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1. INTRODUCTION

In this part (see CWI Report BS-9019 for Part I) the methods proposed in [8] by the present authors
are further developed. The range of statistical problems covered by these methods is extended. In
particular, the following questions are studied: regularity of M-estimators, one-step approximation
technique, stability of estimators with respect to model variations. Problems of parameter estimation
in presence of a finite-dimensional nuisance parameters are treated in detail, in particular, the asymp-
totic properties of so called pseudo M-estimators, the method of skew projection, the characterization
of the limiting distributions of regular estimators. Besides, a scheme is proposed in which structural
parameter estimators are constructed by the partial likelihood technique and the asymptotic variances
are compared for estimators obtained by projection technique, partial likelihood technique and MLE
(under known nuisance parameters).

Unlike [8] this paper deals with the multidimensional parameter case. To make the discription com-
plete, detailed proofs of results are given - brief schemes of these proofs are presented in [8]. Several
parts of this work were published earlier in short communications of N.L. Lazrieva and T.A. Toron-
jadze. Partly it was completed while the first author was visiting the Centre for Mathematics and
Computer Science, and was discussed at the local seminar on martingale methods in statistics, organ-
ized by K. Dzhaparidze. The authors are thankful to all participants of these useful discussions.

2. SPECIFICATION OF THE MODEL
2.1. Let
-~ &=(Q,5F,Py,P), 0cOCR?, d=1,
be a general statistical experiment with a filtration, where (R,%,F,P) is a probability space with filtra-
tion F= (%), =0, satisfying usual conditions, Py a probability measure depending ?n the parameter
oC

#e®, 8 an open subset of the Euclidean space R?. It is assumed for all #c© that Py~ P.

Let P(t)= P|%, Pg(t)= P4|% be the restrictions of the measures P and Py to the s-algebra %, and
let ps= (pg(t)), =0 be the likelihood ratio process (we consider a right-continuous modification with
left-hand limits):
dPy(1)
dP(t)

pe(t)=
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For simplicity we assume pg(0)=1.
It is well known (see, e.g. [2]) that there exists a local P-martingale M= (M(#));>o such that the
process py can be expressed as Dolean’s exponential

po= 6(M):= exp(My—4(M5))TI(1 +AMg)e ™,
where M° is a continuous part, (M) the square characteristic and AM the jump of a martingale M.

loc
2.2. Let Q be some other probability measure on (2,% F) such that Q< P and dQ/dP = &M), where
M is a P-martingale. If m is some local P-martingale, then by the general Girsanov theorem [2] the
process L (L-transformation)

L(m,M):=m—(m‘,M)— 3
is a local Q-martingale.

AmAM
1+AM

2.3. An experiment & is called regular if the following conditions are satisfied:
(1) For each =0 P—a.s. the function §—M,(t, w) is continuously differentiable and the derivative

My:= (-é-gTM,, .. ,B%M,)’ (here and elsewhere below “prime” is the transposition sign) for all

0€0 is a local P-martingale.
(2) For all t=0 P —a.s:

9.9 B 10 Y exists:
a) aaa ]np"—( 301 lnp0’ AR ] aod lnpo) eXISts’ a a
b) go'lnpo= L(Mg,Mg), where L(Mgy,Mq)= (L(ﬁ Mgy, My), . . . ,L(‘é'br;M 9-Mp))';
©) L(Mg,Mg)e M(Pg) (MX(Py) is the class of square integrable Pg-martingales).

Denote by 1 @)= (},(0)),>0 the Fisher information process i.e.
~ - a
H0)= (L(H0,Me1>: = (LMo, Mo), Lisg-Mo.Mo)Y)j=T
i j

(3) the Fisher information matrix

10):= E4 1(6)

is finite and positively defined.
The likelihood equation takes here the form

L(M o,M 0)'—' 0.
Of course, this is the special member of the following family of equations
L(mg,M)=0

with certain d-dimentional P-martingales m, depending on #<®©. These are estimational equations in
the sense that their solutions are viewed as estimators of the unknown parameter 6, the so called M-
estimators [8]. To preserve the classical terminology we shall say that the martingale m, defines the
M-estimator and P4-martingale L(mg,M,) is the influence martingale.

2.4. It will be convenient to consider a scheme of series i.e. a sequence of the regular statistical experi-
ments (models)

E= (6u)n>l = (ﬂn,gan = (g?h<t<T’ Pg,Pn)’ 069 CRd, n= la
T>0 is a number.



A sequence E= (§,),n=>1 will be called ergodic if the following conditions are satisfied:

(i) there exists a numerical sequence ¢,,n=>1 (a sequence of numbers) such that ¢,>0, lim ¢,=0,
n—->0

and for each §c©
i I(0) — 1(6),
n—>00

&0 -Ei 10,
where I(f) is finite positiye definite matrix for all €6, sign “—3-9” denotes the convergence in
probability Pj (ie. &, —ﬂ—)s means that Pj {|§, —§|>p}—0, n—>o0, Vp=>0); or
() denote c,(6)= (IHO)~*.

lim lle, @)1= 0,
26 I0)-Li>1,

where ||*|| is the usual matrix norm and I the unit matrix.
For convenience we will use below both of these definitions.

2.5. ExampiE 1. I1D.
Let p and g, 6O CR!, be probability measures, defined on some measurable space (X,B); let pg~p
and dpg/dp (x)= f(x,0). Put T=1.

Corresponding scheme of expenments has the form E=(§,),5; =@, ", F" =(F7), 0<t<1 Pa,P"),
n=>1, where @'=X", =" F=@" ([]-denotes an integer part), P§= - X pg,
P"=pX - - - Xp. It can be easily seen that for 0= (xy, . . . ,X,)EX”

pit.= 17 0= 6085,

where
0= 2 (50D

Now, if for p- almost all x the function f (x,0) is differentiable w.r.t. § and
L [ @0dux= [f0apr=0,

then

I fxi0) -5
f(xg,a) s<t 1+AM"

hPa(t W)= 2 = L,(My, Mj),
and if 0<I(f):= j(ﬂ—i")-)z  (x,0)du(x)<co, then the regularity conditions are satisfied. Note that

I"(0) - nl(6). By the law of large numbers it follows that the ergodicity conditions are satisfied with

ca=n (or c;(0)=nI(6)
The MLE equation has the form

ﬂxua)
,,0)

Now, if mj(t)= 1§1 &(x;,0) where f &(x,0)u(dx)= 0 V0, then mj will be a P"-martingale and the equa-
tion for M-estimator takes the form

Ly}, M3)= 2‘. }’((2’?)

Ly(M, M3)= 2 =0.
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ExAMPLE 2. Diffusion.
For every n=>1 let §, be a diffusion type process with the differential

d6 ()= an(t,6,0) dt + dw,(1), 0<I<T, £,(0)=0, @n

where 0e® CR! is an unknown parameter.
This case is covered by a general scheme of experiments E= (§,),> in the following manner:

Q= C[O,T], F= %T=0{X2XJ,S<T}.
F'={%] = o(x:x,, s<t), 0<t<T},
Pj is a distribution of the process £, (with given §) and P" the Wiener measure. For all n=>1 assume

P"{fora,z,(s,x,0)ds<oo}= P} {Lraﬁ(s,x,ﬂdv<w}=l

Under these conditions there exists the unique weak solution to the equation (2.1), Pj ~P and the
local density has the form

PRO)= exp( [ ax(5,x.8)d%, — % [ G3(s,%,0)ds)=6,(M3) P" —ass.
where M3 ()= [ ay(s,x,0)dx, is a local P"-martingale.

Further e that for all n=>1, xeCyo ) and ¢€[0,T] the function —a,(t,x,0) is continuously
differentiable and

a _ 9 n_

%9 f, ants,x0)dx, = [ g “(x.0dx;, P"—as.

3t t 9 n

% J, ans,x,0)ds = 2 A (59 9n(5:%,0)) an(s,x,0)ds, P" —a.s.

—gm (T
0<IH06):= E} /0 ( v a,(5,x,0))*ds < 0.
Then the regularity conditions are satisfied and
) t, »
25 P8O)= [ an(s,x,0)dx, — ay(s,x,6)ds)

(here a,(s,x,0):= —8% a,(s,x,0)), so the MLE equation is

. T,
Lr(Mp, M3)= [ " an(s,,0)clx; — a(s,x,0)ds) =,
and the natural generalization of this is the equation for M-estimator
T
Lr(m, M§)= [ bu(s,x,6)dx, —ay(s,x,0)ds)= 0

where ¢,,(, -0) is some nonanticipative functional with Eof 2(s,x,0)ds<oco and

mg ()= f On(s,x,0)dx,.
The Fisher information process is I, (6)= j (an(s,x,0))*ds and the ergodicity conditions turn into:
(i) there exists a sequence ¢,,n=>1, ¢,>0, c,,->0 such that

ETHO-IO), & [, Ginls, OV ds-LE>1),

or

D EO=THO) " = (E [ Gl 0)Pds)

and



Gl . 0ds (B3 [, s, 007y Eh,

Now we give an example of diffusion, when the ergodicity condition is automatically fulfilled.
The ergodic diffusion process. Let §=(4), t=0, be the diffusion process with

d¢,= a(§,0)dt + dw;, §=0.

The equation for MLE is
t,
Jy 4Gre-0)dx; — a(x,,6)ds)=0, 22)
while the equation for M-estimator is
t
f, #xs:0)dx; — a(x,,0)ds)= 0. 2.3)

We assume that 5, is constructed from (2.2) or (2.3), and study its asymptotic properties.
This problem is equivalent to studying asymptotic properties of the estimator 8, as n—oo in the
following scheme of series:

dg' = a,(&},0)dt + dw}, §=0, 0<t<T
n

[ n &0 0K —an(@0,0)=0 (O [ in(€7, KT — 0, 7.0))=0),
where

o (x.0)= VnH(Vnx0).
Suppose that the process £ (for each 6) is ergodic, i.e. G(f)<oco where

+o0 *
o= | €2 0 .
Then, by well known theorem of Maruyama and Tanaka it follows that :
1) ¢ has the limit distribution pg(x)= G ~'(f) j ok 0% ) and
2) for any measurable pg-integrable function np(x) the following relations hold

Poflim < ['Wes= [ W@} =1,
1 t _ +o
lim —-Ey [ y(&)ds = [__ Wxome(d). @4

In the scheme of series
T . nT | A nT
B6)= E} [ Gus OV ds=E} [ @G0 ds,Ir6)= [ (@(x,,6) ds
and by virtue of (2.4) the ergodicity conditions are satisfied with

= ——\}7 or 6= THO) .

ExAMPLE 3. Point processes.

Let 6= (Q,%F,Pg,P), 0cOCR' where Q is a space of piecewise continuous functions X= (X,),>o
such that X;=0, X,—X,_ =0 or 1, F=o{X: X,,5=0}, F= {%};50, F=0{X:X,,s<t}, Py is a
measure on ($,%) such that the coordinate process X =(X;);» is a point process with a compensator



A00)= [ ' a(s,0)de,
and Pis a measure such that X is a point process with compensator a=(a,);>0. Assume that « is con-
tinuous and j (1—\/a—(s,_)2da,<oo In this casePa~ P and

pe(1)= &(Mo)
where My(1)= j; ‘ (a(s,0)—1)d(X; —a,). Assuming that a(s,6) is differentiable, we can write

My(t)= [, a(s,8)d(X,—,)
and therefore

e = [ LD (4, ~ a(sO)de)= L (o, My),
Hence the MLE equation has the form

[ 259 4, - ags,0yda)=0

a(s,0)
while the equation for M-estimator is

/(,M(dx — a(s, B)da,)=0.

a(s,0)
The Fisher information I,(f) in this case has the form

. 2
LO=E, [ [_si;zﬂ] a(s, O)da,.

Denote ¢; 2(8)= I,(6). Ergodicity of the model means
20 |, [J—”l a(s,0da, 251

(or: there exists a function ¢, such that ¢,>0, ¢,—0, t—>o0

t—->00 _2-/ [—m] a(s,a)da,——"-él'g, hmcl-zlt(a) I(a))

3. LOCAL ASYMPTOTIC NORMALITY (LAN).
3.1. Let a sequence of statistical experiments be given:

E= (a1 = @, F . F" = (Foci<1, P4, P n>1,0€O CRY.
Define the process of normalized likelihood ratio

dpsﬂ:,u

dP;

where ue U, (0)= {u:0+c,uc®)CR".
We will need some additional conditions of regularity:
(i) forall z,0e®
La(M:,M")eMz(P"), L(M,,M}) and I"(z,0): = EjL*(M;,M}) are z-continuous;
@) o LOM3,M3)= L(M;,M3);

(iii) for all z,0€0

Zg(u):=



L(, (31,225, MEY= [ L((My1se,2), MB)ds

THEOREM 3.1. Let the following conditions hold:
(a) The sequence of experiments E=(&,), is such that the conditions (i), (iii) (or (i), (ii)) are satisfied.
®) c |X |ZI IX1>ce) *v’}—Pn‘éO Jor Ve>0, where V" is the compensator of the jump measure of the process
L(M:,MS) w.r.t. the measure Pj;
. T n VY —
© rh-‘ié..li%y:uym—13|<r°'2'“E’ L, ~ M, MFPII=0
(or for every p>0 . .
() lim fim P§{ sup  chIKL(M, M, M3))mi=p)=0)

r—-0 n—w

Then the family of measures {P§,0€0},5, possesses the LAN property at each point 0€8, i.e.
1
In Z§ (1) = (A§,u) —5 I (O)u,u) + Y5(u), (3.0)

where
(A3 P3) = NO,IO), AF:= c,L(M5,M3), ¥3-FA30
and O(§|P) is the distribution of a random variable & w.r.t. a measure P. (Here and below “=” denotes
the weak convergence of distributions, and (a,b)=a’b the scalar product of two vectors a,beR*)
PrROOF. Applying the formula for the product of two Dolean exponentials we easily arrive at
Z§(w)= &(L (MG +cu — M5, Mp)):= &L"),
which implies
InZj(u)= L" — %(L™) + D (n(1+AL")— AL"™).
Denoting
T3 )= L(Mb+ oo — M3, M3) — ca(L(Mp, M}),1),
Vo ()= J§ (u)— (L") + X (n(1+AL")— ¥(1(O)u,u),

we will show that the representation (3.1) holds with Aj and () introduced above.
The functional central limit theorem for square integrable martingales [3] with conditions (a) and
(b) ensure the convergence

(A3|P§)=>N(0,1(6)), n—co.
We shall prove below that for all neR?
¢3(u)—£"1-)0, n—oo.
It will be proved first that for any ueR?
T3(u)-L850, n—co. (32)
Using the generalized Newton-Leibnitz formula we obtain
Mgicu—Mi= j(;l(M:’i-sc,wcnu)d’-
Consequently, in virtue of (i) and (iii) we have
T30 = LM o= MG — (M3, 00, ME)= [ (LM s Mo, M3, cot)ds.
This gives



Ez (Jg (u))z < Ll (Ez (L(j{:""c-" _M:’Ms )Tcu u,c"u)df
<6k 1y T3P, MG L, — Mo, M)l 0.

It remains to prove that

v Pl
Note first that

SuplA, L (M.~ M3, M3)| 130 (33)
Indeed, from the definition of J3(u) we have

|8 LM+ 5c,u — M3, M3)| < |A TG ()] + |A(L(Mp, M3),c,u)|
so that the relation (3.3) follows from the relation

EjsuplATi @) < Ejl3 )Ir —0

and Lindeberg’s condition.
Further, by (3.3) and Taylor’s formula we have

— 3 <L™>+ (1 +AL")~AL")= —L (L) —L ALy + SoaLy),
Therefore, by virtue of (3.2) again we obtain (here and elsewhere below Pj — lim £, means {E,,—P"’—)}}

Pj~ lim yj(0)= P§ ~ lim (—5 (L")~ SAL"Y +5U@uu))

= P} — lim ((I@u,u)— [L"]}.
We have .
[L"]= [L(M§+qu — M3, M§)]|= [L(MG ., — M§ — (M, c,u), M3)+ L((Mp, cus), M3)]
= [L(M§+ e — M — (Mg, o), M3 |+ 2L(M31.o.. — MG — (M, ), M3), L((Mp,cots), M3)]

+ [L((Mg,cats), M3)}:

The first two terms of the last relation tend to zero in probability P§ by virtue of conditions (a) and
(b) and the relation (3.2).The conditions (a)and(b) imply that the third term converges to
dOwu,u).0

Note that Theorem 3.1 has been asserted without proving in [9] and [10].

REMARK 3.1. Theorem 3.1 is proved similarly under conditions (i), (ii) and (c') by using Lenglart’s
inequality.

4. ASYMPTOTIC PROPERTIES OF SOLUTIONS TO AN ESTIMATIONAL EQUATION

4.1. For every 6c@CR? let a sequence of probability measures {Qf},>1, (Qj ~P") and d-
dimensional random vectors L,(d), n>1, be given on a measurable space (2",%%) as well as a
sequence of positive numbers (¢,),>1-

LeMMA 4.1. Let the following conditions hold:
a) limc,=0.

n—o



b) For each n=1 the mapping 0~~L,(0) is continuously 6-differentiable Qj a.s.
c) For each 0€® there exists a function Ay(6,y), 0,y €8, such that

03 — lim ¢} L()= Ag(6),
and the equation (w.r.t. y)

Ag(8,y)=0
has the unique solution §" = b(0).
d) Q" hm EL,@)= —vo(0) where vg(0) is a positive definite matrix for every 6€®©.
e) Q" { sup I\ L, ()~ Ly(8")II>p} =0 for each p>0.
r—>0 n—->w
Then for each 069 there exists a sequence of random vectors 0= (0,,),,>1 taking on values in ©, such
that

L lim O {LG)=0)=1

1L Q" hm 0 = b(0);

L. if 0= (0,,),, >1 is another sequence with properties 1 and 11, then
lim QF {6,=6,}=1;
n—00

IV. if the sequence of distributions (c, L,(6")|@3), n=1, converges to a certain distribution ®, then
Bro@)cs ' (B — 6)]25)=.

PROOF 1°. We shall show first that the decomposition

ALy(y)= ALa(0") — YoO)y —0") + (3,6 Xy —0") @.1)
takes place with c,,(y " )eFt and
lim Lim g ( > Pi<r llea(y,6)I>p} =0 4.2
for each p>0.
By Taylor’s formula we have

AL,(y)= RLy(0") + L0 Xy —6")+ A[Ly(0) — L))y — ")
where 6(6)= 6" +a(@" Xy —6"), a(6*)€[0,1] and the point 8 is chosen so that 6.
Further, in view of condition d) we have
AL, ()= ELy(6") — 100Xy —6") + &, (8(6),6" )y —6")
where
,0")= Ly ()~ Ln(0)] + [EL,(6") +70(0)), y €.

Evidently, conditions d) and e) ensure the property (4.2).
2°. We shall show now that there exists a family {Qy(n,r): n=>1, r>0, §€6} such that

1) Qo(n,r) %7,
2) lim Lim QF {y(n,r)}=

n-»ao

and for any r>0, n>1 and wey(n,r) the equation
L(»)=0
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has the unique solution 8,(6,«) in the ball [y —¢*[|<r.

The decomposition (4.1) gives

(@LE +u)= L) 0)—u'1g O+ wen® + b @3
For any €® and n>1 define

Q)= (oet 1ELEON<EY, mp o on<ia?,,

where Yo(0)= i i l{u "yg(0)u}>0, since YQ(H) is positive definite.

Obviously, ﬂ.(n,r)e@’;- Hence if weQy(n,r), then in view of u’yy(B)u=7o(@)llx|?, from (4.3) we get
(for llull=r)

(RLa(0" +u),u)<0.
Since the mapping u~sc2L, (" +u) is continuous w.r.t. u, then for [lul|<r the equation
L, +u)=0

has at least one solution u,(6*) with ||u,(6")l|<r (this is a wellknown fact in the classical analysis).
It can be easily seen that if wefy(n,r) and llull<r, then the matrix c2L, (6" +u) is negative definite.
On the other hand, for wefy(n,r) and |lull<r

L +50)~ L, +1,8),0)= [ AL + @)+ alu—i, @) a)dec
Consequently,

L0 +u60)= [, L6 +1")+ alu— 1 (8), )~ (6" )de
and

Lnll 0, u=ta OD= [} a0 W L0 + 1,0 )+ s~ (6D Xt — 4 (6 )<,

provided us~u,(6"). Hence L,(6" +u,w)7#0 for |lull<r and uu,(§"). By the construction of the set
Q4(n,r) and conditions c), d) and €) of the lemma it is easily seen that

hm lim QF {Q(n,r)}=1.

n-»eo

3°. We shall construct the sequence 8= (8,),n>1 with properties I, II and IIL Define
@m=U ﬂo(u,—->

k>0
Evidently, ﬂ’ €%r. Let weﬂ’ Then from the previous statement 1t follows that there exists a number

k(w)>0 such that the equation L,(y)=0 has the unique solution 0"(w,0) in the ball |y —6" II<7C(—)

with the mapping wmb”(w,ﬂ) defined on (2%,2 NF%), which is Q N F4-measurable (see, e.g. [4])
Set

v b"(w,ﬂ), weng;

w(w)= 00’ ‘0332,

where 6, is a certain point in ©.
It is easily seen that by construction 0,,(w,0) possesses properties I, IT and III.
4°. Finally, we shall prove assertion IV. By the decomposition (4.1) we have



1

(CaLn(Br) — caLn(@") —Yo@)ci ' B — O < lley(@ns6°). Y5 ' @) lvp B ' 0, — )| (4.9)
and
lim Qj {llex@,,6")I>p}= 0 for ¥p=0,

which follows directly from the relation
(18, ~8ll<ry N {_ sup _lles(.8)1<p} C {llen(@y,6")lI<p}
yily—¢€li<r

The assertion of problem 2 in [6], section 1.4, can be generalized as follows: let £,,-?>£ ( that is §,
converges weakly to £) and let the inequality

"fn _7'11"<£n""'n I+ a,

P P 9
holds with $—0 and a, —0, then 3, »¢. Applying now this assertion with a,=0 to the case in ques-
tion we get

Tim E{yg(O)c; ' (B, — )05 )= lim £{c, L,(6")]03).
This completes the proof of the lemma. [J

Note that the proof of the lemma is essentially based on Cramer-Dugue’s method generalized by A.
Le Breton in [4].

REMARK 4.1. It follows from the proof of Lemma 4.1 that all assertions remain true if the condition

b) and c) are changed by the following condition b’):

(i) for each n>1 the random vector L,(f) is §-continuous Q3- ass.,

(i) the sequence L,(f),n=>1 is asymptotically differentiable in the following sence: there exists the
sequence of random matrices L,(f),n=>1 such that

1La ()~ La(8*) — L 8* Xy —6%)l
lim fim P( sup_ch =61
for all p>0.

>p}=0

REMARK 4.2. It is easy to see that for b=(b,,),,>1 we have asymptotic expression (8 CR!).
L, (6*)

0 =6"—= +r,(0* 0,, X
o) rx(6*,6,)
where
PPN Y CON (W1 CH)

ETRTS NPT
Under the conditions of Lemma 4.1 (see also Remark 4.1) we get using assertions I and II that
ra(0", 0,250,

This expression allows us (see remark 5.3 below) to conclude that M-estimator 0= (0,,),,>1 is a
CLAN-estimator (CLAN: consistent linear asymptotically normal).

4.2. Global asymptotic behaviour of the solution of the equation L,(y, w)=0.
We assume 8=(a,b)’, and for convenience we set a= —co and b= + 0.
For every 6€6 consider the set

Se= {b= (8,)n>1 : for every n=>1 0,c% and Q) —"]i_?;cz,,l.,,(a,,)= 0}.
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THEOREM 4.1. Let the following condition (sup c) holds:
(sup c,) the function Ay(8,y) is y-continuous for every 0,
(sup ¢3) for any K,0<K<oo, p>0

lim 03 {"ys'}lgxllcilm(y) —Ap(@.y)I>p}=0.

Then
1. The following alternative holds: if 0€ S, then either
Q; — lim 8,=6"=5(6) @45)
n—->0
or
Im 0 {116,11> K}>0 4.6)
Jor any K, 0<K<oco.

1. If, in addition , the condition
) lm lag@y)I=c@®>0
holds and for all p>0
lim 0 {gggllc%lm(y) —Ap(6.)I>p}=0,
then (4.5) is valid.

PrOOF. Let 8= (6,),1 €Sy and suppose that (4.6) is not satisfied. Then there is a number Ko>0
such that

lim Q3 {116,11>Ko}=0.
Therefore
Qs{uch,(i{,)—Ag(o,?in)u>p}<gs‘{ub, 1> Ko} + 03 (Il L, (B,)— Ag(6,8,)1>p, 16, <Ko )
< Q3 {l6,I>Ko} + 0} {lwf;ltg;ollcﬁl«.(y)—Ag(o,y)ll>p}—>0.
On the other hand
03— lim L,@,)=0
and, hence,
03— lim Ay@,8,)=0. @7
Now assume that (4.5) fails too. Then one can choose €0 such that
Im 0 {116, — b(@)l|>€}>0.
By condition (sup c;) for any €>0
Am:y:llr‘b(a)ilfgc.llyl|<xolm"(0’y I>0.
This gives
Iim 0 {11A(6,8,)I1>A(e)) = img; {I180(0,8,)11>A(e), I8, <Ko}
> fim 03 (16, — b@®)lI>¢, 18,11<Ko)>0,
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which contradicts (4.7).
In order to prove the second assertion of the theorem it suffices to note that under condition (¢ ™)

inf 9.)I1>0
y:||y—b(‘)||>¢"AQ( 2

and to repeat the previous arguments. [

For every n=>1 consider the set 4,= {w: the equation L,(y,»)=0 has at least one (measurable)
solution} '

Evidently, for any /€6 we have Q8 c 4, where the set 29 is defined in 3° (see the proof of Lemma
4.1). Since under the conditions of Lemma 4.1 @ {25}—>1, for any 6c® we have -

lim Q§{4,}=1.
n—>00
Define the set S,,; of sequences 8= (8,),>1 by introducing first the set
S,= {5,, : 6,, %, L,,(b,,)= 0, wed,; 5,, = oo,weZ"}
for each n=>1, and then setting
Su= {0= B)n>1 :Vn=>1,0,€S,}
Evidently, if B, €% and 5,1,, i),z,eS,,, then 5: = 79,1,13_ + 5,2,13_ €S,.
COROLLARY 4.1. If in addition to the conditions of Lemma 4.1 condition (sup c) is satisfied for any €89,
then there exists an estimator 8" = (0;,),>1 €Sso Such that
Q4 — lim 6,=b(0) 4.3)
n—»o
Jor any 0€8.

If, besides, for any 0€© condition (c*) is satisfied, then any estimator o= (é,,),,>, €S,y has property
(4.8).

PROOF. It is sufficient to construct an estimator 8* = (85),>; for which (4.6) fails for each 8.
For any n=>1 and >0 there is 6, €S, such that

1621l < essinf 16,1l +¢ P"—a.s.

6,€S,
By virtue of Lemma 4.1, for any §€® there exists an estimator 8(8)= {8,(6)}»>1 such that
Tim 0 {L,@,@)=0)=1 “9)
and
Q4 — lim 8,(6)= b(@). (4.10)

For every ¢, 0<c<co, we have
fim Q3(I6;1>c) < m Q5 (I6;11>c, L,(#@)70) + Fm Q5 (16,11>¢, L,8:@)="0)
< Iim Q3(L,(,@)+0} + fim 0} (16, @)l +e>c) |

The first term on the right-hand side of this inequality converges to zero by virtue of (4.9), and the
second one by virtue of (4.10) for sufficiently large c. O
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4.3. Stable asymptotic solutions
Consider a set of sequences of experiments
{E= (5u)u>l = (W,g',F",Qg, P"),,>1,069 CRd},
each of which is regular and ergodic. Suppose that for any sequence of experiments (&,5;) condition
c) of Lemma 4.1 is satisfied with b(6)= 6.

DErFINITION 4.1. The sequence o= (5,,),,>IGS,,,, is called stable if for ahy family of measures
{Q§,n>1, 08} defining the sequence of experiments (&,),>; we have

. %
6,-0,

for all fe8.
THEOREM 4.2. Let for any (&,),>1 the conditions of Lemma 4.1 be satisfied as well as (supc) of theorem

4.1. Then there exists stable sequence 0= (0,),>1 €Ssy. If, in addition, condition (c*) is satisfied, then
any sequence 8= (0,)n>1 €S, is stable.

PROOF. Obviously, the desired sequence §* = (6,),5, is constructed in the course of proving corollary
41. O

Theorem 4.2 has a formal character. An example of a nontrivial situation in which the conditions of
the theorem are satisfied, will be given below.

5. ASYMPTOTIC PROPERTIES OF M-ESTIMATORS.
5.1. Suppose that the martingale m§ (defining the M-estimator) is regularly related to the experiment
E in the following sence: components of the vector mj = (m}!, ... ,m}?) satisfy condition (1) of

section 2.3 with L(m§,M3), L(y, M}): =L(-£;m3'f,m Mij=Ta€M?(P}) and the matrix
]

_3 I (v 9 j _
L(m§,M5):= L(m§,M5): = (= ~L(m§' ,Mj)); ;=12
a0 a6,

which takes the form
L(mj,M3)= L(rg,M3) — [L(m3,M3),L(Mp,M3)],

where [M,N] = [M*,N/},i,j =1,d is the matrix of mutual square variations and, finally the elements of
the matrix L(mg,Mjp) are G-continuous for all 1€[0,T] P"-a.s.

The asymptotic behaviour of the M-estimator defined by the martingale mj described by the fol-
lowing theorem.
THEOREM 5.1. Let for every 0O the following conditions be satisfied:

@  Pj— lim (L, M3)r=T),

where T(6)= (T;;(6)),i,j=1,d, is a positive definite symmetric matrix;
®  Pj— lim HL(mj,MG), L(Mp,M)]r=v(6),

where y(0)= (v;;(9)),i,j =1,d isa positive definite matrix;

©  Pj— lim &} Ly(ig, M5)=0;

T
@ P§— lim [ jl"xll>(llxllzv3(dv,dx)=0, for Vee(0,1],

n—-oo



15

where v} is the P§-compensator of the jump measure of the process c,L(mg,Mg);
(e lim lim P"{ suP Ch IIL(my,M") L(mo,M" M=p}=0,

r-0 n-o
for any p>0 (Al is a norm of a matrix A). Then for any 6€6 there exists an M-estimator 0= (b,,),,>1
with properties
(I) llm Pg{L("lg N )= 0}= 1;

n—

) Pj— lim 8,=6;

~ no>0

(II1) if 0= (8,)n>1 is another estimator with properties (I) and (I1), then
lim P}{8,=0,}=1;

n—>o0

@) e @, —0)|P;)}=>NO,Y ' OTEG ' 6)).

PrOOF. To prove the theorem apply first Lemma 4.1 with L(mj, M3 ) instead of L,(f) and P§ instead
of Qf. (Observe that condition c) of Lemma 4.1 is satisfied with ()= @ by virtue of condition (a) of
the theorem, and condition d) of Lemma 4.1 by virtue of conditions (b) and (c)). Apply then the func-
tional central limit theorem for martingales [3] which, under conditions (a) and (d) of the theorem,
gives

B{caL(mp§,M3)|P§ }=>N(0,T'(@)). o

ReMARK 5.1. Conditions (c), (d) and (¢) may be if necessary, expressed in terms of characteristics of
envolved martingales (that are mj, M3, M, and m,)

REMARK 5.2. It is not hard to see that in multidimensional case we also have a “drift theorem” (that
is Theorem 3.1 [8]). Assume now that the conditions of_ the “global theorem” (that is Theorem 4.1)
are satisfied for two sequences of measures {P§} and {P,} (hypothetical and alternative). Then the
estimator {6} constructed in Corollary 4.1 (i.e. the estimator with the minimal modulus) will get a

REMARK 5.3. Rewrite the relation obtained in Remark 4.2 in the following form (here 6* =6)

. L(m},M3) .
0,= : +R,(6,0,),
<L(mj§,M3),L(MyM3)>
where
L(mj,M3) L(m},M3)

0,0,)=1.(0,8,)—— 4
ReO 00 =00 = s, ¢y <L o, M0, LG M)~

From the conditions (b), (c) and (d) of Theorem 5.1 and formula
L(m},M3)=L(mg,M3)~(L(m}3,M3),L (Mo, Mp)]

it is easy to see that
R, (8.8, Fi%.

Hence M-estimator §=(0,),>; is a CLAN-estimator.

Similarily to Theorem 6.2 [8], we can establish conditions sufficient for the “global” Theorem 4.1, pro-

vided the involved martingale has an integral representation. However, we will not linger on this
problem here.
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6. STABILITY OF ESTIMATORS. PARTIAL LIKELTHOOD ESTIMATORS
6.1. In this section we shall deal with stability problems for M-estimator defined by equation

L(m§,M3)=0.

In particular, we rise the following question: how to choose the martingales {m§, §6},5, in order to
guarantee the stability of the corresponding estimator? Lemma 4.1 (in particular the condition c)) sug-
gests that the main requirement for the stability is the following: for any family of measures
{Q4,0€8},,5,, defining (in subsection 4.3) a set of sequences of experiments E = (§,),>1, the follow-
ing relations hold

Qi — lim iL(m},M§)=0, Qf— lim c}L(mj,Mf)= const

This suggests naturally that the processes L(mj§,Mj3) and L(rh:,m) behave as martingales w.r.t.
any such measure Q§.

We present now a special scheme (which can be viewed as a natural generalization of the partial
likelihood scheme) of such situation.

6.2. Partial Likelihood Estimators

Let (0,9, F= (%) <:<7> P) be a probability space with a filtration satisfying the usual conditions.
Besides, let two families {Ny,0€8)} and H (of martingales from H'(F,P)) be given on this space,”
such that the following conditions are satisfied:

(Z;) for all #e® and XeH we have Ny L H and Ny(0)= X(0)= 0;

(I;) forany XeH, AX>—1.

(I3) for any 6O and XeH Dolean’s exponential has the property

Er(X) Er(No)= Er(M7),

where M{ = X + Ny + [X,N,] defines the density of some measure Qf w.r.t. a measure P, ie.
E6{MH)=1.
() for any 0O, E6(Ng)=1, AMy>—1, N4(0)= 0.

Further, let £'(H) be the stable subspace® of martingales from H'(F,P) generated by H. Denote
by H the largest subset from £'(H) satisfying together with {Ny,0€0} conditions (I,)—(I4). Evi-
dently £!(Ho)= £ (H).

Consider the set X of various mappings X:8—H, and the set of experiments E= {EX,XeX}
where

EX=Q,%F,0*= {Qb",oee},l’),
with a family of measures Q%= {Qf,08) such that for all 8, Of ~P, O |% = P|% and

d
9 _ sexase 6D

For convenience let us fix some basic experiment EX. Al experiments from E are considered as
alternatives. Therefore the family of martingales H, will be called the family defining alternatives.

Following Cox [11], we shall call the second multiplier in the right-hand side of (6.1) the partial
likelihood and the estimator §= (f,),0<¢<T defined by the relation

A

0,= arg;nax &(Ny)

1) H\(F,P)= {Mewe (FP):E sup_|M;|<co0).

2) Two local martingales M and N are called orthogonal (M L N) if their product MN is a local martingale and M(O)N(0)= 0.
£!(H) is a minimal sub. of H'(F,P) containing (together) with every MeH all stochastic integrals h-H with heL'(M),
where L!(M)= (h: E(J§h2dIM D* <o0).
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as the solution of the equation

L(Ng,Ng)=0,

the partial likelihood estimator (PLE).%,
Defining the PLE as the root of the above equation, we certainly assume that for all ¢ there exist

the derivatives %N,: =N, and -a%ln §(Ng) P —a.s., besides N € My.(F,P) and the equality

= 10 6(9)= Lo, No)

holds.

Before studying the asymptotic properties of PLE we give two lemmas which play a key role in our
further arguments.

Let martingales N and m from M,.(F,P) be such that N= N, for some §,€0 and m L H.

LEMMA 6.1. The process L(m,N) is a PX-local martingale w.r.t. any measure PX (PX~ P) with the den-
sity of the form

dpX X ‘
P HX)B(N)=&M"), 62

where XeHy, MX= X+N+[X,N]
PrOOF. In view of the generalized Girsanov theorem it is sufficient to prove that for any XeH, a P-
martingale m* can be found such that

L(m,N)= L(m*,M%).

Since mLH and, hence, [m,X]):=(m°,X°)+SAmAX is a P-local martingale, we also have
mX=m + [m,X)e M,.(F,P)
We will show that

L(m*,M*)= L(m,N)
By definition of L-transformation we have

X X
Lon*,M¥)=m* — m¥te,p¥ey — SIS
Besides, since [m, X}, [X,N e ML.(F,P) we have
mX,c = m°
M%e=X°+ N°

AmX = Am(1—AX), AMX= AX(1+AN)+ AN.
Therefore
Lm*,M*)=m+(m°,X°) + SAmAX — (m°,X°+N°)
_Am(A+AXYAX(A+AN+HAN) o e o AmAN _

It follows from Lemma 6.1 that each local martingale m,m _L H, defines a process L (m,N), which is a
local martingale w.r.t. all measures PX.XeH, simultaneously, with densities of form (6.2).

3) At the end of this section examples will be given which will make it clear that the introduced PLE are generalazions to the
case of a general statistical experiment of the PLE introduced by Cox for models in discrete time.
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The following lemma proves that the processes of the form L(m,N) exhaust the class of all F-
adapted processes with regular trajectories, which are local martingales w.r.t. all measures P*,XeH,
(with property (6.2)) simultaneously.

LemMA 6.2. Let I= (I,,0<t<T) be an F-adapted process with regular trajectories and the for all meas-
ures P*,XeH,, with property (6.2), |€ My,.(F,PX). Then a local P-martingale m can be found such that
mlH 0 and

I=L(m,N).

PROOF. Since for any XeH, we have /€ M,.(F,P¥) and
apP_
dPX

where MX= X + N + [X,N], then by the generalized Girsanov theorem for any X H,, we have
L(,L(— M*, MX))e M},(F,P).

It can be easily computed that
L@, L(—M*,MX))=1 + [, M*].
Hence for any XeH, we have the process m* = I+ [[,M*] is a local P-martingale. Since 0(=XeH,
we have ! +[I,N]: = m e M,.(F,P) It can be easily seen that
I= L(m,N).
Indeed, since (m¢,N€) = (I°,N¢) and Am = Al(1+AN) we have

I+[LN] — (I, Ny — 2%: L

It remains to prove that m L Hy. We have m* —meM,,.(F,P) for all XeH,. But
mX—m= (I°,X°) + JAI(1+AN)AX = [m,X],

since (I°,X¢) = (m°,X°), Am= Al(1+AN).
Hence for any Xe€H, we have [m,X]eM,,(F,P). O

= §(L(—M*, M)

REMARK. It can be easily seen that for any XeH|, the process / can be represented as
I= L(m*,M%).

To study the asymptotic properties of PLE, we consider the usual scheme of series.

For ev n=1 define all objects introduced above, in particular, families {Nj,0€0},
H".Hy CH'(F",P") satisfying conditions I,)—I,) and the set X" of all possible mappings
X" :8-Hj.

Consider the set X of sequences X = (X"),>, with X" X", and associate with every XX a family
of measures

0*={QF", 08},
which is such that for every n=>1 and all 8 we have Q*"~P" and

dogF"
dPll

= §(X3)6(N3)= §(MF")
with
M§" = X3 + N§ +[X3,N31
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Consider corresponding experiment
EX= Enz1= @9, F", (Q§",0€6), P")51.

According to the above convention we shall ﬁx some basic experiment E® in the whole family of
experiments E = (EX,X €X). The corresponding 0F*" will be denoted by P§ and M;*" by Mj.

We will search for the family of martingales {m§,0€8},5, which guarantee the stability (in the
sense of Definition 4.1) of M-estimators defined by the equation

L(m§,M5)=0 (6.3)

w.r.t. all alternatives {Qx XeX} forming a regular ergodic experiment.

As it has been noted in the introduction to the present section, it is essential for the stability that
the processes L(mj,M}) and L(rg,M3) are martingales w.r.t. all measures 0" (9 and n are fixed)
simultaneously. As we have seen already, Lemmas 6.1 and 6.2 imply that only processes of the form
L(m,Ng) with some P-martingale m L Hj are martingales w.r.t. all measures Qp"",X€X It is evident
therefore that at least those estimators are stable which are constructed by the equation

L(m,N3)=0 (6.4)

with some family of P"-martingales {mg,0€0},n=>1, such that for all #c® and n=>1 we have
mg _LH"

ReMARK. Equation (6.4) can be written as
L(mg*, M5*)=0

for any X eX, where mg X = 7n': + [;'n':,X"]

Hence the estimators defined by (6.4) are usual M-estimators. Therefore to study the asymptotic
properties of these estimators with respect to all alternatives {Q*,XeX}, Theorem 5.1 can be
applied.

On tke other hand, one can immediately use Lemma 4.1 with L,(f)= L(m,, %) and thus av01d the
smoothness requirement for the martingales X3. In what follows we shall write m§ instead of mp.

For simplicity we consider one-dimensional case (d=1). The assertions of Theorem 6.1 below are
true in multidimensional case (d>>2) as well.

Suppose that families {N3,0€8},5, and {m§,0€8},;, are such that the following conditions are
satisfied:

(1) for every n=>1 and 0<t¢<T the mappings f~>mg(t,w) are continuously differentiable P"-a.s.
w.r.t. 0, besides N",m, €M, (F",P") and m,,N:,mg 1L H" for all 0€6;

Q) oL, N3Y= L, V) — (L0, NE), L3, ND))
3 L(N:,N"), L(m},N3), L(g,N3)e M*(F",Q5"), for all XeXD,

THEOREM 6.1. Let {c,},n=1 be a sequence with c,>0, ¢c,—0, such that
1) For all Q¥ = {Q#",0€8},5, and any 08 the following conditions are satisfied:
@ QF" = lim c(L(mj,N§))r=Tx(6), Tx(6)>0;

(®) QF" — lim ci[L(m,N3),L(No,Np)lr = vx(6), 1x(9)>0;
(©) QF" - lim f Ly(rig,N3)=0;
@ o “'llill;. ]; ’ 4m>tu2v3""(ds,du)= 0 for all ec(0,1), where v§*" is a QF" compansator of the jump

1) Lemma 6.1 implies that under condition (1) we have L(M,N] ), L(m},N3), L(1g,N3)e My, (F",0F"), XeX.
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measure of the process c,Lgmz,Nz); ]
(¢) lim lim QF" {y:VSER<’c§|L(m;,N;)—L(m3,N2)|>p}= 0 for any p>0.

r—0 n—->w
Then, for any 0 and QX there exists an M-estimator 0= (6,),> (depending generally speaking on both
8 and Q)" such that
L lim OF" (Ly(my,,NG)=0)=1,
I QF"—lim 6,=0,
~ B—>0

1L if f= (5,,),,>1 is another estimator with properties I and 11, then
lim 0F"{8,=0,)=1,
n—>0

IV. &' (6—0)|28" }=>NO,vx*(O)'x(6).

2) If 8=(a,b) ( without loss of generality we can assume that a= —oo0,b= +o0) and for any
0*,XeX condition (sup c) of Theorem 4.1 holds instead of condition (c) as well as c) of Lemma 4.1
with b(6)= 0, then there exists a stable estimator 8= (0,),> with respect to a class of alternatives
(Q*,XeX). That is

Q" — tim 6,=6
n—>0
for any 8€0 and Q% , XeX.

PROOF. Assertion 1) is proved similarly to Theorem 5.1, while assertion 2) is an immediate corollary
of Theorem 4.1. Evidently, the estimator (4,),>; constructed in Corollary 4.1 can be taken as a stable
estimator. Note that this estimator is independent of 6 and the choice of measures Q*. [

REMARK. In section 4 we have introduced sets Sy and S,, associated with the equation L,(f)= 0.
Observe that the set S,y was constructed only by means of this equation, while the set Sy was

depending on the sequence {Qf },>1-
In the course of studying the asymptotic behaviour of the solutions to equations L(mj,Ng)= 0 with

various {m},0€0},5, and Q¥= {0F",0€0},.,, XeX, we denote these sets by SF** and ST,
respectively. Evidently, if conditions of 1) in Theorem 6.1 are satisfied for all 0¥, then

sm C S
for all #® and X €X. Furthermore, any estimator 5(X,0)eS,";,. Therefore if the set S5 has the pro-
perty that for any 8, 0S5,

lim 0f" (8,=6,}=1

n—e

for all #® and Q*, then any estimator feST is stable. _

The PLE 4 is an important particular case when mj = Ns. Along with the stability w.r.t. a class of
alternatives (Q*,X eX), it also has a certain optimality property: PLE 8 has the minimal asymptotic
variance among all estimators # defined by the equation (6.4).

Indeed, since [M,N]<[M*[N}%, for all M,N e M,.(F,P), we have

PO opn i [L (3, N3), LYo N): _
o6 n—e [L(m3,N§)lr{(Ng,N)lr

2) This estimator is sometimes denoted by &, X).
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6.3. Examples.
First we shall describe a rather general scheme which will include, as one can see below, a number of

cases studied by various authors (e.g. [11], [12], [13], [17])
For every n=>1 let (2,9",F",P") be a probability space with filtration satisfying the usual condi-
tions, E some Lusin space,

@"=Q"XR, XE, ¥ = TOB(R ; )®(E),

" an integer-valued random measure on (R + XE, B(R +)®B(E)) and »" its P"-compensator. Denote

"= {(w1):* {w,{t}, E}F0}.
Following [1] introduce the classes

K@= {W: Wel(F",P"), W, €A(P™)},

GA(")= (W:WeS(F",P"), (W VY e@(P")},q=1,2

HIQ")= (V:VeK(), M (VI of|9F",P)=0, (V@Y eaPm)},
where

O0(F", P")= O(F",P")® (E), }(F",P") = HF",P")QHE),

O(F",P"), and 9(F",P") are optional and predictable c-algebras respectively, &P") a class of
processes with an integrable (w.r.t. the measure P") variation, and &P") is a set of equivalence classes
of optional and integrable random measures. That is E" {1%|p|o, } <oo,

ﬁ,:l= '/E W(w’t:x)"'”({t}’dx)— ﬁ}::

W, = [, W@, Lxp({1),d%),
and Mi‘ is Dolean’s measure associated with i, i.e.

ME (dw,dt,dx)= P"(dw) " (w,dt,dx).
Let now v
K%)= (W(" —v"): WeGI("),
K®2(u"y= (V*u" : VeHI(")},
K%3(")=MeH:AM=0o0n D"}, ¢=1,2.

Suppose, that the family {N3,0€8},n>1 is such that:
1) for any #€® and n>1 we have N eK"2(u") i.e. Nj= V", with some function V3 eH' ("),
2) E"&1(Nj)=1 for all n>1 and 0€8,

3 [Vi{t)dn)>—1.
For every n=1 introduce the set H"
W' —v"): a) WeG'("),
b) (W—W")V} eHbL (") for all €8,
¢) W,>—1forall t€[0,T],
d) E"&r(MP™)= 1Y, for all 98,

H’l

where MP" = Wa( =) + (W—W' + 1)Vt
Obviously, for every n=>1 the families {N3,0€©} and H" satisfy conditions (I1)—(14)

1) See [1] for sufficient conditions
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Indeed, condition b) implies orthogonality of N3 and H" for all #e®, since for any
W —v")eH" and Nj the mutual square variation [W*(i" —»"), V3*p"]= (W — W)V is a P"-
martingale; condition c) means that for any X= Wx(u"—+")e H" we have AX>— 1. Condition d)
coinsides with condition (73). Conditions 2) and 3) in the definition of the class {Ng,0€0},;, are
equivalent to the condition (I4).

The class of alternatives is defined as usual by the set of all measures {Q*,XeX},
Q*={Q¥",0€8},>, with Qf" ~P". Consider ,

o™
ol &(X5) &N3)
with X3 = Wj»(u" —v")e H" and construct stable estimators by the equation
L(mj§,Ng)=0

where for all n>1 and 0O we have mj L H". For example, one can take mj = V3" " where Vg""
are such that Vp"sp'eK“(") and for any W with Wxu'—v/")eH" we have
VEr (W—W')eHo ().

REMARK 6.1. Since any totally discontinuous martingale M € H'! admits the representation
M=M'+M*+M>

with M’ e K" (") (see [3]), one can in general use for constructing stable estimators orthogonal w.r.t.
H" martingales mj, the decomposition of which involves the three components. But it may turn out
that the families {N3,0€0},n>1 and H" are such that £!(H")= K" ("). In this case the decomposi-
tion of orthogonal to H"” martingales may obviously involve only two components of the classes
K%y and K3 (u") (since M LH"= M LK (™).

If N} eK>2(u") for all 9@, then for H” one can take a subset of K>2(i") (or K>2 UK>?) satisfy-
ing only conditions (I;),(I3), since in this case condition (,) is automatically satisfied (recall that
classes K>',i=1,3 are mutually orthogonal.)

We consider the examples of the above scheme.

EXAMPLE 1. iid observations.
Let (¥1,21), - - - » (JnsZn)s-.. be independent identically distributed (i.i.d) observations with distribu-
tion Py, equivalent to some probability measure P(dy,dz)= P (dy)XPy(dz) with density

fo(,z,6)= do(»,6) ¥(z,6]y)>0. Then the likelihood ratio process p,(f)= ‘IIl Sfo(i»zi,0) has a multipli-
i=
cative decomposition

pa(0)= _Ifllw(y.-,ﬂ)\lz(zbﬂly,-) 6.5)

According to Cox [11] the second cofactor of this product is called partial likelihood based on z,
and the estimator 8,, defined by the relation

5,, = argmax ']Z]i Wzis0l))
or by the equation
Sdomoean=o,
is called the partial likelihood estimator (PLE).

Let P} and P" be direct products of measures Py and P on (2°,9")= ((R2)", B((R?)")), respec-
tively, %} = o(x;,y;; i<[nt]), 0<t<1. Let Pj(t) and P"(¢) be the restrictions of measures P§ and P" to
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;. Then

. 10
pi(6)= dP" (1)

where the processes Mg, X3, Nj defined by relations

[nt]
Mi®= 3 (o),

= &(Mp)= &6(X3,0), &(NG), (6.6)

[me]
Xio®)= 3 @o0iiH)= 1D,

1
] -
Ni(®)= gl (Wzi;0)—1)

are P"-martingales, and the martingales X3¢ and Nj are orthogonal for all #€© and n=>1.
Comparing decompositions (6.5) and (6.6) we see that the partial likelihood introduced by Cox
coincides with &N3). Thus our concept of partial likelihood applicable to general statistical experi-
ments is reduced in the present special case to that of Cox.
Further, let p" be the jump measure of the process 3] ¥; ie.

[ne]

I"’n«o’tle): .%IU‘EB},B E&(Rl) ("‘({nLB): I(y,eﬂ})’
and #* its P"-compensator, i.e. »'((0,:]XB)= [nt] P (B) (+"({n},B)= P(B)). The martingales X5,
and Nj can be written as

X0 = Wis(" —7")

Ny = Vi,
where Wj(w,1,y)= ¢o(t;0) and V3 (w,5,y)= Wz 30y)—1 (note that w=(y;,z);>1)- It can be easily
shown that W} eG' ("), besides

EWzi; 0ly)|%-1Uo(Y;))=0

and E(V3 )% <co. _

As in the general case we could consider all alternative measures Q%= {Q#F",0€8},5, correspond-
ing to arbitrary X= {X"},51, X,:8—H" with usual H", however we restrict ourselves by natural
alternatives in the sense that in the set H” we single out only martingales of the form

[me])
X'0= 3 @)=

ie. X"=¢x(u"—»") with all possible one-dimensional densities ¢ ( f ¢P(dy)=1, $=>0). (We shall
denote this set by H7Y).
This means that alternative experiments are specified as ii.d. observations (y;,z;);> with densities
f,2;6)= #(y;6) Wz;0y) and all possible ¢(y;6) such that [¢(y;6) P1(dy)= 1, (y;6)>0.
Stable estimators w.r.t. such alternatives are naturally constructed by the equation
L(m§,N5)=0

with mj L H7. In particular, we can take for mj
[n2]
my ()= 3 g0i,zi30)
i=1

i.e. mj = Vo*i", where Vy(w,1,y)= g(y,2[n;0) With g(y,z;0) such that for all 68 the following con-
ditions hold:
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1) [g(r2:0)Py(dz)=0 for all yeR',0€8,
2) [ [8()lg(,2;0] P(dy,dz)<oo, for any positive densities ¢ (including $=1),
3 [§0:2:6) Pad)=0for WyeR' =)

4 [[60)20,2:0)|P(dy,dz)<oo for all $>>0, [¢Py(dy)= 1.

Clearly, if y(z;8]y) is differentiable in 6 and ¢ and y satisfies conditions 1)-4), then under the condi-
tions of Theorem 6.1 the PLE will be stable w.r.t. the considered class of alternatives.

In the examples below we give only the decomposition of the local density, specify measures u" and
", a class of natural alternatives and in some cases a class of martingales, defining the stable estima-
tors.

EXAMPLE 2. Censored i.i.d. observations.

Let X,X5,...,X,, -+ be iid. observations with a density (w.r.t. some measure p)
f(x,8),0e8CR!, f(x,6)>0. Suppose the density f (x,6) is known only on the set {x:|x|<c} and 0 is
to be estimated.

We can transform observations {X;};5; into a two-dimensional sequence {y;,z;};>;, where
7i= Xl yxjmc}> %= Xil jx)<c)- Denote by Py* the distribution of a couple (y1,z;) on (R%,B(R?)),
computed w.r.t. the distribution of X; (ie. w.r.t. the P§ with dPj/dp= f(x,6)), and by P¥* the distri-
bution of the couple (y,,2,), computed w.r.t. p. For every #€® we obviously have Py ~P>*. Let

Py’ .
dPy" - ﬂ}’,z ’0)'

Evidently, the density f{(y,z;6) can be factorized in the following manner
J0,2;0)= do(,:6) Uz;0lp),

where

e OO I |>c
03D [ fausbpan)/ [ pau), i |y|<c,

u|<c lu|>c

) | wav)
flz;0—2=e— it y=0, |z|<c,

[ fu:yuidu)

Jul<ec
Wz:0y)=

1, otherwise.

{

Here

e B
o (y;0)= ol

with the marginals P} and P” of the distributions P} and P”**, respectively. Recall that

wdy), |>e,
So(dy) | wdu), |y|<c,

|u|<c

P/ (dy)=
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where 8y(dy) is Diraque’s measure.

Hence the initial problem is reduced to that of Example 1 as it can be formulated as the problem
of estimating the parameter § by means of two-dimensional observations (y;,z;);>1 with factorized
densities f(y,z;0)=¢(y:00Az;0]y). As above, we have

Pl (0)= &(X5,0) &)
with X ¢ = wx(" —»") and Nj =Vp*i" where i" is the jump measure of the process
(] [ne]
‘21 Y= 2Kl e,
= i=

and # its compensator. The natural class of alternative experiments is described as the class of
experiments corresponding to two-dimensional iid. observations (y;,z;);»; with a fixed conditional
density y(z;;0]y) and an arbitrary marginal density ¢(y;0) (w.r.t. the measure P”), which in the initial
problem corresponds to the alternatives under which the density value on the set {X: |X|=c} is fixed
and on the set {X:|X|>c} is arbitrary.

EXAMPLE 3. Discrete time (Cox, Wong).
Let {X;=(1,21) - --» Xa=(ns2s)}a>1 be a sequence of two-dimensional observations with a
local density £,(X1, - - - »Xn;0), 06 CR? w.r.t. some probability measure P on (R?)®, B(RH™)
Suppose that the full likelihood" is factorized in the following manner

frr e TnB)= f[l«po(yi;om)f[l«z,-;o|c.~>,

where ¢o(yi;0)d) and Y(z;0)c;)) are conditional densities with d;=(y1,21, - - - »)Yi-1-%i—1) and

G= Q1215 -+« Yi-1:Z-1)1)
According to Cox the conditional density ¢y(y;0|d;) might be unknown or depend, apart from 6, on
some nuisance parameter £. In this case Cox suggests to use the partial likelihood

'ri[l«z,-;mco

instead of the full likelihood.
The local density can be written as

p3(1)= &(M§)= &(X5,) &:(N3),
where the processes Mj, X9, N§, defined by the relations

[ne]

MiO= 3 @u0ii0lNGile)~ D,
[nr]

Xo®)= 3(w0s01d)= 1

(1]
Ni(t)= X Wz;6]c)—1)
i=l
are (P",F")-martingales. Here F" = (%}),0<t<1, & = %, % = o(¥;,z;<n) and P" is the restriction
of the measure P to the ¢-algebra ,. For all n=>1 and 6€© we have
Xoe L NG
The partial likelihood has the form

1) Following Cox [11] we call f(X, . . . , X,;0) the full likelihood.
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[n]
Hx Wzi30lc))= E,(Np).
i=

Let " be the jump measure of the process 3! , ie. y*((0,1]XB)= S Iy,cp), and #" its P"-
compensator i.e. *((0,1]XB)= 2?:]11’{71 €B|%_,). Then we have
X0 = Wi —v")
N =V,

where W?(%L(E%(y;”ldm) and V5(0,,))= Wzjm);0ldim),y)—1 (note that w= ((;,2)>1)-
Hence Xj, €K '(4") and Nj eK"“*(u"). The class H" of martingales determining the alternatives can
be defined in the usual manner, but as above we shall restrict ourselves by natural alternatives and
consider only the subclass H} of H" which consists of martingales of the form

X'(1)= Wi —v")
with W"(w,t,y)= ¢(y|djn)), where ¢(y|d;) is some conditional density i.e.

J $0d) P(dyld)=1.

This means that alternatives are specified as measures Q on ((R%)®,%(R2)®) for which the densi-
ties of conditional distributions of z; w.r.t. ¢; are fixed and coincide with ¥(z;;0|c;) and conditional
densities of y; w.r.t. d; are allowed to be arbitrary. Stable M-estimators will be defined by martingales
of the form

my = V3"l

with V3" (&,6,y)= g2V 1:2ns - - - »Ypu}—1> Z{nr)-1,YZ ) Where functions g;(y;,z,, . . . ,»;,2;) are chosen
so that m§ L H]. The necessary conditions on g; include

fgi(}'l,ll, <« s Yix2) P(dz/¢;)= 0 (for all ¢;)

| | /4| g(ci,2)| Pdy/dy) Pdz /)< o,
for all ¢;, d;,¢ etc.

EXAMPLE 4. Multivariate Point process.

Let (2,%F,P) be a probability space with filtration satisfying the usual condition.

A multivariate point process on (R + XE), B(R ;) XB(E)) (E is some Luzin space) is assumed to
be a sequence (7,,X,),>1, where T, are Markov moments such that T,>0, T, <7, on [T, <oo],
while X, are random elements with the following property: X,€E on (T,<o), X,=8 on [T,= o]
where 8 is a “marginal point”, § € E, and {X,e€C}e%,VCeH(E), n=1.

The multivariate point process is complitely specified by the integer-valued random measure

]l((d;df,dt)= 2 1(1;<°°) €T.,X,) (dt,dx),
n>1

where ¢, x) (dt,dx) is Diraque’s measure. It is well known [1,2] that the random measure p has the
compensator » w.r.t. (P,F) (a version can be chosen such that »{w,{t},E}<1).

Let G=(Gy)>0 be the natural flow of o-algebras corresponding to the measure p.

Let F= {%VG,},>0 and assume that F satisfies usual conditions. ,

Consider the stochastic basis (2,F,F,P). In this case the compensator » of the random measure B
w.r.t. (P,F) can be explicitly defined, and it will uniquely define the measure P in the sense that if P
is some other measure and ¥ is the (P, F)-compensator of p, then

;0 = Po, P=;=>;=P
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loc
For every 66 CR? on (R,F,F) let a measure Py ~ P be defined, and let »y be the Py-compensator
of the measure p.
We will assume below that

) (T,<0)=Q Vn=l,
2) {t}E)=v ({t},E)=0.
Assumption 1) implies that for any >0 we have

p0)= pw; 011X E)= [ [ ww,ds,dx)<oo,
OE

which in turn implies that for all ® and >0
ve(t)= vp(0;(0,2 ] X E)<o0, Vo,
mW(t)= m(w;(0,t]X E)<co.

Note that p(w;dt) is a counting process
Mw; (0,1 ]XE)= ?I{I;sx},

and »y(7) and »(¢) are its compensators w.r.t. Py and P respectively.
From the local equivalence of the measures Py and P it follows that vy ~» with

vy(ds,dx)
(ds,dx)
(the argument  is omitted), and

= A(s,x,60)>0

dPg
= ——= §(Mj), .
pe(?) 2P &(My) 6.7
where M, is a P-local martingale (V0e8))

My@)= [ [A(s,x,0)— 1)(p—v)ds,dx)
0 E

by assumption 2).

In this example we give only the multiplicative decomposition of the exponential (or, which is the
same, the decomposition of the martingale M) and specify the measure p ( with respect to which the
classes K(u), i=1,2,3, are introduced).

We begin with the decomposition of the martingale My. The measures vp(ds,dx) and »(ds,dx) can
be written in the factorized form

vo(ds,dx)= vg(ds) 4,(dx,0),
W(ds,dx)= v(ds) g,(dx),
where, roughly speaking, ¢,(dx) is a conditional distribution of the jump under the condition that the

jump take place at the moment s.
Denote
ve(dt)
A= ,
o() W)

1) We assume below that all martingales considered belong to H'(F,P).
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- q:(dx,a)
gt(x90) - q,(dX)

Then

M‘!x’a)= As(t)gt(x:a)
This results in the following decomposition of the martingale M,:

M) = [ [Msx,0)— 1Xp—vXds,dx) = [ [A§(s)— 1)(u—r)ds, dx)
0E 0E

+ [ [ @e8)— 1)u—rXds,dx) + [ [ AJ(s)— 1)(g, (x,0)— 1)(u—»)(ds,dx)
0E 0FE

The first term can be rewritten in the following way

Xoo(1)= j JA3@)— 1)p—r)ds,dx) = f (A§(s)— 1)(p(ds) — (ds)).
As for the second t.:m, with the equality o
[ @(x,0)—Dg(dx)= 0, Vt>0 6.8)
in mind, it :an be written as
No(t)= oj I{(gc(x,ﬂ)—l)n(df,dx)

The martingale Ny can be written also as a stochastic integral w.r.t. the measure p(w;df)

No(®)= [(g:(B,0)— 1) p(w,ds),
0
where B,(w)€E is such that
We;{s},dx)= g (u)(dx).
Indeed,

AN ()= (g(B:,0)— DIp
and, besides,

Al f (&:(B:,0)— 1) w(w,ds)) = (8:(B)— 1w, {t}, E)= (g:(B;)— DIp.
0

Therefore, the martingales Ny and X4 are orthogonal since

[Xo,0:Nol= [ [A3(s)— 1)g(x,6)— Dia(ds,dx) = [ [(AJ(s)— 1)(g,(x,0) — 1)(u—v)ds,dx)
0E 0FE

is a P-martingale. (The last equality is true by virtue of (6.8)).
Hence, we obtain the decomposition
My= Xo9 t+ Ng +[Xo,N¢]
with orthogonal Ny and X4, and the martingales can be written as

Xoo= [ [A3(s)— 1)(u—r)ds,dx),
0FE
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t

No= [ [(g:(x,6)— Du(ds, dx),

0E
or, alternatively,

t
Xoo= [A§(s)— 1)(w,ds)—¥(w,ds)),
0

No= [(g:(B:,0)— Diw,ds).
0

It is evident now how to introduce the classes K(u) (with two different (dt,dx) and p(dr)) Ho,H
etc.
Observe that the classes of natural alternatives are obtained by choosing all possible Ay(s) with
fixed g(x,0) (certainly Ag(s) defines the martingale

Xo()= [(\(6)— 1)u—rXds,dx)
0

such that E(M¥)=1, M¥ = Xy + Ng + [Xy,Ny)).

K. Dzhaparidze [13] considered the special case of E={1,2,..,r} and N,={Ny,...,N7} with
Ni= w(w:(0,¢],i) which is called the r-variate counting process. It has the P-compensator
A,={A},..., 47} with 4i=w(0,t],i), and the Ps-compensator A,(6)=(4;(0),...,47(6)} with
A;(a)= v9((0,2],i). In this case

ve(dt,E) _ dA,0)

0 —
A.t(a)’_ V(dt,E) - dzt
where
A= 340, 1= 340
and
__ dA(6) dd,
g“(’,a)_ dA,(ﬂ) dA;

The martingale N, in this case has the form
No= [ @G0~ D pdsd) = 3 [ (@60~ Da;

EXAMPLE 5. Two-dimensional diffusion.
Let ¢=(,0) be a two-dimentional diffusion type process satisfying the following stochastic
differential equations
dn,= ¢°(t,n,¢,0)dt + dW}, (6.9
dg,=Yan.E0)dt +dW}, {=m0=0
where W' and W? are independent Wiener processes and coefficients ¢° and ¢ are such that there
exists the unique weak solution of equation (6.9) and P¥ ~ P*'*. Then
Pyt

W=8(Mo)
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where

M,(t)= L‘¢°(SJ,Z,0)dy, + j; ‘tP(s,y,z,ﬂ)dz,.

Note that measures Pj° and P are defined on (Ch,1, B(Ch,r)) with filtration
%= (1,2 15,255 <t} and y = (J;)520,2 = (25)s=0 are coordinate processes.

Denote Xo,o()= [ #°(s,9,2 0)ds, and Ny())= [ Ws,y,z 0)dz,. The processes Xo and N, are
P** martingales andl (Xo¢,Ns)=0. Hence '
Py
A &Mg)= &X0,0) &(Ny).

In this case the classes of natural alternatives are given by means of variation of ¢ with given ¢ and
the stable estimators with respect to this class are constructed by means of Py-martingales of the fol-
lowing form

my(t)= f; g(s,y,2,0)dz,.

ExaMPpLE 6. Censored Diffusion.
Let £ be a diffusion process with the differential

d&0= 11>y do(t, &,0)dt + I\ <cy 2,6, 0)dt +dw, (6.10)
where functionals ¢(#,x,6) and ¥(1,x,0) are such that for every #€® CR? the unigcue weak solution of

this equation exists. Let P} be the distribution of £ with given 0. Suppose that P§~P*.
Then

dPO
P &(Mg)= &(Xo,0) H(Ny)
where
My= Xo4 + Ny,
t
XO,‘(’)= /0 I(|x,|>c}¢0(ssxna)dxn

t
No(D= L I(lx,|<c} s, x;, 0)dx,
and (Xo,g, No) =0.
Evidently the class of martingales defining alternatives consists of martingales of the following form
t
X@®)= j(; I{[x,|>c} (s, x,,0)dx;,
and the stable estimates are obtained by means of m, martingales of the form

mo(®)= [ I{{x]<c) g, 8)dx,

7. REGULARITY OF M-ESTIMATOR
Recall, that the estimator 8= (0,),>, is called regular at @, if for some nondegenerate distribution
F(x), xeR? we have the convergence

ﬂc;l(bn “0)““'1’34.,_._“) =F

for any ueR? such that 0+c,ue®,
We will show that the estimator 8= (6,),> constructed in Theorem 5.1 is regular.
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THEOREM 7.1. Let the conditions of Theorems 3.1 and 5.1 hold. Then for any 0€® there exists M-
estimator 0= (8,),> regular at 0 with F= N(0,y~ ' (O)T(@)Xy ™' (6))).

PrROOF. Denote L,(6)= L(mg,M3). By Taylor’s formula we have
L0+ cyu)= Ly(0) +ca(Ln(O)u) + c,(lln(?)—fln(a»u
where 8= 8+a(B)c,u, a(6)<[0,1] and L, ()= (=>- 20, A O =1
Consequently
2Ly (0+ cat)=Cc2 Ly (6) —¥(O)u +€, (6,0 a.n
where

0.0= {A(La()—~ Ln (@) +(GELa(O)~¥(B)}, y .
By conditions (b) and (¢) of Theorem 5.1 we have

P_xgnh_ﬂ Pi{  sup _ lle(0)I>p}=0, for ¥p>0 12
By (7.1) .
cnLa(8)= ca Ly (@) —¥(O)c; ' (6, — )+ €,@,.0)c; ' B, — ) (1.3)

where (0,,),,,1 is the estimator constructed in Theorem 5.1 and 0 = 0+a(0 —0) with a€[0,1].
Now, by virtue of property II of (0,,),,>1 (see assertion of Theorem 5.1) and (7.2) we have

lim P} {lle,(@,,6)>p}=0, for Vp>0. 1.4)
Indeed
{l6,—6ll<r}n {y:“,sl'ff,<,"‘"(y’0)" <p} C{&x(@,.0)l<p)}.
Therefore .
Tim P (lle,(8,,6)l1>p} < im P} {598l 0-DlI>p} 0 as r0.
Now by (7.3) we have
ln L)~ caLn(®) +¥O)ci B —B)l| <llex @0y ' O)ll-Iv@)ci 6, )
which easily leads to an inequality

laLn(Bn)— ca Ln(@) — (LG, M3, (L(Mp, M5),4)) — (@i (B — ) — c2( L (m3, M3), (L(M}p, M5 ), u)) |

<llex (85,0 O)-Iv(O)c;* B —6)— (L (m3, M3 ), (L(Mp, MF),u)) |

+ llex@ns )Y ' ORI L(mG, M), (L(Mp, M3 ),u))l s
Introduce the notations: X" = ¢, L,(f),

" =6, Ly(8,) — (X" + (L (i}, M), (L(Mp,m),u))),
V"= vO)c; (0, —6)— & <L(mj, M3), (L(Mp, M3),u)>
Z"= |ley(@,,0)y~ ' @), B =C2IL(mG, M), (L(Mp,M3),u)).
Rewrite (7.5) in this terms. We have ‘

IY" =V li< 2" V7| + 278" @6

and by (7.4)

-~
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P§— lim z"=0. 1.7

n—>0

By virtue of conditions (b) of Theorem 5.1, the sequence (8"),5 is bounded w.r.t. P}-probability and,
hence,

Pj— lim z"f"=0. (7.8)

n—>o0

Consider now the sequence of measures (Pj..,). By Theorem 1.6, [3], Sec V, and LAN property (see
Theorem 3.1) it follows that for any u

(Pz-t-c.u) 4 (P3 )
Consequently, (7.7) and (7.8) imply
Pjyey — lim 2"=0, (7.9

and
Poscu — nli—?; 2" =0. (7.10)

Now, as in the proof of Lemma 4.1, section 4°, we have from (7.6), in view of (7.9) and (7.10), that
Tim £(v(O)c; " (B —6)—cA(L(m}, M5), (LMo, MB),0))|Phsc)

= 1im ©(cyLy(@)— caLa(6)-+ cECLm, MF), (L5 MD),0))| Pl

Note that
P}y — Hmc3(L(m§, M7), (L(Mp,M3),4))= Y(O)u,
and
Pjreu — lim 6,L,@,)=0.
Therefore

Tim E(v(OXey ' G —6)~w)|Phc.}
= lim & —cuLy(6)+ 7 < LOmf, M3), (L(M5,M3),u))|Phc.u).
It remains to show that
lim £{c, L, (6)—ci(L(m§, M3), (L(Mp, M3),u))|P3..c..} = N(O, T(®))
We will apply Theorem 3.9, section X in [3], to the case in which
B'= Pliu, P'=Ph, X,= G Lo(0), M=T*O)— =W,

W is an d-dimensional Wiener process and D= {T}.
The process X, is a square integrable martingale w.r.t. the measure P with the triplet
% c= s
Br= —Ixi>1)x*¥x, Co=ca{m§), v,= 1';:)

so that by our assumptions the conditions (8 —D) and (ys — D) in [3], section X.3.7, are satisfied.
Therefore

X, — Bnm I‘”(ﬂ) w7/ ﬁa

and hence by Theorem X.3.9, assertion a) in [3],
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x,— B, LUTUPE-..)y T% @)W/ VT

where f?,, is the first characteristic of the semimartingale X, w.r.t. the measure Pg, .
We must show now that

Pjrey — Hm By (T)— cH(L(mf, M5), (LMo, M5),))7|= 0.
't];y the transformation formula for triplets under the absolutely continuous change of a measure
Wi
AP} s e = S(L(M3 1 c.u— M3, M3))dP}
we obtain that
B,= B, — (M",L(Mj..s— M3, M3)Y"" (7.12)
where
M" = X, —xI ey>1y* (i, —i).
Consequently
B,(T)— (L(m3,M3), (L(Mp, M} ),u))1
= By(T)+ o Xa— M ,(L(Mp,M3),u)) 1+ co (M (L(My,M5)—~ L(M5,M3),0))1

where y = 0+ ac,u, ac[0,1].
By Lindeberg’s condition and contiguity (Pg-+,.)<I|(P§) we have

Pjscu— lim B(T)=0.
We show now that

Pj4cu—lim ¢, (X, —M" (L(Mp,M3),u))7= 0. (1.13)
Indeed, (7.12) implies

(X —M" )= xx'I 121y *Vemy “ET( [xI (ﬂxll>l}"§?. ({s),dx)X [*I (lell>l}"f({s}’dx))'-

Again by Lindeberg’s condition and contiguity (P§+.,.)<I(P§) we have
Pjioy— lim (X, —M")r=0. (7.14)
Consequently, the Kunita-Watanabe inequality gives (7.13).
It remains to show that
Piro— lim c,(M",(L(M), M§) —L(Mo, M5),4))7= 0.
We have
M (LM, MF)— LMo, M§),u))rf <2 — X, + M (LM, — M, M5),u)) 1"
+ 263 X (LM}, — Mo, M§),0)) 7"
By condition (c) of Theorem 3.1 and the contiguity (P§+.,.)<I(P§) we have
Pl lim (LM, —Mp, M5),u))r=0.

On the other hand, by (7.14) and condition (a) of Theorem 5.1, we arrive at the desired result by
using the Kunita-Watanabe inequality. Hence
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Tim E(v(OXer G —~)~u)|Pi+eu}= NO,TO)).

Consequently
Tim fe; B —0)—u|Pireu) = NOY ' OTOO ' O =

8. ONE-STEP APPROXIMATION TECHNIQUE :
We will consider regular ergodic experiments and M-estimators defined by martingales (73 ),
For convenience introduce the notations:

B@)= L(;%M&M:), i=T,d, K(O)= L(my' M3),i=1,4,

10)= d0n= (&6, 1)),
H'(6)= Hj0)= (h @)K} )),
A"O)= )= (K O.EO)), ij=14d

The ergodicity conditions imposed on the matrices I "(0), H "(0) and 2"(0) may be written as fol-
lows:

210 -Li5 1),
& Hy(6)-Li>T(),
2 AT(6)-Li>v),

where the matrices 1(d), I'(f) and y(f) are defined by relations (i) in section 2.4, and (a) and (b) in
Theorem 5.1. Assume that y() is f-continuous.
Let 8= (0,)»>1 be some c,-consistent estimator of the parameter 0, i..

¢x '@, —0)= 05 (1).
Define the estimator 8= (8,),5, by the relation
8,=0,+ 2y @@,

The last relation is the one-step modification of Newton’s method for successive approximation to
the solution of

h"(@)= 0.

THROREM 8.1. Let conditions of Theorem 5.1 hold. Then
P§— lim au =0,

n—>00

By 6. — 0)|PF)= N©,y " @) Ty~ O)y).

PrOOF. By Taylor’s formula we have
8= B —0) + Ay BB = B, — )+ 2y O @)+ 2 @)~y O E,)
=, — )+ Y O @)+ O)Zh" O)0,— 0+ @) A" ()~ k" O))(F, —6)
+ @' @) — Y O @)= 2 v OB O) + &7, 0}, —0) + 8,(,,6),

where
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i"@)= (—"—h;-(a»,i,j=ﬁ, o= 0+a(@,—6), ac(0,1],

&0m0)= 1 OI(—H"O) + k" (¢a)) + (Gh" @)~ 1O},
8,0, 0)=C("' )~ 7' O"@,).

It can be easily seen that
n;ﬁ;m {lexm, DI >p} =0, Vp>0.

Now we will show that
Tm Pj(c;"16,@,.0)1>p} =0, Yp>0. @.1)

We have
7 18,(6,,0)= ca(y ' @)~ @A)+ ' @)~y O))c2h" (B)ci ' (B —6)
R A B () CACK N e () e )Y (82

By conditions (a) and (d) in Theorem 5.1 it follows that E(c,,h"(0)|P" )=>N(0,I'(§)). Therefore the
sequence c,h"(0) is bounded in probability and the matrix y~ 1() is 6-continuous. So the first term of
the last P;.la on converges to 0. Further, by virtue of conditions (b) and (c) of Theorem 5.1

h (0)—‘97( , and, since the sequence c, +1(8,—6) is bounded in probability, the second term in
(8 2) tends to the zero. Finally, the third term converges to zero by the condition (€) of Theorem 5.1.

Now

b, Lo,
since by condition (a) of Theorem 5.1
@ -Fiy o
and finally
lim #(c;" @~ 0)IP§)= lim Ke,y™ @R OIPF)= NOY™ OTEXY ' @) =

9. FINITE-DIMENSIONAL NUISANSE PARAMETER
For simplicity we will consider the case of a two-dimensional parameter (4,7), with a parameter of
interest § and a nuisance parameter 7. By “*” and “-” we will denote partial derivatives w.r.t.  and 7
respectively. Denote

R @1)= LM, M3, BOM= LM M3,

h:.(osﬂ)_ L(mﬂ,vpm,n ): = ,
As above, the experiment will be assumed to be regular and ergodic.

9.1 Pseudo M-estimators.
Let N3, be a one-dimentional martingale. Assume that =(7},),>) is some estimator of the parameter

n with the property

(caL(NG 0, M35), ¢ ' (1 — )| P55 )=>N(O,2) ©.1)
where = is a symmetric positive defined matrix. Consider the equation w.r.t. 8

h"(6,7,)="0
where h"(0,m)= L(Ngy,Ms,y)-
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THEOREM 9.1. Let for any 6,7 the following conditions be satisfied:
®")  Piy = lim GIL(NG, M), L(MG, M, )= 011 (6,),

Pjy — lim cGIL(VG 5, M3 ), L(Moy, Mi)|= 012(0,1);

(cl) Pg,v, - nﬁ—ﬂ clth(M,vmm )=0,
Pz,'q - n]H?o C%L(N:,q»m,n)= 0;

1 im hm 7 —_ 7 =
) lmlm Pl (  sup ULV, MZ,)—L(Njy,M3y)I>p)=0)
with L= (L,L). L

Then for any 6,7_there exists an asymptotically unique estimator 0= (6,),n=>1 such that
L lm P, (1"@ni=0}=1,

L fc; @ —6)|Ps,)=NO,0),

where

02 = 021 — 2212012 + Zpoh).

PrOOF. Under our assumptions the standard technique using Taylor’s formula, described in details in
Lemma 4.1, leads to the existence of the estimator 8= (,),>; with property 1. In this case we have
the decomposition
c,,h"(b,ﬁ,,)=c,,h"(0,n)—c,,"‘(5,, "'0)0"(0,1))— c;l(ﬁn _")012(0’11)+c;1(an "9)"1' +cn-l(ﬁn '—7’)‘":
where €] and ¢} are small in the usual sense (see, e.g. the proof of Lemma 4.1, 1°).
Hence, following standard arguments, we can conclude that

lim ey Gy O)|P}y)= m Ko OaXeh"Om)—ci ' Gu—PE)= NO). O

REMARK. It seems interesting to construct an estimator of the parameter # by means of an M-
estimator of the nuisance parameter %, for which a non-constructive condition (9.1) can be expressed
in terms of the characteristics of a martingale defining this M-estimator.

With this aim in view we will consider an M-estimator (,,7,),n=>1 defined by a system of equa-
tions

K@m)=0, i=1,2.

Under the assumptions of Theorem 5.1 we see that the limit distribution of the vector c; ! {(6,—¥),
(1, —m))’ coincides with that of the vector

G
&y O [,,.;. E,,Z;]
Therefore? .
T 86, LV, M), &7 o =~ IPhy) = im B0 LV, M), €7 @] (0,1)

+ea 7 (0,mh5 (6,0)| 5 )
Suppose now that the P§,-martingale c,L(Nj,,Mj,) satisfies the following conditions:

1) ¥/(8,9), i,j= 1,2 are elements of the matrix y~1(9,7).
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Pz - li-m C2<L(Nnﬂs Oﬂ))T“aa

Pj, — lim f [P @sd0=0, ecO.1],

where »] is the compensator of the jump measure of the procms cnL(N§ . M3p), and besides,
Ps,n - nl:l_)nclg Cﬁ(L(Ng 0> 1,)’ h:l:(o ”))T Bn
Then?
— lim 121 n
Pl = Jim c P G @)+ Y2 GO

\

((L(N g, M3 ) ,<L(Ns,,,,Ms,,,),f‘(0,n)h'f(o,n)+v”(0,n)hs(o,n»]

[ B 0,m) + B.Y2(6,m) _
g @ @) T1@,m) + 27! @, v*26,m) + (Y”(M))zf‘zz(ﬂ,n)] =2

and since for the vector

(an(Nz,n:Ms,rp )y cn(Y%O‘,ﬂ) '1'(0,"1) + 722(0"")”'2. (0’7')»’
Lindeberg’s condition is satisfied, we have (9.1).

9.2. Skew Projection Technique

Here we use the known projection technique [15], applied for constructing an estimator of the struc-
tural parameter @ efficient in Fisher’s sense in presence of a nuisance parameter 7. This method allows
to construct an estimator of the structural parameter § with the same asymptotic variance as for the
first component of a two-dimensional M-estimator (obtained by solving the complete system of equa-
tions defining M-estimator). For this we need projection of A7(f,n) onto A3(f,n) in the direction
defined by the relation

P, — lim (kT @m)—bh3 6,m), BO)r=0, 02
where beR!. Note that this direction is orthogonal to the linear space spanned by 4 (6,n) rather then
to that of spanned by A3 (6,9).

Relation (9.2) implies that b= Y120, m)v2" (0,1,) In the case when A} (6,7)= 5 (6,n), h3(0,m)= 5 (6,n)
(i.e. MLE is considered), we have b= I,(8,7)I %' (8,7) and (9.2) leads to a modified informant

N@m)= R @) — I.0.0)I% 6,nEO.).

Denote l;'; 0,m)= K} (6,m) — v12(0,%)yn" (8,m)h3 (6,7). This is so colled modified influence martingale.
Let 7= (,)n>1 be a c,-consistent estimator of 7, i.e. ¢; '@, —n)= Op;, (1). Consider the equation

1 ()= 0 ©3)
THEOREM 9.2. Let the conditions of Theorems 3.1 and 5.1 be satisfied. Besides, let the function
112(6. 11)722 (0,m) be continuously differentiable w.r.t. (6,m). Then for any 0, there exists an estimator

0= Ou)n>1 of the e parameter of interest 8 such that
L hm PS'l) {hl(omnn) 0}— 1

1L Ps,,, 1imé,=0

2) The matrix [“’g]:= Z’f_]
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III. If there exists another estimator o= (5,,),,>| with properties I and 11, then
lim P}, {6,=6,}=1
n—>

V. &{c;'(0,—8)|Pjq )= N,y @@,y G;m))n)-

PROOF. Denote n§, = mf,) — vi2(0,m)v' (6, mm2. Then h; (6,m)= L(n},,M3,).
By Taylor’s formula we have

By 0 )= By 0,1) + (9 — O L}, M)+ Gl — )L (0, M)

+ (= O3, M)~ L, M)+ (i — X5, M),
where (8,7) = (0,n) + a(y —6,%, — ), a<[0,1].
Further (for simplicity we will omit the arguments (6,7)), we have
L, M™)= LGr, M™)— [, B,
L@, M™)= L(",M™)— [y, 5}
The ergodicity conditions imply that
2 Lo, M™) s o,
2 L(",M") Ly o,
By Lindeberg’s condition and (9.2), we have
k1B Piay =YYz =8,
iy, 5] Lis 0

Consequently
AL, M") Lisy—p,
2Ln" M) -Ls3 o
Taking into account the last relations we can rewrite (9.4) as

iy, )= 2 6,m)— BOANY —0)+ () (A (L, M) — L.y, M3 )

+ (RL(}p, M) — BOM)
+ (i —M{A(L(M35,M35) — L, M3, ))+ RL(n}.0, M3,,)}
= cﬁ’?l. (0’") - 5(0,11)(}’ —0) + (}’ —0)6'1'(5,;),0, )+("_'n —11)65(5,5,0,11),

where

Av,0,m)= AL, ML) — Ly Miy )+ (2L30, M) — BO.m),
Gwv,0m)= 2(L(n%,, M5,) — L(n3,,M3,))+ EL(n}0, M3,), uye®.

9.4

9.5)
(9.6)

)

By condition €) of Theorem 5.1, the continuous differentiability of v;,(6,n)y%'(6,n) and properties

(9.5) and (9.6) it can be easily seen that
lim iim Pj,{ su <Nl 0n)ll+ iy, 6,mI)>p} =0

r-0n—>o u,v:|u—6]+Fjv—v

9.8)
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for any p>0.

To proceed further we will follow the same scheme as in proving Lemma 4.1 by constructing first a
set Q(n,r) with properties 1), 2) (see the proof of Lemma 4.1, section 2°) and property 3): for any
n=1, r>0 and weQ(u,r) the equation (9.3) has the unique solution in the ball |y —|<r.

The following set proves to possess the properties indicated above: ’

ey, 0,m)| <BOL i =12, [, —n|<r).

su
’u,v:lu-0|+?v —q|<rl 4

Br)= (w:chlin @) < EEAE
Note that from (9.7) we have
i i) <Bri2—pr+ £ + BL=0 it y—0=r and wefinr)

and
2hy (,7n)> 0 if y—0= —r

Assertions I-II are proved exactly as the corresponding assertions in Lemma 4.1. The proof of IV is
based on the decomposition

cults Bn,Tin)= calis (0,m) — BO) (B —O)ci* + ¢ (B, —B)e1(6,1,0,m)
+ ¢ Gin —1)€3 B, Ts01), ©.9)

where 5,, is the estimator constructed in I. As in the course of proving Lemma 4.1, we can use (9.9)
to see that

Tim &(B@1)cx ' @ —O|P5, )= lim (e Gm)P3, )
which implies assertion IV. O

9.3. Limit Distribution Characterization
An estimator 8= (6,),n=>1 of the parameter of interest § is usually called regular at point (6,) if for
some nondegenerate distribution F(x), x€R' we have

Bl B — O+ cau)|Posoun+er}=>F
for any u,v, such that 8+c,u,n+c,ve®. (Note, that F is free of u,v)

THEOREM 9.3. Let_a family of measures {P§,} be such that the conditions of Theorem 3.1 are satisfied

at point (0,m). Let 6=(8,),n=>1 be an estimator of the parameter 0 regular at (6,1). Then:

1) the limit law for the random variable &, = c, (8, —0) is represented as the convolution of the normal
law!) N(O, I}, 0,m)"") and some other distribution law G(x);

2) random variables §,—A, /I3, and A,/I, are asymptotically independent in the sense that

“n

A -
Pho (b= <% Ai/T <) = G 9),
11
where ® is a distribution function of the law N(O,(I1 @;m)) ") A} = ¢, 1, I = f — I, I B.

Proor. Denote by f(s) the characteristic function of the distribution F(x). Since the estimator
0= (0,)n> is regular, for n—>co we have

sl —lep . s
Es+c.ll,l1+c.vem. @.—@+qu) _ Es,'qem. [0, —6)+Inz,, (V)] '-““_)f(s) (9.10)

1) L1 @,m)= 1110 m)— 11 @.n)I5", where I(0,n)= (I;(0,m);;=1,2-



40

For each fixed u we can choose v=v(u) such that
BoIn'u?+2Iuv +viI5n =0,
i.e. v(u)= —I,I%"'u (here and below arguments (,n) are omited). Then
In zfy (b @)= Au—3Tiy® + 3,
where
A} = Bl =1 + (A1 11 Ju + Afv()
(see Theorem 3.1 for notation ) and

8A}|Pj,) = NO,L),
Pg,u — lim ‘Pn =
n—>o0

Indeed, Aj is a Pj,-martingale with the characteristic

(A)Y= BB —InI5'BY= (R)— U I35 BB Y+ Al I (B)
and by ergodicity

Pj,— lim (ADyr=1In—Fhlz' = I

Hence, by condition (b) of Theorem 3.1, it follows that
BAT|P3y) = NO.Ii1 ).
Further, ¢, 2550 and (A7 —c, I} )u+ A v(u) is a P},-martingale with the property
(A7~ u + A3v()r= (AT —culy Ju—I 11" AJu)r
= w15 (B r— 2Pl 5 (B )1+ Palm? (B )r)»-Lhs30.
By the fact that the limit law F is indepent of u and v, from (9.10) we have for n— oo

Eje™ @70 4 Rlu—sTiu? —isusf (s). ©.11)

Theorem 11.8.1 in [5] and its corollary tells us that there exists a truncation 5: of Z’,‘ such that

lim E§ e isc'@, ”+A1u—'—1"lu —isu= lim Ej e ise}' @, ~0)

n-—>0 n—>»0
+K;u —%I,',uz —isu= f(s).

Therefore, for any u we have

'I;.u +isu
lim Ej, " @ 0+8u_ o) : ©.12)

n—>0

By standard arguments (see [5], p. 213) it can be shown that relation (9.12) is valid for complex
values of u too. Put u= —is/I},. Then by (9.11) we have

lim EZ i-'(c:'(a.—ﬂ—s:/fu)= ”’:/111.
n—00 6 € S
Hence, by the continuous correspondence between distribution functions and characteristic functions

it follows that the random variable c; (8, —6)— A,/I},, as well as ¢, 1(8, —6)— A}/I};, has the limit
distribution G with the characteristic function g such that
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=g, ©.13)
Thus assertion 1) of the theorem is proved.

Choosing now u= —’%f—sl and using (9.11) and (9.13) we obtain
11

Tim B}, expis(c; @~ )~ Ar/Ti) +ioky /Ty )= g(s)e ™ ™
as required. [

9.4. Regularity of estimators constructed by Skew projection technique.

The estimator constructed in Theorem 9.2 is irregular, in general. But the estimator ] solving the
equation (9.3), where 7= (,),>1 is an estimator of the parameter n such that for all u,y
¢ '@ =)= 0p; +c.un+cv (1), is regular under the conditions of Theorems 3.1 and 5.1.

THEOREM 9.4. _Let the conditions of Theorems 3.1 and 5.1 be satisfied. Then for every 0 there exists an
estimator 0= (0,),>1 of the parameter of interest 0 regular at (0,7), with
F=N (0’(7—1(091')1‘ (0’7')(7-1(0!‘"))’)11)‘

PROOF. As in the course of proving Theorem 9.2, we can easily obtain the decomposition

C,,h] (omﬂn) cnhl ©6,m)—BO,m)c, 1(0 —6)+c, l(0 =0+ +cy ﬁn n)e3,

where 8= (0 (6,)n>1 is the estimator constructed by the equation (9.3) in the same manner as in
Theorem 9.2.
Now we can easily obtain

|ty Bs i)+ it @,m)— 2R (01),FF B m)u+ B (B,m)v)
— BOm)cy B — ) — <y (0,0, B O, m)u+ B @np)|
< |18~ @:m|BO:.mc; ' @ —8)— c2<hy 0,m),FF O;mu+E @,m)v))]
+ |18 0,0 c2<hy (B,m), B (6 + B (B,mv)| +|eBlcx " G — )

Consequently, taking into consideration the properties of €],e} and (1,), we get as in the course of
proving Theorem 9.2 that

Tim E(B@,m)c; " 0, —0)— i< BB G+ BOM) P cumver}
= lim E(cyhi @m)—chChi @ RODU+BONY|Pis cuner):
By the definition of I;',' (6,7), and the contiguity (P§+c uq+cv)<(Pf,) We have
Piteumrep— im i @) B @) +BGM)r= —BOmm

To complete the proof it remains to find the limit distribution (calculated w.r.t. the measure
P4 cun+cy) Of the expression
B @.n)cxhr (6,m)— 2 <hy (0,1), B @, myu+ B (O, mv).

As in the course of proving Theorem 7.1, we use the transformation formula for the triplet under
the absolutely continuous change of a measure to arrive at the desired result. [
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9.5. Partial likelihood estimator and comparison of variances in presence of a nuisance parameter.
We consider the situation described in § 6 in presence of a nuisance parameter. Assume that

Phy _ cm 1
—par = E(Mj )= E(X3,) 6VE),

where Xj, is a P"-martingale depending on (4,n), while a P"-martingale Nj depends only on # and
X3y LN} for all 6,neR!. Suppose also that N, is §-differentiable (denote Nj = %Nﬁ) and N3 L X3,
for all 6,neR’. _
The PLE 0= (6,),>; of the parameter # is defined as usual by the equation
L(N§,N3)=0.

Note that the process L(N3,Nj) is a P§,-martingale for all neR'.

Applying now Theorem 6.1 to this case in which Q" = P}, mj = N} we get
&ca ' @a—0)|P3s} =N (0,07, (0,m)
where
o' @;m= Pjy — lim cI(L(NG,NG))r.
If 6= (5,,),,>1 is the estimator constructed by means of the classical projection technique i.e. by the
equation
h63,)=0
when 7 is a ¢,-consistent estimator of 7 and 71'(0,11) is a modified informant, then
Bcr Bs—0)\Phy ) = N(0,0,(6,m)
where )
o3 '6;m)=I;@:m)— . 0:m)%' @,m)= I}, (6,m) 9-19)
(see Theorem 9.2).
Finally if 6= (,), >, is MLE of parameter § with known 7, then
B{cx 6n — )P} = N(O,05(6,m)
where
03—1(0,"1)= Ill(osﬂ)

(see Theorem 5.1).
We will compare these variances. Moreover, we will establish a functional relation between them.

It can be easily seen that the Pj,-martingale L(M3,, Mg, ) can be decomposed at least in two ways

L(M3.,M3,)= 1, 0,0)— Io(0,m\I5" (6,m)L(Mp,,, M3,,) (9.15)
and »

L(M3,,M3,)= L(N3,N3) + L(m} 0,1),M3,,)) (9.16)
where

*

'"'ll (0’7')‘: Mg,n - '"3,1,,'"3,1, = Ng,n +[N3,1"X3,11 }



By definition of the modified informant 7} (6,1) we have

(10,1, L(MG, M )y r~LE250, ©.17)
Besides it is easily shown that

(L(M§,Np), L(m7(0,9),M54))r=0. (9.18)
Indeed, by definition of m{(,n) and L-transformation we have

L(N3,N3),L(m}(0,m),M3,)]= {Ng°,Xp) + e

[L(NG,Ng),L(m] (6,m),M§5)1= (Ng°, X5y 2(1+AN")(1+AX",,) L([N'o’,x"q], Mj,).

But the procm [&", ',,,] is a P"- martingale (if we assume that the following natural condition
holds: N" _LXS,,) and so the process L([N?,X",,,], Mj,) is a Pj,-martingale, which means that the
process [L(Ns »N§), L(m}(0,1),Mj,)] is also a P§,-martingale and consequently

L(NzaNn )lL(ml (0 1’)’ ,ﬂ)'

Since L(N3,N3), L(m} (0,1),M3,,)eM*(P},,), we get (9.18)
The decompositions (9.16) and (9.18) lead to

o3 @)= o1 @)+ Phy — lim c(L(mi @,m), Mg -
On the other hand, (9.14) gives
(P3y = lim (L}, M), L(Mp,))

o3'@m)=o07 '@+ y
3 2 Psm — n].i:?o C,z, (L(M:,,,,Mz,q »

The last relations imply
o3 '@m)=o1'(O.)
(Pl — lim 3L, M3), L (Mo, M50)))
(Phy — lim ch(L (], M5, ))XP3,, — im cA(L(Mp,M3))) |

+ (Ps,n _"lilgc,z, (L(m’l"m,ﬂ M|1-

It is easily seen from the obtained relations for o7 ',05 ',05"! that
03 < 07 0.

As usual, the condition for adaptation i.e. for o3 =0,, is expressed as I;,(6,7)= 0. For 0, =0, we
have the following condition:
(LM}, M5,)))
ne (L(mT, M5y ) (L(Mp, M)

In the ii.d. case the relations between 0,,0, and o; take the following simple form:
oy l = f [
o3 3 f

Poy— =1

Yodp,

¥, i yodp=oi' + [

2
] Yodp,



B (fiiwdu)’
oz"=or‘+(f[¢] yduyl——
1 [il vodp) [ [ J ovdy)

).

BIBLIOGRAPHICAL NOTES

The local asymptotic normality (LAN) of distributions was studied by various authors. In particu-
lar, the diffusion case was studied by Yu. Kutojants, the case of point processes by K. Dzhaparidze,
the case of semimartingales with an integral representation by A. Taraskin and Yu. Lin’kov. In [9]
and [10] (univariate and multivariate cases, respectively) an integral representation of semimartingales
is not required.

Partial likelihood technique based on the factorization of the full likelihood was introduced by Cox
[11]. Partial likelihood theory in the discrete time scheme was considered by WONG in [12], where
detailed references are given. For point processes the Cox model has been generalized by Dzhaparidze
[13]. The partial likelihood scheme for the general statistical model was investigated by J. Jacop [17].
The asymptotic behaviour of an estimator w.r.t. asymptotically distingwishable alternatives have not
been studied.

The scheme described in section 5 extends the Cox-Wong method to the general case; see also [14].

WELLNER [15] have discussed projection methods, one-step approximation methods, etc, for the
ii.d. case. In section 6 we extend some of these methods to the general case; see [15] for bibliography.
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