pseudoprimes,” Mathematics of Com-
putation, vol. 37, pp. 587-593, 1981.

Chapter 10

Implementation Guidelines for
Arithmetic Computation

222 RIPE Integrity Primitives

Contents

1 Introduction 223
2 Elementary Operations 223
3 Modular Computations 224
4 Determination of the greatest common divisor and modular inverses224

5

Jacobi symbol 225

References 226

Implementation Guidelines for Arithmetic Computation 223

1 Introduction

The integrity primitives IBC-hash (Chapter 5), RSA (Chapter 7) and COMSET (Chap-
ter 8) are based on calculations with large integers. The implementation of such cal-
culations is non-trivial, as the size of the numbers used far exceeds the word-size of
computers. Therefore this appendix gives some guidelines for software implementation
of large number arithmetic. For more detailed information, [Knu81] is a good reference.

2 Elementary Operations

The addition, subtraction, multiplication and division of large integers can be imple-
mented according to the classical algorithms familiar from pencil and paper calcula-
tions.

For software implementations, one should use 2 to the power of the word-size of
the computer as a base, rather than 10.

Whereas the performance of the classical algorithms is good in the case of addition
and subtraction, one can do much better for multiplication and division. Such fast
algorithms are described in [Knu81].

Below an algorithm for the division of the large integer u by the large integer v
is given. Let u = (ujUa ... Umin)s and v = (v1v2...v,), be nonnegative integers in
radix-b notation. That is,

m+n]
u = Z ubmT

=1

n .
v o= S ub

=1

Let v; # 0 and n > 1. The radix-b quotient |u/v| = (goq: .. .3gm)» and the remain-
der w mod v = (r17y...7,)p is calculated with the following algorithm (Algorithm D,
pp. 257-258 of [Knu8l]).

D1. [Normalize] Set d := [b/(v1+1)]. Then set (uouius . . . Umin)s €qual to (u1Us . . . Umin)b
times d, and set (v1vs ... v,), equal to (vivs ... v,), times d.

D2. [Initialize j] Set j := 0.

D3. [Calculate §] If u; = vy, set ¢ := b—1; otherwise set § := | (ujb+ujt+1)/v1/7 floor.
Now test if vag > (ujb + uj41 — Gv1)b + ujyo; if so, decrease ¢ by 1 and repeat
this test.

D4. [Multiply and subtract] Replace (wjuj4+1 ... %jtn)s DY (UjUjt1 ... Ujpn)p minus §
times (v1vs...v,)s. This step consists of a simple multiplication by a one-place
number, combined with a subtraction. The digits (uju;t1...%j4n)s should be
kept positive. If this is not the case, decrease ¢ by 1 before replacing (u;uj41 ... Ujtn)b
by its new value.

224 RIPE Integrity Primitives

D5. [Loop on j] Set g; := §. Increase j by one. If j < m go back to D3.

D6. [Unnormalize] Now (qogs - - - gm)s is the desired quotient, and the desired remain-
der may be obtained by dividing (Um+1 - - - Um+n)b bY d.

3 Modular Computations

Modular addition, subtraction and multiplication can be implemented using the non-
modular operations desribed above. The modulo reduction consists of adding or sub-
tracting the modulus for the modular addition and subtraction. The result of a modu-
lar multiplication can be determined as the remainder when dividing the non-modular
product of the multiplicands by the modulus.

However more efficient algorithms to do modular calculations are known. A soft-
ware library for digital signal processors is described in [DuKa90] . In [Bar86] a faster
algorithm for the modulo reduction is given. One could also consider to do multi-
plication and modulo reduction not subsequently, but to start the modular reduction
already on intermediate results of the multiplication. An example of a fast modular
multiplication algorithm is [Mon85].

The following algorithm makes modular exponentiation feasible for huge exponents:
to compute a® mod n it is not necessary to do e multiplications. If s is the length of
e in bits, 2s multiplications are enough. For that, the square and multiply algorithm
(see [Knu81]) is used. In pseudocode it works like this:

Y :=1;
7 :=a;
for i:=0 to (s—1) do {
if (e5-1-i = 1)
then Y = Z %Y modn;
7 =72 mod n;

}

The bits of e are denoted by eg,e1,...,es_1, where e is the most significant bit.
At the end of the algorithm Y is equal to a® mod n.

This is the most elementary, but quite efficient, way to do modular exponentiation.
Some possible improvements are desribed in [BoCo89].

4 Determination of the greatest common divisor
and modular inverses

The extended Euclidian algorithm ([Knu81]) can be used in order to determine the
greatest common divisor of two nonnegative integers as well as modular inverses. Given
two nonnegative integers u and v this algorithm determines values u1, uy, and us such
that us is the greatest common divisor of u and v and that uz = wu; + vu, holds.

Implementation Guidelines for Arithmetic Computation 225

Extended Euclidian algorithm:

Uy = 1;
Ug = U
Uz ‘= U;
v; = 0;
vg 1= 1;
V3 ‘=,

while (v3>0) {
q := uz div v3;
t1 == u; — v1q;
lo 1= up — Vaq;
t3 1= Uz — V3(q;

Uy ‘=01,
Ug 1= Vg,
Uz ‘= V3,
v =113
Vg =19}
V3 = t3;

}

u is invertible modulo v if and only if us = 1 holds. In this case 1 = uu; (mod v)
holds, u,; is the inverse of v modulo v .

5 Jacobi symbol

The following algorithm in pseudo-code determines the value of the Jacobi symbol.
This is needed for the Rabin variant of RSA described in Chapter 7. The mathematical
background may e. g. be found in [Kob87].

We evaluate J = (%) as follows:
J=1;
while (a>1) do {
if (amod2==0) {
if ((b* —1)/8 mod 2 ==1)

J=-J;
a=a/2;
}
else {
if ((a—1)-(b—1)/4mod2==1)
J=-J;

s = bmod a;
b=a;

226 RIPE Integrity Primitives

Here s represents an auxiliary storage variable.

References

[BoCo89]

[Bar86]

[DuKa90]

[Knu81]

[Kob87]

[Mon85]

J. Bos and M. Coster, “Addition chain heuristics,” in: Advances in Cryp-
tology - CRYPTO’89, G. Brassard ed., Lecture Notes in Computer Science
no. 435, Springer-Verlag, Berlin-Heidelberg-New York, pp. 400-407, 1990.

P. Barrett, “Implementing the Rivest Shamir Adleman public key encryption
algorithm on a standard digital signal processor,” in: Advances in Cryptol-
ogy - CRYPTO’86, A.M. Odlyzko ed., Lecture Notes in Computer Science
no. 263, Springer-Verlag, Berlin-Heidelberg-New York, pp. 311-323, 1987.

S.R. Dussé and B.R. Kaliski Jr., “ A cryptographic library for the Motorola
DSP 56000,” in: Advances in Cryptology - EUROCRYPT’90, 1.B. Damgard
ed., Lecture notes in Computer Science no. 473, Springer-Verlag, Berlin-
Heidelberg-New York, pp. 230-244, 1991.

D.E. Knuth, The Art of Computer Programming, Vol. 2: Seminumerical
Algorithms, 2nd Edition, Addison-Wesley, Reading Mass., 1981.

N. Koblitz, A Course in Number Theory and Cryptography, Springer-Verlag,
Berlin-Heidelberg-New York, 1987.

P.L. Montgomery, “Modular multiplication without trial division,” Mathe-
matics of Computation, vol. 44, pp. 519-521, 1985.

