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Abstract

There is a correspondence of Young tableaux to irreducible components of the variety F, of flags
fixed by some unipotent element v € GL,,, and a correspondence of permutations to relative positions
pairs of flags. Using these, Steinberg has given an interpretation of the Robinson-Schensted algorithm;
we elaborate this interpretation, and derive a similar interpretation for the Schiitzenberger algorithm.
These interpretations clarify many of the key properties of those algorithms which were treated purely
combinatorially in Part I of this paper. Interesting new interpretations of the individual insertion and
extraction procedures used in the Robinson-Schensted algorithm, and of their transposed variants are
also given. It is also described how these algorithms can be used to obtain explicit information (even
if incomplete in general) about the irreducible components of the intersections of unipotent conjugacy
classes in GL,, with a Borel subgroup, the so-called orbital varieties.
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Introduction to Part II.

In the second part of this paper we formulate and prove related geometric interpretations of the Robinson-
Schensted and Schiitzenberger algorithms, of which the former is due to Steinberg [Stb2]. Of these inter-
pretations, the latter will be given first, as is in fact easier to formulate and to prove. Both interpretations
are based the fact that (normalised) Young tableaux of shape A correspond bijectively to the irreducible
components of the set F, of points on the flag manifold fixed by a unipotent transformation u, whose
Jordan blocks have sizes specified by the parts of A. In fact there are are two natural ways to define such
a bijection, and this leads to the interpretation of the Schiitzenberger algorithm. For the interpretation
of the Robinson-Schensted algorithm one needs in addition the concept of (generic) relative positions be-
tween pairs of flags. The interpretations shall be formulated in such a way that they can be immediately
seen to imply the main theorems 3.1, 4.2, and 5.1 of Part I of this paper [vLee3], and also the interesting
special case 6.8, which is intimately related to Schiitzenbergers theory of ‘glissements’. The symmetries
expressed by these combinatorial theorems correspond to quite easily understood symmetries of the geo-
metric situation, and in a sense this reveals the “witchcraft operating behind the scenes” (cf. [Kn2], p. 60)
of these theorems. The parallel between the geometric interpretation of the algorithms and their (recur-
sive) definitions is so close, that the algorithms could have been deduced from the geometric problems,
had they not been known in advance. Indeed, for computing the generic relative positions in the varieties
analogous to F, for other classical groups than GL,, (in characteristic # 2), the author has derived in
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1 Notation

his thesis [vLeel] analogous (but significantly more complicated) algorithms by similar methods; it was
that work which has inspired the current paper.

This part of the paper consists of nine sections, as follows. In the first section we recall notations
introduced in Part I which shall also be used in this second part; most importantly we shall use the
same recursive definitions of the basic algorithms as were used in Part I. The second section studies the
linear algebra of a vector space equipped with a unipotent (or nilpotent) transformation, and the third
section introduces the flag manifold, and fixed-point sets on it under a chosen unipotent transformation;
it defines the interpretation of Young tableaux that will be central to our approach. The interpretation
of the Schutzenberger algorithm, whose formulation has become obvious at this point, is proved in §4.
The fifth section introduces the concept of relative positions between flags, and various explicit ways to
compute them, which enables the interpretations of the Robinson-Schensted algorithm and its transpose
to be formulated and proved, which is done in §6. This completes the interpretations of the algorithms;
the next two sections discuss some of their possible further applications, and they are of a more tentative
nature then the previous sections. In particular we indicate in §8 that these interpretations are useful—
although not dicisive—in understanding the irreducible components of the intersections of unipotent
orbits in GL,, with a Borel subgroup (which are also called orbital varieties), and the inclusions among
their closures. Finally §9 makes a few concluding remarks.

§1. Notation.

We shall freely use the notation pertaining to partitions and Young tableaux which was introduced
Part I of this paper [vLee3]. References to Part I shall be given by simply enclosing the equation or
theorem number in square brackets. For reference we collect here the notations that are used with a brief

description.

notation description defined where notation  description defined where
by i-th part of A [§1] E(P,s) extract from P clearing square s [(11)]
At transpose of A [§1] R(P,@) Robinson-Schensted algorithm [(9)]
Y () Young diagram of A [§1] It E' R' transposes of I, E, R [§2]
shT shape of tableau T [§1] Pl P deflated once [4.1]
chT chain in Young lattice [§1] z|y x is adjacent to y [4.1]
T ~T'  similarity of tableaux [§1] D(P) deflation procedure [(19)]
5\ normalised tableaux for A [§1] S(P) Schiitzenberger algorithm [(21)]
[T highest numbered square  [§1] w permutation (n,...,2,1) [5.1]
T- T with [T'] removed [§1] K° rotate 180° and renumber [6.6]
I(T,m) insert number m into T' [(12)]



2 Some linear algebra

§2. Some linear algebra.

Let k£ be an infinite field, and V a vector space of dimension n over k, equipped with a fixed nilpotent
transformation n of V. Choosing a basis of V', we identify GL, (k) with the group GL(V') of automor-
phisms of V| and we define u to be the unipotent element 7+ 1 of GL,(k). By the theory of Jordan
normal forms, V' can then be decomposed into a direct sum of Jordan blocks for n, or equivalently for u,
i.e., u-stable subspaces that each admit a basis z1,...,z4 such that n(zy) = 0 and n(z;) = z;_; for
1 < ¢ < d. This decomposition is generally not unique, but the multiset of dimensions of the blocks
(i.e., disregarding order but counting multiplicities) is uniquely determined. These dimensions can be
arranged into weakly decreasing order, forming partition A of n, which we call the Jordan type J(n) of n,
or equivalently the Jordan type J(u) of u. This Jordan type can also be characterised without referring to
any particular decomposition into Jordan blocks as follows: the number of squares in the first i columns
of the Young diagram Y()) is equal to dim Kern?, and equivalently, the number of squares beyond the
i-th column is equal to dimIm 7.

Now consider a u-stable subspace V' of V. By restriction to V' we obtain nilpotent respectively
unipotent transformations 7|y and u|y/, and in the quotient space V/V' we similarly obtain transfor-
mations, denoted by 7,y and u,y. To see that the Jordan types of these transformations are contained
in A (i.e., all squares of their Young diagrams occur among those of Y(\)), we may argue as follows.
Considering restriction first, we obviously have Ker (n]y+)* = V' N Kern', and the codimension of the
space within Kern? increases in a weakly monotonic way with 4, from which we deduce that the length
of each column of Y(J(n|y+)) does not exceed the length of the corresponding column of Y (). For
the quotient space, the relevant values are dim(V’ N Imn’), which determine how much dimIm (n/y)*
is less than dimIm®n*. Since these values clearly form a weakly decreasing sequence as ¢ increases, it
follows that no column of Y (J(#n,y+)) can exceed the corresponding column of Y(X) in length. Note
that J(n|y+) is determined by the values dim(V' N Kern') whereas J(n,y) depends on dim(V' N Imn’),
whence there is in general no direct relationship between these two partitions. There is one circumstance
in which such a direct relationship does exist, namely when all Jordan blocks of 1 have the same dimen-
sion d: then ) is a ‘rectangular’ partition (d,d,...,d), and we have Kern’ = Im n(@=9 Tt follows that if
J(lvr) = (p1,- -, m), then J(n/y:) = (d = tm, - .., d — py), where m is the number of parts d of A.

We now specialise to the case where V' is either of dimension 1 or of codimension 1. In the former
case we are dealing with a u-stable line, say [, which is an element of the projective space P(V') of V.
Since n|; is nilpotent it must be zero, and we consequently have | C Kern; conversely u fixes P(Kern)
pointwise, so [ can be any of its elements. Now define for each 7 > 0 a subspace

Wi(u) = Imn'~! N Kerp (1)
of Kern C V, and also a subvariety of the projective space P(Kern) C P(V):
Ui(w) = P(Wi(u)) \ P(Wit1(u)). (2)

We shall abbreviate W;(u) and U;(u) to W; and U; respectively. We have dim W; = A, and hence U; is
non-empty if and only if 7 occurs as a (non-zero) part of A, and the non-empty U; form a finite partition of
the set P(Kern). The centraliser Z, of u in GL,, acts on each variety U;, and using a decomposition into
Jordan blocks it can easily be shown that these are transitive actions; therefore the non-empty U; are in
fact the orbits in P(Kern) under the action of Z,. Let j be such that [ € Uj, then it is the minimal value
for which [ ¢ Im7’, and by the reasoning above we see that the Young diagram of J(n;) is obtained
from Y (X) be removing a square from the end of the j-th column.

For the case of a u-stable hyperplane H C V the situation is dual to that of a line. Here the
transformation n, g is zero and consequently H 2 Imn. To H corresponds a subspace H° of the dual
vector space V* of V, consisting of linear forms vanishing on H; since dim H° = 1 we have H° € P(V*).
In this way the set of hyperplanes containing Im7 corresponds to the projective subspace P(Kern*)
of P(V*), where n* is the nilpotent transformation induced in V* by 5. In V* and P(V*) we have
subspaces W} = W;(u*) respectively subvarieties U} = U;(u*), where v* = n* + 1; we also write U?
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3 Flags

for the set of hyperplanes H C V with H® € U}. Note that J(u*) = J(u), so that dim W} = dim W.
Now the Young diagram Y (J(u|g)) is obtained from Y (\) by removing a square from the end of the j-th
column, where in this case j is such that H € U?, which is the minimal j for which H 2 Ker 7.

83. Flags.

A (complete) flag f in V is a saturated chain 0 = fy C fi C -+ C f, = V of subspaces of V. We have
dim f; = ¢, and the individual spaces f; are called the parts of f. We define F to be the set of all such
flags, called the flag variety of V. It has the structure of a projective algebraic variety (see [Hum], 8.1),
and the maps f +— f; are morphisms onto the respective Grassmann varieties. Of particular interest are
the maps giving the line and hyperplane parts: we define a: F — P(V) by a: f — f1, and w: F — P(V*)
by w: f — fn_1°. The group GL, acts on F, and clearly o and w are GL,-equivariant. We define
F. as the subvariety of flags fixed by u (which is easily seen to be non-empty), and «, and w, as the
restrictions to F, of a and w respectively. As we have seen above, the image Ima, = P(Kern), and
similarly Im w, = P(Kern*).

For [ € P(V), each flag f € o~ 1[l] determines a flag f! in V/I by fil = fiz1/l for 0 < i < m; it
is easily seen that this defines an isomorphism between a~![l] and the flag variety of V/I. If moreover
f € F,, then [ is u-stable and f! € Fu,,; this induces an isomorphism between a;!l] and Fup-

for each hyperplane H C V, the inverse image w~![H®] is isomorphic to the flag variety of H, where the

Similarly

image f~ of f € F is obtained by simply omitting the largest part f, of f; this also gives an isomorphism
between w;l[Hﬂ and ]:ulH~

The formation of f~ out of f can be repeated, yielding a flag f~ in the subspace f,_s which is
fixed by u|s, ,, and so on. Similarly fH is a flag in V/f, fixed by uys,; the operations can also be
mixed: f~} = f!~ is a flag in the subquotient space fn—1/f1 fixed by the unipotent induced by w in this
space, which shall be denoted as ug, /7, We may take Jordan types of all these induced unipotents; in
particular is we consider the sequence of pure restrictions respectively of pure quotients we obtain two
saturated decreasing chains in the Young lattice. These chains determine normalised Young tableaux
ru(f), qu(f) € Ty, satisfying

chru(f) = (J(u), J(uly, ), J(uls, o), - -, (0)) (3)

respectively

Chqu(f) = (J(u)"](u/fl)"](u/h)""v(O))' (4)

In other words, the subtableau of r,(f) containing entries < 7 has shape J(u|y,), while the subtableau
of ¢.(f) containing entries < n — 7 has shape J(u/y,). Defining for each flag f € F a dual flag f* in the
flag variety of V* by f* = f,_;°, we obviously have g, (f) = r,~(f*), and vice versa.

Since we know that there is generally no direct relation between J(u

;) and J(u;s,), we should not
expect a one-to-one correspondence between r,(f) and g, (f) either. Indeed such correspondence exists
only in the special case noted earlier, when X is a rectangular partition. For that case we obtain

3.1. Proposition. If u has a rectangular Jordan type, then q,(f) = r.(f)® for all f € F,.

Proof. Recall that the operation 7'+ T'° means rotate 180° and renumber the entries in opposite order.
Let A consist of m equal parts d; it follows from earlier remarks that for any ¢ < md if the shape of the
subtableau of r,(f) containing entries < 7 is u, then the subtableau of q,(f) containing entries < n — i
has shape (d — pim,...,d — p1). Combining this information for all ¢ we obtain the stated result. O

We now define for any Young tableau 7" of shape A:

Fur={f€Fulruf)~T} and wr ={f€Fulaqu(f)~T}; (5a,b)

a simple inductive argument shows that these sets are non-empty and open in their own closure. The
restrictions of a, and w, to F, r and ]:;’T will be denoted respectively as a1, wu,T, 0 1, and wy 7.
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8 Flags

As T ranges over 7T the sets F, 7 partition F, into finitely many subsets, and so do the sets F .; note
however that the expressions F, r and f;’T are also defined when 7' is not normalised.

Note. It is a somewhat arbitrary choice to use r, rather than g, for the unstarred notation; this choice
follows [Stb2], but [Spal, 11.5.3 effectively uses g,, not 7,. As we have seen, the entries of r,(f) relate
somewhat more directly to the indices of the parts of f than those of g,(f); also the interpretation of the
Robinson-Schensted algorithm will come out more naturally with the chosen convention. On the other
hand our choice is slightly unnatural, since the column of the highest numbered square [r,(f)] corresponds
to the set U containing w(f), while the column of [¢,(f)] determines the set U; containing «(f).

3.2. Proposition.
(a) For each T € T, the sets F, r and .7'—;,:,1 are irreducible.
(b) dimF, 7 = dimFy 7 = > ;(@—1)); independently of T € T,.

Proof. We give the proof for 7 1, by induction on |A] = dim V; the case F,, 7 follows by transition to the
dual vector space. Note first that by construction each set F 1 is Z,-stable. For each j occurring as part
of X, the set o [U;] is the union of the sets F 1. for those tableaux T' € 7 for which [T lies in column j.
If T is such a tableau and [ € U;, then under the isomorphism a;1[l] = Fu,, the subset C' = O‘Z,E’l [[] maps
isomorphically to f;/qu,, which is irreducible by the induction hypothesis. Because U; is a Z,-orbit and
connected, it is already a Zg-orbit (Z¢ is the identity component of the group Z,; in fact for GL,, every
unipotent centraliser Z, is connected, so Zy = Z,, but the proof does not use this fact). Since F 5 is
the surjective image of Z9 x C by the map (z, f) — z - f—we shall abbreviate such an image simply
as Zg - C—it is irreducible, which proves part (a). We also have dim ¥, p = dimU; + dim f;/,,T*’
so to prove (b) it suffices to show that dimU; = ¢ — 1, where 7 is the row number of [T]. But
this is clear since i = /\;, which equals dimW;, while U; is a dense open part of P(W;). O

It follows from the proposition that the set of irreducible components of F, can be described as
the set of the closures ﬁ,T for T € T,, but at the same time as the set of closures m for T € T,.
So, although r,(f) and ¢,(f) do not determine one another completely, there does exist a one-to-one
correspondence which holds on a dense subset of F,. In the next section we shall show that it is in fact
given by the Schiitzenberger algorithm:

Fur = .7::75(71). (6)

We close this section with an example, illustrating these parametrisations of the irreducible com-
ponents of F, in the simplest non-trivial case, namely for the Jordan type A = (2,1). Then 7, has
2 elements, namely

112 , 113
Tf3 and sz )

and hence F, has 2 irreducible components, which are 1-dimensional. To be specific, we take

Calling the standard basis vectors eq, es, e3 we have Wi = (eq, e3), Wo = (e1), and W; = 0 for j > 2.
There are two orbits of Z, on P(Kern) = P(W}), namely the affine line U; = P(W;) \ {(e1)} and the
point Us = {(e1)}. For any [ € U and flag f € a;![l] we have f; = [, and since the hyperplane fy must
-1

—1[1] consists of just one flag for

contain both f; and Imn = (ey), it can only be (e, e5). Therefore «
any | € Uy, and F r is isomorphic as variety to U;. On the other hand F; 7., which equals the fiber
a;[l] for { = (e1) € Uy, is a projective line, since f» may be chosen to be any plane containing f; = [.
Of these flags in 7 7 there is one that lies in the closure of 7 ., namely the one that has f; = (e1, e3).

Therefore, the whole variety F, can be depicted as



4 Interpretation of the Schitzenberger algorithm

%
u, T

*

w, T

The map «, corresponds to a vertical projection in this picture, while w, corresponds to a horizontal
projection. It follows that F, r is the vertical line in the picture, but without the intersection point, and
Fu1 is the horizontal line including that point. Since S(T') = T" we have agreement with (6), and one
sees that the closures in that equation cannot be omitted.

84. Interpretation of the Schuitzenberger algorithm.

This section is devoted to the proof of (6). To that end we must consider the line and hyperplane parts
of a flag in relation to one another. We first consider for a u-stable hyperplane H the spaces W;(u|g),
which are the analogs of the W; after restricting to H.

4.1. Proposition. For H € U] we have W (u|g) = W, for all ¢ # j, while W;(u|g) is a subspace of
codimension 1 in Wj.

Proof. Obviously W,(u|g) C W, for all ¢, and since dim W,(u|g) is determined by J(u|g), a dimension
argument suffices to prove the claims. O

Suppose we know for H € U; and some irreducible component C' of w;1[H°] the part ¢’ of J(u|g)
for which a,[C'] = P(W. (u|g)) (because a,[C'] is a closed Z,|,-stable subset of P(Kern|g), such a ¢’
exists). There is a unique irreducible component C' = Z,, - C" of F,, determined by C’, and we want to
know the part ¢ of A for which «,[C] = P(W.). Now «,[C] is (the closure of) Uy cye P(We(ulg)), and
from 4.1 it follows that we always have a,[C] = P(W,), because if ¢/ = j (the only case where the sets
in the union actually depend on H) we have that W11 = Way(u|g) is strictly contained in W (u|g)
(since ¢' is a part of J(u|g)), so the union must be W... However, if j = ¢/ +1 and dim W; = dim W,
then W; = W, and ¢’ in not a part of A, so we must have ¢ = j = ¢’ +1; in all other cases ¢ = ¢/. We can
state the result in a slightly different way, realising that a coordinate pair such as p = (dim W}, j) can
be interpreted as a square. Then, with s’ = (dim Wy (u|g), ¢') and s = (dim W, ¢) we have s = s’ unless
s' || p, in which case s = p. A relation with the deflation procedure D of the Schiitzenberger algorithm
becomes apparent; it will be formulated in the next lemma.

Looking a this situation in another way, our assumption implies that for flags f in a dense open
subset of C' we have | € Uy (u|g) where I = f; and H = f,_1. Then J(u|g) is obtained from A by
decreasing a part j, and J(uH/l) is obtained from it by further decreasing a part ¢’. The calculated
value ¢ is such that [ € U, on a dense open subset of C, and thus is the part of A to be decreased in order
to obtain J(u/l) on that subset. Note that when j = ¢ + 1 but dim W; < dim W.s, some flags f in the
first mentioned subset of C' will have [ € U;, thereby being excluded from the second subset; however this
set of aberrant flags is of positive codimension, an hence its complement is still dense. This situation is
typical for many of the proofs below.

4.2. Lemma. Let P be a non-empty tableau, from which we compute (P!, s, m) = D(P) by the deflation

procedure, and let ¢ be the column number of the square s. Then o|F, p] = P(W.), and there exists a
dense open Z,-stable subset D of F, p such that fl € Fu/fl‘pl for all f € D.

Proof. We use induction on the number of squares of P; without loss of generality we assume that P is
normalised. If P has just one square the lemma is trivially true. Otherwise, let j be the column number
of [P], so that we have w,[F,,p| = U}. By [(19)] we have D(P~) = (P1=,s' 1) for some square s'; let ¢’
be the column number of s'. For an arbitrary hyperplane H € U} we have by the induction hypothesis
that au|H[m] = P(Wu(u|g)). The irreducible component C' = w;p[H"] of w;1[H°] is isomorphic
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5 Relative positions

to Fy,,p- by [+ f7; we therefore find ,[C'] = P(Wu(u|g)). We are now in the situation discussed
above, and comparing with [(19)] we see that s is computed in the proper way to allow the conclusion

a[Fu,p] =P(W,).

The remaining claim is now easily proved. On one hand we have by the induction hypothesis
a dense open subset Dy of wglp[H°] such that ruH/fl(f_l) ~ P!~ for all f € Dy, on the other
hand we have for f in the dense open subset D' = a;’lp[Uc] of F,p that J(u/z) = shP!. We can
take D = (Z, - Dg) N D' and find for f € D, using f1= = f~!, that all partitions in the chain
chry,, (f') correspond to those in ch P!. O

We come to the main theorem of this section.

4.3. Theorem. Let P € 7y, and let P* = S(P) be obtained from it by the Schiitzenberger algorithm,
then the intersection F, p N Fu,p~ 18 dense in both F, p and Fu,pe-

Proof. By induction on the size of the tableaux, the case of the empty tableau being trivial. Applying
the lemma and the definition [(21)] of the algorithm S, we see that J(u,;,) = shP! = sh P*~ and
fle fu/h‘pl for all f in the subset D C F, p of the lemma. Of those f, a dense open subset
has f! € '7:::”1.5(1’1) by the induction hypothesis, and since S(P!) = P*~ this implies f € Fupe

Since all irreducible components of F, have the same dimension, this set is also dense in F p.. O

The theorem immediately implies (6). Since f € Far is equivalent to f* € Fyu- 7, and f** = f,
it also implies S(S(P)) = P, providing an alternative proof of [Theorem 4.2]. In combination with
3.1 we find S(P) = P° for tableaux P of rectangular shape, so we also get an alternative proof for
[Corollary 6.8]; this is particularly noteworthy since this proof does not involve the Robinson-Schensted
algorithm at all, while our combinatorial proof was based on the relationship between that algorithm and
the Schiitzenberger algorithm. Note that there is one combinatorially obvious property of S which has
no clear interpretation geometrically, namely that it commutes with transposition. Indeed we know of
no operation which would lead to transposition of Jordan types, which also means that there will be no
simple geometric argument relating the interpretations of the Robinson-Schensted algorithm R and its
transpose R

85. Relative positions.

The interpretation we shall give of the Robinson-Schensted algorithm also uses the the correspondence
of tableaux to irreducible components of F,, but in addition needs the concept of relative positions of
flags. The relative position of an ordered pair (f, f') of flags in F describes the orbit of the pair under
the diagonal action of GL,, on F x F. Giving the relative position of f and f' is equivalent to giving the
values dim(f; N f]') for all 0 < 7,5 < n. However, these numbers are not entirely independent; therefore a
relative position is better parametrised in a different way, namely by a permutation of n, which we shall
denote w(f, f'). If f is the standard flag f for the basis ey, ..., e,, given by £; = (e1, ..., e;), and f' is the
standard flag £ for this basis permuted by some o € S,,, given by f7 = (e,,, ..., €4,), then 7(f,f7) = o
by definition. From Bruhat’s lemma for GL,, it follows that together with w(g- f,g- f') = w(f, f') for
all g € GL,,, this uniquely defines 7(f, f') for all f, f' € F, in other words, the general situation can be
reduced to the special case by replacing the standard basis eq, ..., e, by another ordered basis specially
adapted to the pair (f, f').

We give some examples. For every f € F we have w(f, f) = e, the identity permutation. The
other extreme occurs when f, f' are generically chosen: then f;N f]’ is zero whenever it can, i.e., whenever
t+j < n, and w(f, f') is the order reversing permutation w € S,, of [5.1]. In the example with J(u) = (2,1)
given in §3, where F,, consisted of two intersecting lines, we have 7(f, f') = (2, 1, 3) for any pair of distinct
[ eFr (since only their 1-dimensional parts differ), and #(f, ') = (2, 3,1) for any f € F ; and any
f' € Fy i except the flag at the intersection of the two components of F, (since f| C fs but f4 2 f1).
If n(f,f') = o, and 0 = sy ---s; is an expression of minimal length for o as product of transpositions
s; €{(12),(23),...,(n—1 n)}, then there is a unique sequence of flags f* = f, f!, ... f! = f' such that
7(fiL, f}) = s, ice., if s; = (d d+1), then fi=! and f* differ only in their d-dimensional part. When
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5 Relative positions

f, f' € Fy, then all these intermediate flags, and the projective lines connecting successive pairs, also lie
in F,; this follows from the uniqueness of the sequence and the fact that F, is a fixed-point variety. We
shall not employ such considerations, however. It is clear from the definition that =(f’, f) = «(f, f')~!
for all f, f' € F, and also that «(f*, f™*) = @n(f, f') (the latter identity comes from the fact that the
dual standard flag £* is given by £ = (e; 1 _;,...,€}) = (e ,€5,) on the dual standard basis).

Iy Tn

*
Wit

We can describe o = 7(f, f') more explicitly in two ways. First, the permutation o may expressed
in terms of the numbers a; j = dim(f; N f]’) as 0; =min{¢ | a;j > a;;_1 }, and its permutation matrix as

bio; = @ij — Gij_1 — Qi1+ Qi1 1 for 1 <4,5 < n; (7)

we have conversely that a; ; = #{k < j| o), <i}. We define a partial ordering on relative positions by
putting o < ¢’ if and only if a; ; > agyj for all ,j, where the ag‘j are the numbers analogous to a; j,

but for ¢’ instead of o. This is called the Bruhat order on S,,, and it has the property that the closure
in FXFof {(f,f)|w(f,f) =0} for any fixed o is {(f, f') | n(f, f) < o }.

Second, 7(f, f') can be determined in a recursive way, and it is this form that we shall be using in
the sequel. Define the relative position 7(f,[) of a flag f and a line [ by

m(f,l) =min{i| f; 2 1}. (8)

Then the first term in the sequence o is given by o; = w(f,[) where | = f{. The remaining values of o
are computed from the relative position of a pair of flags in the space V/I, namely f;; and f't, where In
is defined as follows. For i < w(f,l) put (f;;); = fi ®1/l, and for 7(f,1) <i <nput (f;;); = fiy1/l. Now
let o' € S,,_; be the relative position 7(f/, f'Y), then the remaining values of o are defined by

ol if ol < o1 .
01—{04_{_1 i ol > o (for i > 1). (9)

Note that adding 1 in the second case ascertains that we get a proper permutation, and that in each case
the part (f/l)gi was originally obtained from f,,. The latter remark implies that if we would endow the
parts of flags derived from f with numeric labels to indicate which part of f they stem from (setting the
label equal to the dimension for parts of f itself, but keeping the label unaltered when dividing out the
line {) and change the right hand side of (8) so that it returns the label of f; rather than its dimension %,
then (9) could simply read o; = o} (i > 1) (but we would not have ' € S,,_1).

The correctness of both explicit descriptions of w(f, f') can be verified easily for (£, 7). Incidentally,
there is an another recursive description of w(f, f'), which starts with giving 0, = min{: | f; Z f/,_1 },
and uses 7(f|g, f'~) for H = f],_; and suitably defined f|g to find the remaining values of o. We shall
not use that second recursive description however.
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86. Interpretation of the Robinson-Schensted algorithm.

In terms of relative positions there is a geometric interpretation of the Robinson-Schensted algorithm
analogous to that of the Schutzenberger algorithm. We need some additional notation. On every irre-
ducible subset X of F x F the relative position 7 assumes its maximal value on a dense subset of X;
that value is called the generic relative position on X, and shall be denoted 7(X). We shall prove that
the generic relative positions on the irreducible components of F, X F, can be expressed as follows:

Y(Fur xFug)= R(PQ) (10)
V(Fip X Fug) = 0R'(P,Q) (11)
Y Fur xFig)= R(P,Q)0 (12)
Y Fup x Fig) = wR(P,Q)w (13)

A similarity to the combinatorial [Theorem 5.1] is obvious, and indeed that theorem follows when these
identities have been proved. We need not prove all four identities, since by w(f*, f'*) = wn(f, f')w, the
first two identities are equivalent to the last two. We choose to prove last two identities, which choice
matches using 7(f, ) for computing relative positions: computing w(f,[) gives the first term of a relative
position while R and R! start with computing the last term of a permutation; to match these the order
reversal obtained by right multiplication by @ is most convenient.

Like in the case of the Schiitzenberger algorithm, most of the work is required in proving an inter-
pretation of the basic step, in the current case the “extraction” procedures E' and E. Despite the fact
that (12) has less symmetry than (13), it will be slightly easier to interpret E! than E; this is due to the
fact that the interpretation of tableaux in F, r and F, ; emphasises column numbers rather than row
numbers. We denote the stabiliser (Z,); of [ in Z, simply by Z, .

6.1. Lemma. Let a tableau P € T, a corner s of A in column ¢, and a line | € U,. be given. Using the
transpose extraction procedure compute (T,m) = E'(P, s); then the Z, -stable subset of F, p defined
by Dy ={f € Fupr|n(f,l)=mAf; €Fu,r} is dense and open.

Proof. Let f € F, p,let H= f,_; be its hyperplane part, and let the square [ P] appear in column j so
that H € U?. We examine in which circumstances we can have H 2 [, which is equivalent to w(f, 1) =n.
If either H DO Kern or Imn 2O [ we readily conclude H D [, so it is only possible to have «(f,l) = n if
j = ¢ = 1. In that case, we have T'= P~ and m = n by [(11")] (the transposed version of [(11)]), and
Uy NP(H) = Uy(u|g), which is either empty or of codimension 1 in U;. So for f in a dense open subset
of F, p we then indeed have H 2 [, so that 7(f,l) = m. For such f we may furthermore decompose
V = H @1 as direct sum of u-stable subspaces, giving an isomorphism H = V/I which transforms u|g
into u/;, and also f~ into f; it follows that f;; € 7, ,,r, completing the proof for this case.

The remaining cases use induction on |A]; for |[A] = 1 we are always in the case j = ¢ = 1 already
treated. Knowing that f~ € F,|, p-, we wish to apply the induction hypothesis to u|g and P~.
Thereto we need to find the number ¢’ such that { € U.(u|g); we also wish to find j' such that
H/l € Uf(uy1), which is the column number of [ry ,(f/1)]. Both questions are equivalent to determining
J(um ), since J(u|g) and J(uy;) are already known, and differ from J(ug,;) by squares in columns ¢’
and j' respectively. Tt follows from 4.1 that unless ¢ = j we have ¢’ = ¢ and hence j' = j (this also
follows from the fact that J(ug/;) is contained in both J(u|g) and J(u;;)). When ¢ = j > 1 we have
that W.(u|g) has codimension 1 in W, while W, C W,y = W,_1(H), so for H in a dense open subset
of U? we shall have | € U.—1(u|g) and hence ¢’ = ¢ —1 = j'. It will suffice to prove for such H,
and f in a dense open subset of w;}[H°], that 7(f,) = m and f;; € Fy, 1, because D; will then be
dense, and Fy ,,
(T~,m) = E'(P~,s') where s’ is the corner of sh P~ in column ¢’. We can therefore apply the induction

T being open in its closure, also open in F, p. Comparing with [(11*)], we find that

hypothesis to u|g, P~ and s', and conclude that for f in a dense open subset of w;lp[H"] we have
m(f~,1) = m and f)1 € Fuy,,,7-- Since 7(f,1) =n(f~,1) and J(u;;) = shT, this completes the proof. [J

H/l»

Contrary to what was the case for the interpretation of the Schiitzenberger algorithm, we cannot
proceed immediately to prove our main identity, (12). This is due to the fact that in general the set
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{fi| f € Dy}, although contained in Fu,,r, 1s not dense in that set. So even though we now know the
generic value of 7(f, f{) for (f, f') € Fu.p X F g, we would only get an upper bound (in the Bruhat
order on S,) for 7(f, f'). We could resolve the difficulty, as is done in [Stb2], by observing that such
an inequality is in fact sufficient to imply identity, in view of the fact known from the general study of
the unipotent variety that every permutation occurs as generic relative position for some (u, P, Q) (see
[Sprl], 3.8, [Spr2], 4.4.1 or [Stbl1], 3.5, 3.6), together with the invertibility of the Robinson-Schensted
algorithm.

We shall proceed however in a manner that is in many ways more satisfactory, and that does not
depend on this external knowledge, but employs the same kind of methods used until now. The basic
P A | f €D} is densein Fu,.T (note the use of Zy,, rather than Zul)-
In order to prove this, we view V/I equipped with u/; abstractly as a vector space with unipotent

auxiliary result used is that 7,

transformation, i.e., we forget the quotient construction used to obtain them. Then, for a given flag
in F, N
the given flag corresponds to some appropriate f;;. Extending a vector space to a larger one is a bit

T we try to reconstruct the quotient situation by extending the vector space, in such a way that

more technical than restricting to a subspace or forming a quotient, but as we shall see the conditions
that are to be fulfilled are quite similar to those we have met before: one of the interesting aspects
of this construction is that it involves an interpretation of the insertion procedure in addition to the
interpretation of the extraction procedure given in 6.1. Observe first that the initial claim of 6.1 can be
formulated as follows.

6.2. Corollary. Let a tableau P and a corner s of sh P in column c¢ be given; put (T,m) = E*(P,s),
and let d be the number of entries of P that are < m. Then d = min{i|Vf € F,p: fi 2 W.}.

Proof. Without loss of generality we may take P to be normalised, so that d = m. For [ € U, the
set {feFu,p|fa21l} is closed in F, p, and by 6.1 it contains a dense subset of F, p, whence it
must be all of F, p; combining this for all [ we get f; O W, for all f € F, p. On the other hand
any f € D; has fg3_1 2 | and hence fy_1 2 W,., proving the minimality of d. O

It is natural to consider this matter also in the opposite direction, by asking for given d what is the
smallest ¢ such that W, C f; for all f € F, p (or in other words, determining KernnN ﬂfefu,p fa). Note
that we are now asking for minimal values of ¢, so that the possible outcomes are the column numbers
of the cocorners of sh P; indeed the requested intersection might be the zero space, in which case the
answer will be ¢ = A\; + 1. The question may of course be answered by applying E! for all corners of A
and interpolating the results using the 6.2; however the answer can be obtained more directly by using
the procedure I*:

6.3. Lemma. Let (P,s) = I'(T,m) where m exceeds exactly d of the entries of T, and let ¢ be the
column number of s. Then ¢ =min{i |Vf e F, r:W; C f4}.

Proof. If m exceeds all entries of T, then f; is the whole vector space and ¢ = 1, so the lemma is
trivially satisfied. Otherwise, let the square [T'] appear in column j so that w,[F, 7] = U}. Applying
induction for 7'~ in place of 7" we find that for (P',s') = I'(T"~, m) the column number ¢’ of s’ satisfies
¢ =min{i|Vf € Fy, r-:Wilulg) C fa} for all H € U;. Since for f € F, 7 we have f~ € Fy), -
where H = w(f), and of course f~; = f4, we may conclude ¢’ = min{i|Vf € F, r: Wiul|us) € fa}-
Now if ¢ # j then [(12')] gives ¢ = ¢', and W, (u|g) = W for all H € U? by 4.1, whence the lemma holds.
When ¢ = j then [(12%)] gives ¢ = ¢’ + 1, while W.(u|g) has codimension 1 in W, by 4.1, so W € f4
for certain flags f € F, 1, but W, = W.(u|g) C We(u|g). This proves the lemma in this case as well. O

We now come to the process of reconstructing for a given flag f' in a vector space V' a situation where
V' = V/l and where f' corresponds to f;; for suitable V, [, and f. More precisely, let a (not necessarily
normalised) tableau 7' of shape p be given, and a vector space V' with an unipotent transformation u’'
such that J(u') = p; we shall consider flags f' € F, 1. Also let a number m not occurring as entry
of T', and exceeding exactly d of the entries of T', be given, for which we compute (P, s) = I'(T, m); as
usual ¢ denotes the column number of s. We construct the vector space V =k x V', of which we denote
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6 Interpretation of the Robinson-Schensted algorithm

the line forming the first factor by I, and we identify V' = V/I. We wish to equip V with a unipotent
transformation 4 stabilising ! and inducing the given unipotent u' in V', from which it follows that @

o= ((1] j,) (14)

where ¢ € V'*. We do not fix this linear form, in order to allow ourselves the freedom to adapt it to the

must be given by a block matrix

situation, which shall be as follows: a flag f' € F,/ 1 is given and we wish to find a corresponding flag
[ € Fa,p for which n(f,l) = d+ 1 and f' = f;;. This last pair of conditions will be met if we take the
flag f defined by

;[ FH ifi<d

fi_{leaf;_l iti>d (15)

The parts f, with ¢ > d are automatically 4-stable, but those with ¢ < d are not necessarily so. In order to
have d@-stability for these parts it will be sufficient that f; is d-stable, which is equivalent to f; C Ker ¢.
Therefore we define the variety

V:{(f',qﬁ)efu/,TxV’* |f¢'1§Ker¢} (16)
which is a vector bundle over the irreducible variety F,  r, and hence irreducible.

6.4. Proposition. On a dense open subset of V we have J(u) = sh P.

Proof. Because Y (sh P) is obtained from Y (u) by adding the square s, which lies in column ¢, we
have J(4) = sh P if and only if [ € U.(4). One easily checks that { C W;y(d) always holds, and
[ C W;(u) is equivalent to W;_;(uw') € Ker ¢ for ¢ > 1. Therefore the condition [ € U.(4%) is equivalent
to ¢ = min{:| W;(u') CKerg}. It follows from 6.3 that W.(u') C Ker¢ holds on all of V and
if ¢ > 1 then we have W._1(u') € Ker¢ for some (f',¢) € V. Since any condition W;(u') C Ker¢
defines a closed subset of V the proposition follows. O

6.5. Proposition. On a dense open subset of V we have f € Fa.p-

Proof. By induction on the number of entries of T exceeding m. If there are no such entries then f —=7f
and P~ = T so the proposition follows immediately from 6.4. Otherwise let j be the column number
of [T]; for arbitrary hyperplane H € U} we apply the isomorphism w;,TT [H°] = Fu, 17—, and construct
a vector bundle V= over F,/, - analogous to V. The part of the bundle V' lying above wu_,TT [H°] maps
onto V™~ by (f',8) — (f'~, ¢|m). We apply the induction hypothesis to V=, and find that for (f'~, ¢|x)
in a dense open subset of ¥V~ we have TﬁIH(f_) ~ P~. Applying Z, to the preimage of this subset of V'~
and intersecting with the dense open subset of 6.4 we obtain the required dense open subset of V. O

We can now prove the announced converse of 6.1.

6.6. Lemma. In the situation of 6.1, Z,,, - { ;1 | f € D1} is dense in F,, , 7.

U/
Proof. Choose any complementary subspace to [ in V, by means of which we identify V with [ x V/L.
Now apply 6.5 with v’ = u/q; it will suffice to prove for any v in the dense subset of V' of that proposition,
that its projection f' on F, , r liesin Z,, -{ f; | f € Di}. Construct @ and f according to v, so that
fe Fi,p. Since J(u) = J(&) = sh P, the unipotents u and @ are conjugate in GL(V'); moreover since !
lies both in U.(u) and U.(%), where c is the column number of [P], there is even some element g in the
stabiliser of [ in GL(V) such that giig™! = u, and hence g - f € Fu,p- Since we have by construction
4y =uy and f; = f' € Fu,,T, we have g- f € D;. Now g induces a transformation g;; of V/l; and since
we also have g/ﬂl/lg/_ll = uy;, we conclude that g/; € Z,,,. As = g/_l1 . (g-f)/l, this proves the lemma. [

Combining 6.1 and 6.6 we come to the first main result of this section, which reformulates (12).
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6.7. Theorem. Let P,Q € 7T,, and compute ¢ = R'(P, Q) by the transpose Robinson-Schensted algo-
rithm. Then for (f, f') in a dense open Z,-stable subset of F, p X F o one has n(f, f') = ow.

Proof. By induction on |A|, with |[A\| = 0 as trivial starting case. In view of [(9%)] and the fact that
ow corresponds to the sequence (o, ...,01), let (T,01) = E*(P, [Q]), and let ¢ be the column number
of [Q]. We choose a line | € ofF; o] = U.. We may restrict ourselves to f' € a;'[]: once we have
found an appropriate dense subset of F, p x aj![l] we can apply the Z,-action, which is transitive
on U.. We apply 6.1 with s = [Q] and find for f in a dense subset D; of F, p that «(f,l) = o1
and f;; € Fu, . From T we obtain the similar normalised tableau T by decreasing by 1 all entries
exceeding ;. We invoke the induction hypothesis for the pair (T, Q~), and find a dense open )
stable subset A of F,, 7 x F,, g- such that any pair (f, f') € A has «(f,f') =7 € S,_1 where 7
and ow are related as o' and o in (9). To complete the proof it therefore suffices to show that the
subset of D; x afb,él[l] of pairs (f, f') with (f/l,f'l) € A is open and dense. Since A is open and
D; x 04:;’51 [l] is irreducible, our claim will be proved as soon the mentioned subset is non-empty, and
this is equivalent to the existence of f € D; for which f;; lies in the projection A; of A on the first
factor. Now A is dense and open in F, , p-, so it meets the dense subset Z,, - { ;| f € D1} of 6.6,

but since A; is also Z, , -stable, it must already meet {f/l | f € D}, and this completes the proof. O

L/l
This establishes the interpretation of the transpose Robinson-Schensted algorithm; we now proceed to
the interpretation of the Robinson-Schensted algorithm itself. As was remarked earlier, we cannot expect
an interpretation to be immediately implied by that of its transposed version, lacking a good interpretation
for transposition of Jordan types. We could use [Theorem 5.1] to derive one interpretation from the other,
but doing so would invalidate one of our main objectives, which is “explain” that theorem from the
geometric interpretations. But although there is no formal connection, there is a great analogy between
the interpretations of the two versions of the algorithm, which we shall emphasise by our formulations.
We first need an analogue for 4.1, describing the behaviour of the sets U; under a projection V' — V/I.

6.8. Proposition. Let [ € U, be given, and let p: P(Kern) \ {{l} — P(Kern,;) be the map induced by
the natural projection V' — V/I. For all j # ¢ we have p[U;] C U;(u,;), while p[U. \ {l}] = P(W.(u));
moreover dim(U, ﬂp_l[Ui(u/l)D =dimUj(uy;) + 1 for all i > c.

Proof.  The projection maps each W; into W;(u,;), and for j > ¢ as well as for j < c one easily shows
that the induced maps W;/W;i1 — Wj(u)/Wjy1(u);) are isomorphisms, proving the first statement.
For i > ¢ and a line h € U; put h' = p(h) = h & 1/l. We have h' € Uj(u;;) and p~t[h'] = P(h @ 1),
of which projective line all points except h lie in U.. Together with p[U. \ P(W.y1 @ 1)] C Uc(uy),
this proves the remainder of the proposition. O

6.9. Lemma. Let a tableau P € T, a corner s of A in column ¢, and a line |l € U, be given. Using the
extraction procedure compute (T, m) = E(P,s), and put m' = w,, = n+1—m where n = |\|. Then the

Zu-stable set { f € Fiy p | n(f,1) =m'A fn € Fy, 1} is dense and open in F; p.

/1>
Proof. Let f € F} p, let h = fi be its line part, and let the square [P] appear in column j so that
h € U;. Obviously, if 7 # ¢ then h # [, and even if j = ¢ we can avoid having h = [, unless U, consists
of a single projective point, i.e., unless dim W, = 1. Consequently, it is only in this case that we have
7m(f,1) = 1 for all f; moreover, we then also have T = P~ and m = n by [(11)], implying m’' = 1, and
since f;; = fle f:/l,Tv we obtain the lemma for this case.

The remaining cases use induction on |)A|; for |A\| = 1 we are always in the case already treated.
We restrict to the open subset of those f € F; p for which h # [, so that h @ [ is a plane in Kern.
Knowing that f! € Fr .p—> We wish to apply the induction hypothesis to u;, and P~. Thereto we
need to find the number ¢’ such that I' € Uy(uy;) where I' = | @ h/h; we also wish to find j' such
that h' € Uji(uy) where h' = h @ l/l, which is the column number of [q,,(f;1)]. Both questions
are equivalent to determining J(u,hg:), since J(u;) and J(u;;) are already known, and differ from
J(u/ngi) by squares in columns ¢’ and j' respectively. Now h' = p(h) with p as in 6.8, and it follows
that for j # ¢ we have j' = j and hence ¢’ = ¢ (this also follows from the fact that J(u/nq) is
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contained in both J(u,;) and J(u;;)). When j = ¢ and dimW, > 1, we (further) restrict h to the
subset U, N p_l[Ui(’LL/l)] of maximal dimension, i.e., for the smallest value i > ¢ for which U;(u/;)
is non-empty; this defines a dense open subset of F; p in which j' = ¢’ = i holds. Note that the
square s’ = (dim W;(u;), %) is the corner of sh P~ the row numbered dim W, — 1; comparing with [(11)],
we find that (T7,m) = E*(P~,s’). We can therefore apply the induction hypothesis to u/,, P~ and
s', and conclude that for f in a dense open subset of F , we have a(fLl) =n—-m=m' -1

and f/ll, € Fu,pe,r-- Since a(f,1) = «(f, 1) + 1 and J(uy) = shT, this proves the lemma. [J

Note that together with 4.3 and 6.1, this lemma already implies [Lemma 5.2], from which [Theorem
5.1] followed by a relatively simple combinatorial argument. We can also deduce from 4.3, 6.1 and 6.9,
that the subset of F,, s(p) defined as D; in 6.1 intersects the set { f € Fy p | 7(f, 1) =m' A f); € f;/,,T }
of 6.9in a subset which is dense in either of them. Therefore we effortlessly obtain from 6.6:

6.10. Lemma. The set Zy, -{fu|f € FypAn(f,l)=m'Afn € f:/l,T} is dense in ;/“T. O

This brings us to our second main theorem, which reformulates (13). We omit the proof, which is
entirely analogous to 6.7.

6.11. Theorem. Let P,Q € 7,, and compute 0 = R(P,Q) by the Robinson-Schensted algorithm.
Then for (f,f') in a dense open Z,-stable subset of Fap X Fy o one has w(f, f') = wow. O

This completes the proof of the equations (10)-(13) stated at the beginning of this section. For
reference we conclude this section by stating without proof direct interpretations of the extraction and
insertion procedures, analogous to the ones we proved for their transposed counterparts.

6.12. Proposition. Let a tableau P and a corner s of sh P in column ¢ be given; put (T,m) = E(P, s),
and let d be the number of entries of P that are > m. Then d = min{¢|Vf € Faorpfi2 We }.

6.13. Proposition. Let (P,s) = I(T,m) where m is exceeded by exactly d of the entries of T, and let
¢ be the column number of s. Then ¢ = min{:|VYf € Faur:Wi C fa }.

§7. Some further observations.

In the preceding sections we have shown how the Schiitzenberger and Robinson-Schensted algorithms
provide basic information about the varieties F,. There are on one hand a number of further points
that follow from these facts, and on the other hand numerous related questions arising naturally, for
which the given analysis gives no (complete) answers. In this section and the next, we shall elaborate our
results in several directions, and also mention some questions that remain open for further investigation.
One obvious instance is the question of a more complete geometric description of F, and its irreducible
components. Having consistently considered only generically chosen elements, we have little detailed
information about the varieties as a whole. For instance, we have no general method for computing the
dimension of the intersection of a given pair of irreducible components of F,,, or even for telling whether
or not this intersection is empty. Although it is not too difficult to give a complete geometric description
of F, in individual cases for which its dimension is small, such exercises hardly provide a clue for a general
approach.

Let us start with remarking that the “pictorial versions” of [3.1] and [4.2] have an obvious geometric
significance. For the picture corresponding to the computation of ¢ = R(P, @), the partition ascribed
to the point (7, j) equals J(u|finfjf_) for generically chosen (f, f') € Fyu p X Fy,; in case (4,7) € X, (ie.,
the point (7,7) was left vacant) this is the partition ascribed to the maximal point < (z,7) of ¥,. For
the picture corresponding to the computation of S(P), the partition ascribed to the point (7, ) equals
J(ug,/,_,) for generically chosen f € F, p.

It is interesting to consider what combinatorial consequences can be derived from the given inter-
pretations, in addition to the already mentioned main theorems of [vLee3]. For instance, the statements
6.2, 6.3, 6.12, and 6.13 imply a weak monotonicity of the procedures E?, I, E and I. To facilitate the
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formulation, define a partial ordering <  on the set of squares, transverse to the natural ordering, by
(r,e) <, (r',c") <= r >r'Ac<{;this induces a total ordering on the set of corners and cocorners of
any fixed partition. Now, when (T, m) = E(P,s) and (T',m') = E(P,s'), then s <_ s’ implies m < m/,
and conversely if (P, s) = I(T,m) and E(P',s') = I(T,m’), then m < m’ implies s < , s'; for E* instead
of E one should replace m < m' by m > m/'. Direct combinatorial proofs of these facts can also easily be
given using Schensted’s description of I, F, and their transposes.

Another interesting observation can be made by combining 6.12 and 6.13. If P, s, ¢, T, m and d are
as in 6.12, then for all f € F p we have fq 2 W,, while fq_1 2 W. for some such f. Now if m' does not
occur as entry of P, so that we can compute (P',s') = I(P,m'), then by 6.13 the column number ¢’ of s’
equals min {¢ | Vf € Fy p: W; C fg }, where d' is the number of entries of P exceeding m'. Now if m' < m,
then d' > d which implies ¢’ < ¢ and hence s’ < s, while if on the other hand m’ > m then d’' < d which
implies ¢ > ¢ hence s < s'; in other words the distinct squares s, s' satisfy s' < s < m' < m.
Note that in this situation P’ can be obtained from T by the successive insertion of the numbers m
and m', so this situation actually occurs during two successive insertion steps of the Robinson-Schensted
algorithm. In that case, if this were say the i-th and 7 + 1-st insertion steps, then the squares s, s’ are
recorded in the right tableau produced by the algorithm as the squares containing ¢ and ¢z 4+ 1. Denoting
the square containing j in a tableau @ by Q[j], we conclude that when (P, Q) = R™1(o), the order with
respect to <, of the squares Q[i] and Q[¢ + 1] will coincide with the order of the successive terms o;
and o;41 of . This combinatorial statement is due to Knuth, [Knl], Theorem 1. By [3.1] it follows
also that P[i] <, P[i + 1] if and only if o; " < Ui__'_ll, i.e., the entries 7 and 7 + 1 of P occur in the
same order (with respect to <) as the terms ¢ and ¢ + 1 occur in the sequence o. One consequence of
this, which is already noted (without proof) by Schensted ([Sche], Part IT), is that we can extend the
Robinson-Schensted algorithm to deal with equal entries in o and P, if we stipulate that for the purpose
of comparison of entries we use their positions (ordered by < ) in case their values are equal; the tableau
condition then should exclude equal entries in the same column, but allow them in the same row. The
computations then mimic the situation for the ordinary Robinson-Schensted algorithm where each set of
equal numbers in o of P is “pulled apart” into distinct numbers, their order determined to be increasing
by their positions. A generalisation where the left tableau @ is allowed the same liberties as P, is given
in [Kn1].

The condition Q[i +1] <_ Q[é] also has a geometric significance: it is equivalent to the fact that for

all f € F, g the subspace f;_; of codimension 2 in f;4; contains Im(n|y,,, ) (recall that the hyperplane f;
in fiy1 necessarily does so), and hence that is we vary f; but no other part of f, we stay inside F,. The
set of flags so obtained is called the (projective) line of type i in F through f, and if for all f € F, g
these lines are contained in F,, then they are already contained in F, ¢, lest their union would form
an irreducible subset of F, of dimension dim ¥, + 1. The combinatorial statements above lead to the
following geometric fact. For any f € F, p and f' € F, ¢ in relative position #n(f, f') = 0 = R(P,Q),

and for any reduced expression o = s185 - - - 87, the unique sequence of lines of respective types sy, ..., s;

linking f and f' (as was mentioned in §5) is such that the first line is entirely contained in F, p, and
the last line in m None of the facts above are new, but we mention them to illustrate the useful
connections that can be made between combinatorics, linear algebra and geometry; quite possibly doing
so for some of the many other known properties could lead to some new insights.

We have focussed our study on the situation restricted to Kern, as is illustrated for instance by
statements like 6.2 and 6.3; by dualisation we also get information modulo Im#7n. When we go outside
of Kern, the situation becomes more complicated, for instance Z, need not act on all of P(V') with finitely
many orbits. Nevertheless we can get some additional information by reducing modulo Kern, or dually,
by restricting to Imn. For f € F, we can define f, k.., in analogy to f;;, by collecting all the distinct
subspaces among the (f;+Kern)/ Ker7. Since the Young diagram of the Jordan type J(u, ke, ) is related
to that of J(u) by removal of the first column, we find that f € F, 7 implies f/ ke, € Fu ) xen y, '+ Where
T' is obtained from 7' by removing the first column. If f|iy, is similarly defined by collecting all the
distinct subspaces among the f; N Imn, then for f € F} 7 we also have flimy € :IlmmT" Admittedly,

the information obtained in this way is rather limited, since knowing f|ger, and J/Kern 18 certainly not
enough to determine f; for instance this method does not allow us to extend 6.3 to a complete description
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8 Varying the unipotent element

of N FEFu p fa- There is however an amusing combinatorial consequence: let y stand for the operation of
chopping off the first column of a tableau and renormalising, then

SO(SO(T)))) = x(S(x(S(T)))) (17)

for all Young tableaux T, since both describe the tableau 7' such that for f € F,r we generically
have fim y/(Ker ynimy) € For 1, Where u' = upy, n/(KernnIm 5)- Not too surprisingly, this identity does not
appear to have been noted before.

88. Varying the unipotent element.

Other interesting questions arise when we no longer keep the unipotent u fixed. Let U be the variety
of all unipotents in GL,, on which GL, acts by conjugation, and let U = {(uv, ) eUxF|feF.}
Then GL, also acts on 17, and the projections onto U and F are equivariant maps. Since the fibres
of the second projection are isomorphic to an affine space (the unipotent radical of a Borel subgroup),
and the action of GL,, on F is transitive, we see that U is a smooth variety. The projection onto U is
a resolution of singularities of U, and it this fact which has originally led to the study of its fibres F,.
We have dimU = dimU: on a dense open subset of U we have J(u) = (n), and the fibre at such
a generic unipotent consists of a single point. Put Uy = {u € U | J(u) = A}, and denote by ﬁ,\ its
inverse image in U. The irreducible components of ﬁA are in bijection with those of F, for u € Uy,
via the operation of intersecting with that fibre F,; this is because in GL,, the centraliser 7, of u is
always connected. Therefore the irreducible components of U » can be parametrised by 7): denote the
component corresponding to m by ﬁT. An obvious question in this context is to describe the partial
ordering on UAePn 7T, defined by P < T if and only if ﬁp - ﬁT. To our knowledge no effective and
general answer to this question is known, but we shall indicate how the combinatorial algorithms treated
above, in particular the Schiitzenberger algorithm, can help to study this question, and give answers in
many particular cases.

The easier question of determining the closures of the orbits in U (i.e., of the unipotent orbits
in GL,,), has the following answer. We continue to write n for the nilpotent u — 1, even when u varies;
we have seen that if J(n) = A, then dimImn® (i.e., the rank of 5’) is equal to the number of squares in
Y () strictly beyond the i-th column. Now any condition rk(n’) < r for fixed i and r defines a closed
irreducible subset of U stable under conjugation by GL,; we call such conditions power-rank conditions
on u (even though they are expressed in terms of n). Define a partial ordering on P, by putting A < p
if each power-rank condition that is satisfied when J(u) = p is also satisfied when J(u) = A, i.e., if for
all @ we have }_
ordering is anti-symmetric with respect to transposition: A < y <= p* < X' and is generated (not

A< Yo pk, or equivalently, if for all i we have Y7 ;A\, < 37 ., p,. This partial

minimally) by pairs of partitions whose Young diagrams differ by the position of one square only. If
A < p is such a pair one easily sees, by looking at an appropriate 1-dimensional subset of U in which all
Jordan blocks but two are constant, that the closure of the unipotent class parametrised by p contains
unipotents of Jordan type A. We conclude that A < p is a necessary and sufficient condition for Uy C U_,L,
and the closure of the orbit of any u € U is the set of common solutions of all power-rank conditions
satisfied by wu.

For the question of the closures of the Ur it is convenient to restrict attention to a fibre of the
projection U— F , which makes no essential difference, since the action of GL, on F is transitive
with connected stabilisers, namely the Borel subgroups. So let f as before be the standard flag, B its
stabiliser, the Borel subgroup of upper triangular matrices, and U its subset of unipotent elements (the
unipotent radical of B) which we identify with the fibre in U above f. Put U, = ﬁ)\ N U (which is also
the intersection of the GL,-conjugacy class U, with B), and Up = ﬁT N U (which is the closure of one
of its irreducible components, if A = shT'). The sets {u—1]|u € ﬁT NU } are called orbital varieties,
and have been studied for instance in [Jos], [Benl], [Meln]. Our partial ordering on tableaux can now be
expressed as P <T <= Up C Urp.

We can view the tableau r,(f) as a function of u, and Uy coincides with the closure of the set
{ueU|r,(f) =T} Nowifr,(f) =T, then u|s, satisfies the power-rank conditions corresponding to the
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8 Varying the unipotent element

subtableau of T with entries < 7, however, it is not generally true that Urp is the set of common solutions
of all these conditions. For instance for T" = , the shapes of T~ and T~ ~ correspond to the dense
unipotent classes in GL2 and GL1, and therefore only contribute trivial power-rank conditions. Hence all
unipotents of Jordan type (2, 1) satisfy the given power-rank conditions, including those with r,(f) = ,
which in general do not lie in Up. The difficulty is that by restricting to U, the power-rank conditions
are no longer irreducible (this is directly related to the falling apart of unipotent orbits into irreducible
components upon intersecting with U), and the set {u € U | r,(f) =T} is not only determined by the
power-rank conditions corresponding to 7" and its subtableaux, but also by the negation of all strictly
stronger power-rank conditions. In order to get equations for Uy one needs to replace these negated

conditions by positive (closed) ones.

In the given example T' = it is easy to see which closed condition is missing, namely Imn C f;,
or equivalently J(us) = (1,1) (i.e., 75, = 0). Now by (6), power-rank conditions for ug can be
obtained from subtableaux of S(7'), and an obvious improvement is to include these conditions as well
for specifying Up. While this is useful, and suffices for the case of GLsg, it fails for GLy, since the tableaux
T = and T' = are both fixed under S, but the power-rank conditions for uls, fail to show that
U7z € Ur, for the same reasons as in the previous example. What is needed here is condition on 7, ¢,
(namely that it is zero), and in general we may add to our repertoire all applicable power-rank conditions
for ug, g, , with 1 <:<j<n (or for 7 < j, since the condition for 7 = j is always trivial). The matrix
for ug;jf,_, is the square submatrix of that of u with rows and columns numbered < i or > j removed
(hence having its main diagonal along that of u, and with upper right-hand corner in position (3, j)),
which shows that such conditions do indeed define closed subsets of Up. The generic Jordan type of
ug, /g,_, can be found as Tlisil € g Thl== where the entries < i are removed from T by successive
applications of -!, and the entries > j by -~. Tt turns out that the pictorial rendering of the proof of [4.2]
displays all relevant partitions in an upper triangular area, and—by a happy coincidence—each partition
appears in the proper place, namely T/ at position (%,7), which is the upper right-hand corner of the
submatrix it applies to!

We now define a partial ordering ‘<g’ on UAePn T, by P <g T if and only if Pl < Tl for all
1,7 with 1 < ¢ < j < n; this ordering can be determined combinatorially. From the reasoning above
it follows that P <g T is a necessary condition for P < T. We call a tableau T' power-rank complete
if the power-rank conditions derived from all 7] (each applied to the correct submatrix of u € U)
together define an irreducible variety, which then must be Urp; if this is the case then P <g T is also a
sufficient condition for P < T. An example may illustrate how explicit equations for U can be found if
T is power-rank complete (such equations in fact provide much more information than just allowing us

to determine the inclusions between the varieties Ur). Let n =5, A = (2,2,1) and T' = . A general

matrix 7 = u — 1 for u € U, and the pictorial version of the Schiitzenberger algorithm for this case are

DI:DEPEHH}

0 a b ¢ d

0 0 e f g OB E]
n=10 0 0 h k respectively

0000 I O

0 0000

= B
t

For each Young diagram consisting of a single column, the corresponding power-rank condition states the
its submatrix of 7 is zero, thereby annihilating certain indeterminates. All diagonal entries are already 0,
and in the example the additional conditions of this kind are due to 71231 = 7145 = (1,1): the conditions
are e = [ = 0. Of the remaining Young diagrams only a few typically contribute non-trivial conditions:
if T1id] has gained a square in its Young diagram to the right of column ¢ with respect to either of its
neighbours Tli=13] and T~ then its c-th power-rank condition is are already implied by the similar
condition for that neighbour, because the rank of the ¢-th power cannot increase by more than 1 due to
adding a single row and column. In the present example we only get new conditions from Al = (2,2),
from TP = (2,1,1) and from T = (2,2,1). For position (1,4) the condition is that the square
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8 Varying the unipotent element

of the corresponding matrix is 0; since we already know e = 0 this just means that af + bh = 0. For
position (2,5) the condition is that the corresponding matrix has rank < 1, which means |£ Z| =0, and
for the corner position (1,5) the condition is again that the square of the corresponding matrix is 0,
which means that af 4+ bh = 0 may be extended to (a b)(}{Lc Z) = (0 0). Observe that the last equation
does not decrease the dimension of the solution set, as ({L) and (Z) are linearly dependent by the previous
equation, but it serves to remove the irreducible component given by f = h = 0 from the set defined
by the previous two equations. It is not difficult to see that the set defined by all these conditions is
irreducible, and hence that 7" is power-rank complete. We can also see that we could not have done with
less equations than the 5 given ones, and since the codimension of Ur in U is 4, this means Ur is not
a complete intersection in U (this circumstance is rather exceptional among the cases for n < 5). In
general this codimension of Uy in T can be shown to be equal to dim F,, for J(u) = shT. In the example
one may observe that, while in general power-rank conditions appear to be of a forbidding complexity,
they usually (at least when n is not too large) reduce to quite simple forms or disappear altogether, when
the conditions coming from T[] for smaller 7, j are taken into account.

From small examples one gets the impression that all tableaux are power-rank complete—indeed they
are for n < 5—but unfortunately for n = 6 there are two counterexamples, which are of shape A = (3,2, 1).
The failure is most easily detected by the existence of pairs (P,T) with shP = shT and P <g T} in
such a case T cannot be power-rank complete, because dim Up = dim U7 immediately implies P £ T'.
(When for some tableau T no such P exists, like in the example above, and for the vast majority of
small T, then the power-rank conditions for Uy define a closed subvariety of U, which contains none
of the irreducible components of Uy except Up. This condition does not guarantee that 7T is power-
rank complete, although it does turn out to be true in all such cases with n < 6.) The two mentioned

25

1|2|5
[6] l <gT = gﬂl | and the pair obtained from it by
6

counterexamples, are witnessed by the pair P =
. 13]6] 173]4] —~ L2 . .
application of §: P* =[2[i] <g T™* =[2]s] . To see what goes wrong we again display a general matrix 7

wlw[m

for u € U, and the pictorial computation of S(T):

DI:DBZBHEH]H

0 a b ¢ d e [
00 f g h k ° B B ERER
N S Ty
0000 0 r R
0000 0 0 0oFH
O

The power-rank conditions for this case are f = r = 0, and (from it 7261 and T[1‘6]):

g h k ah +bm ak+ bn
ag + bl =0, Il m n|=0, rk gp qq <1
0 p ¢ lp lq

The terms cp and cq have been dropped from the first row of the last matrix since this does not affect any
of the 2 X 2 minors. In fact the last condition is entirely redundant: the 2 X 2 minor formed by the last
two rows clearly vanishes, and with a bit more effort one sees that the other two such minors lie in the
ideal generated by the polynomials in the two previous conditions. Nevertheless these minors are useful,

def | gh+dm ak+bdn

since they obviously factor into a term g respectively [ and a term D = ‘ since none of

)
these lie in the mentioned ideal, that ideal is not prime, and T is not power—r:nk corrqlplete. In fact, the
variety defined by the ideal has two irreducible components: one on which ¢ = | = 0 and another on
which D = 0. Since g = | = 0 clearly does not hold on all of Uz (or we would have had T1>4 = (1,1,1)),
it is the component on which D = 0 which coincides with Up. The fact that the equation D = 0 is
not implied by the power-rank conditions is what causes T to be problematic, and we can also see why
P <5 T despite P £ T: the variety Up is given by the linear equations f = g =1 =1 = 0 (these do
follow from its power-rank conditions), which correspond to the spurious irreducible component. As said
before, we know that P < T must be false for dimension reasons, but there might be other tableaux @
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for which dimUg < dim U7 and @ £ T despite the fact that @) <g 7. Such @ necessarily has @ < P,
but it turns out that all such @ also have @ < 7', since Ug satisfies in additionto f = g=101=7r =10
other equations which imply D = 0; the two most interesting cases being

h k 575 h k
Q= for which (abec)| m n | =(00) and Q=5 for which rk|m n | <1
P q - P g

So for n = 6 the combinatorial test P <g T does not correspond to P < T for only two of all
76% = 5776 possible pairs (P, T), and for those two pairs dimension considerations show that P ¢ T'. For
n = 7 however, the test P <g T fails more seriously. Combinatorially no fundamentally new phenomena
appear: although there are now 16 equal shaped pairs (P, T) of distinct tableaux for which P <g T, these
all appear to be essentially “enlarged versions” of similar pairs for n ‘:|6. Howevef,lclontrary to tl‘lcTs‘e
1|2|5 1|2|5|7 25|77
4

cases, we can now find @ < P with @ £ T, as exemplified by @ = selTl < P = Bl <s T =

Even more disturbingly, there are tableaux T' which are not power-rank complete, despite the fact that

o[w][=

there is no P <g T of the same shape. Such a situation is implied by the existence of a tableau @
€]

with sh@ < shT for which @ <g T, but @ £ T, as for instance @ = The lack

1]374]

3
4 <g T =7

[o] e[~
B

7

of equal shaped P with P <g T means the solution set of the power—rarﬁi conditions for T" has one or
more spurious irreducible components of lower dimension than Uy; in the current case this is in fact
Ug. By merely computing the relation ‘<g’ such cases cannot be detected. We must conclude that the
combinatorial test P <g T is useful, but definitely insufficient to decide the partial order ‘<’ for n > 7.

For tableaux T which are not power-rank complete, our claims about P < T could only be established
by close inspection of the polynomials giving the power-rank conditions. The number and complexity
of these polynomials is already considerable in many cases, so that we had much benefit from the use
of Computer Algebra (we used the package Maple) for deciding ideal membership; even so, we were not
able to automate the process of isolating irreducible components (indeed, it is not even clear that this
process can always be done independently of the ground field). A theoretical possibility that should be
mentioned here is to include in addition to power-rank conditions, which state upper bounds for the
ranks of powers of submatrices, also conditions that state these ranks should not be strictly less than
these upper bounds (thereby eliminating the unwanted irreducible components). Although these are not
closed conditions, they can still be rendered in polynomial form by introducing new variables: to express
that all polynomials in some finite set (viz. the set of all minors of given size of a matrix) do not vanish
simultaneously, multiply each of them with a fresh variable, subtract one from each of these products and
multiply everything together. If the ideal generated by the collection of polynomials obtained in this way
inside the polynomial ring generated by all (old and new) variables, is intersected with the polynomial
ring generated by the old variables only, an ideal is obtained for which the spurious components have
been removed from its solution set; such an intersection can be determined by computing a Grobner basis
for the ideal of the larger polynomial ring with respect to a pure lexicographic order on the monomials
in which the old variables are considered less than the new ones. We have indeed been able to extract
“hidden” conditions such as D = 0 above in this way (and in fact it is in this case sufficient to consider
only conditions corresponding to positions (1, 7) along the top row of the matrix), but conditions giving
lower bounds for ranks had to be carefully selected, since indiscriminate use of all available conditions
would lead to systems whose the Grobner basis computation does not terminate in any acceptable amount
of time, due to the sheer number of polynomials and indeterminates.

Not only the Schiitzenberger algorithm, but also the Robinson-Schensted algorithm can be used to
obtain useful information pertaining to the current problem. In order to see how, we consider instead
of the variety U the variety ¥ = {(u, ,fYEUXFxF|feF,Nf €F,} This variety is not ir-
reducible: its irreducible components are the closures of the inverse images under the projection onto
F x F of the (diagonal) GL,, orbits in that set. As we have seen those GL,, orbits are characterised by
the relative positions, and hence in bijection with S,,; since the stabiliser of a point (f, f') of F x F is
the intersection of two Borel subgroups, in which the subgroup of unipotent elements always has codi-

2

mension n, all irreducible components of Y have the same dimension n* — n. Denoting the projection
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Y — U by @, the irreducible components of Y are also the closures of the irreducible components of the
sets (I’_l[U)\] for A € P,, and intersection with @_1[u] for u € Uy defines a bijection from the irreducible
components of ®~1[U,] to those of ®~![u] = F, x F, (again since Z, is connected). The correspondence
between these two ways of describing the irreducible components of Y is just the interpretation given for
the Robinson-Schensted algorithm: the component corresponding to F,.p X m C F.x F, is the closure
of the inverse image in Y of {(f,fYe FxF|xn(f,f)=R(P,Q)}. A dense subset of that component
is given by Yp g = {(u, f, f') € Y | ru(f) = PAru(f') = @ A=(f, [)) = R(P,Q) }.

Now let a tableau P be > given, choose an arbitrary tableau @ of the same shape, and put ¢ = R(P, Q).
Under the projection Y — U given by (u, f, f') = (u, f), the image of Yp ¢ is dense in Up, and intersecting
with U gives a dense subset of Up. Taking the inverse image of this set in Yp ¢ and projecting to F by
(u,f, f') — f', the image is the set { f' € F | n(f, f') = o }, which is equal to the B-orbit B - f of the
permuted standard flag £7. Denoting the stabiliser of £ by B?, the fibre in Y above (f,f7) € F x F is
isomorphic (by projection on U) with U N BN B (the unipotent radical of an intersection of two Borel
subgroups), and a dense part of it lies in Yp . Writing U(c) = U N B N B, we may conclude that
Up = U(0)B where U(c)B = o {bub=! | b€ B,u€ U(o) }.

The subset U(o) of U is easy to describe: the matrix coefficient of n at position (z, j) is unrestricted
if both 7 < j and Ui_l < O'j_l, and zero otherwise. So we get in this way a quite explicit description of Up,
in fact several such descriptions, since we obtain a permutation ¢ for each choice of the tableau ). The
difficulty however is, that it is hard to describe in concrete terms the effect of the conjugation action

of B, and in particular to decide for permutations o, 7 whether U(s) C U(7)B. Nevertheless there is
an easy sufficient condition for this, namely U(¢) C U(7), which can be established combinatorially: it
means that whenever ¢ < j and 7 precedes j in the sequence o, then i also precedes j in the sequence T;
if this condition is satisfied, we write ¢ <p 7. For tableaux P, T we write P <p T if there exist tableaux
Q, Q' of the appropriate shapes for which R(P, Q) <gr R(T, Q"); this is a sufficient condition for P < T.
As a consequence of the freedom of choosing @ and @’ the relation ‘<z’ is not transitive in general, so
denote by ‘<p’ its transitive closure.

In the definition of P <z T we may clearly limit ourselves to the most useful choices for @
and @', namely those for which R(P,Q) is a minimal element with respect to ‘<p’ within the sub-
set R(P,*) = def {R(P,Q)| Q€ Typ}of Sy, and R(T, Q') a maximal element of R(T,*). Typically these
sets R(P,*) contain only a few minimal elements (often just one), and likewise for maximal elements;
when computing many tests P <g T, it is useful to precompute these sets of extremes for each tableau
involved. Furthermore it is not difficult to show that ¢ <p 7 is equivalent to each of wow < Wwrw,
TW <k ow, and WT <X Wo, which implies by [3.1] that P <g T is equivalent to each of S(P) < S(T),
Tt SR Pt and S(Tt) SR S(Pt)

Being a sufficient condition for P < T, the condition P <pg T forms a useful complement to P <g T
(which is a necessary condition), and together they can settle the question whether or not P < T in the
vast majority of the cases. It should be noted however that deciding whether or not P <p T holds is
computationally harder to establish than P <g T, first of all because one needs to find the extremal
permutations with respect to ‘<p’ in each set R(P,*) involved, and also because the transitive closure
of ‘<g’ has to be computed. In practice the following procedure proved useful: first test whether P <g T,
then if it holds, test whether P < T, and if this fails, compute the transitive closure of ‘<pg’ within
the subset {Q € T | P <5 Q@ <g T} in order decide whether or not P <g 7T'. Only if this last test fails
does one have to resort to actually computing and analysing the power-rank conditions to decide whether
P < T. The following data give an indication of the effectivity of this method. Up to n = 4 the relations
‘<g’ and ‘<Xp’ coincide with each other, and therefore with ‘<’. For n = 5 their are already two pairs of
tableaux for which the transitive closure of ‘<p’ has to be invoked (one such pair is P = == T = ),
but ‘<g’ still coincides with ‘<z’ and hence with ‘<’. For n = 6 there are 40 pairs for w 1ch computing

P <g T and P <p T does not suffice, and after transitive closure of ‘<Xp’ there remain 6 undecided
pairs; among these are the two pairs mentioned above for which P <g T despite P £ T, and for the
other four one has P < T despite P £r 1. For n = 7 there are 442 pairs (from a total of 53824)
for which the transitive closure of ‘<pg’ needs to be determined, and after that has been done 90 pairs

19



References

remain undecided. Only 48 distinct tableaux are involved in these pairs, and it was possible to determine
a complete set of equations for Ur in each case, from which the remaining values of P < @ could be
found: in 46 of the 90 cases it did in fact hold (in accordance with ‘<g’) while in the other 44 cases it
did not (in accordance with ‘<p’).

Apart from these statistics, the calculations showed a pattern that is worth mentioning: we were
unable to find any pairs of tableaux P,Q with P < @Q but Q! ¢ P!, which would have contradicted
the partial order on tableaux being anti-symmetric with respect to transposition. The mentioned anti-
symmetry does obviously hold for ‘<g’ and ‘<p’, but where these two partial orders differ, the nature
of the calculation of ‘<’ gives no reason to expect that anti-symmetry would hold for it as well; for
instance the property of being power-rank complete has no such symmetry whatsoever. The fact that the
anti-symmetry does in fact appear to hold for ‘<’ might indicate that there is a combinatorial description
of ‘<’ yet to be found, more subtle than the combination of ‘<g’ and ‘<p’, but posessing the same
anti-symmetry.
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