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Abstract

In the numerical simulation of atmospheric transport-chemistry processes, a major task is the integration of
the stiff systems of ordinary differential equations describing the chemical transformations. It is therefore of
interest to systematically search for stiff solvers which can be identified as close to optimal for atmospheric
applications. In this paper we continue our investigation from [20] and compare eight solvers on a set of seven
box-models used in present day models. The focus is on Rosenbrock solvers. These turn out to be very well
suited for our application when they are provided with highly efficient sparse matrix techniques to economize
on the linear algebra. Two of the Rosenbrock solvers tested are from the literature, viz. RODAS and ROS4,
and two are new and developed for this benchmark, viz. RODAS3 and ROS3.
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1. INTRODUCTION

To better understand the transport and fate of trace gases and pollutants in the atmosphere, compre-
hensive air quality models have been developed. For their numerical solution, very often the operator
splitting approach is followed. A major computational task is then the numerical integration of the
stiff ODE (ordinary differential equation) systems describing the chemical transformations. This in-
tegration must be carried out repeatedly at all spatial grid points for all split intervals chosen, so
that model runs readily require an enormous amount of integrations. It is therefore of interest to
systematically search for stiff ODE solvers which for atmospheric applications can be identified as close
to optimal. In this paper we continue our search from [20], where a large number of box-model tests
were carried out with nine solvers. Among these were dedicated explicit methods and general purpose
solvers from the numerical stiff ODE field, all provided with sparse matrix techniques to economize on
the numerical algebra operations. Three main conclusions were drawn in [20]:



e All sparse general solvers work quite efficiently on all test problems, although their ranking
relative to each other depends on the test problem. Compared were the BDF solvers VODE [2]
and LSODES [13], the Runge-Kutta solver SDIRK4 [11] and the Rosenbrock solver RODAS [11].

e TWOSTEP [27, 29] is by far the best within the class of dedicated explicit methods. It outperforms
a number of QSSA solvers, often by a wide margin. However, it is in general less efficient than
sparse implicit solvers. The code is advocated for gas-phase problems only and, like all other
dedicated explicit solvers tested, not capable of treating gas-liquid phase chemistry.

e Sparse RODAS is competitive to all solvers tested and often is the fastest for low to moderate
accuracies.

RODAS partly owes its competitiveness to its one-step nature. This is important in view of the large
number of restarts carried out in the box-model runs. Restarts must be considered because the solvers
are examined for application in an operator splitting approach. The multistep BDF (Gear) codes are
then less attractive since their growth in step size is limited by stability considerations.

Our experience with RODAS is in line with results from [11], where for a number of stiff ODEs from
other applications RODAS was shown to be competitive with other solvers for low to modest accuracies.
Because for atmospheric applications the greatest interest lies in high efficiency for low accuracy (two
figures at most), it is worthwhile to continue our search within the class of Rosenbrock methods.
Thus, the aim of this paper is to assess whether other Rosenbrock solvers can be found which, for our
specific purpose, constitute an improvement over RODAS in terms of efficiency.

The paper is organized as follows. In Section 2 we briefly review our test set from [20] and describe
a new test problem. This test problem is also solved with the EBI method proposed in [17]. Section 3
contains a brief introduction to Rosenbrock methods, put together for the convenience of readers from
the atmospheric research community. An appendix to this section is added for those readers who wish
to learn more on Rosenbrock methods. In Section 4 we discuss all eight solvers which were tested.
These include the two Rosenbrock solvers RODAS and ROS4 from [11] and two new Rosenbrock solvers
which were developed for this benchmark, viz. RODAS3 and ROS3. The special purpose solver EBI
from [17] was applied to the first test problem only, since it is dependent on the chemical mechanism.
For the purpose of a wider comparison we also present results for the extrapolation code SEULEX from
[11] and for TWOSTEP and VODE. The latter two were also tested in [20]. Section 5 describes the set
up of the experiments and Section 6 contains all the test results. The final Section 7 summarizes the
main conclusions.

To enable interested readers to further extend this benchmark comparison using their own solvers,
as well as to extend our problem set with other challenging example problems from atmospheric
chemistry, all the software we have used for the problems and the solvers have been put on the ftp-site

[9).

2. THE BENCHMARK PROBLEMS

The test set used in this paper consists of seven box-model problems. Except for number one, i.e.
Problem A, all remaining problems, i.e. Problems B - G, are identical to those used in [20]. To save
space we therefore present B - G only very briefly and refer to [20] for a complete description of these
models. All problems were run for five days. This time interval is sufficiently large for taking into
account several diurnal cycles of the photochemical reactions. The five day interval is split up in
120 one hour subintervals for B - G and in 180 forty minutes subintervals for A, while at the end of
each subinterval the integration is interrupted and restarted, in accordance with the operator splitting
approach. For all our test problems the unit of time is seconds and the unit for the concentrations is
number of molecules per cm3. All problems were uniformly coded in FORTRAN ! using the symbolic

1Except for problem A, for which we have used an EBI implementation we obtained from [6].



3. Rosenbrock methods 3
preprocessor KPP [4]. This uniformity is important for a meaningful intercomparison.

Problem A: The T™Mk model The problem was borrowed from [6, 7]. It describes the reduced
CH,/CO/HO./NO, chemistry and is used in the global dispersion model T™Mk [12]. It consists of
36 reactions between 18 species of which 2 were held fixed, namely HoO and Os. Since new values
of the photolysis rates are available every 40 minutes, we split accordingly the five day period. The
simulated conditions correspond to a polluted air parcel in summer time, at 45 degrees north latitude
and at ground level (pressure = 1000 mbar). We have included emissions of NO at a constant level of
108 mlc/cm?®/s. More information about this model can be found in [7]. We note that for this small
problem (17 components) the exploitation of sparsity results in limited benefits. The Jacobian matrix
has 90 nonzero entries and 93 after the factorization.

Problems B and C: The CBM-IV model These are based on the Carbon Bond Mechanism IV [10]
consisting of 32 chemical species involved in 70 thermal and 11 photolytic reactions. Test problem B
describes an urban scenario and simulates a heavily polluted atmosphere. Test problem C describes a
rural atmosphere.

Problems D and E: The AL model Problems D and E employ the kinetic mechanism that is presently
used in the STEM-11 model [3], consisting of 84 non-constant chemical species involved in 142 thermal
and 36 photolytic reactions. The mechanism, based on the work of [1] and [15], can be used to study the
chemistry of both highly polluted (e.g., near urban centers) and remote (e.g., marine) environments.
Problem D describes an urban scenario and problem E a rural one. The simulated conditions are
identical to those employed in problems B and C, respectively.

Problem F: A stratospheric model This test problem is based on the chemical mechanism that was
used in the NASA HSRP/AESA stratospheric models intercomparison. The initial concentrations and
the values of the rate constants follow the NASA region A scenario. There are 34 non-constant species
involved in 84 thermal and 25 photolytic reactions. No emissions were prescribed.

Problem G: A wet model The wet model contains 65 non-constant species involved in 77 thermal and
11 photolytic gas-phase chemical reactions, 39 liquid-phase chemical reactions and 39 gas-liquid mass
transfer reactions. The gas-phase mechanism is based on CBM-1v, while the liquid-phase mechanism
is based on a chemical scheme the authors obtained from [16]. All dedicated explicit solvers tested in
[20] failed on this problem.

3. ROSENBROCK METHODS

This section is devoted to a brief introduction to Rosenbrock methods, put together for the convenience
of readers from the atmospheric research community. Part of the notation has been adopted from
[11], where Rosenbrock methods are described in much greater detail (Sections IV.7, IV.10 and VL.3).
An introductory appendix has been added for those readers who wish to learn more about the theory

behind Rosenbrock methods.

3.1 The integration formula
Rosenbrock methods are usually considered in conjunction with stiff ODE systems in the autonomous
form

9= f(y), t>to, y(to)=yo- (3.1)



This places no restriction since every non-autonomous system y = f(¢,y) can be put in the form (3.1)
by treating time ¢ also as a dependent variable, i.e. by augmenting the system with the equation
t = 1. In atmospheric applications it is often the case that the reaction coefficients are held constant
on each split step interval; the chemical rate equations obtained this way are in autonomous form.

Usually stiff ODE solvers use some form of implicitness in the discretization formula for reasons of
numerical stability. The simplest implicit scheme is the backward Euler method

Ynt+1 = Yn + hf(Ynt1), (3.2)

where h = t,, 41 — t, is the step size and y,, the approximation to y(t) at time ¢t = t,,. Since y,4; is
defined implicitly, this numerical solution itself must also be approximated. Usually some modification
of the iterative Newton method is used, again for reasons of numerical stability. Suppose that just
one iteration per time step is applied. If we then assume that y, is used as the initial iterate, the
following numerical result is found

Ynt1 = Yntk, (3.3a)
k = hf(yn)+hJEk, (3.3b)

where J denotes the Jacobian matrix f’'(y,) of the vector function f.

The numerical solution is now effectively computed by solving the system of linear algebraic equa-
tions that defines the increment vector k, rather than a system of nonlinear equations. Rosenbrock [18]
proposed to generalize this linearly implicit approach to methods using more stages, so as to achieve
a higher order of consistency. The crucial consideration put forth was to no longer use the iterative
Newton method, but instead to derive stable formulas by working the Jacobian matrix directly into
the integration formula. His idea has found widespread use and a generally accepted formula [11] for
a so-called s-stage Rosenbrock method, is

Yn+1 = Un + Z bikia (343)
=1
i—1 i
k,’ = hf(yn + Z Oéijkj) + hJZ’Yz’jkj, (34b)
Jj=1 Jj=1

where s and the formula coefficients b;, o;; and +;; are chosen to obtain a desired order of consistency
and stability for stiff problems. An introduction on the properties of consistency, stability and stiff
accuracy for Rosenbrock methods is presented in an appendix.

For a reason explained later, the coefficients ;; are taken equal for all stages, i.e. 7;; = - for all
1t =1,...,k. For s = 1, v = 1 the above linearized implicit Euler formula is recovered. For the
non-autonomous system y = f(¢,y), the definition of k; is changed to

1—1 [
> of 3
— - .. . . 2_ . .
ki — hf(t’n + al) ’!In + = al]k]) + ’Ylh at (tnayn) + hszl ’yz]k]a

where

i—1 i
o = E Qijy Vi = E Yij -
i=1 J=1

Like Runge-Kutta methods, Rosenbrock methods successively form intermediate results
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i—1
Yi=yn+ Y aikj, 1<i<s, (3.5)

j=1

which approximate the solution at the intermediate time points t,, + a;h. Rosenbrock methods are
therefore also called Runge-Kutta-Rosenbrock methods. Observe that if we put J = 0, a classical
explicit Runge-Kutta method results.

Rosenbrock methods are attractive for a number of reasons. Like fully implicit methods, they
preserve exact conservation properties due to the use of the analytic Jacobian matrix. However, they
do not require an iteration procedure as for truly implicit methods and are therefore more easy to
implement. They can be developed to possess optimal linear stability properties for stiff problems.
They are of one-step type, and thus can rapidly change step size. We recall that this is of particular
importance for our application in view of the many operator-split restarts.

3.2 Reducing computational costs

Each time step requires an evaluation of the Jacobian J, s matrix-vector multiplications with J and,
assuming that v; = «, s solutions of a linear system with (the same) matrix I —yhJ, accompanied with
s derivative evaluations. The multiplications with J are easily avoided in the actual implementation
by a simple transformation (see Section IV.7 of [11]). Still, stepwise counted, the computational
costs for a Rosenbrock method are considered to be high compared to the costs of, say, a linear
multistep method of the BDF type. In particular, the Jacobian update and the solution of the s linear
systems, requiring one matrix factorization (LU-decomposition) and s backsolves (forward-backward
substitutions) typically account for most of the CPU time used by a Rosenbrock method.

Sparsity  For large atmospheric chemistry models the number of zeroes in J readily amounts to =
90%. This high level of sparsity can be exploited to significantly reduce the costs of the linear algebra
calculations. For this task we use the symbolic preprocessor KPP [4]. KPP prepares a sparse matrix
factorization with only a minimal fill-in (see Table 1 in [20]) and delivers a FORTRAN routine for the
backsolve without indirect addressing. Altogether this means that the numerical algebra is handled
very efficiently. The sparse matrix technique implemented in KPP is based on a diagonal Markowitz
criterion (see [4, 20, 21] for more details).

Approzimate Jacobians It is conceivable to attempt to further reduce the numerical algebra costs
through an approximate Jacobian.

¢ One possibility is to use a time-lagged Jacobian J = f'(yn+y) where n = 0,—1, ... such that
n—+mn is constant. If we define J this way, and in addition keep h fixed, then I —+yhJ is a constant
matrix during the number of times that the parameter 7 is decreased; hence one can advance
several time steps using the same LU-decomposition. The derivation of order conditions (which
circumvents the order reduction associated with the time-lagging of the Jacobian) can be found
in [25, 26]. Since the exact Jacobians are used, conservation properties will still be maintained.

e Replacing J by a matrix with a simpler structure, say a matrix of higher sparsity, may result
in further savings in linear algebra costs, but will destroy the conservation properties. Also, the
number of order conditions will significantly increase (see the W-methods of [23]).

e One can devise methods based on a partitioning of the species into slow and fast ones where
part of the entries of J is put to zero. This approach does not maintain conservation properties
either and adds the problem of devising a good partitioning strategy.

Although in this paper only exact Jacobians are considered, we plan to examine the above ideas and
the possible benefits of approximate Jacobians in a future investigation.



3.8 Step size control

General purpose stiff ODE solvers normally adapt the step size in an automatic manner to enable
small step sizes at times when the solution gradients are large and large step sizes when solution
gradients are small. For Runge-Kutta solvers an effective and simple step size control can be based
on a so-called embedded formula

s
gn+l =Yn + Zbikia
=1

which uses the already computed increment vectors k;. The approximation §,4; thus differs only in
the choice of the weights b; and hence is available at no extra costs. Usually, the weights are chosen
such that the order of consistency of §,41 is p = p — 1, if p is the order of y, 1. This suggests to use
the difference vector Est = §n41 — Ynt+1 as a local error estimator. In what follows we will denote
the order of such a pair of formulas by p(p). All the Rosenbrock solvers (RODAS, RODAS3, ROS4 and
ROS3) use embedded formulas to estimate the local error.

The specific step size strategy goes as follows. Let m denote the dimension of the ODE system. Let
Toly, = atol + rtol |ynt1,k|, where atol and rtol represent a user-specified absolute and relative error
tolerance and ¥n41,x the k-th component of y,41. Tolerances may differ componentwise, but are here
taken equal for all components for simplicity of testing. Denote

1 i Estk 2
Err=,|— .
m Z (Tolk)
k=1
The integration step is accepted if Err < 1 and rejected otherwise and redone. The step size for

the new step, both in the rejected and accepted case, is estimated by the usual step size prediction
formula

hnew = h.min (10, max (0.1, ().9/(E'7'7')1/(’-’+1))) .

At the first step after a rejection, the maximal growth factor of 10 is set to 1.0. Further, h is constrained
by a minimum h,;, and a maximum hmax and at any start of the integration for each operator-split
interval we begin with a starting step size h = hgtyrt. A rejection of the first step is followed by a ten
times reduction of h. These step size constraints will be specified later. Because the maximal growth
factor is equal to 10, the step size adjusts very rapidly and quickly attains large values if the solution
is sufficiently smooth and h = hgt,rt is chosen small.

4. THE SOLVERS

In this section we list all solvers which have been tested. The solvers RODAS3 and ROS3 are new. For
these we give the defining formula coefficients. All other solvers are existing ones and are described
only briefly. The Rosenbrock solvers have order of consistency 3 or 4. Preliminary experiments with
two second order solvers, based on Method III from [24] and on the complex-valued method from [18]
(advocated in [19]) gave disappointing results.

RODAS This Rosenbrock solver from [11] is based on a stiffly accurate pair of order 4(3). Both
formulas are L-stable. The number of stages s equals six and also six derivative evaluations and six
backsolves are used. In [20] RODAS was one of the best solvers tested.
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ROS4 This Rosenbrock solver is also taken from [11]. It implements a number of 4-stage 4(3) pairs
which all require four derivative evaluations and four backsolves. Hence, per step ROS4 is somewhat
cheaper than RODAS. However, in [11] a comparison is presented favouring RODAS, which is attributed
to the stiff accuracy property (the methods of ROS4 are not stiffly accurate). We have tested its
L-stable version (see Table 7.2, [11]) and found that generally its performance was very close to that
of ROS3 and RODAS3. We therefore decided to omit presenting results for ROS4.

RODAS3 The third Rosenbrock solver was designed along the same principles as RODAS. It is based
on a stiffly accurate, embedded pair of order 3(2). The number of stages is s = 4, requiring four
backsolves but only three derivative evaluations are used. Hence per step it needs less work than
RODAS, but it is one order lower. We have selected this pair since we aim at optimal efficiency for low
accuracies. To the best of our knowledge, this pair of formulas has not yet been proposed elsewhere.
The coefficients a;; and ~;; are

0 1/2
0 0 1 1/2

@)= 1 o o c a) =1 1 s 12 ’
3/4 —1/4 1/2 0 /12 1/12 —2/3 1/2

and the weights are
(b,-):(5/6 -1/6 -1/6 1/2), (3,-):(3/4 -1/4 1/2 0).

Both formulas are L-stable. Observe that the embedded one is defined by the final intermediate
approximation Yj.

ROS3 The fourth Rosenbrock solver is based on an embedded pair of order 3(2) and is also new.
The number of stages is s = 3 involving three backsolves and two derivative evaluations. The third
order method is L-stable and the embedded second order method is strongly A-stable (R(co) = 0.5).
The stiff accuracy property is not valid for ROS3. The method was constructed under the design
criteria: order three, L-stability for both the stability function and the internal stability functions,
and a strongly A-stable second order embedding. The internal stability functions are associated with
the intermediate approximations (3.5). Imposing stability for these internal functions was advocated
in [24] as a means to improve a Rosenbrock method for strongly nonlinear stiff problems. We note
in passing that if the order of consistency equals 3 and s = 3, then the requirement of L-stability
prevents the existence of an L-stable second order embedding. The coefficients are:

v = 0.43586652150845899941601945119356
Y21 = —0.19294655696029095575009695436041
Y32 = 1.74927148125794685173529749738960

by = —0.75457412385404315829818998646589
by = 1.94100407061964420292840123379419
bs = —0.18642994676560104463021124732829

bi = —1.53358745784149585370766523913002
2.81745131148625772213931745457622
—0.28386385364476186843165221544619

S o
w V]
[

The remaining coefficients are ag; = g1 =y and aga = 31 = 0.



VODE  This solver from [2] is a general purpose BDF Gear code and can be regarded as a successor
of LSODE [13], which is popular in the field of atmospheric chemistry as a reference code. In [20] VODE
performed satisfactorily and we include it again for comparison with the Rosenbrock solvers. VODE
uses the same sparsity routines as the Rosenbrock solvers.

TWOSTEP  This solver from [27, 28, 29] is based on the second order BDF formula and uses,
instead of the usual modified Newton method, Gauss-Seidel or Jacobi iteration for approximately
solving the implicit BDF relations. In the tests of this paper only Gauss-Seidel iteration is used. It
was developed as a special purpose, explicit solver for atmospheric chemistry problems. In [20] it
outperforms a number of solvers based on the QSsA approach. We include it again for comparison
with the Rosenbrock solvers. The same implementation as in [20] is used, which always performs two
Gauss-Seidel iterations and automatically adjusts the step size.

SEULEX The solver SEULEX is also taken from [11]. It bears a relationship with the Rosenbrock
solvers, as it builds up a solution from the (non-autonomous) linearly implicit Euler method, i.e.,
Ynt1 = Yn + (I — hJ)"Lhf(tn,yn), by Richardson extrapolation. The use of this Euler method in an
extrapolation code for stiff ODEs was first suggested in Deuflhard [8]. A rule of thumb is that the
virtue of extrapolation manifests itself most clearly when high accuracy is required (see also [11]). We
have included SEULEX in our benchmarking as the extrapolation approach is mentioned by Zlatev [30]
(see Section 3.4.3) as a viable one for atmospheric ODE problems, although no results seem to have
been reported yet. The same sparse linear algebra as used for the other solvers was implemented. The
extrapolation sequence defined by iwork(4) = 4 was used. This sequence was found to work well for
our application. Other settings are given default values.

EBI  This method (described in detail in [17]) is based on the Euler Backward Implicit formula (3.2).
Its main feature is that, instead of using Newton’s method, the implicit solution is approximated
through a semi-analytical, problem dependent iteration process. This process groups species together
which allow an exact solution of the implicit equations after putting part of them at the old time
level. Species equations which do not fit in an appropriate grouping are treated with a form of Jacobi
iteration. Satisfactory results are reported [17] for different scenario’s based on the CBM-1v mechanism.
The approach can also be applied when using higher BDF methods since use of these implicit methods
leads to a similar system of equations, but a considerable drawback is that the iterative solution
method is adapted to the particular chemistry scheme. We therefore have tested the method only for
the TMk model, using an implementation obtained from [6]. This implementation contains no local
error control mechanism so that constant step sizes are taken.

5. SET UP OF EXPERIMENTS

Accuracy  All tests were carried out in the same way as in [20]. The numerical results were compared
to a very accurate reference solution (given by RADAU5, rtol = 10712, componentwise set atol) using
a temporal modified root mean square norm of the relative error. With the reference solution y and
the numerical solution § available at {t, = to +nAt, 0 <n < N}, where n is associated with the end
points of the IV operator-split subintervals, we first compute for each species k

Yr(tn) — Uk (tn) ?
Yk (tn)

1
ER, = W'Z

neJk

where Jp = {0 < n < N : yg(t,) > a}. This value is then represented in the plots through the
number of significant digits for the maximum of FRy, defined by

SDA = —log,, (max; ERy). (5.6)
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Note that if the set J} is empty for a chosen threshold a, the value of ERy, is neglected. This threshold
factor serves to eliminate chemically meaningless large relative errors for concentration values smaller
than @ mlc/cm? in the error measure. We used a = 10% mlc/cm? for all tropospheric problems and
a = 10* mlc/cm?® for the stratospheric one. Additional experiments performed with a = 1 mlc/cm?
led to nearly the same conclusions. Observe that SDA = 2 means 1% accuracy in the error measure
used. In discussing the results presented in the next section we focus on this accuracy level.

Timing The answer to the question of which method is ”"the fastest” may depend also on the
machine. In order to measure the influence of the hardware on the relative performance of integrators
we have performed all the numerical experiments on two completely different architectures, namely a
HP-UX 935 A workstation (double precision, & 14 digits) and a Cray C98 (scalar mode, single precision,
= 14 digits); in addition, some of the experiments were also repeated on a SGI workstation (double
precision, & 14 digits). Somewhat to our surprise, very similar results were found; as a consequence,
in what follows only the HP work-precision diagrams are presented. We plot the SDA values against
efficiency, i.e., the measured CPU times on a logarithmic scale in unit seconds.

Steering parameters  For all solvers important steering parameters are hgtyrt, Ppyin, Pmax and the
local error tolerances atol,rtol. A user-specified choice for h,;, is important. Without a prescribed
minimum, step sizes can result as small as the shortest time constants, sometimes even =~ 1078 to 10~
sec. Step size values close to these extremely short time constants are redundant, since the minimal
time constants of importance for photochemical models lie between 1 sec and 1 min, approximately.
On the temporal scale of interest, species with a smaller time constant quickly reach their (solution
dependent) steady state when they are perturbed. We have prescribed the following values for h
and hgtapt Which are imposed for all solvers (except EBI): for Problems A-E, h,,;, = 0.1 sec and
hgtart = 60 sec; for Problem F, hp i, = hgtart = 0.001 sec; and for Problem G, hy,i, = hgtart =
0.0001 sec. The maximal value hmax is less important and was not defined in our tests. Finally,
for all problems and all solvers we have prescribed the absolute tolerance value atol = 0.01 mlc/cm?®
along with a number of relative tolerance values rtol such that effectively relative local error control
is imposed. The different data points in the plots for a given method correspond to these relative
tolerances.

min

Reaction coefficients In practice the rate coefficients are implemented in two ways, either as time-
continuous functions or as functions piecewise constant per operator-split subinterval. The time-
continuous function implementation of the thermal rate coefficients may lead to a large number of
exponential function evaluations per time step, which are very costly (with Rosenbrock methods these
calculations can be as expensive as the sparse matrix factorization). Since for the actual practice true
time dependency seems redundant, we have used piecewise constant rate coefficients per operator-
split subinterval (temperature and solar angle frozen using values halfway). Observe that in [20]
time-continuous values were used. For the CBM-IV model an accuracy-efficiency plot will also be
presented for time-continuous values. This provides us with the possibility to examine whether the
solvers behave differently for the time-continuous and piecewise constant case.

6. RESULTS AND ILLUSTRATIONS

6.1 Problem A: The TMk model

The work precision diagram is given in Figure 1. Results are presented for all the solvers discussed
above, including EBI. The EBI results are obtained with a sequence of fixed step sizes of which the
largest is &~ 13.3 min. and the smallest 0.5 min. The number of iterations within EBI was in all runs
equal to 8 (cf. [6]). The results show that the variable step size Rosenbrock solvers are clearly superior
to all others for 1% accuracy. Noteworthy is that EBI and TWOSTEP are fast for very low accuracies
(around 10% say). SEULEX appears to be faster than VODE, but slower than the Rosenbrock codes.
However, the gap between these solvers decreases for higher accuracies; in fact SEULEX will take the
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lead for 5 or more accurate digits. Among the Rosenbrock codes, RODAS3 and ROS3 have similar
performance in the low accuracy domain; they are followed closely by RODAS.

Problem A (TMk)

SDA

0 . .
.04 .05 .07 0.1 0.2 0.3 0.5 0.7 1
CPU time [seconds]

Figure 1: Work-precision diagram for test problem A (TMk): Sparse RODAS3 (solid with “¥”), Sparse
ROS3 (solid with “x”), Sparse RODAS (solid with “0”), TWOSTEP SEIDEL (dots with “x”), Sparse VODE
(dots with “o0”), Sparse SEULEX (dashed with “0”) and EBI (dash-dots with “0”).

6.2 Problems B and C: The CBM-IV model

In Figure 2 the results for test problems B and C are presented. For the rural problem all Rosenbrock
solvers perform equally well, followed by SEULEX, while VODE and TWOSTEP fall behind. This also
holds for the urban problem, but now a distinction exists between the Rosenbrock solvers and SEULEX.
Up to about 3 digits RODAS3 and ROS3 perform best. For accuracies higher than 3 digits RODAS takes
over.

From the numerical point of view it is of interest to also solve a problem where the reaction coef-
ficients are time continuous (non-autonomous problem). Figure 3 shows results for Problems B and
C. These should be compared with the results for the associated problem with coefficients piecewise
constant per operator-split interval. In the urban case RODAS3 and ROS3 are again the best up to 3
digits accuracy followed by SEULEX and RODAS. TWOSTEP and VODE perform more or less as in the
piecewise constant case, delivering 1% accuracy in about twice the CPU time needed by the Rosen-
brock codes. In the rural scenario the Rosenbrock codes and SEULEX perform similarly, all of them
being again notably faster than the BDF candidates. The results for the non-autonomous problem are
similar to the results for the autonomous variant.

6.3 Problems D and E: The AL model

For problems D and E the results are given in Figure 4. It is interesting to compare code performances
to those obtained for the CBM-1v model since the same urban and rural scenario’s are simulated. They
differ, however, in the number of species and reactions, the AL model being considerably larger. For
the urban problem RODAS3 and ROS3 are again the fastest, up to 3 digits, while for higher accuracies
RODAS becomes better. SEULEX now performs somewhat less than for the CBM-1v model, whereas
TWOSTEP is notably better positioned. In the rural case RODAS is the best, but RODAS3, ROS3,
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Figure 2: Work-precision diagram for test problems B and C (CBM-1V): Sparse RODAS3 (solid with
“x”), Sparse ROS3 (solid with “x”), Sparse RODAS (solid with “0”), TWOSTEP SEIDEL (dots with “x”),
Sparse VODE (dots with “0”) and Sparse SEULEX (dashed with “0”).

Problem B (CBM-IV URBAN) NONAUTONOMOUS Problem C (CBM-IV RURAL) NONAUTONOMOUS
T T T T 4 T T
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0.3 04 05 0.7 1 2 3 4 0.2 0.3 04 05 0.7 1
CPU time [seconds] CPU time [seconds]

Figure 3: Work-precision diagram for test problems B and C (CBM-1V), the non-autonomous ver-
sion: Sparse RODAS3 (solid with “x”), Sparse ROS3 (solid with “x”), Sparse RODAS (solid with “0”),
TWOSTEP SEIDEL (dots with “x”), Sparse VODE (dots with “0”) and Sparse SEULEX (dashed with
“077).
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SEULEX and TWOSTEP follow it very closely. Both in the rural and urban case VODE falls behind.
Notable is the close performance of ROS3 and RODAS3. As a general conclusion, Rosenbrock codes
are again superior to the BDF ones. The better relative positioning of TWOSTEP (as compared to the
CBM-1V cases) is most likely due to the increased number of species in AL. This fact suggests that, for
very large kinetic systems (say, with more than 100 components) explicit solvers like TWOSTEP may
become competitive.

Problem D (AL URBAN) Problem E (AL RURAL)
4 T T T T 4 T T

SDA
I
SDA

0 TR I I I I I P 0 I I
0.6 089 1 2 3 4 5 6 7 8 10 0.3 04 05 0.7 1 2

CPU time [seconds] CPU time [seconds]

Figure 4: Work-precision diagram for test problems D and E (AL): Sparse RODAS3 (solid with “x”),
Sparse ROS3 (solid with “x”), Sparse RODAS (solid with “0”), TWOSTEP SEIDEL (dots with “x”), Sparse
VODE (dots with “0”) and Sparse SEULEX (dashed with “0”).

6.4 Problem F: The stratospheric model

The work-precision diagram given in Figure 5 again reveals a very good performance of the Rosenbrock
solvers compared to the other three. The higher order of accuracy of RODAS is again borne out
and again notable is the close performance of ROS3 and RODAS3. VODE and SEULEX have similar
performance, but are more than 2 times slower than the Rosenbrock codes in the 1% accuracy range.
TWOSTEP follows at a large distance.

6.5 Problem G: The wet model

As pointed out in [20], this test problem is the most difficult one from the numerical point of view.
The Jacobian f'(y) of the derivative function (3.1) contains stiff eigenvalues for which the relation
Ai = —L; (with L; the destruction term associated with species ¢) does not hold. Such eigenvalues
are due to the rapid gas-liquid phase interactions and cannot be associated with certain species; for
this reason, all the explicit solvers tested in [20] failed to efficiently integrate the WET model. As a
consequence, in the present work TWOSTEP was not applied to this problem. The results plotted in
Figure 6 for the other solvers are very much in line with those for the stratospheric problem. In the
low accuracy range the Rosenbrock family has the lead again, the performances of RODAS, RODAS3
and ROS3 being very close to each other. SEULEX is about three times slower for 2 accurate digits,
but seems to become the best for more than 4 digits; for higher accuracies, VODE changes slope and
is not competitive.
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Problem F (STRATO)
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Figure 5: Work-precision diagram for test problem F (STRATO): Sparse RODAS3 (solid with “x”),
Sparse ROS3 (solid with “x”), Sparse RODAS (solid with “0”), TWOSTEP SEIDEL (dots with “x”),

Sparse VODE (dots with “0”) and Sparse SEULEX (dashed with “0”).

Problem G (WET)
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Figure 6: Work-precision diagram for test problem G (WET): Sparse RODAS3 (solid with “+”), Sparse
ROS3 (solid with “x”), Sparse RODAS (solid with “0”), Sparse VODE (dots with “0”) and Sparse SEULEX

(dashed with “0”).
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7. OVERALL CONCLUSIONS AND REMARKS

e For the accuracy range considered (up to 4 digits) it is almost always a sparse Rosenbrock
solver which is the fastest. The relative ranking between the four sparse Rosenbrock solvers
differs per problem, but only to a limited amount. As expected, for higher accuracies RODAS is
generally the best. For lower accuracies of practical interest RODAS3, ROS3 and ROS4 are mostly
competitive. In passing we note that our test results do not consistently show that the property
of stiff accuracy is truly advantageous for nonlinear problems.

e The above conclusion about the computational speed of Rosenbrock methods is also supported
by the comparison with the EBI method for Problem A and with the QssA method (not presented
here, but see [20]). In particular, RODAS3 is about 5 to 10 times faster than QssA for 10% relative
errors and 20 to 100 times faster for 1% relative errors.

e While box model tests are needed to select and develop promising ODE solvers, in real 3D
transport-chemistry models other factors should be taken into account as well. Quite important
is the length of the time step in the operator splitting, since this determines the number of
restarts. Restarts are expensive and one-step methods have an advantage here over multistep
methods. Also robustness and ease of use are important in 3D models, since a subtle tuning of
the ODE code is cumbersome due to the large variety of conditions that will occur at different
grid points. In this respect the Rosenbrock solvers are also very attractive. All tests confirm that
they are easy to use and robust. We have to point out, though, that for several test problems
very large values of rtol (> 0.1) caused some of the Rosenbrock solvers to drift away from the
real solution.

e The answer to the question of which stiff integrator is “the best” for being used in air quality
models depends on a multitude of factors, some of the most important being the specific chemical
mechanism employed, the desired accuracy level and the hardware on which the code runs. In the
present work we consider a variety of chemical models, we cover the whole range of accuracy levels
of practical interest and run everything on two machines with completely different architectures.
Since the Rosenbrock methods systematically perform best, our summarizing general impression
is that for atmospheric chemistry problems the sparse Rosenbrock solvers are close to optimal.
In particular, for low accuracies up to two or three figures RODAS3 is never disappointing. Even
if RODAS3 would not be optimal in a certain setting, it will perform very close to ”the optimal
method” in that setting, say within 25% of cPU performance.

Although we have used utmost precaution in implementing the models and in testing the codes, still
undiscovered errors and/or less optimal settings of user parameters may have affected part of the
numerical results. The interested reader therefore is invited to repeat the experiments using our codes
from [9] and to join us? in this benchmark activity.
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A. APPENDIX: CONSISTENCY AND STABILITY OF ROSENBROCK METHODS

The performance of an integration method largely depends on its order of consistency and its stability
properties. Again for the convenience of readers from the atmospheric research community, in this
Appendix we will briefly discuss the consistency property for the Rosenbrock method, as well as some
useful results from the linear stability theory. Also some attention will be paid to the notion of
stiff-accuracy.

Consistency conditions The consistency conditions are found from a formal Taylor expansion of the
local error. Let y,+1 = E(y.) be a compact notation for the Rosenbrock method. The difference

6n(t) = E(y(t)) —y(t + h), (A7)

where y is the exact (local) solution of the ODE system y = f(y) passing through y(t), is called the
local error and the largest integer p for which

én(t) = O(RPT), h—0,

is called the order of consistency. Hence 6 (t) is the error after a single step from an exact solution,
while the order reveals how rapidly 6y, (t) approaches zero for a decreasing step size. Assuming sufficient
differentiability of y and f, the order p is determined by Taylor expanding the local error and equating
to zero the resulting terms up to the p-th one. This leads to the so-called consistency conditions which
are expressions in the formula coefficients. Satisfying these conditions gives the desired order p. While
the expansion is technically complicated and the resulting conditions can become quite lengthy for
a large p, the derivations are conceptually simple. For a maximum of four stages, the conditions for
order p < 3 are:

p:1 : b1+b2+b3+b4:1, (AS&)
1
P=2 : bfy+bsf3+bify=5 - (A.8D)
1
p=3 : byal+bzai +bal = 3’ (A.8¢)
1
ba B2 + ba(Ba2Bs + Ba3fs) = g 7t 72, (A.8d)

where
i—1 i—1
Bij = aij +%ijs @i =Y iy, Bi=Y By
Jj=1 =1
The conditions for p < 5 and general s can be found in Section IV.7 of [11].

Linear stability Let €, = y, — y(t,) denote the global error: the difference between the sought
exact solution of the ODE system § = f(y) and the computed approximation. The global error at the
forward time level t = ¢,,11 can be seen to satisfy

€nt1 = E(en +y(tn)) — E(y(tn)) + n(tn), (A.9)

showing that this error consists of two parts: the local error (A.7), which is a functional of the exact
solution, and the difference

E(En + y(tn)) - E(y(tn))a

where E(e, + y(t,)) represents the actual Rosenbrock step taken from the approximation y, = €, +
y(t,) and E(y(t,)) represents the hypothetical Rosenbrock step taken from the exact solution y(¢,).
This difference term reveals a dependence of €,41 on €,. For a proper functioning of the Rosenbrock
method it is desirable that, in an appropriate norm || ||,
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| E(en +y(tn)) — E(y(tn))ll < |l enll, (A.10)

because then the integration is stable in the sense that

lensll < Il €nll + [ 6n(tn)ll-

This error inequality is elementary, but also fundamental for one-step integration methods. It simply
shows that all local errors add up to the global error,

n—1
lenll <Y 116n )l
=0

if we assume that at the initial time ¢y the error ¢ = 0. From inserting 6(t;) = O(hP*1), while
assuming b — 0 and n — oo such that ¢, = nh is fixed, it follows that €, = O(h?). By adding up all
local errors one power of h is lost, resulting in a convergence order p.

If (A.10) does not hold, the global error can accumulate unboundedly. The integration is then
unstable and of no practical use. Whereas for general nonlinear stiff ODEs from chemistry no stability
analysis exists for Rosenbrock methods, their stability is well understood for stable, linear systems

y=Jy, (A.11)

with eigenvalues A satisfying Re(A\) < 0. From practical experience we know that linear stability often
provides a satisfactory prediction of stability for nonlinear problems if J is interpreted as the Jacobian
matrix f'(y). This interpretation is based on a linearization argument [5, 11]. Applied to (A.11), the
Rosenbrock method y,+1 = E(y,) reduces to the linear recursion

Ynt+1 = R(hJ)yn, (A.12)

where R(hJ) is a matrix-valued rational function that approximates the matrix-valued exponential
function e/, being the solution operator of (A.11). By inserting (A.12) into the error equation (A.9),
we obtain

€nt1 = R(hJ)en + 6p(tn),

or, equivalently,

n—1
€n = Rn(hJ)E() + Z R"_l_j(hj)(sh(t]'),
7=0
where, as before, n = 1,2,... . We see that the demand of stability can now be expressed as bound-
edness of powers of R(hJ), i.e.,
| R™(hJ)| < C, (A.13)

where C is a constant which is independent of n and hJ. This independence guarantees unconditional
stability in the sense that no restrictions exist on the step size. Condition (A.13) holds if we require
that the scalar rational function R(z), which is called the stability function, satisfies |R(z)| < 1
for arbitrary z = hA, Re(z) < 0. This is the famous property of A-stability originally proposed by
Dahlquist (see [11]). We note in passing that for our application we do not really need A-stability, since
for atmospheric chemistry the eigenvalues of the Jacobian are always located in the neighbourhood of
the real axis. So we actually need the boundedness property only near the negative half line.

We will impose the condition of L-stability, which in addition to A-stability, requires R(co) = 0.
L-stability is known to lead to a somewhat more robust approach and better mimics the damping
property of e* for Re(z) < 0. The property of L-stability is easily verified. The stability function R
is found by applying the method to the scalar problem § = Ay. This yields a rational function of the
form
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s | L-stability, p>s—1 L-stability, p = s
1 vy=1
2| @ VD)2 << @HVI2 | 7= (24v2))2
3| 0.18042531 < v < 2.18560010 | v = 0.43586652
4 | 0.22364780 < v < 0.57281606 | v = 0.57281606
Table 1: Values of v for L-stability.
p
R(z) = D) 7 (A.14)
(1 —nz)*

where P is a polynomial of degree s’,s’ < s, and the degree of P is less than or equal to s’ — 1 if
the stability function is to be L-stable. Mostly, s’ is equal to the number of stages s, but s’ can be
smaller. In this paper we only consider methods for which s’ = s.

Stability properties of rational functions of the type (A.14) have been studied extensively. For
our purpose the following results are very useful. Suppose that the order of consistency p of the
Rosenbrock method is also the order of comsistency of R, i.e., p is the largest integer for which
R(z) = e* + O(2P*!), 2 — 0. For L-stable functions we then usually have p = s or p = s — 1. In both
cases R is uniquely determined by . For the case p = s — 1, L-stability holds for certain intervals
for v and if p = s for one particular value of v (see Section IV.6 and Table 6.4 in [11]). By way of
illustration we list the values of 7 for 1 < s < 4 in Table 1.

Stiff accuracy  Stiff accuracy is a property related to the Prothero-Robinson model problem
7= My = #(1) +6(t),

where ¢ is some known function. Its solution reads
y(t +h) = e (y(t) — ¢(1)) + $(t + h)

and if Re(Ah) — —oo, the solution y(t + h) — ¢(t + h), irrespective the size of h. Prothero and
Robinson have investigated under which conditions on the formula coefficients, implicit Runge-Kutta
solutions mimic this property. Because, then a method can handle this particular transition to infinite
stiffness in an accurate manner, which has been the main motivation for this test model (see [5, 11]).
They proposed the term stiff accuracy for this phenomenon.

For the current test model, the global error recursion (A.9) reads

€nt+1 = R(2)en + 6n(tn),

where 85,(t,,) depends in a certain way on z = h\, h and ¢. Hairer and Wanner [11] show, in Section
IV.15, that for any consistent Rosenbrock method,

8n(tn) = O(h%/z), for h —0, z — oo,
if
asit+7si=b; (1=1,...,8) and a, =1. (A.15)

Hence, the desired transition property holds for the local error and because (A.15) also implies R(o0) =
0, this property holds for the global error as well. They therefore call a Rosenbrock method stiffly
accurate if (A.15) holds.

For general nonlinear stiff problems the virtue of stiff accuracy is not so clear. In [11] it is argued
that stiff accuracy is advantageous when solving stiff differential-algebraic systems with a Rosenbrock
method (cf. Proposition 3.12, Sect. VI.3). For ODEs a similar argument exists which goes as follows.
Suppose (A.15) holds. A straightforward computation then reveals the following relation between
yYn+1 and the final stage quantities ks and Y5,
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ks = hJyns1 + hf(Ys) — hJY,. (A.16)
Assuming that J is invertible, we may write

Ynt1 =Y, — (hI)TH(RF(Ys) = ko), (A.17)
which is the result of one modified Newton iteration for the equation

hf(y) — ks =0, (A.18)

using Y, as starting value. For given k, this equation can be interpreted as a collocation equation
for a numerical solution. Hence, if the property of stiff accuracy holds, if J is invertible and Y, a
sufficiently good starting guess, then the Rosenbrock solution y,41 is close to a collocation solution.
Observe that for linear systems §y = Jy we always have hJy,4+1 = ks according to (A.16). If the
final increment vector ks is close to a true derivative, this collocation property seems recommendable.
Other arguments supporting the notion of stiff accuracy for nonlinear problems do not exist as far as
we know.



