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Introduction

On request of the Academic Computing Centre Amsterdam (SARA) the Mathe-
matical Centre adapted its library of numerical procedures for use with
the CD CYBER 70 system. The major part is now available for use and
compatible with the CD ALGOL 60 compiler version 3. The resulting library
is called NUMAL.

The aim of NUMAL is to provide a high level numerical library for ALGOL 60
programmers. The library contains a set of validated numerical procedures
together with supporting documentation. Except for a small number of
double length scalar product routines, all the source texts are written

in ALGOL 60 and they are to a high degree independent of the computer/

compiler used.

Unlike the former numerical library of the Mathematical Centre, the do-
cumentation of the library NUMAL is self-contained and does not refer to
other MC-publications as far as the directions for use and the source

texts of the procedures are concerned.

0f course, the library is in continuous development and any description
will be an instantaneous one. In this report we give an index of the
procedures available in april 1974 and a kwic-index of the procedures

whose full descriptions were available at december 1St 1973.

The aim of the Mathematical Centre is to distribute an extended version

of the index and kwic-index approximately twice a year.




Organization of the library

The library NUMAL is stored as a number of permanent files in the

CD CYBER 70 system of SARA.

These files are:

1.

the file "numal 3 index"

This file contains an up to date index of the library. A listing of
version 740321 (march ZISt 1974) is printed below.

It gives a survey of the procedures and it describes the way one can

obtain the documentation of each procedure.

the file "numal 3"

(Numerical procedures in ALGOL 60, version 3).

This is a library file which contains the object code of the procedu-
res available. This library can be used when programs are loaded, com-

piled by the CD ALGOL 60 compiler, version 3.

the files "numal 3 document a"

"numal 3 document b"

etc.
These files contain the documentation.
Each of these documentation files is subdivided into a number of seg-
ments, each consisting of two successive records. The first record of
a segment contains a description of a procedure (or set of procedures)
and instructions for use; the second record contains the ALGOL 60

source text(s).

The files "numal 3 document a" and "numal 3 document b" only contain

ALGOL €0 source texts. Full documentation is in preparation. Mostly, the

user can find documentation in the LR-series of the Mathematical Centre.

The files "numal 3 document c¢" upto "numal 3 document f" contain full do-

cumentation of those procedures which also were available for the EL-X8

computer of the Mathematical Centre and which are now available in a re-

vised form for the CD CYBER 70 system.



The files "numal document g'" and "numal document h" contain full do-

comentation of the procedures, developed in 1973 for NUMAL.

The procedures described in "numal 3 document a" up to and including
"numal 3 document f" are available for all users of the SARA CD CYBER
70 system. At the moment (april 1974) the procedures described in

1

"numal 3 document g'" upto and including ''numal 3 document j'" are only

available for those who have the disposal of an MC-project number.
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ON REQUEST OF THE ACADEMIC COMPUTING CENTRE AMSTERDAM ( SARA )
THE LIBRARY NUMAL 15 DEVELOPED AND SUPPORTED BY THE NUMERICAL
MATHEMATICS DEPARTMENT OF THE MATHEMATICAL CENTRE (AMSTERDAM),

THE PRESENT DOCUMENT CONTAINS A SURVEY OF THE PROCEDURES AVAILABLE IN
DR PLANNED FOR NUMAL , MOREOVER, IT DESCRIBES THE WAY BY WHICH ONE
CAN OBTAIN FULL DOCUMENTATION OF THOSE PROCEDURES ALREADY AVAILABLE,

FILES,

THFE LIBRARY NuUMAL CONSISYS OF A NUMBER OF FILES:

1, FILF "NJMAL3INDEX"®,

THIS FILE CONTAINS THIS PARTICULAR DOCUMENT, I,k, THE INDLX TO
THE LIBRARY,

2, FILE "NUMAL3I" A LIBRARY FILE WHICH CONTAINS THE OBJECT CODE UF
THE PROCEDURES AVAILABLE, THIS LIBRARY CAN BE USED WHEN PROGRAMS,
COMPILED UNDER ALGOL3 , ARE LOADED, FOR THE USE OF A LIBRARY FILE
SEE  E,G,

SCOPE REF MANUAL, CHAPTER 6,
INTERCOM REF MANUAL, CHAPTER 3, XEG COMMAND,
3, THE FILES "NUMALINDOCUMENTA"®
"NYMALIDOCUMENTB®
WNUMAL3DOCUMENTCY
ETC, &
THESE FILES CONTAIN THE DOCUMENTATION OF THE PROCEDURES,
EACH OF THESE FILES 18 SUBDIVIDED INTQ A NUMBER OF SEGMEATS, EACH
CONSISTING OF TwO SUCCESSIVE RECORDS,
THE FIRST RECORD OF A SEGMENT CONTAINS A DESCRIPTION OF A
PROCEDURE ( DR SET OF PROCEDURES )j THE SECOND RECORD CONTAINS ThHE
ALGOL 60 SOURCE TEXT(S8),
THE FILES "NUMALSDOCUMENTA® AND  "NUMAL3IDOCUMENTB® ONLY CONTAIN
ALGOL 60 SOURCE TEXTS, FULL OOCUMENTATION IS IN PREPARATION, MOSTLY
THE USER CAN FIND DOCUMENTATION [N THE L ReSERIES OF THE
MATHEMATICAL CENTRE, WHICH CONTAINS DESCRIPTIONS OF THE ELex8
IMPLEMENTATION OF THE ALGORITHMS,
THE FILES UNUMAL3IDOCUMENTC" , *NUMAL3IDOCUMENTD" ETC, CONTAIN
FULL DOCUMENTATION,

HOW TO GET ENTRANCE TO THE DOCUMENTATION,

CLASSIFIED ACCORDING TO SUBJECT, THE PRESENT INDEX CONTAINS THE
NAMES 0OF THE PROCEOURES, THE CORRESPONDING CODE NUMBERS IN NUMALSZ
AND A REFERENCE TO THE DOCUMENTATION, THIS REFERENCE GIVE& A
FILENAME AND A NUMBER OF RECDRDS T0 BE SKIPPED ON THAT FILE (SKIPR),
IN DRDER T CONMSULT A SPECIFIED RECDRD OF DOCUMENTATION, ALL PRECEDING
RECNRDS HAVE 1O BE SKIPPED,



EXAMPLE,

IN ORDER TO OBTAIN THE DESCRIPTION OF THE PROCEDURE MMULTISTEP"
(SECTION S5,2,1,1,1,1, ¢ON FILE “NUMALSDOCUMENTC® , SKIPR=30 )
THE NEXT CONTROL CARDS CAN BE USED

ATTACH, N3C,NUMAL3DOCUMENTC,
SK1PF,N3C, 30,
COPYBR,N3C,0UTPUT,

reo e w
IN DRDER TD OBTAIN THE SOURCE TEXT, ONE MORE RECORD HAD TO BE SKIPPED,

SERVICE,

ADVICE ABOJT THE USE OF THE LIBRARY OR ABOUT THE USE OF THE INDIVIDUAL
PROCEDURES  CAN BE  OBTAINED FROM THE  PROGRAM ADVISOR  OF THE
MATHEMATICAL CENTRE,

NOTE,

FOR FUTURE PUBLICATION THE ODCUMENTATION IS SCATTERED WITH LAYOUT
SYMBOLST S+ %< $» $| $= §; 8, ETC,,

P oW, HEMKER
(MATHEMATICAL CENTRE)

REMARK ,

AT THE MOMENT ( 1974=3e20 ) THE PROCEDURES DESCRIBED IN NUMALDOCUMENTG,
NUMAL3DOCUMENTH AND  NUMALDOCEMENTJ ARE ONLY AVAILABLE FOR THOSE WHO
HAVE THE DISPOSAL OF AN MCePROJECTNUMBER,

NOQ PART OF THE | IBRARY NUMAL MAY BE REPRODUCED, STORED IN A
RETRIEVAL SYSTEM OR TRANSMITTED, IN ANY FORM OR BY ANY MEANS,
ELECTRONIC, PHOTOCOPYING, RECORDING, OR OTHERWISE, WITHOUT THE
PRIOR WRITTEN PERMISSION 0OF THE ACADEMIC COMPUTING CENTRE AMSTERDAM
(SARA) OR THE MATHEMATICAL CENTRE (AMSTERDAM),




INDEX

1 ELEMENTARY PROCEDURES

1y

1 REAL VECT AND MAT OPERATIONS

1o INITIALTZATION

24 OUPLICATION

3,MULTIPLICATION

4,SCALAR PRODUCTS

SLELIMINATION

6 INTERCHANGING

7 ROTATION

8,VECTDR NDRMS

9,VECTOR SCALING

PROCEDURE

INIVEC
INIMAT
INIMATD
INISYHMD
INISYMROW

DUPVEC
DUPVECROw
DUPROWVEC
DUPVECCOL
DUPCOLVEC
DUPMAT

MULVEC
MULROW
HULCOL
coLCsT
ROWCST

YECVEC
MATVEC
TAMVEC
MATMAT
TAMMAT
MATTAM
SEQVEC
SCAPRDY
SYMMATVEC

ELMVEC

ELMCOL

ELMRONW

ELMVECCOL
ELMCOLVEC
ELMVECROw
ELMROWVEC
ELMCOLROw
ELMROWCOL
MAXE|MROwW

ICHVEC
ICHCOL
ICHROW
ICHROWCOL
ICHSEQVEC
ICHSER

ROTCOL,
ROTROW

ABSMAXVEC

CODE

51040
31011
31012
31013
51014

31030
310314
31032
51033
31034
51035

31020
31024
31022
31134
31132

34010
34011
34012
34013
34014
34015
54016
54017
54048

34020
34023
34024
34021
34022
34026
34027
34029
34028
3qo02s

34030
34031
34032
34033
34034
44035

34040
34044

31060

PESCRIPTION

FILENAME

NUMAL SDOCUMENTD
NUMAL3DOCUMENTD
NOMAL 3DDCUMENTD
NUMAL 3DDCUMENTD
NUMAL3DOCUMENTD

NUMAL3DOCUMENTD
NUMAL3DOCUMENTD
NUMAL3DOCUMENTD
NUMAL 3D0CUMENTD
NUMAL3DUCUMENTD
NUMAL 3DOCUMENTD

NUMAL SDOCUMENTD
NUMAL3DOCUMENTD
NUMAL 3DOCUMENTD
NUMAL 3DOCUMENTD
NUMAL SDOCUMENTD

NUMAL3DOCUMENTD
NUMAL 3D0CUMENTO
NUMAL S00CUMENTD
NUMAL3DOCUMENTD
NUMAL3DOCUMENTD
NUMAL SDOCUMENTD
NUMAL 3DOCUMENTD
NUMAL3DOCUMENTD
NUMAL3DOCUMENTD

NUMAL3DOCUMENTD
NUMAL 3DOCUMENTD
NUMAL3DOCUMENTD
NUMAL3DOCUMENTO
NUMAL3IDOCUMENTD
NUMAL3IDOCUMENTD
NUMAL 3DOCUMENTD
NUMAL3DOCUMENTD
NOHALBDOCQMENTD
NUMAL3DUCUMENTD

NUMAL3DOCUMENTD
NUMALSDOCUMENTD
NUMAL3DOCUMENTD
NUMALBDOCUMENTD
NUMAL 3DOCUMENTD
NUMALSDOCUMENTD

NUMAL3DOCUMENTD
NUMAL3DOCUMENTD

NUMAL3DDCUMENTD

SKIPR
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INDEX

90

10, MATRIX NORMS

11, MATRIX SCALING

2,C0MPL VECT AND MAT OPERATIONS
s

2,
3,MULTIPLICATION

4,SCALAR PRODUCTS
S ELIMINATION

6, INTERCHANGING
7. ROTATION

8,VECTDR NORMS
9,VECTOR SCALING
10,MATRIX NORHS
11,MATRIX SCALING

3,COMPLEX ARITHMETIC
1,HMONADIC OPERATIONS

2,0YADIC OPERATIONS

4,LONG INTEGER ARITHMETIC

5,LONG REAL ARITHNETIC
1,ELEM, ARITHMETIC OPERATIONS
2,SCALAR PRODUCTS

1, 5, 2,

PROCEDURE

REASCL

MAXHMAT

COMCOLCST
COMROWCST

COMMATVEC
HSHCOMCOL
HSHCOMPRD

ELMCOMVECCOL
ELMCOMCOL
ELMCOMROMVEC

ROTCOMCOL
ROTCOMROW

COMSCL
COMEUCNRM

SCLCOM

COMABS
COMSORT
CARPOL

COMMUL,
coMoplLv

LNGINTADD
LNGINTSUR
LNGINTMUL
LNGINTD]V
LNGINTPQOw

LNGVECVEC
LNGMATVEL
LNGTAMVECL
LNGMATMAT
LNGTAMMAT
LNGMATTAM
LNGSEQVEC
LNGSCAPRD]
LNGSYMMATVEC

GODE

34183
34230

3u3se
34553

34354
34355
34356

34376
34377
34378

34357
3u3s8

34193
34359

34360

34340
susay
34344

34341
3a342

31200
31201
31202
31203
31204

14410
34411
34412
34413
a4y
34418
34416
30417
34418

DESCRIPTION

FILENAME

NUMAL3DOCUMENTF

NUMAL3DOCUMENTD

NUMAL 3DDCUMENTG
NUMAL 3DOCUMENTG

NUMAL 3DOCUMENTG
NUMAL 3D00CUMENTG
NUMALIDOCUMENTG
NUMAL3IDOCUMENTG

NUMAL3IDOCUMENTG
NUMAL3DOCUMENTG

NUMAL3DOCUMENTG
NUMAL 3DOCUMENTE
NUMAL3D0CUMENTF
NUMAL3DOCUMENTG
NUMAL3IDOCUMENTG
NUMAL SDOCUMENTD
NUMALBDOCUMENTD
NUMAL300CUMENTD

NUMAL 3DOCUMENTD
NUMAL3DOCUMENTD

NOT
NOT
NUT
Nyt
NOT

YET
YET
YET
YET
YET

AVAILABLE
AVAILABLE
AVAILABLE
AVATLABLE
AVAILABLE

NUMAL SDUCUMENTH
NUMAL3DOCUMENTH
NUMAL 3DOCUMENTH
NUMAL3DDCUMENTH
NUMAL 3DOCUMENTH
NUMAL 3DOCUMENTH
NUMAL3DOCUMENTH
NUMAL3DOCUMENTH
NUMAL3DOCUMENTH

SKIPR

26

18

2l
24

oo O

10
20

2e

14
16
18

20
22

14
14
14
14
14
14
14
14
14




INDEX

2¢ALGEBRAIC EVALUATIONS
1,EVAL, OF A FINITE SERIES
2,EVAL, OF POLYNQMIALS
1,EVAL, OF GENERAL POLYNOMIALS

24EVAL, OF DRTAOGON, POLYNOMIALS

3.EVAL, OF TRIGOWOM, POLYNOMIALS
3,EVAL, OF CONTINUED FRACTIONS

4,0PERATIONS ON POLYNOMIALS
1, TRANSF, OF REPRESENTATION

2,0P, ON GENERAL POLYNOMIALS

35,0P, ON ORTHOGONAL POLYNOMIALS
5,FAST FOURIER TRANSFOR™
3,LINEAR ALGEBRA

1,LINEAR SYSTEMS
1,FULL MATRICES

1,SQUARE NON«§INGULAR MATRICES

1.,REAL MATRICES
1 GENERAL MATRICES

{1 ,PREPARATDRY PROCEDURES

2,CALCULATION OF DETERMINANT

3,50LUTIOV OF LINEAR EQUATIONS

3. 1, 1, 1, 1, 1, 3,

PROCEDURE

POL
NEWPOL,
TAYPOL
NORDERPOL
DERPOL

CHEPOL
ALLCHEPOL
ORTPOL,
ALLORTPOL
CHEPOL SER
ORTPOL SER

FOUSER
JFRAC

NEWGRN
POLCHS
POWCHS

ADDPOL
SUBPOL
MULPOL
DIFPOL
INTPOL

INTCHS

FFT

DEC
GSSEL™
ONENRMINY
ERBELM
GSSERB
GSSNRY

DETERY

SoL

DECSOL
SOLELM
GSSSOL

CODE

51040
31041
31241
31242
31248

31042
31043
31044
31045
31046
31047

31090
35083

31050
31250
31051

31053
31054
31052
31055
31057

31248

51500

34300
su2sy
34240
ju24y
34242
34252

34303

34051
34301
34061
34232

DESCRIPTIUN

FILENAME

NUMAL 3DOCUMENTC
NUMAL3DOCUMENTC

NOT
NOT
NOT

NOT
NUT
NUT
NDT
NOT
NOT

NOT

YET
YET
YET

YET
YET
YET
YET
YET
YET

YET

AVAILABLE
AVAILABLE
AVATLABLE

AVAILABLE
AVAILABLE
AVAILABLE
AVAILABLE
AVAILABLE
AVAILABLE

AVAILABLE

NUMAL 3D00CUMENTY

NUMAL 300CUMENTC

NOT
NOT
NOT
NOT
NOT
NOT
NDT

NOT

NOT

YET
YET

YET
YET
YET
YET
YET
YET

YET

AVAILABLE
AVAILABLE

AVAILABLE
AVAILABLE
AVAILABLE
AVAILABLE
AVAILABLE

AVAILABLE

AVAILABLE

NUMAL 300CUMENTE

NUMAL3DOCUMENTE
NUMAL3DOCUMENTE
NUMAL3DOCUMENTE
NOMAL300CUMENTE
NUMAL 300CUMENTE

NUMAL3D0CUMENTE

NUMAL 3DOCUMENTE
NUMAL 3DOCUMENTE
NUMAL SOOCUMENTE
NUMAL 3DOCUMENTE

SKIPR

22
144
22
2e
22
2H

26
26

26




INDEX

3, 1, 1, 1, 1, 14 3,
H,MATRIX INVERSION

S,ITERATIVELY IMPROVED SOLUTION

2,SYMMETRIC POS DEF MATRICES
{ FREPARATORY PROCEDURES

2,CALCULATION OF DETERMINANT

3,50LUTION OF LINEAR EQUATTIONS

4,MATRIX INVERSION

2,COMPLEX MATRICES
2,FULL RANK OVERDETERH SYSTEMS
1 REAL MATRICES
| ,PREPARATORY PROCEDURES

2,LEAST SQUARES SOLUTION
{ INVERSE WATRIX OF NORMAL EQN,
2,COMPLEX MATRICES
3,0THER PROBLEMS

1 ,REAL MATRICES
14SOLUTION CVERDETERMINED SYST

2,S0LUTION UNDERDETERM SYSTEMS

3,S0LUTION HO4OGENEDUS EGQUATION

4,PSEUDORINVERSION

3 1a 1o 3 te 4

PROCEDURE

GSSSOLERB

INY
DECINY
INVY
GSSINV
GSSINVERB

ITISOL
GSSITISOL
ITISOLERS
GSSITISOLERB

CHLDECE
CHLDEC]

CHLOETERM2
CHLDETERM]

CHLSOL2
CHLSOL{
CHLDECSOLR
CHLDECSOLL

ChLINVZ
CHLINVY
CHLDECINVZ
CHLDECINV]

L.SQORTDEC
LSQDGLINY

L30SOL
LSGORTDECSOL

LSQAINYV

SOLSVDOVR
SOLOVR

SCOLSVRUND
SOLUND

HGMSOLSVD
HOMS0|,

PSDINYSYD
PSDINY

Lt

34243

34053
34502
34235
34236
34244

34250
34251
54253
34254

34310
S4311

LKV
34343

34390
34394
34392
34393

34400
54401
3a402
54403

34134
34132

34431
34135

34136

34280
34281

34282
34283

3uz2a4
34285

34280
34287

DEBTRIFIITN

FILENAME SKIPR

NUMALIDOCUMENTE 26

NUMAL3DUCUMENTE 28
NUMALSDOCUMENTE 28

NUMAL3DUCUMENTE 28
NUMAL3DOCUMENTE 28
NUMAL SDOCUMENTE 28
NUMAL3DOCUMENTE 50
NUMAL3DOCUMENTE 10
NUMAL3DOCUMENTE 30
NUMAL3ODCUMENTE 30
NUMAL 300CUMENTF 0
NUMAL $DOCUMENTF 0
NUMAL SOUCUMENTF 2
NUMAL3DOCUMENTF 2
NUMAL 300CUMENTF 4
NUMAL3DOCUMENTF 4
NUMAL 3DOCUMENTF 4
NUMAL3DOCUMENTF 4
NUMAL 3DOCUMENTF b
NUMAL}DUCyMtNIF [}
NUMAL3DDCUMENTF 6
NUMAL3DOCUMENTF 6

NUMAL3DUCUMENTE 52
NUMAL SOOCUMENTE 32

NUMALZDUCUMENTE 34
NUMAL SDUCUME NTE 34

NUT YET AvaIlasiE

NUMAL3DUCUMENTH Q
NUMALBDOCUMENTH 0
NUMAL 300CUMENTH 2
NUMAL 3DOCUMENTH 2
NUMAL 3DOCUMENTH 4
NUMAL3DOCUMENTH 4
NUMAL SD00CUMENTH 6
NUMAL SDOCUMENTH 6




INDEX PROCEDURE CODE DESCRIPTION

FILENAME SK1PR
e 1y 3, 2,COMPLEX MATRICES
2.SPARSE MATRICES
1 DIRECT METHODS
1,REAL MATRICES
1 NON=SYMMETRIC MATRICES
{,BAND MATRICES
1 ,PREPARATORY PROCEDURES
DECBND 34520 NUMAL3SQUCUMENTE 0
2,CALCULATION OF DETERMINANT i
DETERMBND 314321 NUMAL SDOCUMENTE 2
3,S0LUTION OF LINEAR EQUATIONS B ’
SOLBND 54071 NUMAL3DOCUMENTE 4
DECSOLBND 34322 NUMAL3DOCUMENTE 4
2,TRIDIAGONAL 4ATRICES ’
{ PREPARATORY PROCEDURES
DECTR] 34423 NUMAL3DOCUMENTH 16
DECTRIPIV 34426 NUMAL3DOCUMENTR 16
2,CALCULATION OF DETERMINANT
3,S0LUTION OF LINEAR EQUATIONS
SOLTRI 34424 NUMAL3DOCUMENTH 16
DECSOLTRI 34425 NUMAL 3D0CUMENTH 18
SOLTRIPIV 34427 NUMAL3DOCUMENTH 18
DECSOLTRIPIV 34428 NUMAL 3DOCUMENTH 18
3,BLOC-TRIDIAGONAL MATRICES
2,SYMMETRIC POS DEF MATRICES
1 ,BAND MATRICES
1 ,PREPARATORY PROCEDURES
CHLDECBND 34330 NUMAL 3DOCUMENTE 6
2,CALCULATION OF DETERMINANT N
CHLDETERMBND 34534 NUMAL3DOCUMENTE 8
3,S0LUTION OF LINEAR EQUATIONS ’ i
CHLSOLBND 34332 NUMAL3DOCUMENTE 10
CHLDECSOLBND 34333 NUMAL3DOCUMENTE 10
2,TRIDIAGONAL “ATRICES '
1 ,PREPARATORY PROCEDURES
DECSYMTRI 34420 NUMAL3DOCUMENTH 20
2,CALCULATION OF DETERMINANT
3,S0LUTION OF LINEAR EQUATIONS
SOLSYMTR] 34424 NUMAL3DOCUMENTH 22
DECSOLSYMTR] 34422 NUMAL3DOCUMENTH 22
3,BLOC=TRIDIAGONAL MATRICES )
2.,COMPLEX MATRICES
2,ITERATIVE METHODS
1,REAL MATRICES
CONJ GRAD 34220 NUMAL3DOCUMENTC 36
CONJ RESI 342214 NOT YET AVAILABLE
2,COMPLEX MATRICES
2,TRANSFORMATION TO SPECIAL FORM
1,SIMILARITY TRANSFORMATIONS
1 EQUILIBRATION
1,REAL MATRICES
EQILBR 34173 NUMAL 3DOCUMENTF 1e
BAKLBR 34174 NUMAL3DOCUMENTF 12

2.COMPLEX MATRICES
2, 1, 1, 2, EQILBRCOM 343614 NUMAL3DOCUMENTG 16




INDEX PROCEDURE CODE DESCRIPTION

FILENAME SKIPR
30 2, L. be 2, BAKLBRCOM 34362 NUMAL3DOCUMENTG 16
2, TRANSF TO HESSENBERG FORM ’
1,REAL MATRICES
1,SYMMETRIC MATRICES
TFMSYMTRI2 34440 NUMAL SDOCUMENTD 34
BAKSYMTRIZ2 34144 NUMAL3DUCUMENTD LY
TFMPREVEC 34142 NUMAL 3DOCUMENTD 34
TFMSYMTRIY 34143 NUMAL3DOCUMENTD 34
BAKSYMTRI| 34tau NUMAL SDOCUKENTD 34
2,ASYMMETRIC MATRICES
TFMREAHES 54470 NUMAL 3DUCUMENTF 14
BAKREAHES 1 Sa47y NUMAL 3DOCUMENTF 14
BAKREAHES2 4172 NUMAL 3DUCUMENTF 14
2,COMPLEX MATRICES
{,HERMITIAN MATRICES
HSHHRMTR] 54563 NUMAL3DOCUMENTG 4
HSHHRMTRIVAL 34364 NUMAL SDUCUMENTG 4
BAKHRMTRY 34365 NUMAL3DOCUMENTG 4
2, NONeHERMITIAN MATRICES
HSHCOMHES 34366 NUMAL3DDCUMENTG 14
BAKCOMHES 34367 NUMAL SDOCUMENTG 14
2,0THER TRANSFORMATIONS
1,TRANSF TO BIDIAGONAL FIRM
1,REAL MATRICES
HSHREABID 34260 NUMAL SDOCUMENTh &
PSTTFMMAT 3ueel NUMAL3DOCUMENTH 8
PRETFMMAT 34262 NUMAL SDOCUMENTH [
2,COMPLEX MATRICES ’ -
3,7THE (ORDINARY) ETGENV PROBLEM
1,REAL MATRICES
1, SYMHMETRIC MATRICES
1,TRIDIAGONA| MATRICES
VALSYMTRY 34151 NUMAL3DOCUMENTD 36
VECSYMTRI 3u152 NUMAL3DOCUMENTD 36
QRIVALSYMTRI 34160 NOT YET AVAILABLE
QRISYMTRI 3utsd NUMAL30UCUMENTD 36
RATAQR] 34166 NOT YET AVAILABLE
2,FULL MATRICES
EIGVALSYM2 34154 NUMAL SDOCUMENTE 12
EI6SYM2 34454 NUMAL 3DOCUMENTE 12
EIGVALSYM] 34155 NUMAL 300CUMENTE 12
E1GSYM] 3aiss NUMAL3DOCUMENTE 12
QRIVALSYMZ Jujee NUMAL3DOCUMENTE 12
GRISYM 3uye3 NUMAL3DOCUMENTE 12
QRIVALSYM] 34164 NUMAL3DDCUMENTE 12
2 ASYMMETRIC MATRICES
1,MATRICES IN HESSENBERG FORM
REAVALGR] 34180 NUMAL3DOCUMENTF 16
REAVECHES 3ai8) NUMAL3O0CUMENTF 16
REAGRI 34186 NUMALSDOCUMENTF L6
COMVALGQR] 34190 NUMAL3DOCUMENTF 16
COMYECHES 34491 NUMAL3DOCUMENTF 16
2,FULL MATRICES )
REAEIGVAL 34182 NUMAL 3DOCUMENTY 6

3¢ 30 by 20 2 REAEIG) 14184 NUMAL3DDCOMENTY 6




3,

INDEX

2,COMPLEX MATRICES
{1 HERMITIAN MATRICES

2,NON=HERMITIAN MATRICES

1 4MATRICES IN HESSENBERG FORM

2,FJLL MATRICES

4,THE GENERALIZED
S¢SINGULAR VALUES

EIGENY PROBLEM

1 REAL MATRICES
1,BIDIAGONAL MATRICES

2,FULL MATRICES

2,COMPLEX MATRICES
6,26R0S OF POLYNOMIALS
1, ZEROS OF GENERAL REAL POLYNOM,

2,ZEROS OF DRTHOGONAL POLYNOM,

3,LERQS OF COMPLEX POLYNOMIALS

4y ANALYTIC EVALUATIONS
1,EVAL, OF AN INFINITE SERIES

4,

2, GUADRATURE

1,0NE=DIMENSIONAL QUADRATURE

2,MULTIDIMENSIONAL QUADRATURE

3,GAUSSIAN WEIGHTS

3.NJMERICAL DIFFERENTIATION
{1 FUNCTIONS OF ONE VARIABLE
2,FUNCTIONS OF MORE VARIABLES

1,CaLC,
3, 2, 1,

WITH DIFFERENCF FORMULAS

PROCEDURE

REAEIGR2
REAEIGY
COMEIGVAL
COMEIGY
COMEIG2

EIGYVALHRM
EIGHRM
QRIVALMRM
ORIHRM

VALGRICOM
GRICOM

£IGYALCOM
EIGCOM

QRISNGVALBID
GRISNGYALDECBID

QRISNGVAL
QRISNGVALDEC

POLZEROS
ALLZERORTPOL
LUPZERORTPOL
SELZERORTPOL
COMKWD

EULER
SUMPOSSERIES

QADRAT
INTEGRAL
TRICUB

RECCOF
GSSHGT

JACOBNNF

CODE

34185
sa187
3u192
34194
34495

34368
34369
34370
3437y

34372
34373

34574
34375

34270
Juery

34272
34273

34500
31362
31363
31364
34345

32010
32020

32070
32051
32078

31249
31420

34437

DESCRIPTION

FILENAME

NUT YET AYAILABLE
NUMAL 3DOCUMENTY
NUMAL 3DOCUMENTY
NUMAL 300CUMENTY
NOT YET AVAILABLE

NUMAL SDOCUMENTG
NUMAL SDUCUMENTG
NUMAL 3DDCUMENTG
NOMAL3IDOCUMENTG

NUMAL SDOCUMENTG
NUMAL 3D0CUMENTG

NUMAL 3DOCUMENTG
NUMAL30OCUMENTG

NUMAL 3DOCUMENTH
NUMAL3DDCUMENTH

NUMAL3DOCUMENTH
NUMAL3DOCUMENTH

NOT YET AVAILABLE
NOT YET AVAILABLE
NOT YET AVAILABLE
NUT YET AVAILABLE
NUMAL3DGCUMENTD

NUMAL 3DOCUMENTD
NUMAL 3DUCUMENTE

NUMAL SDOCUMENTC
NUMAL3DOCUMENT(
NOT YET AVAILABLE

NUT YET AVAILABLE
NUT YET AVALLABLE

NOT YET AVAILABLE

§K1PR

o oo

[ R R

12
12

i0
10

10
10

12
12

24

28
16




INDEX PROCEDQURE CO0E DESCRIPTIUN

FILENAME SKIPR
4, 3, 2, 1, JACOBNMF 34438 NUT YET AVAILABLE
JACOBNBNDF 4439 NOT YET AVAILABLE
S5,ANALYTICAL PROBLEMS
1,ANVALYTICAL EQUATIONS
1 NONaLINEAR EQUATIONS
1,A SINGLE EQUATION
ZEROIN 34150 NUMAL 3DOCUMENTF 18
ZERDINRAT 34436 NUMAL3DUCUMENTF 18
2,A SYSTEM OF EQUATIONS
1 AUXILTARY PROCEDURES
2,JACOBIAN MATRIX NOT AVAILABLE
QUANE wBND 34430 NUT YET AVAILABLE
QUANE4BNDY 34431 NUT YET AVAILABLE
3,JACOBIAN MATRIX AVAILABLE
DAMPED NEWTON 34200 NUMAL3DOCUMENTB 44
2,UNCONSTRAINED OPTIMIZATION .
1,FUNCTIONS OF ONE VARIASLE
2,FUNCTIONS OF MORE VARIABLES
1,AUXTLTARY PROCEDURES
LINEMIN 34210 NUMAL 3DDCUMENTD 30
RMKLUPD su211 NUMAL 3DUCUMENTD 30
DAVUPD s4212 NUMAL 3DOCUMENTD 30
FLEUPD 34213 NUMAL3DOCUMENTD 30
2,80 DERIVATIVES AVAILABLE
3,GRADIENT AVAILABLE
RMKIMIN 4ot NUMAL 3DOCUMENTD 30
FLEMIN 34218 NUMAL3DOCUMENTD 50
3,0VERDETERMINED NONLINEAR SYST, ’ ) ’
1,LEAST SQUARES SOLUTIONS
1 AUXILTARY PROCEDURES
2,JACOBIAN MATRIX NOT AVAILABLE
3,JACOBIAN MATRIX AVATLABLE
MARQUARDTY 34440 NUT YET AVAILABLE
2,FUNCTIONAL EQUATIONS
1,01FFERENTIAL EGUATIONS
1, INITIAL VALUE PROBLEMS
1.FIRST ORDER ORDINARY D,E,
1 ,NO DERIVATIVES RHS AVAILABLE
RK { 33010 NUMAL3DOCUMENTC 8
RK YN 33011 NUMAL SDOCUMENTC 10
RKU4A 33016 NUMAL3DUCUMENTC 20
RKYNA 33047 NUMAL3DOCUMENTC ee
RKSNA 33018 NUMAL3DOCUMENTC 24
MULTISTEP 33080 NUMAL3IDOCUMENTC 30
DIFFSYS 33180 NUMAL3DOCUMENTJ €
MODIFIED RUNGE KUTTA 33060 NUMAL SDOCUMENTC 28

EXPONENTIAL FITTED RUNGE KUTTA 33070 NUMAL 3DOCUMENTA is
2,JACCBIAN MATRIX AVAILABLE

EFSIRK 33160 NUMAL3DOCUMENTC 34
EFERK 33120 NUMALSDOCUMENTC 32
LINIGERY 33150 NUMAL3DOCUMENTD 38
LINIGERR 331314 NUMAL3DOCUMENTD 38
TWEFSIRK 33390 NOT YET AVAILABLE

SEE ALSD PROC, MULTISTEP (5,2,1,1,1,1)
S, 2y 1o i, 1 3, SEVERAL DERIVATIVES AVAJLABLE




INDEX PROCEDURE CODE DESCRIPTION

FILENAME SKIPR
Se 2, 1, 1, 1, 3, MODIFIED TAYLOR 33040 NUMAL3DOCUMENTC 26
EXPONENTIAL FITTED TAYLO- 53050 NUMAL3DOCUMENTA H
2,SECOND ORDER ORDINARY D,E, ’ )
1,NO DERIVATIVES RHS AVAILABLE
RK2 33012 NUMAL3DOCUMENTC 12
RK2N 33013 NUMAL3DOCUMENTC 14
RK3 33014 NUMAL 3DOCUMENTC 16
RK3IN 53015 NUMAL3DOCUMENTC 18
2,SEVERAL DERIV, RHS AVAILABLE
3,PARTIAL DIFFERENTIAL EQUATIONS
2 BOUNDARY VALUE PROBLEMS
1,TWD POINT B,V,P,
{,SHOODTING METHODS
2,DISCRETIZATION PROCEDURES
3,SPECIAL LINEAR SYSTEMS
SEE ALSO SECTION 3,1,2
3,SPECIAL NONm[INEAR SYSTEMS
2.THOSDIMENSIONAL B,V ,.P,
1,ELLIPTIC B,V,P,5
1,DISCRETIZATION PROCEDURES
2,SPECIAL LINEAR SYSTEMS
RICHARDSON 33470 NUT YET AVAILABLE
ELIMINATION 33171 NOT YET AVAILABLE
SEE ALSO SECTION 3,1,2
3,SPECTAL NONe[ INEAR SYSTEMS
2,PARABOLIC "™ HYPERBOLIL B,V,P,S
3, MULTI=DIMENSIONAL B,V,P,
4,0VEReDETERMINED PROBLEMS
3,INVERSE PRORBLEMS
2,INTEGRAL EQUATIONS
3,INTEGROw DIFFERENTIAL EGS
u,DIFFERENCE EQUATIONS
5,CONVOLUTION EQUATIONS
6,FUNCTION EVALUATIONS
{1 JMATHEMATICAL CONSTANTS
EULER NUMBERS 3513y NOT YET AVAILABLE
BERNOULLY NUMBERS 35132 NOT YET AVAILABLE
2,PHYSICAL CONSTANTS
3, RANDOM NUMBERS
RANDOM 30010 NUT YET AVAILABLE
SETRANDOM 300114 NUT YET AVAILABLE
4, ELEMENTARY FUNCTIONS
1, CIRCULAR FUNCTIONS
TAN 35120 NUT YET AVAILABLE
ARCSIN 35121 NUT YET AVAILABLE
ARCCOS 35122 NUT YET AVAILABLE
2 MYPERBOLIC FUNCTIONS '
SINH 35111 NUMAL 3SDOCUMENTA 24
CO8H 35142 NUMAL SDOCUMENTA 24
TANH 35113 NUMAL 300CUMENTA 24
ARCSINH 35114 NUMAL3IDOCUMENTA 24
ARCCOSH 35115 NUMAL3DOCUMENTA 24
ARCTANH 35116 NUMAL SDOCUMENTA 24

S,EXPONENTIAL INTEGRAL
6, S, El 35080 NUMAL3DDCUMENTJ 4




INDEX

6, 5,

6,GAMA FUNCTION, ETC,

7,ERROR FUNCTION, ETC,

8,LEGENDRE FUNCTIONS
9,BESSEL FUNCTIONS OF INT, ORDER
{,BESSEL FUNCTIONS J AND Y

2,BESSEL FUNCTIONS 1 AND K

3,KELVIN FUNCTIONS
10,BESSEL FUNCTIONS OF REAL ORDER
1,BESSEL FUNCTIONS J AND Y

2,BESSEL FUNCTIONS 1 AND K

3,SPHERICAL BESSEL FUNCTIONS

4,AIRY FUNCTIONS

6y 10, 4,

PROCEDURE

EI ALPHA
E1 BETA

GAMMA
RECIP GAMMA
LOG GAMMA
INCOMGAM
INCBETA
IBPPLUSN
IBOPLUSN
IXQFIX
1XPFIX
FORWARD
BACKWARD

ERF
FRESNEL
FG

BESSELJ
BESSELY
Yo

BESSELI
BESSELK

KO
NONEXPBESSELI
NONEXPRFSSELK
NONEXPKQ

JAPLUSN
YA
YAPLUSN
BESSELPG

IAPLUSN
NONEXPTAPLUSN
KA

KAFLUSN
NONEXPKA
NONEXPKAPLUSN

SPHERBESSJ
SPHERBESSY
SPHERBESSI
SPHERBESSK
NONEXP SPHERBESSI
NONEXP SPHERBESSK

AJRY
Al

CODE

35081
35082

35061
35060
55062
35030
55050
35051
35052
35053
35054
35055
35056

35020
35027
35028

35100
55101
35078

35102
35103
35040
35104
35105
35038

35079
35075
315076
35077

351006
35107
35071
35072
35073
35074

35150
3515¢
35152
35153
35154
35155%

35140
35144

DESCRIPTION

FILENAME

NUMAL3DOCUMENTJ
NOT YET AVAILABLE

NUMAL3DOCUMENTC
NUMAL3DDCUMENTC
NUMAL3DUCUMENTC
NUMAL 3DUCUMENTC
NUMAL3DOCUMENTE
NUMAL3DOCUMENTE
NUMAL 3DOCUMENTE
NUMAL 3DDCUMENTE
NUMAL3DUCUMENTE
NUMAL SDOCUMENTE
NUMAL3DOCUMENTE

NUMAL 3DUCUMENTC
NOT YET AVAILABLE
NOT YET AVAILABLE

NUMAL IDOCUMENTA
NUMAL3DUCUMENTA
NOT YET AVAILABLE

NUMAL3DOCUMENTY
NUMAL SDOCUMENTY
NUMAL3DOCUMENTJ
NUMAL 3DOCUMENTY
NUMALL3DOCUMENTY
NUMAL 3D0CUMENTY

NUT YET AVAILABLE
NUMAL3DOCUMENTJ
NUHMAL3DOCUMENT
NUMAL3DOCUMENTY

NUT YET AVAILABLE
NOT YET AVAILABLE
NUMAL 3DOCUMENTY
NUMAL3DOCUMENTJ
NUMAL 3DOCUMENTY
NUMAL3IDOCUMENTY

NOT YET AVAILABLE
NUT YET AVAILABLE
NUT YET AVAILABLE
NUT YET AVAILABLE
NOT YET AVAILABLE
NOT YET AVAILABLE

NOT YET AVAILABLE
NOT YET AVAILABLE

SKIPK

2

42
42
4e
40
14
14
14
14
14
14
14

8

26
26

10
10
10
10
10
10

14

14

12
12
12
12




INDEX

6y, 10, 4,

ToINTERPOLATION & APPROXIMATION
1, INTERPOLATION

2  APPROXIMATION
1, PREPARATORY PROCEDURES
2.NEAR MINIMAX APPROXIMATION
3, MINIMAX APPROXIMATION
4,LEAST SQUARES APPROXIMATION

8,NUMBER THEORY
9, TABLE HANDLING

VERSIONG 740321

PROCEDURE

81
AIRYZERQS
NEWTON

INT
SNDREMEZ

MINMAXPOL

READ
WRITE

CO0t

35142
35145
360140

356020
36024

36022

39999
39998

DESCRIPTION

FLLENAME SKIPR

NUT YET AVAILABLE
NUT YET AVAILABLE

NUMAL3IDOCWMENTC 44
NUMAL}DOCQMENTE 18
NUMALSDOCUMENTE 20
NUMALSDOCUMENTC  4b

NOT YET AVAILABLE
NUT YET AVAILABLE




OQBSOLETE PROCEDURES

PROCEDURE

RNKSYM20Q
SOLSYM20
RNKSOLSYH20
INVSYM20
RNKINVSYMPRQ
SOLSYMHOM20
RNKSYML{Q
SOLSYMiO
RNKSOLSYMIO
INVSYMLQ
RNKINVSYMLO
DET

DETSOL
DETINV
RNKELM
RNKSOLELM
SULROM
INVELM
DLTYBND
DETSOLBND
DETSYM?2
SOLSYM2
DETSOLSYM2
INVSYM2
DETINVSYM2
DETSYMY
SOLSYHY
DETSOLSYMY
INVSYMY
DETINVSYMY
DETSYMBND
SOLSYMBND
DEYSOL SYMBND
LSADEC
LSQDECSOL

VERSIONG 74042}

CODE

34100
34108
54102
34103
34104
34108
34t10
34141
3q112
34113
34114
34050
34052
34054
34060
34062
34063
34064
34070
34072
34080
34081
34082
54083
34084
34090
54091
34092
34093
34094
34120
3412y
34122
34130
34133

RETIREMENT

730901
730901
730901
73090t
7309014
7309014
730901
7309014
730901
730901
730901
730901
73090¢
730901
730901
730901
730901
730901
730901
730901
730901
730901
730901
730901
7309014
730901
730901
7309014
7309014
730901
7309014
73090¢
730901
730901
730901

EXPIRATION

740401
731201
731201
740401
740401
740401
7404014
740401
740401
740401
740401
T40401
740401
731201
7404014
7404018
740404
740401
7404014
740401
740401
THOU01
740401
T40401
740401
TAQ40L
740401
7404014
740401
740404
T4040)
740401
7404018
740401
740401

REPLACED BY

DEC(3,800,0y0gl ol )sDETERM(3 1 ,1,1,1,1,2)
DECSOL(3,1,1,1,1,1:3),DETERM,
DECINV(3,1,1,8,041,4),DETERM,
GSSELM(3,1,1,1:1,1,1)

GSSSOL(3,1,1,8e141,3)

SINGULAR VALUE PROCEDURES (3,5)
GESINV(3,1,0,0e8,1,4)

DECBND(3, 1,28 ¢lalol 1) DETERMBND(3,1,2,8,1,3,1,2)
oscSOLBND(3.1,2,1.1,x.1 3),DETERMBND,
cHLoECZtS.xoi.t.x.2,x).CHLoETERM2(3.1,1.1.1,2.2)
CHLSOL2(3,1,1,1,1,2,3)
anDEcsoLeti.i,t.i.1.2.3).CHLDETERM2.
CHLINV2(3,1,14141,244)
CHLDECINV2(3,4,14141s244))CHLDETERMZ,
CHLDECS(3,4,1,1,1,2,1),CHLDETERMI(3,4,1,1,1,2,2)
CHLSOLE(3,1,141,1,2,3)
CHLDECSOL1(3,1,1,1.1,2,3),CHLDETERM],
CHLINVI(3,1,1,0,8,2,4)
CHLDECINV{ (3,3 ,848,1,2,4)CHLOETERMY,
CHLoEcsNocs.x.2,1.1.2,3.i3.annErewMe~o,
CHLSOLBND (3,1,2,1,1,2,1,3)
CHLDECSOLBND (3,1 ,2¢1,14241¢3),CHLDETERMBND,
LSAORTDEC(3,1,14241,1)

LSRORTDECSOL (3,14142,1,2)




Kwic index to the library NUMAL of ALGOL 60 procedures in numerical

mathematics.

This key word in context (kwic) index is based upon only those procedures

whose full documentation was available on 1 december 1973.

Directions for use:
The kwic index is based upon program abstracts such as:
32070 C 6 $qgadrat ( $quadrature ) computes the $definite $integral of a

$function of one variable over a finite interval.

The first ten characters ("32070 C 6") of each abstract are a code to
locate the procedure, while the remaining characters until a period com-
prise a short description of the program (its name, what it does, and
how it does it), only "important" words (preceded by a $ in the above
example) are used as key words in the kwic index.

The first appearance of our above example abstract in the kwic index is:

t ( quadrature ) computes the definite integral of a function of one

variable over a finite interval. 32070 C 6

If this program (qadrat) is of intefest, you can locate it as follows:
the first five digits give the number of the object code procedure in the
library file "NUMAL3". The next letter is to locate the documentation
file: "A" corresponds to file "NUMAL3DOCUMENTA", "B" to file "NUMAL3DOCU
MENTB" etc.. The final number specifies the number of records to be skip-
ped on the documentation file in order to locate the documentation of the

particular program.

In case an entry in the kwic index is not completely readable (i.e.,
truncated at an end of the line), you can find a complete listing (by

code number) of all the abstracts following the kwic index.




HE NEW ROW ELEMEMNT OF MAXIHUM
HAT MATRIX ELEMENT OF MAX MUK
S} GEARS, ADAMS = MOULTON, CR
ING MULT|STEF METHODS; GEARS,
ELMCOMVECCOL

ELMCOMCOL

ELMCOMROYWVEC

ELMVEC

LLMCOL

ELMVECCCL

ELMRCW

ELMCOLVEC

ELMVECROVY

ELMROWVEC

ELMCOLROVY

ELMROYCCL

MaXELMROW

EULER COMPUTES ThE SUM OF AN

NOM1aL (1N GRUNERT FORM) THaT
D FOR THIS MiNIMAX POLYNDM]|AL
FERENTIAL EQUATIONS USING THE
L VALUE PROBLEMS, GIVEN AS AN
L VALUE PROBLEMS, GIYEN AS AN
L VALUE PROBLEMS, GIVEN AS AN
L VALUE PROBLEMS, GIVEN A5 AN
LINERIN 18 Al

RRKIUPD S AN

DAVUPD 1S AN

FLEUPD 15 AN

IXQF IX 1§ AM

IXPFIX 1S AN

FCRYARD 1S AN

BACKWARD 1S AN

int 1S AW

GSSERB 15 AH

GSSHNRI 1S AN

COMSCL 18 AN

SAKSYMTRiZz FERTORIS THE
BAKSYMTR 11 PERFORMAS TwE

BAKL AR PERFCRNIS TrE
BAKREAMESL PERFORNS TrE
BAKREAMES? PERFORMS TFHE
BAKHRIITR! PERFORNS TrHE
BAKCONRES PERFORMS TrHE
BAKLBRCQOM FERFORNS THE

CQMPUTES THE DETERMINMANT OF A
STEM OF LINEAR EQUATIONS WiTH
H SYMMETRIC POSITIVE DEFINITE
A SY'UMETRIC POSITIVE DEFINITE

ABSMAXVEC COMPUTES THE (MFIN(Ty NORM OF A VECTOR AND DELIVERS ThHE INDEX FOR AN ELEMENT MAXINAL IN MO
ABSOLUTE VALUE,

ABSCLUTE VALUE,

ADAMS - RASHFORTH METHON; WITH AUTOMAT|C STEP AND ORDER CONTROL AND SUITABLE FOR THE INTEGRATICN OF
ADANMS - BOULTON, OR 4DAIS m RASHFORTH METHOD; w!TH AUTOMATIC STEP AND ORDER CONTROL, AND SUITABLE FOR

ADRS A CONPLEX NUMBER TIMES A COMPLEX COLUMN VECTOR TO A COMPLEX VECTOR,

ADDS A COMPLEX MUMBER TIMES 4 COMPLEX COLUMN VECTOR TO ANOTHER COMPLEX COLUMN VECTOR,
ADDS A COMPLEX NUMBER TIMES A COMPLEX VECTOR Tn A COMPLEX ROW VECTOR,

AD[S A SCALAR TIHES A VECTOR TO ANOTHER VECTOR,

ADNS A SCALAR TINHES COLUMN VECTOR TO AWOTHER COLUMN VECTOR,

ADDS A SCALAR TIHES A COLUMN VECTOR TN A VECTO®,

ADDS A SCALAR TINES A RnN¥ VECTOR TO ANOTHER ROW VECTOR,

ADDS A SCALAR TIHES A VECTOR TO A COLUMN VECTOR,

ADDS A SCALAR TI{IES a4 RNwW VECTOR TO A VECTOR,

ADPS A SCALAR TI{ES a VECTOR TO A R0w VECTOR,

ADLS A SCALAR TIfIES a RAW VECTOR TO A COLUMN VECTOR,

ADDS A SCALAR TINES a COLUMN VECTOR TN A ROW VECTOR,

ADDS A SCALAR TIAES a RNY VECTOR TO A ROW VECTNR, AND RETURNS THE SUBSCRIPT VALUE OF THE NEW RCw ELE

ALTERNATING SERIES,

APPROXINATES A FUNCTION GIVEN FOR DISCRETE ARGUMENTS; THE SECOND REMEZ EXCHAMGE ALGOR!ITHM IS USED FO
APPROX VAT IOM

ARC LENGTH AS INTEGRATION VARIABLE,

AUTONOICUS SYSTEiI" OF FIRST ORDER DIFFERENTIAL EQUATIONS, By AN EXPONENTIALLY FITTED, EXPLICIT RUNGE
AUTOHO-ICUS SYSTE{t OF F!QST ORDER DIFFERENT|AL EQJATIONS, BY AN EXPONENTIALLY FITTED, SEM| - [MPLICIT
AUTOHOCUS SYSTE OF FI25T ORDER DIFFEREMTIAL EQJATIONS, BY AN INPLICIT, EXPONENTIALLY FITTED, FIRST
AUTCNDICUS SYSTEM OF FIRST ORDER DIFFERENT AL EQUYATIONS, BY AN 111PLICIT, EXPONENT([ALLY FITTED, SECON
AUXILI1ARY PROCEDURE FOR OPT[%IZATiON,

AUXILITARY PROCEDURE FOR OPTIMIZATION,

AUXILIARY PROCEDURE FOR OPTIMIZATION,

AUXITLVARY PROCEDURE FOR QPTIMIZATION,

AUXIL1ARY PROCECURE FOR THE (NCOMPLETE BETA FUNCTION,

AUXILIARY PROCEDURE FOR THE INCOMPLETE BETA FUNCTION,

AUXILVARY PROCEDURE FOR THE INCOMPLETE BETA FUNCTION,

AUX L1 ARY PROCEDYRE FOR THE INCOMPLETE BETA FUNCTION,

AUX L TARY PROCEDURE FOR "INIMAX APPRNOXIMATION,

AUXILIARY PROCEDURE FOR THE SOLUTION QOF LINEAR EQUATIOY WITh AN JUPPER BOUND FCR THE ERROR,

AUX L IARY PROCEDURE FQR THE ITERATIVELY REFINED 30LUTION OF A SYSTEM OF LINEAR EQUATIONS,

AUXILIARY PROCECURE FOR THE COMPUTATIQN OF COMPLEX EIGENVECTORS OF A REAL MATRIX,

AACKHYARD 1S AN AUXILIARY PROCEDURE FOR THE INCOMPLETE 3ETA FUNCTION,

AACK TRAMSFORMATION CORRESPONDING TO TWE HOUSEHOLDERS TRANSFORMATION AS PERFNRMED BY TFMSYMTRI2,
3ACK TRAMGFORMAT{ON CORRESPOMDING TO THE HOUSEHOLDERS TRANSFORMATION AS PERFORMED BY TFMSYNTRIY,
JACK TRANSFORMAT I OH CORRESPONDING TO THE ENUILIBRATION AS PERFORMED By ENILER,

AACK TRANSFORMAT | ON CORRESPONDING TO THE wILK!NSON TRANSFORMAT|CH AS PERFORMED dY TFMREAHES, ON A VE
3ACK TRANSFORMATION CORRESPONDING TO THWE WILKINSON TRANSFORMAT|ON AS PERFORMED BY TFMREAKES, ON THKE
AACK TRANSFORMAT i ON CORRESRONDING TO ASHHRMTR!

BACK TRANSFORMAT IO CLORRESPONDING TO -SHCOMRES,

JACK TRANSFORMATION CORRESPONDING TO THE EQUILIBRATION AS PERFORMED By EQILBRCOM,

JAKCOMHES PERFORIS THE R3ACK TRANSFORMATION CORRESPONDING TN HSHCOMHES,

JAKFRMTR |

PERFORIIS THE AACK TRANGFORMATION CORRESPOND NG TO HSHHRMTRI,

BAKLARCCH PERFORIIS THE SACK TRANSFORMATION CORRESPOND|NG TO THE EQUILIRRATION AS PERFORMELD By EQILEBR
BACK TRANSFORMATIQON CORRESPONDING TO THE EOUILIBRATION A5 PERFORMED By EQILBR,

3AKLAR PERFORMS THE
BAKREA4ES] PERFCRMS
JAKREAHESD PERFCRMS
3AKSYMTR i1 PERFCRMS
JAKSYMTR |2 PERFCRMS

SAND
8atiD
JAND
3AHD

MATRIX, wHiCH

THE BACK TRANSFORMAT|ON CORRESPONDING TO THE WILK{NSON TRANSFOQRMATION AS PERFORM
THE BACK TRANSFORYATION COPRESPONDING TO THE WILKiINSON TRANSFORMATION AS PERFCRM
THE BACK TRANSFORMAT ON CORRCSPONDING TO THE HOQUSEHOLDERS TRANSFORMATICN AS PERF
THE RACK TRANSFORNATION CORRESPONDING TO THE HOUSEHOLDERS TRANSFORMATION AS PERF
MATRIX, WHICH raS AEEN DECOMPOSED BY DECAND,

|§ DECOMPOSED BY DECBHD,

MATRIX, WHICH Ha§ 4EEN DECOMPOSED BY CHLDECHBND,
MATRIX AND SOLVES THE SYSTEM OF L INEAR EQUATIONS 3Y THE CHOLESKY METHND,

21060
34025
34230
33080
33080
34376
34377
34378
34020
24023
34021
34024
34022
34026
34027
34029
34028
34025
32010
36022
26022
33018
33120
33160
33130
33131
34210
34211
34212
34213
35053
35054
35055
35056
36020
34242
34252
34493
35096
34141
34144
34174
34471
34172
34365
34367
34362
34367
34365
34362
34174
34171
34172
34144
24141
34321
34071
34332
34333
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TRIANGULAR DECOMPCUS|TION OF A
RFORMS THE DECOMPCSITION OF A
, ADAMS . MOQULTON, OR ADAMS -

SOLSVDUID CALCULATES
SOLUND CALCULATES

THE
THE

CBETA COVPUTES THE [HWCOMPLETE
PLUSN COMPUTES THE 1NCOMPLETE
PLUSN COMPUTES THE INCOMPLETE
N OF A REAL MATRIX OF wH{CH A

TRANSFORMS A REAL MATRIX
1D TO TRANSFORM A MATRIX
ID TO TRANSFORM A MATRIX

INTO
INTO
INTO

THE SINGULAR VALUES OF A REAL
ED TAYLOR SOLVES AN INITiAL ¢
NGE KUTTA SOLVES AN iNITIAL (
UAT|ONS AND COMPUTES AN UPPER
ERSE OF A MATRIX ANP AN UPPER
REF INED SOLUTION AND AN UPPER

ERBELM COMPUTES AN UPPER

RMS A COMPLEX NUMBER GIVEN

NEAR EQUATIONS ) COMPUYTES
NEAR EQUATIONS ) CDNPUTES
SITIVE DEFINITE NATR !X BY
EM OF LINEAR EQUATIONS nv
EM OF LINEAR EQUATIONS BvY
EM OF LINEAR EQUAT [04S Bv
CHLDECINVZ2 COMPUTES, Hv
CHLDECINVY COWMPUTES, dv

L ELEMENTS A<D SQUARES OF
INISYMD

(N

T’-E
THE
THI
THE
TrE
THE
THE
THE
THE

INITTHALIZES A

LIZES (PART OF) A DIAGUNAL OR
ADRATIC EQUATION wiITH COMPLEX

NEWTON DETERIINES
MINMAXPOL DETERITINES

TES THE SCALAR PRODUCT OF
INTERCHANGES ELEFENTS OF
ARY ROTATION OPERATION ON
R PRODUCT OF A ROW VECTOR
ELEMENTS OF A ROwW VECTOR

TrE
THE

TWO
TWO
TwO
AND
AND

PUTES THE SCaLAR PROODUCT OF A
MULCOL NMULTIPLIES A
COLCST MULTIPLIES A

BAND MATRIX BY GaUSS1aN ELIMINATION,

BAMD MATRIX BY GAUSSIAN ELIMINAT|ON AND SOLVES THE SYSTEM OF LINEAR EQUATIONS,

SASHFORTH METHOD; WI1TH AUTOMATIC STEP AMND ORDEK CONTROL AND SUITABLE FOR THE INTEGRATION OF STIFF DI
3EST LEAST SQUARES SULUTION OF A UNDERDETERMINED SYSTE™ OF LINEAR EQUATIONS, PROVIDED THAT THE SINGU
3EST LEAST SQUARES SOLUT|ON OF A UNDERDETERMINED SYSTE™M OF LINEAR EQUAT!IONS BY MEANS OF SINGULAR VAL
3ETA FUNCTION 1(X,P,Q),0<zX<=1,P»0,Qx(,

QETA FUNCTION 1(X,Psl,Q),0<=X<el,P>0,@x0, FOR N=zJ(1)NMAX,

BETA FUNCTION 1(X,P,G4Ny,0¢=X<=1,P>0,950, FOR HNzu(1l)NMAX,

310 iAGONAL DECOMPOSITION 1S GIVEN, BY MELNS OF AN IMPLICIT QRaITERATIOM,

31DIAGONAL FORM BY MEANS OF HOUSEHOLDER TRANSFORIMATION,

JIDYAGOHNAL FORM,

31D1AGONAL FORM,

31DTAGONAL MATRIX BY MEANS OF iMPLICIT QRa{TERATION,

3OUNDARY ) VALUE PROBLE", GIVEN AS A SYSTEM OF F{RST ORDER DIFFERENTIAL EQUATICNS, BY A ONE=STEP TAY
3OUNDARY ) VALUE PROBLEY, GIVEN AS A §YSTEM OF FIRST ORDER ( NONaLINEAR ) DIFFERENTIAL EQUATIONS, BY
30UND FCR I TS ERROR,

3CUND FCR 1TSS ERROR,

JOUND FCR ITS ERROR, OF A SYSTEM OF | INEAR EQUAT!IONS, OF WwHICH THE TRIANGULARLY DECOMPOSED FORM OF T
BCUND FCR THE ERROR iN THE SOLUTION OF A SYSTEM OF LINEAR EQUATIONS,

CARPOL TRANSFQORMS A COMPLEX NUMBER GiVEN N CARTES{AN COORDINATES INTO POLAR COORDINATES,

CARTES AN COORDINATES !+4TO POLAR COCRDINATES,

CHLDECY ( LI!NEAR EQUATIONS ) COMPUTES THE CHOLESKY DECOMPOSITION OF A SYMMETRIC POSITIVE DEFINITE MA
CHRLDEC? ( L INEAR EQUATIINS ) COMPUTES THE CHOLFRSKY DECOMPOSITION OF A SYNMETRIC POS|TIVE DEFINITE MA
CRLDECHND PERFORIIS THE TRIANGULAR DECOMPOSiTiON OF A SYMMETR!C POS|TIVE DEFINITE MATRiX 8Y THRE CHOLE
CHLDECINYL COMPUTES, BY THE CHOLESKY “ETHOD, THE INVERSE OF A SYHMETRIC POSITIVE DEFINITE MATRIX, ST
CHLDECINV2 COMPUTES, BY THE CHOLESKY HETAHOD, THE (NVERSE OF A SYMMETRIC POSITIVE DEFINITE MATRiX, ST
CRLDECSCLY SOLVES A SYMIETRIC POSITIVE DEFINITE SYSTEM OF LINEAR EQUATIONS BY TmE CHOLESKY METROD, T
CHLDFCSCLY SOLVES A SYMUETRIC POS!TIVE DEFINITE SYSTEWM OF LINEAR EQUATIONS BY TrE CHOLESKY VETROD, T
CHLDECSCLAND PERFOR'S THE DECOMPOS!TION OF A SYMMETRIC POSITIVE DEFINITE BAND MATRIX AND SCOLVES THE
CHLDETERMY COMPLTES THE DETERMINANT OF A SYMHETRIC POSITIVE DEFINITE MATRIX, wHICH HAS BEEN DECOMPOS
CRLDSTERMD? COMPUTES THE DETERMINANT OF A SYMMETRIC POS|TIVE DEFINITE MATRiY, wHICH nAS BEEN DECCMPCS
CHLDETERMBND COVPUTES THE DETERMINAMT OF A SYMMETRIC P2SITIVE DEFINITE MATRIX, wHICH HAS BEEN DECONMP
CrLINVYL COWPUTES THE INVERSE CF A SYMMETRIC POS!TIVE DEFiNITE “ATRiX wrhiICH ~AS EEEN DECOMPCSED BY CK
CRLI'IVD COMBUTES TiE INVERSE OF 4 SYMHMETRIC POSITIVE DEFINITE MATRIX WHiCH HAS BEEN DECOVMPCSED BY Ch
CHLSOLYZ SOLVES A SYNIIETRIC POS!TIVE DEFINITE SYSTEM OF LINFAR EQUATIONS, THE MATRIX 3EING CECOMPOSED
CHLSOL? SOLVES A SYMMIETRIC POSITIVE QEF!NITE SYSTEM OF LINEAR EQUATIONS, THE MATRIX BEING DECONMPOSED
CHLSOLIND SOLVES A SYSTEM OF LINEAR EQUAT!IONS wiTH SYMMETR|C POSITIiVE DEF "“iTEL BAND MATRIX, WHICH HA
CHOLESKY DECOMPCStTION OF A SYMAETRIC POSITIVE DEFINITE MATRiX, STORED IN A TwN=DIMENSIONAL ARRAY,
CHOLESKY DECOMPCSITION NF A SY™IETRIC POS!TIVE DEFINITE MATRIX, STORED COLUMNW!ISE IN A ONE=DIMENSICHN
CHROLESKY METHQD,

CHALESKY METHOD,

CHOLESKY METHOD, TilE MATRIX BEiNG STORED !t A TWOaDIMENSIONAL ARRAVY,

CHOLESKY METHQOD, THE MATR[X RE!NG STORFD !N A NNE«D{MENS{ONMAL ARRAY,

CROLESKY METHQOD, THE iNVERSE OF A SYMMETRIC POSITIVE DEFINITE MATR{X, STORED IN A TWO-DIMENSIONAL AR
CHOLESKY METHOD, THE (NVERSE OF A SYMYETRIC POS!TIVE DEFINITE MATRIX, STORFD IN A ONE=DIVENRSIONAL AR
CODVTAGONAL ELEMENTS OF A HERMITIAM TRIDIAGONAL MATRIX WH{CH |S UW!'TARY SIMILLAR TO A GIVEN FERMIT|AN
COLTAGONAL OF A SYMMETRIC MATRIX WITH A CONSTANT,

CCDTAGONAL WiTH A CONSTANT,

COEFFICIENTS,

COEFFICIENTS OF THE NEWTON JNTERPOLATION POLVNOMIAL FOR GIVEH ARGUMENTS AND FUNCTION VALUES,
COCFFICIENTS OF THE POLVHNOMIAL (!N GRUNERT FORM) THAT APPROXIMATES A FUNCTION GIVEN FOR DISCRETE ARG
COLCST MULTIPLIES A COLUMN VECTOR BY A SCALAR,

COLUN VECTORS,

COLUNMN VECTORS,

COLUNN VECTORS,

COLUNMN VECTOR,

COLUMNMN VECTOR,

CCLUMN VECTOR AND VECTOR,

COLUNMN VECTOR BY A SCALAR,

COLUMN VECTOR BY A SCALAR,

34320
34322
33080
34282
34283
35050
35051
35052
34271
34260
34261
34262
34270
33040
33060
34243
34244
34253
34241
34344
34344
34311
34310
34330
34403
34402
34393
34392
34333
34313
24312
34331
34401
34440
34391
34390
34332
34310
34311
34330
34333
24392
34393
34402
34403
34364
21013
21012
34345
26010
36022
31131
34014
34031
34040
34013
34033
34012
31022
31131




OMCOLCST MULTIPLIES A COMPLEX
DUPVECCOL COPIES (PART 0F) A
ELMCOL ADDS A SCALAR TimMES A

MVECCOL ADDS A SCALAR TIMES A

MROWCOL ADDS A SCALAR TIMES A

MPUTES THE ERROR FUNCTION ANMD
JON WITH COMHBINED PARTIAL AND
1ON WITH COMBINED PARTIAL AND
OF A QUADRATIC EQUATION wITH
ADDS A COMPLEX NUIBER TIMES 4
ADDS A COMPLEX NUI'BER TINES A
OL. PERFORMS A ROTATION ON TwO
COMCOLCST FTULTPLIES A
PLIES A COMPLEX MATRIX WITH
COMPUTES ALL EiGENVALUES CF
NVECTORS AND EIGERVALUES CF
PUTES THE EUCLIDEAM HORi: CF
M NORMAL (ZES THE COLUI'NS CF
HEHCOMHES TRANSFURIS
EQILBPCON TRANSFORNS
COMiIlUL MULTIPLIES Tw
COMPUTES THE QUOTIERT CF Tvo
ABS COMPUTES THE {00CULUS OF A
COMPUTES THE SQUAKE ROOT CF A
CARPOL TRANSFORME A
ELICOMVECCOL ADDS A
ELMCOMECOL ADDS A
ELMCOMROWVEC ADDS A
OW PERFORMS A ROTATIGMN Ch TwO
COMROVCST [ ULTIPLIES A
PUTES THE SCALAR PRODUCT CF
COMPUTES ALL EI1GEMVALUES CF
NVECTORS AND E!GENVALUES OF
ADDS A COMPLEX NURBER TINMES
HSHCOMCOL TRANSFORMS

PRy >

[olp=3

> D> >

AR EQUATIONS 8Y TrE METHOD CF
{AN “ATRIX AND AUTOMAT!IC STEP
WITH AUTOMATIC STEP AND ORDER
TESIAN COORDINATES INTH POLAR
LEX NUMBER GIVEN IN CARTESIANR

PUPVEC
DUPVECRCY
OUPROWVEC
DUPVECCCL
DUPCOLVEC

DUPMAT
MATR | X BY

DECOMPOSITION OF A

CCLUNN
COLUNN
COLUMN
COLUMN

VECTOR BY
VECTOR TO A VECTOR,

VECTOR TC ANODTHER COLUMMN VECTOR,

VECTOR TC A VECTAR,

COLUIN VECTOR TO A ROW VECTOR,

COMADS COMPUTES THE “oDyLuS OF A COMPLEX NUMBER,

COMCOLCST MULTIPLIES A COMPLEX COLUMN VECTOR Bv A COMPLEX
CONMDIV COMPUTES THE QUOTIENT OF TWH COMPLEX NUMBERS,
COMEUCNRM COMPUTES THE EUCLIDEAN NORM OF A COMPLEX MATRIX,
CONKUD COMPUTES THE ROOTS OF A QUADRATIC EQUAT|ON WiTH COMPLEX COEFFICIENTS,
CCHMMATVEC COMPUTES THE SCALAR PRODUCT OF A COMPLEX ROW VECTOR AND A COMPLEX VECTOR,
CONRPUL NULTIPLIES TWo COMPLEX MUMBERS,
COMPLEMENTARY ERRDR FUNCTIONM FOR A REAL ARGUMENT;
CONMPLETE P!VOTING,

COMPLETE PIVOTING,

A COMPLEX

NUMRER,

NMUMBER,

THESE FUNMCTIQNS ARE RELATED TC THE NORMAL OR G4USS

COIMPLEX CCEFFICIENTS,

CONPLEX COLUMN VECTOR THY A COMPLEX VECTOR,

COMPLEX CCOLUHMN VECTNR TO AMOTHER COMPLEX COLUMN VECTCR,

CONPLEX COLUMN VECTORS,

CCNMPLEX COLUNN VECTOR BY A COMPLEX NUMBER,

COMPLEX HOUSEHOLDER NATRIX,

COMPLEX MATRIX,

CCIMPLEX MATRIX,

CONPLEX “ATRIX,

CONPLEX MATRIX,

COMPLEX MATRIX (NTO a SiM{LAR UNITARY UPPER HESSEABERG MATRIX WITH A REAL HON-MNEGATIVE SUBD!AGCNAL,
COIPLEX MATRiIX [HTC a Si“[LAR EQUIL!BRATED COMPLEX MATRIX,

CGIU'PLEX HUMBERS,

CCMPLEX NUMBERS,

COMPLEX NUMBER,

COMPLEX NUMBER,

CCNMPLEX NUMBRER GIVEN N CARTESIAN COORDINATES INTO POLAR COORDINATES,
CONPLEX WUMBER TIMES 4 COMPLEX COLUMN VECTOR TH A COMPLEX VECTOR,
COMPLEX MUMBER TIMES ¢ COMPLEX COLUMN VECTOR To ANOTHER COMPLEX COLUNN VECTOR,
COPLEX NUMBER TIMES | COMPLEX VECTOR TO A COMPLEX ROw VECTOR,
COMPLEX RPO“ VECTORS,

CCMPLEX ROw VECTOR HY A COMPLEX NUMBER,

COMPLEX RO%w VECTOR AL A COMPLEX VECTOR,

CCMPLEX UPPER HESSENSERG MATRIX w[TH A REAL SURDIAGONAL,

COPLEX HJPPER HESSENJKRRG MATRIX W!TH A REAL SUBDIAGONAL,

CCHMPLEX VECTOR TO A COMPLEX ROW VECTOR,

COMPLEX VECTOR I4T0 a VECTOR PROPORTIONAL TO A UNIT VECTOR,

COMROWCST MULTIPLIES 4 COMPLEX ROW VECTOR RY A COMPLEX NUMBER,

COMSCL 1S AN AUXIL!ARY PROCEDURE FOR THE COMPUTATION OF COMPLEX EJGENVFCTORS OF A REAL
COMSQRT COMPUTES THE 4$QUARE ROOT OF A COMPLEX NUBER,

COIVALQR! CALCULATES THE REAL AND COMPLEX EIGENVALUES OF A REAL UPPER WESSENBERG MATRIX BY MEANS OF
CCIVECHES CALCULATES THE E|GENVECTOR CORRESPONDING TO A GIVEN COMPLEX EIGENVALYUE OF A REAL UPPER HES
CONJUGATE GRADIENTS,

CONJ GRAD SOLVES A SYHMMETRIC AMD POSITIVE DEFINITE, SYSTEM OF LINEAR £QUATIONS BY THE METHOD OF CONJ
CONTROL} SUITABLE FOR IMTEGRATION OF STIFF DIFFERENTIAL EQUATINNS,

CONTROL AND SUITABLE FOR THE (NTEGRAT!ON OF ST |FF DIFFERENTIAL EAQUATIONS,

COORD INATES,

MATRIX,

COORD'NATES INTC POLAR COORDiINATES,

COPIES (PART pF) a VECTOR TO A VECTOR,

COPIES (PART QF) A ROw VECTCR TO A VECTOR,
COPIES (PART OF) A VECTAR TO A ROV VECTCR,
CoPiES (PART OF) A COLUMN VECTCR TO A VECTOR,
COPIES (PART QOF) A VECTOR TO A COLUMN VECTOR,
CCPILS (PART QF) MATRIX TO (AN OTHER) MATRIX,

CRGUT FACTORIZATION ViT4 PARTIAL PIVOTING,

34352
31033
34023
34021
34028
34340
34352
24342
34359
34345
34354
34341
35020
34234
34232
34345
34376
34377
34357
34352
34356
34374
34375
34359
343¢0
34366
34361
34341
34342
34340
24343
24344
34376
34377
34378
24358
34353
34354
34372
34373
34378
34355
34353
34193
34343
34190
34191
34220
34220
33120
33060
34344
34344
23,030
310314
31032
31033
31034
31035
34300
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SYSTEM OF LINEAR EQUATIONS RY

ATR{X, PROVIDED THAT THE Yripu
ECBND PERFORMS THE TRIANGULAR
DECSOLBND PERFORMS THE

ECBND PERFORIMS THE TRIANGULAR
CHLDECSOLBND PERFORMS THE

DEC PERFORMS THE TRIANGULAR
SSELM PERFORIIS THE TRIANGULAR
TIONS ) COMPUTES THE CHCLESKY
TIONS ) COMPUTES THE CHOLESKY
TES, WITHOUT PIVOTING, THE LU
WITH PARTIAL PIVOTING, THE LU
DECSYMTR| CALCULATES THE U'DU

ECOMPOSITION AS CALCULATED RY

AND POS|TIVE
COMPUTES THE
COMPUTES TrE

LVES A SYMMETRIC
T ( QUADRATURE )
L ( QUADRATURL )

DETERNMBND
CHLDETERHMBND
DETERM
CHLDETERMZ
CHLDETERMY

COMPUTES
CONPUTES
COMPUTES
LOMPUTES
COMPUTES

7'}—[
THE
THE
THE
THE

LSQDGL INV COMPUTES ThE

ARES PROSLEM AND COI'PUTES THE
SHHRMTR!VAL DELIVERS THE PFain
IMATD INITIALIZES (PART CF) &
IMiZAT!ION ) MINI™MIZES A GIVFHN
1AIZATION ) MINIMIZES & GIVEM
1 SOLVES A SINGLE FIRST CRDER
OLVES A SYSTEM CF FIRST ORDER
RK?2 SOLVES A SECOND GRDER
LVES A SYSTE™ OF SECOMD OFDFR
RK3 SOLVES & SECCHD QRDER
LVES A SYSTEM OF SECOMD ORPER
RK4A SCLVES A Si{NGLE

RK4NA SOLVES A SYSTgEM CF
OLVES A SYSTEM CF FIRST ORDER
EN AS A SYSTEM OF FIRST ORDER
SYSTEMS ARISING FROM PART{AL
OF FIRST ORDER ( MOM=~LINEAR )
EN AS A SYSTEM GF FIRST ORLER
FQR THE INTEGRATION OF STiFF
ONOMOUS SYSTEM OF FIRST QORDER
ABLE FOR INTEGRATION OF STIiFF
ONOMOUS SYSTEM OF FIRST ORLER
ABLE FOR INTEGRATION OF STIFF

CROUT FACTCRI
DAVUPD 1S AN
DECEHD PERFOR
DECINV COMPUT
DECOMPOSITION
DECCMPOS I TION
DECCIPOS|ITION
DECCHMPOSITION
DECOMPOSITION
DECCMPOSITION
DECCMPOSITION
DECCHMPOS|TION
DECOMPOS I TION
DECOMPOSITION
DECOMPQS | TION
DECCHPOSITION
DECSOLBND PER
DECSOLSYMTRI
DECSOLTRIPIV
DECSOLTRI SOL
DECSOL SOLVES
DECSYMTR! CAL
DECTR!PIV CAL
DECTRIPIV i§
DECTR! CALCUL
DEC PERFORMS
DEFINITE, SY3
DEFtNITE (NTE
DEFINITE INTE
DETERMBNDR COM
DETERMINANT O
DETERMINANT O
DETERMINANT O
DETERMINANT O
DETERMINANT ©
DETERN COMPUT
DIAGONAL ELEN
DIAGONAL ELEN
DIAGONAL ELERM
DIAGONAL OF C
DIFFERENT I ABL
DIFFERENT 1ABL
DIFFERENT HAL
DIFFERTNT AL
DIFFERENT AL
DIFFERENT AL
DIFFERENT AL
DIFFERENTAL
DIFFERENT AL
DIFFERENT AL
DIFFERENT AL
DIFFERENTLAL
DIFFERENT{ AL
DIFFERENTIAL
DIFFERENT AL
DIFFERENT I AL
DIFFERENT LAL
DIFFERENT AL
DIFFERENT AL
CIFFERENT AL

ZATION W |TH4 PARTIAL PIVOTING,
AUXILIARY PROCEDURE FOR QOPT|MIZATION,
MS THE TRIANGULAR DECOMPOSITION OF A BAND MATRIX BY GAUSSIAN EL!IMINATION,

ES THE INVERSE OF A MATRIX,

IS GIVEN,

OF 3aND MATRIX BY GAUSS!AN ELIMINATION,

OF BAND MATRIX BY GAUSSIAN ELIMINATION AND SOLVES THE SYSTEM OF L INEAR EQUATIONS,

oF SYMMETRIC POSITIVE DEFINITE MATRIX BY THE CHOLESKY METHOD,

OF SYMMETR|C POSITIVE DEF|NITE BAND MATRIX AND SOLVES THE SYSTEM OF LINEAR EQUATIONS

MaTRIX BY
MATRIX BY

CROUT FACTOR{ZATION WITH PARTIAL PIVOTING,
GAUSS (AN ELIMINAT|ON W {TH COMBINED PARTIAL AND CGMPLETE PIVOTING,

o
-
>>>PP>>>pP>>

OF A SYMMETRIC POS(TIVE DEFIMITE MATR(X, STORED [N A TWO~DIMENS(ONAL ARRAY,
OF A SYMMETRIC POSITIVE DEFINITE MATRIX, STORED COLUMNWISE N A ONE=DIMENSIONAL ARRAY,
OF A TRIDIAGONAL MATRIX,

OF A TRIDIAGONAL MATRIX,

OF A SYMMETRIC TRIDIAGONAL MATRIX,

FORMS THE DECOMPOSITION OF A BAND MATRIX 3Y GAUSS|AN ELIMINATICN AND SOLVES THE SYSTEM
SOLVES a SYSTEM OF L INEAR EQUATIONS WITH SYMMETRIC TRIDIAGONAL COEFFICIENT MATRIX,
SOLVES WIT- PARTIAL PIVOT(NG A SYSTEM OF LINEAR EQUATIONS WITH TRIDIAGONAL COEFFICIENT
VES A SYSTEM OF LINEAR EQUATIONS w|Th TRIDIAGONAL COEFFICIENT MATRIX,

A SYSTEM OF LINEAR EQUATIONS BY CROUT FACTORIZAT|OH WITH PARTIAL PIVOTING,
CULATES THE U'DU DECOMPOSITION OF A SYMMETRIC TRIDIAGONAL MATRIX,

CULATES, WiTH PARTIAL PIVOTING, THE LU DECOMPOS|T)OM OF A TRIDIAGONAL MATRIX,
GIVEN,
ATES, “iITHOUT PIVOTING, THE Lu DECOMPOS|TION OF A TRID!AGONAL MATRIX,

THE TRI1ANG'JLAR DECOMPOS | TION DF A MATRIX 3Y CRCOCUT FACTORIZATION wITH PARTIAL PIVOTING,
TEVM OF LINEAR EQUATIOMS RY THE METHOD OF CONJUGATE GRADIENTS,

GRAL OF A FUNCTION OF ONE VARJABLE OVER A FINJTE |NTERVAL,

GRAL OF A FUNCTION OF ONE VARIABLE OVER A FINITE OR INFINITE INTERVAL OR OVER A NUMBER
PUTES THE NETERMINANT OF A BAND MATRIX, wHICH HAS BEEN DECOMPOSED BY DECBND,

F A BAND MATRIX, WHICH HAS BEEN DECOMPOSED 3Y DECBND,

F A SYMNETRIC POSITIiVE DEFINITE MATRIX, WHICK HAS BEEN DECOMPOSED bBY CHLDECBND,
F A MATR(X PRQOVIDED THAT THE MATRi{X HAS BEEN DECOMPQSED BY DEC OR GSSELWM,

F A SYNHETRIC POS!TIVE DEFINITE MATRIX, WAICH HAS BEEN DECOMPOSED BY CHLDEC?,

F A SY'METRIC POGS!TIVE DEFINITE MATRIX, wilICH FAS BEEN DECOMPOSEDR bBY CHLDECI,

ES THE DETERMINANT OF A "ATRIX PROVIDED THAT THE MATRIX HAS BFEN DECOMPOSED BY DEC DR 6
ENTS OF THE (NVERSE OF Mi¥ (M COEFFICIENT MATRIX) OF A LINEAR LEAST SQUARES PRCBLEM,
ENTS OF THE (NVERSE OF MivM (M COEFFICIENT MATRIX),

ENTS AdL SHUARES OF THE CODIAGONAL ELEMENTS OF a HERM|TIAN
OD I aGCNAL wI1TH A CONSTANT,

E FUNCTiQM OF SEVERAL VARIASLES By A VARIABLE METRIC METHOD,

E FUNCTIOM DOF SEVERAL VAR{ABLES BY A VARIABLE METRIC METHED,

EGUATION USING A S=TH ORDER RUNGE KUTTA METHOD,

FOUATIONS ISIHG A SaTH DANER RUMGE KUTTA METHOD,

EQUATION USING A 5=TH ORDER RUNGE KJTTA METHCD,

EQUATINNS JSiNG A HeTH ARDER RUNGE KUTTA METHOC,

EQUATION USING A 5=-TH ORDER RUNGE KJUTTA METHOD; NO DCERIVATIVES ALLOWED ON RIGrT hanp S|
EQUATIONS SING A 5=TH ORDER RUNGE KUTTA “ETHOD; NO DERIVATIVES ALLOWED ON RIGRT ~AND §
EQUATINN BY SOMETIMES USBING A DEPENDENT VARIABLE AS INTEGRATION VARIABRLE,

TRIDIAGCNAL MATRIX WHICH IS

EQUATIONS AY SOMETIMES USING THE DEPENDENT VARIABLE AS INTEGRATION VARIABLE,

EQUATIONS 1JSING THE ARC LENGTH AS INTEGRATION VAR|ABLE,

EQUATIONS, BY A ONE«STER TAYLOR WETHOD; THIS METHOD (S PARTICULARLY SUITABLE FCR THE IN
EQUATIONS, PROVIDED HIG-ER ORDER DERIVATIVES CAN BE EASILY OBTAINED,

EQUATIONS, BY A STABIL!ZED RUNGE KUTTA METHOD WITH LIMITED STORAGE REQUIREMENTS,
EQUATIONS, BY ONE OF THE FOLLOWING MULTISTEP METHODS: GEARS, ADAMS - MOULTON, CR ADAMS
EGUATIONS,

EQUATIONS, BY AN EXPONENTIALLY FITTED, EXPLICIT RUNGE KUTTA METHCD WHICH USES THE JACOB
EQUATIONS,

EGUATIONS, By AN EXPONENTIALLY FITTED, SE™I = IMPLICIT RUNGE KUTTA METHOD; SUITABLE FOR
EGUWATIONS,
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ONOMOUS SYSTEM OF FIRST ORDER
ABLE FOR INTEGRATION QF ST|FF
ONOMOUS SYSTEM OF FIRST ORDER
ABLE FOR INTEGRATION OF STIFF
LNGVECVEC COMPUTES 1IN
LNGMATVEC COMPUTES N
LNGTAMVEC COMPUTES IN
LNGMATMAT COMPUTES 1IN
LNGTAMMAT COMPUTES 1IN
LNGMATTAM COMPUTES (N
LNGSEQVEC COMPUTES N
LNGSCAPRD1 COMPUTES IN
LNGSYMMATVEC COMPUTES IN

UTES ALL, OR SOME CONSECUTIVE
UTES ALL, OR SOME CONSECUTIVE
QRISYM COMPUTES AlLL

REAQRI CALCULATES THE

TES ALL, QR SOME CONSECUTIVE,
VALQRISYNTR! COMPUTES altL
COMPUTES ALL EIGENVECTORS AND
UTES ALL, OR SOME CONSFCUTIVE
UTES ALL, OR SOME CONSECUTIVE
QRIVALSYM1I COMPUTES ALL
GRIVALSYM2 COMPUTES ALL
REAVALQR! CALCULATES TFE
LCULATES THE REAL AND COMPLEX
EI1GVALHPM COMPUYTES ALL
COMPUTES ALL EIGENVECTNRS AND
QR {VALHRM COMPUTES ALL
COMPUTES ALL EIGENVECTNRS AND
EIGVALCOM COMPUTES ALL
COMPUTES ALL EiGENVECTORS AND
VALQRICOM COMPUTES AlLL
COMPUTES ALL E!GENVECTORS AND
CORRESPONDING TC A GIVEN REAL
RESPONDING TO A GIVEN COMPLFX
QRISYMTRI COMPUTES ALL

EIGHRM COMPUTES ALL

QRIHRM COMPUTES AlL

EI1GCOM COMPUTES ALL

QRICOM COMPUTES aALL

VECSYMTRI COMPUTES

E CONSECUTIVE EIGENVALUES AND
E CONSECUTIVE E!GENVALUES AND
COMPUTES ALL EIGENVALUES AND
ALCULATES THE E!GENVALUES AMND
REAVECHES CALCULATES THE
COMVECHES CALCULATES TKE

DIFFERENTIAL EOU
DIFFERENTI AL EQU
DIFFERENT AL EQU
DIFFERENT | AL EQU
DOUELE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOURLE PRECISION
DOUBLE PRECIS|ION
DOUELE PRECIS|ON
DOUBLE PRECISION
DOUBLE PRECISION
DUPCOLVEC COPJIES
DUPMAT COPIES (P
DUPROWVEC COPIES
DUPVECCCL COPIES
DUPVECRCW COPIES
DUPVEC COPIES (P
EFERK SCLVES IN{
EFSIRK SOLVES IN
E1GCOM COMPUTES
EIGENVALUES AND
EIGENVALUES AND
EIGENVALUES AND
CIGENVALUES AND
CIGENVALUES NF
E1GENVALUES OF
EIGENVALUES OF
EIGENVALUES OF
EIGENVALUES OF
EI1GENVALUES OF
EIGENVALUES OF
EIGENVALUES OF
E|GENVALUES OF
E1GENVALUES OF
EIGENVALUES OF
EIGENVALUES OF
EI1GEHVALUES OF
EIGENVALUES OF
EVYGENVALUES OF
EIGENVALUES OF
EIGENVALUES OF
| GENVALUE OF A
I GENVALUE OF A
IGENVECTORS ANE
IGENVECTORS AND
EI1GENVECTORS AND
E1GENVECTQRS AND
EIGENVECTORS AND
EIGENVECTORS OF
EI1GEHNVECTORS OF
EI1GENVECTORS OF
EI1GENVECTOQRS OF
E1GENVECTQRS OF
E1GENVECTOR CORR

PP P»PPEr>PrP PP D>>PEPD

mmmm

EIGENVECTQR CORRESPONDING TO A GIVEN COMPLEX E|GENVALUE OF A REAL UPPER HESSENBERG MATRIX RY MEANS O

EI1GFRM COMPUTES
E1GSYM{ COMPUTES
E1GSYM2 COMPUTES

ATIONS, BY AN IMPLICIT, EXPONEMTIALLY FITTED, FIRST ORDER ONE=STEP METHOD WITH NO AU

ATINNS,

ATIONS, By AN (MPLICIT, EXPONENT|ALLY FITTED, SECOND ORDER ONE=STEP METHOD WITr NO A

ATIONS,

THE SCALAR PRODYCT OF TwQ VECTORS,

THE SCALAR PRODUCT OF A ROW VECTOR AND A VECTOR,

THE SCALAR PRODYCT OF A COLUMM VECTOR AND A VECTOR,

THE SCALAR PRODYCT nfF A ROW VECTOR AND A COLUMN VECTOR,
THE SCALAR PRODUCT OF TwO COLUMN VECTARS,

THE SCALAR PRODUCT QP TWO ROwW VECTORS,

THE SCALAR PRODUCT OF TwO VECTORS,

THE SCALAR PRODUCT OF TwO VECTORS,

THE SCALAR PRODUCT OF A VECTOR AND A ROW IN A SYMMETRIC MATRIX,
(PART 0OF) A VECTOR T0Q A COLUMN VECTOR,
ART OF) A MATRI{X TO (AN OTHER) MATRIX,

(PART 0F) A VECTOR TpD A ROW VECTOR,

(PART NF) A COLUMN VECTOR TO A VECTOR,

(PART 2F) A ROW VECTOR TO A VECTOR,

ART OF) A VECTOR TO A VECTOR,

TIAL VALUE PROBLEMS, GIVEN AS AN AUTONOMOUS SYSTEM OF FIRST ORDER DIFFERENTAL EQUAT
ITIAL VALUE PROBLEMS, GIVEN AS AN AUTONOMOUS SYSTEM OF FIRST ORDER DIFFERENTIAL EQUA

ALL EIGENVECTORS AND EIGENVALUES OF A COMPLEX MATRIX,

EIGENVECTORS OF A SYMMETRIC MATR|X, WHICH 1S STORED IN A OME~DIMENSIONAL ARRAY,

EIGENVECTORS OF A SYMMETRIC MATRIX, WHICH 1S STORED IN A TWO~DIMENS|ONAL ARRAY,

EI1GENVECTORS OF A SYMMETR{C MATRIX 38Y QR.ITERATION,

EIGENVECTORS OF A REAL UPPER HESSENBERG MATRIX, PROVIDED THAT ALL EIGENVALVES ARE RE
SYMIRETR |C TRIDIAGONAL MATR!X RBY LINEAR INTERPOLATION USING A STURM SEQUENCE,
SYMMETR|C TRIDIAGONAL MATRIX BY QReITERAT|ON,

SYMMETR|C TRIDIAGONAL MATRIX BY QReITERATION,

SYMNETR|C MATRtX, STORED IN A ONE~DIMENSIONAL ARRAY, 83Y LINEAR |INTERPOLATICN USING
SYMHMETRIC MATRIX, STORED IN A T¥0«DIMENS!IONAL ARRAY, BY LINEAR |[NTERPOLATICN USING
SYMIET2)C MATRIX, STQRED IN A OVE~DIMENSIONAL ARRAY, BY QR-~!TERATION,

SYMMETRIC MATRIX, STQRED N A TWOaDIMENSIONAL ARRAY, 8Y QR~ITERATION,

REAL UPPER HESSENBERG MATRIX, PROVIDED THAT ALL EIGENVALUES ARE REAL, BY WEANS OF S
REAL UPPER HESSENBERG MATRIX BY MEANS OF DOUBLE QR=-ITERATION,

HERMITIAN MATRIX,

HERIMITIAN MATRIX,

HERIITIAN MATRIX,

HERMITIAN MATRIX,

COMPLEX MATR!X,

COMPLEX MATRIX,

COMPLEY UPPER HESSENRERG MATRIX WITH A REAL SUBD!AGONAL,

COMPLEX UPPER HESSENBERSG MATRIX WITH A REAL SUBDIAGONAL,
REAL UPPER HESSENBERG MATRiIX, RY MEANS OF {|NVERSE |TERATION,
REAL UPPER HESSENBERG MATR;iX By MEANS OF IMVERSE ITERATION,

EIGENVALUES OF A SYMMETRIC TRIDJAGONAL MATR|X BY OR=|TERATION,

EIGENVALUES OF A HERMITIAN MATRIX,

EI1GENVALUES OF A HERMITIAN MATRIX,

E!GENVALUES OF A& COMPLEX MATRIX,

EIGEMVALUES OF & COMPLEX UPPER HESSEN3ERG MATRIX WiITH A REAL SUBDIAGONAL,

L SYMMETRIGC TRID|AGONAL MATRIX BY |INVERSE ITERAT|ON,

A SYNHMETRIC MATR(X, WwHICH |S STORED IN A OME-D|MENSIONAL ARRAY,

A SYMMETRIC MATR{X, w+ICH IS STORED IN A TWO.D|MENSIONAL ARRAY,

A SYHMETRIC MATRIX BY OR=ITERATION,

4 REAL 'IPRER HESSENBERG “ATRIX, PROVIDED THAT ALl EIGENVALUES ARE REAL, BY NEANS OF

ESPONDI™MG TO A G|VEN REAL E!GENVALUE OF A REAL UPPER HESSENBERG MATRIX, BY NEANS OF

ALL EIGENVECTORS AND EIGENVALUES OF A HERMITiAN MATRIX,
ALL, OR SOME CONSECYTIVE EIGEMVALUES AND EIGENVECTORS OF A SYMMETRIC MATRIX, wHICk
AL, OR SOME CONSECUTIVE EIGENVALUES AND E!GENVECTORS OF A SYMWETRIC MATRIX, WHICH

33130
33430
33131
33131
34410
34411
34412
34413
34414
34415
34416
34417
34418
21034
31,035
31032
31033
31031
31030
33120
33160
34375
34156
34154
34163
34186
34151
34165
34161
34155
34153
34164
34162
34180
34190
34358
34369
34370
34371
34374
34375
24372
34373
34181
34194
34161
34369
34371
34375
34373
34152
34156
34154
34463
34486
34161
34191
34369
24156
34154
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| CHROWCOL

ICHVEC

I CHSEQVEC

ICHSEQ

I CHCOL

| CHROW

AND DELIVERS THE
£S AND MODULUS OF
OF A BAND MATRIX
QF A BAND MATRIX
ITION OF A MATRIX
LINEAR EQUATIONS

EQUILIBRATICN AS
EQUILIBRATION AS

OF FIRST ORCER
( MON=LINEAR )
OF FIRST ORDER
OF FIRST ORDER
OF FiRST ORDPER
OF FIRST ORDER
OF FI{RST ORDER
SOL SOLVES A 5VYST
ELM SOLVES A SYST
ING FROM PARTIAL
GRATION OF ST!FF
GRATIQN QF ST:FF
GRAT!IQN QF STIFF
GRATION OF STIFF
GRATION OF STIFF
D SOLVES THE SYST
OLUTION OF A SYST
ERB SOLVES A SYST
SOL SOLVES A SYST
SOL SOLVES A SYST
LVES A SYSTEMN OF
VE DEFINITE, SYST
DO SOLVES THE SYST
M OF FIRST ORDER
OF SECOND ORDER
OF SECOND ORUER
M OF FIRST ORDER
BND SOLVES A SYST

TRETXTTOXR

INTERCHANGES
INTERCHANGES
INTERCHANGES
INTERCHANGES
INTERCHANGES
INTERCHANGES
INCEX FOR AN
THAT MATRIX
3Y GAUSS AN
3Y GAUSSIAN
3Y¥ GAUSS AN
3Y GAUSS AN

FERFORMED PY
PERFORMED EVY

CIFFERENT AL
DIFFERENT DAL
CIFFERENT rRL
CIFFERENT | AL
CIFFERENT ! AL
CIFFERENT 1AL
DIFFERENT 1AL
ErM OF LINEAR
EM OF L INEAR
CiFFERENT AL
CIFFERENT AL
CIFFERENT AL
CUFFERENT AL
DIFFERENT LAL
DIFFERENT AL
EM OF LINEAR
£E4 OF LINEAR
EM OF LINEAR
EM" OF LINEAR
EM OF LINEAR
CIFFERENT AL
EM OF LINEAR
EM OF LINEAR
DIFFERENT AL
RIFFERENT | AL
UIFFERENT AL
CIFFERENT AL
EM OF L INEAR

EIGVALCCM COMPUTES ALL EIGENVALUES OF A COMPLEX MATRIX,

EIGVALHRM COMPUTES ALL E[|GENVALUES OF A HERMIT{AN MATRIX,

E1GVALSYMY COMPUTES aLl, OR SOME CONSECUTIVE E(GENVALUES OF A SYMMETRIC MATRIX, STORED IN A ONEDINME
E1GVALSYM2 COMPUTES aLL, OR SOME CCNSECUTIVE EiGENVALUES OF A SYNMETRIC MATRIX, STORED IN A TWC.DIME
ELEMENTS OF A RCW VECTOR AND COLUMN VECTOR,

ELEMENTS CF TWO VECTORS,

ELEMENTS OF TWO VECTOURS,

ELEMENTS OF TwO VECTORS,

FLEMENTS OF TWwO COLUMN VECTORS,

ELEMENTS OF TwO ROV VECTORS,

ELEMENT MAXIHMAL IN MODULUS,

CLEMENT OF MAX!MuUM ABSOLUTE VALVE,

CLIMINATION,

ELIMINATION AND SOLVES THE SYSTEM OF [ INEAR EQUATIONS,

ELIMINAT!IOQON WiTk COMYINED PARTIAL AND COYPLETE PIVCTING,

ELIMINATION WITH COMBIMED PARTIAL AND COMPLETE PIVOTING,

ELICOLRCW AaDDS A SCALAR TIMES A ROW VECTOR TO a CCLUMN VECTCR,

ELMCOLVEC APDS A SCALAR TiMES A VECTOR TO A COLUMN VECTOR,

ELI'COL ADDS A SCALAR TIMES A COLUMN VECTOR TO ANOTHER COLUNMN VECTOR,

SLMCOMCCL ADDRS A CONMPLEX NUMBER TIMES A COMPLEY CCLUMN VECTCR TO ANOTHER COMPLEX COLUMN VECTOR,
ELMCOMRCWYEC ADDS A COMPLEX NUMBER TIMES A COMPLEX VECTOR TO A COMPLEX RCOw VECTOR,

ELI'COMVECCOL ADDS A COMPLEX NUMBER TIMES A COMPLEX COLUMN VECTOR TO A COMPLEX VECTOR,

ELMROWCCL ADDS A SCALAR TIMES A COLUMN VECTOR TO A ROW VECTOR,

ELMROWVEC ADDS A SCALAR TiMES A VECTOR TO A RQw VECTOR,

ELITROW ADDS A SCALAR Ti4ES A ROW VECTOR TO ANOTHER ROW VECTOR,

ELNVECCCL ADDS A SCALAR TIMES A COLUMN VECTOR TO A VECTOR,

EL"VECRCY ADDS A SCALAR TiHMES A ROW VECTOR TO A VECTOR,

ELMVEC ADDS A SCaLAR TIi4ES A VECTOR T) ANOTHER VECTOR,

EGILARCC!HY,

EQILBRCCY TRANSFORIS A4 COMPLEX MATR!X INTO A SiMILAR EJUILIBRATED COMPLEX MATRIX,

£Q: L3R,

EQ!LAR TRANSFORMS 4 "MATRiX INTC A& SiMILAR EQUILIBRATED MATRIX,

EQUATIONS, BY A ONEwSTEP TAYLOR METHOD) TH:S METACD 1S PARTICULARLY SUITABLE FOR THE INTEGRATICN OF
EQUATIONS, BY A STABILIZED RUNGE KUTTA METHOD wiTw L iMiTED STORAGE REQUIREMENTS,

EQUATIONS, BY AN EXPONENTIALLY FITTED, EXPLICIT RUNGE KUTTA METHOD WriCH USES ThRE JACOBIAN MATRIX AN
EQUATIONS, BY AN EXPONENTIALLY FITTED, SEM! - [MPLICIT RUNGE KUTTA METHOD; SUITABLE FOR INTEGRATION
EQUATIONS, BY AN 1HPLIC|T, EXPONENT!ALLY F;TTED, F{RST ORDER ONELSTEP METHOD wiTH NO AUTOMATIC STEP
EQUATIONS, BY AN {IPLICHT, EXPONENTIALLY FIiTTED, SECOND ORDER ONE=STEP METHCD WiTH NO AUTOMATIC STEP
EQUATIONS, BY ONE OF THE FOLLOWING MULTISTEP METHODS: SEARS, ADANS = MOULTON, OR ADANS - BASHFCRTR M
EQUATINNS, OF whiCh TrE TRIANGULARLY DECOMPOSED FCRM OF THE HATRIX 'S GIVEM,

EGUATIONS, CF wkiCH THE TRIANGULARLY DECOMPOSED FCRM OF THE MATRIX 'S GIVEM,

EQUATIONS, PROVIDED Hi1GHER ORDER DERIVATIVES CAN BE EASiLY CBTAINED,

EQUATIONS,

EQUATIONS,

EQUATIONS,

EQUATIONS,

EQUATIONS,

EQUATIONS,

EQUATIONS,

EQUATIONS AND COHPUTES AM UPPER BOUND FOR 1TS ERRCR,

EQUATIONS RY CRCUT FACTNRIZATION WITH PART|AL PIVCTING,

EQUATIONS BY GAUSSIAN ELIMINATION wITH COMSBINED PARTIAL AND COMPLETE PIVOTING,

EQUATIONS BY SOFETIMES 1JSING THE DEPENDENT VARIABLE AS INTEGRATION VARIABLE,

EQUATIONS 8Y ThE METHOD OF CONJUGATE GRADIENTS,

FQUATIONS KY THE CHOLESKY HETHOD,

EGUATINNS USING A SaTH NRDER RUNGE KUTTA METHOD,

EQUATIONS USING A FaTH TRDER RUNGE KUTTA METHON,

EGUATIONS USING A RaThH NRDER RUNGE KUTTA METHON} NO DERIVATIVES ALLOWED ON RIGHT HAND SIDE,
FEQUATIONS USING TWE wRC LEMGTH AS [(NTEGRATION VARIABLE,

EQUAT!ONS »!TK BAND #ATRIX, wHICH IS DECOMPROSED 3Y DECS3ND,

34374
34368
34155
34453
34033
34030
34034
34035
34031
34032
31060
34230
34320
34322
34234
34232
34029
34022
34023
34377
34378
34376
34028
340¢7
34024
34021
34026
34020
34362
34361
34374
34373
33040
33060
33120
33160
33130
33431
33060
34051
34061
33040
330&0
33120
33160
33130
33181
34322
34241
34243
34301
34232
33017
34220
34333
33011
33013
33015
33018
34071
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BND SOLVES A SYSTEM OF LINEAR

SOLVES A SINGLE DIFFERENTIAL
NGLE FIRST ORDER DIFFERENTIAL
S A SECOND ORDER DIFFERENT AL
S A SECOND ORDER NIFFERENTIAL
UTES THE ROOTS OF A QUADRATIC
COMPLEX MATRIX INTHD A SIMILAR
FORMS A MATRIX INTO A SIMILAR
ORMATION CORRESPOMDING TO TKE
ORMATION CORRESPONDING TO TFKE

ON AND AN UPPER BCUND FOR ITS
MPUTES AN UPPER BCUND FOR TS
IX AND AN UPPER BOUND FOR ITS
ERF COMPUTES THE

OR FUNCTION AND COMPLEMENTARY
MPUTES AN UPPER BCUND FOR TFrE
COMEUCNRM COMPYTES THE

PCL

NEWRCL

THE RANGE [1/2,3/2); ODD AND
EMEZ (SECOND REMEZ ALGOR|THN)
E ARGUMENTS; THE SECOND REMEZ
, BY AN EXPONENTIALLY FITTEC,
DIFFERENTIAL EQUATIONS, RY AN
DIFFERENTIAL EQUATIONS, BY AN
AL EQUAT|ONS, BY AN [IMPL|CIT,
AL EQUATIONS, BY AN IMPLICIT,
PQSITION OF A MATRIX BY CROUT
OF LINEAR EQUATIONS BY cROUT
RK1 SOLVES A SINGLE

RK1N SOLVES A SYSTEM CF

RK5NA SOLVES A SYSTEM CF
PROBLEM, GIVEN AS A SYSTENM CF
PROBLEM, GIVEN AS A SYSTEM CF
EN AS AN AUTONOMOUS SYSTEM GF
EN AS AN AUTONOMOUS SYSTEM OF
EN AS AN AUTONOMOUS SYSTEM CF
EN AS AN AUTONOMOUS SYSTEM OF
PROBLEM, GIVEN AS A SYSTEN CF
QUATIONS, BY AN EXPONENTIALLY
BY AN IMPLICIT, EXPCNENTIALLY
BY AN IMPLICIT, EXPONENT|ALLY
QUATIONS, BY AN EXPONENTALLY

ORMAL OR GAUSS AN PROBABIL!TY
ERF COMPUTES ThE ERROR
COMPUTES THE INCOMPLETE GAMFA
S THE REC)PROCAL OF THE GAMMA
CTION AMD COMPLEMENTARY ERROR
GAMMA COMPUTES THE GAMMA
ATURAL LOGARITHM (GF THE GAMMA
ERT FORM) THAT APPROXIMATES A
COMPUTES THE INCCMPLETE BETA
COMPUTES THE INCOMPLETE BETA
COMPUTES THE INCOMPLETE BETA

EQUATIONS wITH SYMMETRIC POSITIVE DEFINITE BAND MATRIX, WHICH HAS BEEN DECOMPOSED 8Y CHLDECEND,
EQUATION BY SOMETIMES US|NG A DERPENDENT VARIABLE AS |NTEGRATION VARIABLE,

EQUATION USING A 5~TH ORDER RUNGE KUTTA METHOD,

EQUATION USING A 5-TH ORDER RUNGE KUTTA METHOD,

EQUATION USING A 5=Tri ORDER RUNGE KUTTA METHOD; NC DER|VATIVES ALLOWED ON RIGRT HAND SIDE,

EQUATION WITH CCHMPLEX CNEFFICIENTS,

EQUILIBRATED CONPLEX MATRIX,

EQUILI3RATED MATRIX,

EQUILIBRATION AS PERFOR™MED BY EQ}LBR,

EQUILIBRATIONM AS PERFORYED BY EGILBRCOM,

ERBELM COMPUTES 4N UPPER BOUMD FOR TWE ERROR IN THE SOLUTION OF A SYSTEM OF LINEAR EQUAT|ONS,

ERF COMPUTES THE ERROR FUNCT)ION AND COMPLEMENTARY ERROR FUNCTION FOR A REAL ARGUMENT) THESE FUNCTION
ERROR, CF A SYSTEM OF LINEAR EQUATIONS, OF WHICH THE TRIANGULARLY DECOMPOSED FORM OF THE MATRIX IS G
ERROR,

ERROR,

ERPCR FUNCTION AND COMPLEMENTARY ERRGR FUNCTION FCR A REAL ARGUMENT; THESE FUNCT|ONS ARE RELATED TC
ERROR FUNCTION FUR A REAL ARGUMENT) THESE FUNCTIONS ARE RELATER TO THE NORfAL OR GAUSSIAN PROBABILIT
ERROR IN THE SOLUTION OF A SYSTEM OF [ INEAR EQUATIONS,

EUCLIDEAN NORM OF A COMPLEYX MATRIX,

EVULER CCHMPUTES THE SuUM OF AN ALTERMATING SERIES,

EVALUATES A POLYNOIMIal GIVEN N THE GRUNERT FORM By THE HORNER SCHEME,

EVALUATES A POLYNOIIAL GIVEN iN THE NEWTON FORM By THE HORMNER SCHEWNE,

EVEN PARTS ARE ALSO DFLIVERED,

EXCHRANGES KNUIMBERS WITH NUMBERS OUT OF A REFERENCE SET,

EXCHANGE ALGORITHM 1S USED FOR TH|S MiNIMAX POLYNOMIAL APPRCOX!IMATION,

EXPLICIT RUNGE KUTTA METHOD WHICH USES THE JACOBIAN MATRIX AND AUTOMATIC STEP CONTROL; SUITABLE FOR
EXPCHENTIALLY FITTEDR, EXPLICIT RUNGE KUTTA METHOD WHICH USES THE JACOBIAN (MATRIX AND AUTCMATIC STEP
EXPCHENTIALLY FITTED, SEM| w IMPLICIT RUMGE KUTTA METHOD; SUITABLE FOR INTEGRATION OF STIFF DIFFEREN
EXPONENTIALLY FITTED, FIRST ORDER ONESSTEP METHOD WITH NO AUTOMAT!C STEP CONTROL; SUITABLE FOR INTEG
EXPONENTIALLY FITTED, SFCOND ORDER ONE=STEP METHAD WITH NO AUTOMATIC STEP CONTROL; SUITABLE FOR [INTE
FACTORIZATION WITH PARTIAL PIVOTING,

FACTORIZATION WITH PARTIAL PIVOTING,

FIRST ORDER DIFFEREMTIAL EQUATION USING A S=-TH ORDER RUNGE KUTTA METHOD,

FIRST ORDER DIFFERENT|AL EQUATIONS USING A 5-TH ORDER RUNGE KUTTA METHOD,

FIRST ORDER DIFFERENTIAL EQUAT!ONS USING THE ARC LENGTH AS INTEGRATION VAR!ABLE,

FIRST ORDER DIFFERENTIAL EQUATIONS, BY A ONE-STEP TAYLOR METHOD; Tr1S METHOD IS PARTICULARLY SUITABL
FIRST NRDER DIFFERENTIAL EQUATIONS, BY ONE OF FHE FOLLOWING MU[T{STEP METHODS: GEARS, ADAMS - MOULTO
FIRST ORDER DIFFERENTIAL EQUATIONS, BY AN EXPONENTIALLY FITTED, EXPLICIT RUNGE KUTTA METHOD WHICH US
FIPST ORDER D(FFERENTIAL EQUATIONS, BY AN EXPONENTIALLY FITTED, SEMI - IMPLICIT RUNGE KUTTA METHCOD;
FIRST ORDER DIFFEREMTIAL EQUATIONS, BY AN {MPL(CIT, EXPONEMTIALLY FITTED, FI(RST ORDER ONE~STEP METHO
FiRST ORDER DIFFEREMTIAL EQUATIONS, BY AN iMPL)CI!T, EXPONENTIALLY FITTED, SECOND ORDER ONEwSTEP METH
FIPST ORDER ( NCNaL!HNEAR ) DIFFERENT|AL EQUATINNS, BY A STABILIZED RUNGE KUTTA METHOD WITH LIMITED S
FITTED, EXPLICIT RUNGE KUTTA METHOD wHiC+H USES THE JACOBIAHN MATR|X AMD AUTOMATIC STEP CONTRCL; SUITA
FITTED, FIRST CRDER UMNE-STEP METHOD W!TH NO AUTOMATIC STEP CONTROL) SUITABLE FOR INTEGRATICN OF STIF
FITTED, SECOND CRDER ONELSTEP METHOD W!T- WO AUTOMATIC STEP CONTROL; SUITABLE FOR INTEGRATICN CF ST}
FITTED, SEM! . IMPLICIT RUNGE KUTTA METHOD; SU!TABLE FOR INTEGRATION OF STIFF DIFFERENTIAL EQUATIONS
FLEMIN ( OPT(MIZATION ) MINIMIZES A GIVEN DIFFERENTIABLE FUNCT|ON OF SEVERAL VARIABLES BY A VARIABLE
FLEUPD {8 AN AUXILIARY PROCEDURE FOR QPTIMIZATION,

FOPWARD 1§ AN AUXIL!IARY PROCEDURE FOR THE (NCOMPLETE BETA FUNCTION,

FUNCTION,

FUNCTION AND COMPLEMENTARY ERROR FUNCT{ON FOR A REAL ARGUMENT; THESE FUNCTICNS ARE RELATED TO TKE NO
FUNCTION BY PADE APPROXIMATIONS,

FUHCTION FOR ARGUMENTS IN THE RANGE [4/2,3/2)3 00D AND EVEN PARTS ARE ALSO DELIVERED,

FUNCTION FOR A REAL ARGUMENT) THESE FUNCTIONS ARE RELATED TC THE NCRMAL OR GAUSSIAN PROBABILITY FUNC
FUHCTION FOR A REAL ARGUMENT,

FUNCTION FOR PRPOSITIVE ARGUMENTS,

FUNCTION GIVEN FUR DISCRETE ARGUMENTS) THE SECOND REMEZ EXCHANGE ALGORITHM 1S USED FOR THIS MIN|MAX
FUNCTION ' (X,P+N,Q),U¢=X<=],P>0,050, FOR N=U(1)NWAX,

FUNCTION 1(X,P,Q),0<=X<al,P>0,0>0,

FUNCTION 1(X,P,Q4N),0c=X<=d,P>0,0>), FOR Nal(1)NMhAX,

34332
33016
33010
33012
33014
34345
34361
34173
34174
34362
34241
35020
34253
34243
34244
35020
35020
34241
34359
32010
31040
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36022
33120
33120
33160
33130
33131
34300
34301
33010
33011
33018
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33120
33160
33130
33131
33060
33120
33430
33431
33160
34215
34213
35055
35020
35020
35030
35060
35020
35061
35062
36022
35051
35050
35052
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ES THE DEFIN|TE INTEGRAL OF A
ES THE DEFIN|TE INTEGRAL OF A
ROIN SEARCHES FOR A ZERU OF a
IMIZES A GIVEN DIFFERENTABLE
IMIZES A GIVEN DIFFERENTARLE

RECIP

LCG

OMGAM COMPUTES THE INCOMPLETE
OMPUTES THE RECIPROCAL OF TrE
GAMMA COMPUTES THE

THE NATURAL LOGAFIThNM CF TFE

MPOSITION OF A BAND MATR|X BY
MPOSITION OF A BAND MATR|X BY
DECOMPOSITION OF A MATR X BY

SYSTEM OF LINEAR EQUAT!IONS BY
ARE RELATED TO THE NORNMAL CR

FOLLOWING MULT!STEP METHCDS:

NS BY THE METHOD GF CONVUGATE
NTATION FROM NEWTCN FORM [NTO
TES A POLYNOMIAL GIVEN IN TKE
ICIENTS OF THE POLVYKOMIAL (!N

HSHHRMTR! TRANSFORMS A
1S UNITARY SIMILAR TC A GIVEWN
COMPUTES ALL EIGENKVALUES OF A
NVECTORS AND E!GENVALUES OF
COMPUTES ALL EIGENVALUES OF
NVECTORS AND EIGENVALULES OF

THE CODIAGONAL ELEMENTS OF A
L MATRIX INTO A SIMiLAR UPPER
E EIGENVALUES OF A REAL UPPER
AL EIGENVALUE OF A REAL UPPER

EIGENVECTORS CF & REAL UPPER
X EIGENVALUES OF & REAL UPPER
EX E!GENVALUE OF A PREAL UPPER
IGENVALUES OF A COMPLEX UPPER
| GENVALUES OF A COMPLEX UPPER

INTO A SIMILAR UNITARY UPPER

HOMSOLSVR SOLVES A
HCMSOL SOLVES A

» »r r P

EN IN THE GRUNERT FOQRM BY THE
VEN IN THE NEWTCN FORF oY TrE
A SiMILAR TRID!AGONAL ONE PRY

ORMAT ION CORRESPONDING TO THE
A SIMILAR TRIDIAGOMAL CNE RY
ORMAT!ON CORRESPONDING TO THE
COMPLEX MATR{X WiTH &4 COMPLEX
O BIDIAGONAL FORM BY MEANS CF
LSQORTDEC PERFCRMS THE

FUNCTION OF
FUNCTION OF
FU'CTION OF
FUNCTION OF
FUNCTION OF

ONE VARIABLE OVER
ONE VARIABLE OVER
ONE VARIABLE IN A
SEVERAL VARIABLES
SEVERAL VARIABLES

A FINITE INTERVAL,

A PINITE OR INFINITE
GIVEN INTERVAL,

By A V4RIABLE METRIC METHOD,
Ay A VAR|ABLE METRIC METHOD,

INTERVAL OR OVER A NUMBER OF CONSECUT|VE [INTERVA|

GAMMA CCMPUTES THE RECIPROGAL OF THE GAMMA FUNCTION FOR ARGUMENTS [N THE RANGE ([1,2,3/2]; ODD AND EV
GAI'KA CCMPUTES THE GAMMA FUNCTION FOR A REAL ARGUMENT,

GAMMA CCHMPUTES THE NATURAL LOGAR|THM QOF THE GAMMA FUNCTION FOR POS|TIVE ARGUMENTS,

GAI'MA FUNCTION BY PADE APPROXIMAT|ONS,

GAMNMA FUNCTION FOR ARGUIENTS 1N THE RANGE (1/2,3/2]; 0OD AND EVEH PARTS ARE ALSO DELIVERED,

GAMMA FUNCTION FOR A REAL ARGUMENT,

GAMMA FUNCTION FOR PUSIT|VE ARGUMENTS,

GAUSS AN ELIMINATION,

GAUSS I AN ELIMINATION AND SOLVES THE SYSTEM OF [ INEAR EQUAT|ONS,
GAUSSIAN ELIMINATION wi™H COMBINED PARTIAL AND COMPLETE PIVOTING,
GAUSSIAN ELIMINATION wi™d COMBINED PARTIAL AHD COMPLETE PIVOTING,
GAUSSIAN PROBABILITY FUHCTION,
GEARS, ADAMS o MOULTON, OR ADAMS w
GRADIENTS,

GRUNERT FORM,
GRUNERT FQRM BY THE
GRUNERT FORM) THAT APPROX|MATES A FUNCTION GIVEN FOR DISCRETE ARGUMENTS; THE SECOND REMEZ EXCHANGE A
GSSELM PERFORMS THE TRIANGULAR DECOMPAS|TION QF A MATRI(X 3Y GAUSS{AN ELIMINAT{ON WI!TH COMBINED PARTI
GSSERB (S AN AUXILIARY PROGEDURE FOR THE SOLUT{OY OF L INEAR EGUATION wiTH AN UPPER BOUMD FCR THE ERR
GSSINVERB COMPUTES THE [NVERSE OF A MATRIX AND AN UPPER BOUND FOR (TS ERROR,

GSSINV COMPUTES THE I1NVERSE OF A MATRIX,

GSSITISCLERB COMPUTES A'l ITERATIVELY REFINED SOLJTION AF A SYSTEM OF L iINEAR EQGUAT|ONS,

58SITISCL COMPUTES AN ITERATIVELY REFINED SOLUTION OF A SYSTEM OF LINEAR EQUATIONS,

GSSNRI 15 AN AUXILIARvV PROCEDURE FOR THE |TERATIVELY REF|NED SOLUTION OF A SVYSTEM OF LINEAR EQUATICN
GSSSOLERB SOLVES A SYSTEM OF LINEAR EQUATINONS AND COMPJUTES AN UPPER BOUND FOR ITS ERROR,

GSSSOL SOLVES A SYSTEM NF [ INEAR EQUATIONS BY GAJSSIAN ELIMINATION WITH COMBINED PARTIAL AND CCMPLET
HECNM (I TIAM MATRIX INTO A SI™M|{ AR REAL SYMMETR!C TRIDIAGINAL MATRIX,

HERMITIAN MATRIX,

HERM|TIAN MATRIX,

HERM i T]AN MATRIX,

HERMITIAN MATRIX,

HERMITIAN MATRIX,

HERM!TIAN TRIDIAGONAL MATRIX WHigH 13 UNITARY S!“ILAR TO A GIVEN HERM;TIAN MATRIX,

HESSENBERG MATRIX BY THE WiLKINSON TRANSFORMAT|ON,

BASHFORTH METH0D; WITH AUTOMATIC STEP AND ORDER CONTROL AND SYITA

HOR“ER SCHEME,

HESSENDBERG MATRIX, PRQVIDED THAT ALL EiGENVALUES ARE REAL, BY MEANS OF SINGLE QRe|TERATION,
HESSENBERG MATRiX, BY MEANS OF INVERSE ITERATION,

HESSENBERG MATRIX, PROVIDED THAT ALL ['GENVALUES ARE REAL, BY MEANS OF SINGLE QRe|TERATION,
HESSENBERG MATRIX BY MEANS OF DOUBLE QRe|(TERAT{OW,

HESSENBERG MATRIX BY MEANS OF [INVERSE (TERAT(ONM,

HESSENBERG MATRIX W!TW A REAL SUBDIAGNONAL,

HESSENBERG MATRIX WITH A REAL SUBDIAGONAL,

HESSENHSERG MATRIX WiTrH A REAL NONaNEGATIVE SUBDIAGONAL,

HOMOGENEOUS SYSTEM OF LINEAR EQUAT!ONS, PROVIDED THAT THE SIHGULAR VALUE DECOMPOSI|ITION OF THE COEFFI
HOMCGENEOUS SYSTEM OF LIMEAR EQUATIONS BY MEANS OF SINSULAR VALUE DECOMPOSITION,

HOMSOLSYD SOLVES A HOMOGENEOUS SYSTEM OF LINEAR EQUATIONS, PROVIDED THAT THE SINGULAR VALUE DECOMPCS
+HOMSOL SOLVES A HOMOGENROUS SYSTEY OF L!NEAR ENUATIONS BY MEANS OF SINGULAR VALUE DECOMPOSITION,
HORNER SCHEME,

HORNER SCHEME

HOUSERDLDERS TRANSFORMAT(QN,

HOUUSEHOLDERS TRANSFORMATION AS PERFORMED BY TFMSYMTRIZ,

HOUSEHOLDERS TRANSFORMATION,

HOUSEMOLDERS TRANSFORMATION AS PERFORMED BY TFMSYMTRIY,

HOUSEHOLDER MATRIX,

HOUSEMOLDER TRANSFORMAT 1ON,

HOUSEHOLDER TRIANGULARIZATION OF THE COEFFICIENT MATRIX OF A L|NEAR LEAST SQUARES PROBLEM,

3r070
32051
34150
34214
34215
35060
35061
35062
35050
35060
35061
35062
34320
34322
34231
34232
35020
33080
34220
31050
31040
36022
34231
34242
34244
34236
34254
34251
34252
34243
34232
34363
34364
34368
34369
24370
34371
34364
34170
34180
34161
34186
34190
34191
34372
34373
34366
34284
34285
34284
34265
31040
31041
34140
34141
34143
34444
34356
34260
34134
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ANSFORMAT|ON CORRESPONDING TO

ANSFORMATION CORRESPONDING TO

OSTMULTIPLYING MATRIX USED
PREMULTIPLYING MATRIX USED

ey
By

DIFFERENTIAL EQUATIONS,
DIFFERENTIAL EQUATIONS,
EXPONENTIALLY FITTED,

BY AN
BY AN
SEM| .

INCBETA COMPUTES

| BPPLUSN COMPUTES

I BQPLUSN COMPUTES
AUXIL1IARY PROCEDURE FOR
AUXILIARY PROCEDURE FOR
AUXILIARY PROCEDURE FOR
AUX IL | ARY PROCECURE FOR
INCOMGAM COMPUTES

OF A VECTOR AND DELIVERS TFE
MAXMAT FINDS THE

ONE VARIABLE OVER A FINITE CR
ABSMAXVEC COMPUTES TrE

THE
THE
THE
THE
THE
THE
THE
THE

zzZzzz

INISYMD

INISYMROW

tMIVEC

INIMAT

INJMATD

MULTISTEP SOLVES AN

EFERK SOLVES

EFS!RK SOLVES

LINIGER] SOLVES

LINIGER? SOLVES

MODIFIED TAYLOR SOLVES AN
ODIFIED RUNGE KUTTA SOLVES AN

ATURE ) COMPUTES THE DEF|NITE
ATURE ) COMPUTES THE DEFNITE

THE
THE
FOR
FCR

PARTICULARLY SUITABLE FOR
CONTROL AND SUITABLE FOR
IC STEP CCNTROL; SUITABLE
GE KUTTA METHOD; SU!TABLE

HSHCOMCOL TRANSFORMS A COMPLEX VECTOR iINTO A VECTOR PROPORTIONAL TO A UNIT VECTOR,
HSHCOMHES ,

HSHCOMHES TRANSFORMS A COMPLEX MATRIX INTO A S{M! AR UNITARY UPPER HESSENBERG MATR
HSIHCOMPRD PREMULTIPLIES A COMPLEX MATRIX WITH A COMPLEX HOUSEHOLDER MATRIX,
HSHHRRMTRIVAL DELIVERS THE MAIN DIAGONAL ELEMENTS AND SQUARES OF THE CODIAGONAL ELE
HSHHRMTR,
HSHHRMTR| TRANSFORMS A HERMITIAN MATRIX [NTO A SIMILAR REAL SYMMETRIC TRIDIAGONAL
HSHREA3ID TO TRANSFORM A MATRIX INTO AiDIAGONAL FORM,

HSIMREABID TO TRAHSFORM A MATRIX [NTO 31DIAGONAL FORM,

HSHREARID TRANSFORIIS A REAL MATR|X INTO B3IDIAGONAL FOR'Y BY MEANS OF HOUSEHNLDER TR

|BPPLUSN COMPUTES THE INCOMPLETE BETA FUNCTION 1 (X,P#N,Q),0<=Xe=1,P>0,”>0, FOR NaD
{RQPLUSN COMPYTES THE INCOMPLETE BETA FUNCTION 1 (X,P,QaN),D<=Xc=1,P>0,0>0, FOR N=(
1CHCOL INTERCHANGES ELEMENTS OF TWO COLUMN VECTORS,

OF A ROW YECTOR AND COLUMN VECTOR,

TWO RQW VECTORS,

OF Two VECTORS,

TWO VECTORS,

TWO VECTORS,

FIRST ORDER ONE~STEP METHOD WI(TH NO AUTOMATIC STEP
SECOND ORDER QME-STEP METHOD W{TH NO AUTOMAT!IC STE
INTEGRATION OF STIFF DIFFERENTIAL EQUAT!
1 (XyP,Q),0<3X<=4,P50,a>0,

8Y PADE APPROX|MAT|ONS,

|CHROWCCL INTERCHANGES ELEMENTS
(CHROW (MTERCHANGES ELEMENTS OFP
{CHSEQVEC INTERCHANGES ELEMENTS
ICHSEQ@ INTERCHANGES ELEMENTS OF
ICHVEC INTERCHANGES ELEMENTS OF
IMPLICIT, EXPONENTIALLY FITTED,
IMPLICIT, EXPONENTIALLY F{TTED,
IMPLICIT RUNGE KUTTA METHOD; SUITABLE FOR
INCEBETA COMPUTES THE INCOMPLETE BETA FUNCTION
INCCNGAM COMPUTES THE INCOMPLETE GAMMA FUNCT!QH

INCOMPLETE BETA FUMNCTIOM I(X,P,Q),0<aX<=1,P>0,0>),

INCOMPLETE BETA FUNCTION 1(X,PeN,Q),0¢3X<al P20, 20, FOR Nz0(1)NMAX,
INCOMPLETE BETA FUNGTIOHN 1(X,P,Q4N),0<EX<e1,P>0,9>), FOR N=0(1)NMAX,
INCCNMPLETE BETA FUNCTIOMN,

INCCHPLETE BETA FUNCTOM,

INCOMPLETE BETA FUNCTION,

INCOMPLETE BETA FUNCTION,

INCONPLETE GAMMA FUNCTION BY PADE APRROXIMATIONS,

INDEX FCR AN ELEMENT MAXIMAL IN MODULYS,

INDICES AND MODULUS OF THAT MATRIX ELEMENT OF MAXIMUM ABSOLUTE VALUE,

INFINITE INTERVAL OR OVER A NUMBER OF CONSECUTIVE |NTERVALS,

INFIitel Ty NORM OF A VECTOR AND DELIVERS THE INDEX FOR A" ELEMENT MAXIMAL
INIMATD INITIALIZES (PART OF) A DIAGAONAL QR COD!AGONAL WITH A COMNSTANT,
INIMAT INITIALIZES (PART OF) A MATRIX WITH A CONSTANT,

INISYMD INITIALIZES A CODIAGONAL OF A SYMMETR!IC MATRIX WITH A CONSTANT,
INISYMRCY INITIALIZES A ROW OF A SYMMETR!IC MATRIX W|TH A CONSTANT,
INITIALIZES A CCDIAGONAL OF A SYMMETRIC MATRIX WiTH A CONSTANT,
INITIALIZES A ROW OF A SYMMETRIC MATR(X WITH A CONSTANT,

INITIALIZES (PART OF) A VECTOR WITH & CONSTANT,

INITIALIZES (RART OF) A MATRIX WITH A CONSTANT,

INITIALIZES (PART OF) A DIAGONAL OR €ODIAGONAL WI!ITH A CONSTANT,
INITIAL VALUE PROBLEM, G|VEN AS A SYSTEM OF FiRST ORDER DIFFERENTIAL
INTTIAL VALVE PROBLEMS, GIVEN AS AN AYTONOMOUS SYSTEM OF FIRST ORDER
INITIAL VALUE PROBLENMS, GIVEN AS AN AUTONOHOUS SYSTEM OF F{RST ORDER
INITIAL VALUWE PROBLEMS, GIVEN AS AN AUTOMOMOUS SYSTEM OF FIRST ORDER
INITIAL VALUE PROBLEMS, G)VEN AS AN AYTONOMOUS SYSTEM OF FIRST ORDER
iNITIAL ( BOUNDARY ) VALUE PROBLEM, GIVEN AS A SYSTEM OF FIRST ORDER
{NITIAL ( BOUNDARY ) VA_UE PROBLEM, GIVEN AS A SYSTEM OF FIRST ORDER (
INIVEC INITIALIZES (PART OF) A VECTOR W!TH A CONSTANT,

INI IS AN AUXILIARY PROCEDURE FOR MINIMAX APPROXIMATION,
INTEGRAL OF A FUNCTION OF ONE VARIAB(E OVER A FiN|TE INTERVAL,
INTEGRAL OF A FUNCTION OF ONE VARIABLE OVER A FIN{TE OR [NFIN{TE
INTEGRAL ( QUADRATURE ) COMPUTES THE DEFIN|TE
INTEGRATION OF LARGE SYSTEMS ARIBSING FROM PART{AL DIFFERENTIAL EQUATIONS,
INTEGRATION OF STIFF DIFFERENTIA| EQUATIONS,

INTEGRATION OF STIFF DIFFERENTIA|L EQUAT!ONS,

INTEGRATION OF STIFF DIFFERENTI AL, EQUAT!ONS,

IN MODULUS

EQUATIONS, BY
DIFFERENT AL
DIFFERENTIAL
DIFFERENTIAL
DIFFERENTIAL
DIFFERENT LAl
NON=L | NEAR

INTERVAL OR OVER

IX WITH A REAL NON
MENTS OF A HERMITI
MATRIX,
ANSFORMAT|ON,

(LINMAX,
(1INMAX,

CONTROL; SUITABLE
P CONTROL; SU!ITABL
ONS,

.

ONE OF THE FOLLOW
EQUATIONS, By AN E
EQUATIONS, BY AN E
EQUATIONS,
EQUATICONS, BY
EQUATIONS, BY A ON
)y DIFFERENTIAL EOU

A NUMBER OF CONSEG

INTEGRAL OF A FUNCTION OF ONE VARIABLE OVER A FINITE O
PROVIDED MIGHER ORDER DERI

34355
34367
34366
34356
34364
34365
34363
34261
34262
34260
35051
35052
34031
34033
34032
34034
34035
34030
33130
33131
33160
35050
35030
35050
35054
35052
35053
35054
35055
35056
35030
31060
34230
32051
31060
31012
31011
31013
31014
31013
31014
31010
31011
31012
33080
33120
33460
33430
33431
33040
33060
31010
36020
32070
32051
32051
33040
33080
33120
33160
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IC STEP CONTROL; SUITABLE FOR
IC STEP CONTROL; SUITABLE FCR
USING A DEPENDENT VARIABLE AS
ING THE DEPENDENT VARIABLE AS
TIONS USING THE ARC LENGTH AS
IChVEC

ICHSEQVEC

| CHSEQ

lcHeoL

ICHROV

1 CHROV COL

HE COEFFJCIENTS OF THE NEWTCHN
TRIDIAGONAL MATRIX BY LiNEAR

~DIMENS |ONAL ARRAY, BY LINEAR
~DIMENSIONAL ARRAY, BY LINEAR
OVER A NUMBER OF CONSECUTIVE

MMETRIC TRIDIAGONAL ITATRIX BY
ESSENBERG MATRIX, BY MEANS OF
HESSENBERG MATRIX BY MEANS OF
NV COMPUTES THE 1=NOR[" OF THE
INV COMPUTES THE

DECINV COMPUTES THE

INV1 COMPUTES THE

GSSINV COMPUTES THE

GSSINVERS COMPUTES TKE
DINYSVD CALCULATES THE PSEUDO
PSDINV CALCULATES THE PSEUDO
CHLINV2 COMPUTES THE

CHL INV1 CONMPUTES TrE

, BY THE CHOLESKY METHOD, TrE
, BY THE CHOLESKY METHOD, TrE
THE DIAGONAL ELEMENMTS OF THE
THE DIAGONAL ELEFENTS OF TrE

TRIDIAGONAL fIATRIX BY INVERSE
G MATRIX, BY MEANS OF |NVERSE
RG MATRIX BY MEANS OF |NVERSE
{TISCL COMPUTES AN

GSSITISOL COMPUTLS AN
ITISOLER3 COMPUTES AN
GSS|TISOLER3 COMPUTES AN

THE INCOMPLETE BETA FUNCTICN
THE INCOMPLETE BETA FUNCTICN
THE INCOMPLETE B3ETA FUNCTION
E KUTTA VMETHOD WHIiCH USES THE
ITABLE FOR THE INTEGRATION OF
OEFFICIENT MATRIX OF A LINEAR
EFFICIENT MATRIX) OF A LINEAR
LSQSO0i, SOLVES A LINEAR
LSQORTDECSOL SOLVES A LINEAR
SOLSVDOVR CALCULATES ThE
SOLOVR CALCULATES TFE
SOLSVDUND CALCULATES THE BEST
SOLUND CALCULATES THE BEST
NTIAL EQUATIONS USING THE ARC

INTEGR
INTEGR
INTEGR
INTEGR
INTEGR
INTERC
INTERC
INTERC
INTERC
{NTERC
INTERC
INTERP
iNTERP
INTERP
INTEQP
INTERY
INVY C
INVERS
INVERS
tNVERS
INVERS
INVERS
INVERS
INVERS
INVERS
INVERS
INVERS
{NVERS
| NVERS
INYERS
iNVERS
INVERS
INVERS
tNVERS

ATION OF STIFF DIFFERENTIAL EQUATIONS,
ATION OF STIFF DIFFERENT|AL EQUATIONS,

ATION V
ATION V
ATION V
HANGES
HANGES
HANGES
HANGES
HANGES
HANGES
OLATION
OLATION
OLATION
OLATION
ALS,
OMPYTES
E ITERA
E ITERA
£ ITERA
E OF A
E OF
E OF
E OF
E OF
E OF
E OF
£ OF
£ OF
E OF
E OF
£ OF
E NF M

P> >>»PrPrr>bb>P>

ARIABLE,
ARIABLE,
ARTABLE,
ELEMENTS OF
ELEMENTS OF
ELEMENTS OF
ELEMENTS OF
ELENMENTS OF
ELEMENTS OF
PCLYNOMIAL
USING A STU
USING A STU
USING & STU

THE INVERSE
TION,
TICHN,
TION,

TWO VECTORS,

TWO VECTORS,

TWO VECTORS,

TWO COLUMN VECTORS,

TWO ROW VECTORS,

A ROW VECTOR AND COLUMN VECTOR,

FOR GIVEN ARGUMENTS AND FUNCT|OM VALUES,
RM SEGQUENCE,

RM SEQUENGE,

RM SEQUENCE,

OF A MATRIX OF WHICH THE TRIANGULARLY DECOMPOSED FORM IS GIVEN,

MATRIX, WHICH IS TRIANGULARLY DECNMPGSED,

MATRIX OF wH
MATRIX,
MATRIX OF yH
MATRIX,
MATRIX AND A
MATRIX, PRAV

1CH THE TRIANGULARLY DECCMPOSED FORM |S GIVEN,
ICH THE TRIANGULARLY DECOHMPOSED FORM |S G|VEN,

N UPPER BOUMD FOR ITS ERROR,
IDED THAT THE SINGULAR YALUE DECOMPOSITION IS GIVEN,

MATRIX oy “EANS OF THE SINGULAR VALUE DECOMPOSITION,

SYMMETRIC RO

SITIVE DEFINITE iMATRiX Yk(CH AS 8EEN DECOMPOSED 8y CHLDECZ,

SYMMETRIC POS|TIVE DEFINITE MATRIX «KiCh ~AS SEEN DECOMPCSED AY CHLDEC],
SYNMETRIC POS|TIVE DEFINITE MATRIX, STORED IN A TuOaDIMENSIONAL APRAY,

SYVMETRIC PO
M (1t COEFFiC

SITIVE DEF!NITE MATRIX, STORED !N A ONE«DIMENSIONAL ARRAY,
IENT MATRIX) OF A LINEAR _EAST SQUARES PROBLEM,

E NF M'm (14 COEFFICIENT MATRIX),

INV COMPUTES THE INVERSE

ITERAT
I TERAT
ITERAT
1 TERAT
I TERAT
I TERAT
ITERAT

ICN,
ICN,
ICN,
fVELY R
IVELY R
IVELY R
IVELY R

EFIHED SOLUT
EFIHED SoLuT
EFINED SoLuT
EFIKED SoLuT

ITISOLERS COMPUTES ANl |FE
ITISOL COMPUTES AN ITERAT
IS AN AUXILIARY PROCEDURE FOR TWE INCOMPLETE BETA FUNCT|ON,
1S AN AUXILIARY PROCEDURE FOR TWE INCOMPLETE BETA FUNCTIOWN,
1 {X,P+N,0),0<=Xe=1,P>0,9>0, FOR Nal(L)NMAX,

1 (X,P,QeN),0<=X<=1,P>0,Q>0, FOR NeN(L1)NMAX,

1{X,P,0),0<¢aX<=1,P>0,0>0,
JACOBIAN MATRIX AND AUTAMATIC STEP CONTROL; SUITABLE FOR INTEGRATION OF STIFF DIFFERENT 4L EQUATIONS

IXPFIX
IXCF 1 X

LARGE
LEAST
LEAST
LEAST
LEAST
LEAST
LEAST
LEAST
LEAST
LENGTH

SYSTEMS
SQUARES
SGUARES
SGUARES
SGUARES
SGUARES
SGUARES
SGUARES
SGUARES
AS INT

ARISIHNG FRO
PROBLEM,
PROBLEHM,
PROBLEM, B8R

PROBLEM AND
SOLUTION OF
SOLUTION OF
SCLUTION OF
SCLUT!ION OF
EGRATION VAR

OF A MATRIX OF wWniCH THE TRIANGULARLY DECOMPOSED FORWM {5 GIVEN,

{ON OF A SYSTEM OF LINEAR EQUATIONS, ThE NATRIX OF Whi{CH (S GIVEN IN ITS TR
|ON OF A SYSTEM OF LINEAR EQUATIONS,

|ON AND AN UPPER BOUND FOR ITS ERRCR, OF A SYSTEM CF LINEAR EQUATICNS, OF ¥
JON OF A SYBTEM OF LINEAR EQUATIONS,

RATIVELY REFINED SOLUTION AND AN UPPER 30OUND FOR TS ERRQR, OF A SYSTEM OF
IVELY REFINED SOLUTION OF A SYSTEM OF LINEAR EQUATIONS, THE MATRIX OF WHICH

M PARTiIAL DIFFERENTIAL EQUATICNS, PROVIDED HIGHER ORDER DERIVATIVES CAN BE

OVIDED THAT THE COEFFJCIENT MATRIX HAS BEEN DECOMPOSED BY LSQORTDEC,
COMPUTES THE DIAGONAL ELEMENTS OF THE |NVERSFE OF M'M (M COEFFICIENT MATRIX
A OVERDETERMINED SYSTEM OF LINEAR EQUATIONS, PROVIDED THAT THE SINGULAR VA
A OVERDETERM|NED SYSTEM OF LINEAR EQUATIONS BY MEANS OF SINGULAR VALUE DEC
A UNDERDETERMINED SYSTEM OF |LINEAR EQUATIONS, PROVIDED THAT THE SINGULAR V
A UNDERDETERMINED SYSTEM OF LINEAR EQUATIONS BY MEANS OF SINGULAR VALUE DE
IABLE,

33130
33431
33016
33017
33018
34030
34034
34035
34031
34032
34033
36010
34151
34155
34153
32051
34235
34152
34181
34191
34240
34053
34302
34235
34236
34244
34286
34287
34400
JA4401
24402
34403
34132
343,35
34053
34152
34161
34191
34250
34251
34253
34254
34253
34250
35054
35053
35051
25052
35050
33420
33040
34134
34432
34131
34435
34280
34281
34282
34283
33018
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POS|TIVE DEFINITE,
SOLBND SOLVES a
TION AND SOLVES THE
CHLSOLBND SOLVES &
TRIX AND SOLVES ThE
N THE SOLUTION OF A
SOL SOLVES A

DECSOL SOLVES a
SOLELM SOLVES A
GSSSOL SOLVES A
GSSSOLERS SOLVES A
FINED SOLUTION OF A
FINED SOLUTION OF A
FOR ITS ERROR, OF A
FINED SOLUTION OF A

C POSITIVE DEFINITE
C POSITIVE DEFINITE
C POSITIVE CEFINITE
C POSITIVE DEFINITE
OF A OVERDETERMINED
OF A OVERDETERMINED
F A UNDERDETERMINED
F A UNDERDETERMINED
OLVES A HOMOGENEOLS
OLVES A HOMOGENEOUS
SOLTRI SOLVES A
DECSOLTRI SOLVES A
SOLTRIPIV SOLVES A
PARTIAL PIVOTING A
SOLSYMTRI SOLVES A
CSOLSYMTR! SOLVES A
MMETRIC TRIDIAGONAL
N A ONE-DIMENSIONAL
N A TWO=DIMENS|IONAL

F THE COEFFICIENT MATRiIX OF
M (M COEFFICIENT MATRIX) OF
LSQSOL SOLVES

LSQORTDECSOL SOLVES

SYSTEM
SYSTEM
SYSTEN
SYSTEM
SYSTEWM
SYSTEN
SYSTEM
SYSTEr
SYSTEM
SYSTER
SYSTEM
SYSTEM
SYSTEM
SYSTegM
SYSTEM

CF

CHLDEC2 ¢
CHLDECY ¢

SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
MATR )X
ARRAY,
ARRAY,

OF
OF
CcF
OF
CF
OF
CF
OF
CF
CF
OF
CF
OF
CF
CF
oF
BY
BY
sy

A

A
A
A

0G GAMMA COMPUTES THE NATURAL

ULATES, wiITHOUT PiVAOTING,
S, WITH PARTIAL PIVOTING,

THE
THE

LINEAR EQUATIONS BY THE METHOD OF COMJUGATE GRADIENTS,

LINEAR EQUATIONS WITH BAND MATRIX, WKICH |S DECOMPOSED BY DECBND,

LINEAR EQUATIONS,

LINEAR EQUATIONS WITH SYMMETRIC POSITIVE DEFINITE BAND MATRIX, WHICH HAS BEEN DECOMPOSED BY CHLDECBN
LINEAR EQUATIQONS BY THE CHOLESKY METHOD,

LINEAR EQUATIONS,

LIMNEAR EQUATIONS, OF WHICH THE TR!ANGULARLY DECOMPOSED FORM OF THE MATRIX (S GIVEN,

LINEAR EQUATIONS BY CROUT FACTORIZATION WITH PART({AL PIVOTING,

LINEAR EQUATIQONS, OF wHICH THE TRIANGULARLY DECOMPOSED FORM OF THE MATRIX 1S GIVEN,

LINEAR EQUATIONS BY GAUSSIAN ELIMINATION WiTH COMBINED PARTIAL AWD COMPLETE PIVOTING,

LINEAR EQUATIONS AND CO1PUTES AN UPPER BOUND FOR ITS ERROR,

LINEAR EQUATIONS, THE MATRIX OF WHICH IS GIVEN IN ITS TR)IANGULARLY DECOMPOSED FORM,

LINEAR EQUATIQNS,

LINEAR EQUATIONS, OF wHICH THE TRIANGULARLY DECOMPOSED FORM OF THE MATRIX S GIVEN,

LINEAR EQUATIONS,

LIMEAR EQUATIONS ) COMPUTES THE CHOLESKY DECOMPOSITiON OF A SYMMETRIC POSITIVE DEFINITE MATRIX, STOR
LINEAR EQUATIONS )y COMPUTES THE CHOLESKY DECOMPOSITION OF A SYMMETRIC POSITIVE DEFINITE MATRIX, STOR
LINEAR EQUAT!ONS, THE MATRIX BE!NG DECOMPOSED BY CHLDEC2,

LIMEAR EQUATIONS, THL MATRIX BE!NG DECOMPOSED 8Y CHLDECL,

LINEAR EQUATIONS BY THE CHOLESKY METHOD, THE MATRIX BEING STORED IN A TWO-DIMENSIONAL ARRAY,

LINEAR EQUATIONS BY THE CHOLESKY METHQD, THE MATRIX BEING STORED (N A ONE-DIMENSIONAL ARRAY,

LIMNEAR EQUATIONS, PROVIDED THAT THME SINGULAR VALVE DECOMPOSITION OF THE COEFFICIENT MATRIX IS5 GIVEN,
LINEAR EQUATIONS BY MEANS OF SINGULAR VALUE DECOMPOSITI|ON,

LINEAR EQUATIONS, PROVIDED THAT THE SINGULAR VALUE DECOMPOSITION OF THE COEFFICIENT MATRIX IS GIVEN,
LINEAR EQUATIONS BY MEANS OF SINGULAR VALUE DECOMPOSIT]|ON,

LINEAR EQUATIONS, PROVINDED THAT THE S£iNGULAR VALUE DECOMPOS|T|ON OF THE COEFFICIENT MATRIX 1S GIVEN,
LINEAR EQUATIONS BY IMEANS OF SINGULAR VALUE DECOMPOSITION,

LINEAR EQUATIONS WITH TRIDIAGONAL COEFFICIENT MATR!X, PROVIDED THAT THE LU DECOMPOSITION IS GIVEN,
LINEAR EQUATIONS WITH TRIDIAGONAL COEFFICIENT MATRIX,

LINEAR EQUATIONS WiTH TRIDIAGONAL COEFFICIENT MATRIX, PROVIDED THAT THE LU DECOMPOSITION AS CALCULAT
LINEAR EQUATIONS WITH TRIDIAGONAL COEPFICIENT MATRIX,

LINEAR EQUATIONS WITH SYMMETRIC TRIDIAGONAL COEFFICIENT MATR)X, PROVIDED THAT TrmE Ui1DU DECOMPOSITION
LINEAR EQUATIONS WITH SYMMETRIC TRIDIAGONAL COEFFICIENT MATRIX,

LINEAR IMTERPOLATION USING A STURM SEQUENCE,

LINEAR INTERPOLATION USING A STURM SEQUENCE,

LIHEAR INTERPOLATION USING A STURM SEQUENCE,

LINEAR LEAST SQUARES PRNBLEM,

LINEAR LEAST SQUARES PROBLEM,

LINEAR LEAST SQUARES PRNBLEM, PROVIDED THAT THF CCEFFICIENT MATRIX HAS BEEN DECOMPOSED BY LSQORTDEC,
LINEAR LEAST SQUARES PROBLEM AND COMPUTES THE D!AGONAL ELEMENTS OF THE INVERSE OF M1t (M CCEFFICIENT
LINEMIN IS AN AUXILIARY PROCEDURE FOR OPTIMle*l%N,

LINIGER] SOLVES INITIAL VALUE PROBLEMS, GIVEMN AS 'AN AUTONOMOUS S¥STEM OF FIRST ORDER DIFFERENT|AL EQ
LINIGER? SCLVES INITIAL VALUE PROBLEMS, GIVEN AS AN AUTONOMOUS SYSTEM OF FIRST ORDER DIFFERENT!AL E@
LNGMATMAT COMPUTES IN DOUBLE PRECISION THE SCALAR PRODUCT OF A ROW VECTOR AND A COLUMN VECTCR,
LNGMATTAM COMPUTES IN DAUBLE PRECISION THE SCALAR PRODUCT OF TwO ROW VECTORS,

LNGMATVEC COMPUTES IN DOUBLE PREC!ISION THE SCALAR PRGDUCT OF A ROW VECTOR AND A VECTOR,

LNGSCAPRD] COMPUTES IN DOUBLE PRECISIQN THE SCALAR PRODUCT OF Two VECTORS,

LNGSEQVEC COMPUTES IN DOUBLE PRECISIEN THE SCALAR PROPUCT OF TwO VECTORS,

LNGSYMMATVEC CONPUTES IN DOUBLE PREGCISION THE SCALAR PRODUCT OF A VECTOR AND A ROW IN A SYMMETRIC MA
LNGTAMMAT COMPUTES IN DNUBLE PRECISION THE SCALAR PRODUCT OF TwC COLUMM VECTORS,

LNGTAMVEC COMPUTES IN DOUBLE PRECISIQN THE SCALAR PRODUCT OF A COLUMN VECTOR AND A VECTOR,

LNGVECVEC COMPUTES IN DOUBLE PRECISION THE SCALAR PRODUCT OF TwQ VECTORS,

LOGARITHM OF THE GAMMA PUNGTION FOR PQOSITIVE ARGUMENTS,

LOG GAMMA COMPUTES THE NATURAL LOGAR|THM OF THE GAMMA FUNCTION FOR POSITIVE ARGUMENTS,

LSADGL INY COMPUTES THE D|AGONAL ELEMENTS OF THE |NVERSE OF MM (14 COEFFICIENT MATRIX) OF A LINEAR LE
LSQORTDECSOL SOLVES A LINEAR LEAST SQUARES PRCBLEN AND COMPUTES THE DIAGONAL ELEMENTS OF THWE INVERSE
LSQRORTDEC PERFORMS THE HOUSEHOLDER TRIANGULARIZATION OF THE COEFFICIENT MATRIX OF A LINEAR LEAST SQU
LSQSOL SOLVES A LINEAR LEAST SQUARES PROBLEM, PROVIDED THAT THE ¢OEFFICIENT MATRIX HAS BEEN DECOMFOS
LU DECONMPOSITION OF A TRIDJAGONAL MATRIX,

LU DECOMPOSITION OF A TRID|AGONAL MATRIX,

34220
34071
34322
34332
34333
34241
34051
34301
34061
34232
34243
34250
34251
34253
34254
34310
34311
34390
34391
34392
34393
34260
34284
34282
34283
34284
34285
34424
34425
34427
34428
34421
34422
34151
34155
34153
34154
34132
34431
34435
34210
33430
33131
34413
34415
34414
34417
34416
34418
34414
34412
34410
35062
35062
34132
34435
34134
34131
34423
34426
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HSHHRMTRIVAL DELIVERS THE

RS
ES

SYMMETRIC
SYMMETRIC

OF A TRIDIAGONAL
OF A TRIDIAGONAL
ES OF A SYMMETRIC TRIDIAGONAL
ES OF A SYMMETRIC TRIDIAGONAL
E INDICES AND MODULUS OF THAT
VEC COMPUTES THE TRANSFORMING

DUPMAT COPIES (PART OF) 4
NIMAT INITIALIZES (PART OF) A
S A CODIAGOMNAL OF A SYMFKETRIC

TiALIZES A ROW OF A SYMMETRIC

VERS THE
LUE OF THE
LUS OF THAT

INDEX FCR
NEW ROw
MATR I X

AN ELEMENT
ELEMENT CF
ELEMENT CF

VERAL VARIABLES
VERAL VARIABLES
1S AN AUXILIARY
GE ALGOR|THM 1S USED FOR THIS
RNK{MIN ( OPTI(IMIZATICN )
FLEMIN ( OPTIMIZATION )

BY A VARIABLE
BY A VAR{ABLE
PROCEDURE FCR

DEX FOR AN ELEMENT MAXIMAL N
COMABS COMPUTES THE

MAXMAT FiNDS THE iNDiICES AND

ISTEP METHRODS: GEARS, ADAMS

MmuULCOoL
CoLesT
comMCoLCsT
COMROWCST
MULRCOW
RoWCST
MULVEC
CoMMUL

iONS, By ONE OF TKE FCLLOWING

LOG GAMMA COMPUTES TKE

TES A POLYNOMIAL GIVEN IN TKE
OLYNOMIAL REPRESENTATION FROM
MINES THE COEFFICIENTS OF THE
AS A SYSTEM OF FIRST ORDER (
REASCL

SclLcem

FUNCTIONS ARE RELATED To TKE
EUCNRM COMPUTES THE EUCLIDEAN
SMAXVEC COMPUTES THE INFINITY
ONENRMINV COWMPUTES THE 1m
COMMUL, MULTIPLIES TWO COMPLEX

MAIN DIAGONAL ELEMENTS AND SQUARES OF THE CODIAGONAL ELEMENTS OF A HERMITIAN TRIDIAGONAL MATRIX WHIC

MATMAT COMPUTES THE SCALAR PROQDUCT OF A ROW VECTOR AND COLUMN VECTOR,
NATRIX BY INVERSE ITERAT|ON,

NATRIX BY LINEAR INTERPOLATION USING A STURM SEQUENCE,

MATRIX BY @R~|TERATION,

MATRIX BY QR-ITERATION,

MATRIX ELEMENT CF MAX|MUM ABSOLUTE VALUE,

NATRIX IN COMBINATION WITH PROCEDURE TFMSYMTRID,

MATRIX TO (AN OTHER) MATRIX,

MATRIX WiTH A CONSTANT,

MATRIX WITH A CCNSTANT,

MATRIX WITH A CONSTANT,

MATTAM COMPUTES THE SCALAR PRODUCT OF TWO ROW VECTORS,

MATVEC COMPUTES THE SCALAR PRODUCT OF A ROW VECTOR AND VECTCR,
[TAXELMRCW ADDS A SCALAR TIMES A ROW VECTOR TO A RCW VECTOR, AND REYURNS THE SUBSCRIPT VALUE OF THE N
MAX IMAL IN MODULUS,

MAX 'MUN ABSOLUTE VALUE.

MAX11MUM ABSOLUTE VALUE,

MAXMAT FINDS THE INDICES AND MODULUS OF THAT
METR1C VMETHOD,

METRIC NETHOD,

MINIMAX APPROX!MATIQN,

MIHNiMAX POLYNOM!AL APPROX|MATION,

(i(NIMIZES A G{VEN DIFFERENT!ABLE FUNCT(ON OF SEVERAL VARIABLES BY A VARIABLE METRIC METHOD,
MINIMIZES A GIVEN DIFFERENTIABLE FUNETION OF SEVERAL VARIABLES BY A VARIABLE METR{C METHCD,
MINMAXPCL DETERM(NES THE COEFFICIENTE OF THE POLYNOMIAL (!N GRUNERT FORM) THAT APPROXIMATES A FUNCT!
1CD I FIED RUNGE KUTTA SOLVES AN (NIT!AL ( BOUNDARY )} VALUE PROBLEM, GIVEN AS A SYSTEM OF FIRST CRPER
MODIFIED TAYLOR SOLVES AN [NiTIAL ( BOUNDARY ) VALUE PROBLEM, GIVEN AS A SYSTEM OF FIRST ORDER DIFFE
MopuLuUS,

MEeDULUS OF A COMPLEX NUMBER,

teDULUS OF THAT MATRIX ELEMENT OF MAXIMUM ABSOLUTE VALUE,

MOULTON, OR ADAMS =~ BASHAFORTH METHOD) WITH AUTOMAT|C STEP AND CRDER CONTROL AND SUITABLE FOR THE {iNT
MULCOL NMULTIPLIES A COLUMN VECTOR BY A SCALAR,

"MULROW MULT!PLIES A ROW VECTOR BY A SCALAR STORINEG THE RESULT

MATRiX ELEMENT OF MAXIMUM ABSOLUTE VALUE,

{N ANOTHER VECTOR,

fMULTIPLIES A COLUMN VECTOR BY A SCALALR,

MULTIPLIES A COLUMN VECTOR BY A SCALAR,

MULTIPLIES A COMPLEX COLUMN VECTER BY A COMPLEX NUMBER,

NULTIPLIES A COMPLEX ROv VECTOR BY A COMPLEX NUMBER,

MULTIPLIES A ROW VECTOR BY A SCALAR STORING THE RESULT IN ANGCTHER VECTOR,

MULTIPL'ES A ROW VECTOR BY A SCALAR ETORING THE RESULT N ANCTHER ROWVECTOR,

PULTIPLIES A VECTOR BY A SGALAR,

MULTIPLIES TWO COMPLEX NUMBERS, !

MULT!STEP METHODS! GEARS, ADAMS e MOYLTON, OR ADANS = BASHFORTH METHOD] WITH AUTOMATIC STEP AND CRDE

MULT(STEP SOLVES AN INITIAL VALUE PROBLEM, GIVEN A5 A SYSTEM OF F{RST CRDER D!FFERENT /AL EGUATIONS,
MULVEC MULT!PLIES A VECTOR BY A 8CALAR,

NATURAL LOGARITHM OF THE GAMMA FUNECTION FOR POSITIVE ARGUMENTS,

NEWGRN TRANSFQORMS A POLYNOMIAL REPRESENTAT!ON FROM NEWTON FORM (NTO GRUNERT FORM,

NEWPOL EVALUATES A POLYNOMIAL GIVEN N THE NEWTON FORM BY THE HORNER SCHEME,

NEWTON DETERMINES THE COEFFICIENTS OF THE NEWTON INTERPOLATION POLYNOMI{AL FOR GIVEN ARGUMENTS AND FU
NEWTON FORM BY THE HORNER SCHEME,

NEWTON FORM INTO GRUNERT FORM,

NEWTON INTERPOLATION POLYNOMiIAL FOR GIVEN ARGUMENTS AND FUNCT!ON VALUES,

NON-L INEAR ) DIFFERENT!AL EQUATIONS, BY A STABILIZED RUNGE KUTTA METHOD WITH LIMITED STORAGE REQVIRE
NCRMAL I ZES THE COLUMNS OF A TWO=BIMENSI|ONAL ARRAY,

NCRMAL I ZES THE CQLUMNS OF A COMPLEX MATRIX,

NORMAL CR GAUSSI|AN RROBABILITY FUNGTION,

NORM OF A COMPLEX MATRIX,

NORM OF A VECTOR AND DEL|VERS THE
NORM OF THE INVERSE OF A MATRiX,
NUMBERS,

INDEX FOR AN ELEMENT MAXIMAL
WHICH

1N MODULUS,
IS TRIANGULARLY DECOMPOSED,

34364
34013
34152
34151
34165
34161
34230
34142
31035
31011
31013
31014
34015
34011
34025
31060
34025
34230
34230
34214
34215
36020
36022
34214
34215
36022
33060
33040
31060
34340
34230
33080
31022
34021
31022
31431
34352
34353
3i021
3riez
33020
34341
33080
33080
31020
35062
331050
31041
36010
31041
34050
36010
33060
34183
34560
35020
34359
33060
34240
34341
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S THE QUOTIENT OF TwO
UTES THE MODULUS OF A
THE SQUARE ROOT QF A
CARPOL TRANSFORMS A
MENTS

COMPLEX
COMPLEX
COMPLEX
COMPLEX
IN THE RANGE ([1/2,3/2)}

1S AN
1§ AN
1S AN
IS AN

AUX LI ARY
AUXILIARY
AUXILITARY
AUXILTARY

PROCEDURE
PROCEDURE
PROCEDURE FOR
PROCEDURE FOR
RNK{MIN ¢
FLEMIN (
THOD; WITH AUTOMATIC STEP AND
RK1 SOLVES A SINGLE F[RST
RK1iN SOLVES A SYSTEM OF FIRST
RK2 SOLVES A SECOND

K2N SOLVES A SYSTEM OF SECOND
RK3 SOLVES A SECOND

K3IN SOLVES A SYSTEM OF SECOND
K5NA SOLVES A SYSTEM OF FIRST
M, GIVEN AS A SYSTEM OF FIRST
M, GIVEN AS A SYSTEM OF FIRST
AN AUTONOMOUS SYSTEM OF FIRST
AN AUTONOMOUS SYSTEM OF FIRST
AN AUTONOMOUS SYSTEM OF FIRST
AN AUTONOMOUS SYSTEM OF FIRST
RENTIAL EQUATION USING A HeTH
M, GIVEN AS A SYSTEM OF FIRST
E LEAST SQUARES SOLUT!ON OF A
E LEAST SQUARES SOLUT!ON OF A
1AN EL!'M|NATION W|TH COMBINED
AN ELIMINATION W|TH COMBINED
OF LARGE SYSTEMS ARISING FROM
X BY CROUT FACTORIZATION W|TH
S BY CROUT FACTORIZATION WITH
DECTR|PIV CALCULATES, WIiTH
DECSOLTRIPIV SOLVES WiTH
RANGE [1/2,3/2); ODD AND EVEN
IPIV CALCULATES, WITH PARTIAL
UT FACTOR|ZATION WITH PART{AL
COMBINED PART!IAL AND COMPLETE
UT FACTORIZATION WITH PART!AL
COMBINED PART|AL AND COMPLETE
SOLTRIPIV SOLVES WITH PARTIAL
IN CARTESIAN COORDiIMATES iINTO
ITHM 1S USED FOR THIS MINIMAX
S OF THE NEWTON INTERPOLAT!ON
POL EVALUATES A

MEWPOL EVALUATES A

NEWGRN TRANSFORMS A

MINES THE COEFFICIENTS OF THE

FOR
FOR

J GRAD SOLVES A SYMINETR!C AND
DECOMPOSITION OF A SYMMETRIC
HE DETERMINANT OF A SYMMETR!C
NEAR EQUATIOMS WITH SYMUETRIC
DECOMPOSITION OF A SYMWETRIC
DECOMPOSITION OF A SYMMFTRIC
DECOMPOSITION OF A SYMMETRIC
HE DETERMINANT OF A SYMMETRIC

NUMBERS ,

NUMBER,

NUMBER,

NUMBER GIVEN N CARTESIAN COORDINATES
QDD AND EVEN PARTS ARE ALSQ DELIVERER,
ONENRMINY COMPUTES THE {~NQRM OF THE INVERSE QF A MATRI|X,
OPTIMIZATION,

OPTIMIZATION,

OPTIMIZATION,

OPTIMIZATION,

ORTIMIZATION jy MINIMIZES A GIVEN DIFFERENT|ABLE FUNCTION OF SEVERAL VARIABLES BY A VARIABLE METRIC M
OPTIMIZATION ) MINIMIZES A GIVEN DIFFERENTIABLE FUNCTION OF SEVERAL VARIABLES BY A VARIABLE METRIC M

INTO POLAR COORDINATES,

WHICH 1S TRIANGULARLY DECOMPOSED,

ORDER CONTROL AND SUITABLE FOR THE INTEGRATION OF STIFF DIFFERENTIAL EQUATIONS,

ORDER DIFFERENTIAL EQUAT|ON USING 4 S5.TH ORDER RUNGE KUTTA METHOD,

ORDER DIFFERENTIAL EQUAT|ONS USING A SsTH ORDER RUNGE KUTTA METHOD,

ORDER DIFFERENTIAL EQUAT[ON USING A SeTH ORDER RUNGE KUTTA METHOD,

ORDER DIFFERENTIAL EQUAT|ONS USING A 5aTH ORDER RUNGE KUTTA METHOD,

ORDER DIFFERENTIAL EQUAT|ON USING A SaTH ORDER RUNGE KUTTA METHOD; NO DERIVATIVES ALLOWED CN RIGKT h
ORDER DIFFERENTIAL EQUAT|{ONS USING A 5.TH ORDER RUNGE KUTTA METHODj NO DERIVATIVES ALLOWED CN RIGHT
ORDER DIFFERENT!IAL EQUAT|ONS USING THE ARC LENGTH AS INTEGRATION VARIABLE,

ORDER DIFFERENT{AL EQUATIONS, BY A ONEeSTEP TAYLQR METHOD; THIS METHOD 1S PARTICULARLY SUITABLE FOR
ORDER DIFFERENTIAL EQUATIONS, BY ONE OF THE FOLLOWING MULT|STEP METHODS; GEARS, ADAMS -~ MOULTON, OR
ORDER DIFFERENTIAL EQUAT|ONS, BY AN EXPONENTIALLY FITTED, EXPL|CIT RUNGE KUTTA METHOD WH|Cr USES THE
ORDER DIFFERENTIAL EQUATIONS, BY AN EXPONENTIALLY FITTED, SEMI e IMPLICIT RUNGE KUTTA METHCD) SUITAB
ORDER DIFFERENTIAL EQUATIONS, BY AN IMPLICIT, EXPONENTIALLY FITTED, FIRST ORDER ONE-STEP METHOD WI|Th
ORDER DIFFERENT!AL EQUATIONS, BY AN IMPLIC!T, EXPCNENT|ALLY FITTED, SECOND CORDER ONE~STEP METHCD WIT
ORDER RUNGE KUTTA METHOD,

ORDER ( NON~LINEAR ) DIFFERENT|A|, EQUAT!ONS, By A STABILIZED RUNGE KUTTA METHOD WITH LIMITED STORAGE

OVERDETERMINED SYSTEM OF LINEAR EQUATIQNS, PROVIDED THAT THE S|{NGULAR VALUE DECOMPOSITION OF THE COE
OVERDETERMINED SYSTEM OF ([NEAR EQUAT[{ONS BY MEANS OF S(INGULAR VALUE DECOMPCSITION,

PART 1AL AND COMPLETE PIVOTING,
PART AL AND COMPLETE PIVOTING,
PART AL DIFFERENTIAL EQUAT|ONS,
PARTIAL P|VOTING,

PART AL PIVOTING,

PARTIAL PIVOTING, THE LU DECOMPOSITION OF A TRIDIAGONAL MATRIX,

PARTIAL PIVOTING A SYSTEM OF LINEAR FQUATIONS wiTh TRIDIAGONAL COEFFICIENT MATRIX,
PARTS ARE ALSO DEL!VERED,

PIVCTING, THE LU DECOMPOSITION OF A TRIDIAGONAL MATRIX,

P|VOTING,
PiVCTING,
PIVCTING,
PIVOTING,
PIYVOTING A SYSTEM OF LINEAR EQUATIONS WITH TRIDIAGONAL COEFFICIENT MATRIX,

POLAR CCORDINATES,

POLYNONMIAL APPRCXIMATION,

POLYNONM1AL FOR GIVEN ARGUMENTS AND FUNCTION VALUES,

POLYNOMIAL GIVEN IN THE GRUNERT FORM BY THE HORMER SCHEME,

POLYNOMIAL GIVEN 1N THE NEWTON FORM BY THE HORNER SCHEME,

POLYNOMIAL REPRESENTATION FROM NEWTON FORM INTO GRUNERT FORM,

POLYNOMIAL (IN GRUNERT FORM) THAT APPROXIMATES A FUNCT|ON GIVEN FOR DIBCRETE ARGUMENTS;
POl EVALUATES A PCLYNOMIAL GIVEN |N THE GRUNERT FCRM BY THE HORNER SCHEME,

POSITIVE DEFINITE, SYSTEM OF LINEAR EQUATIOMNS BY THE METHOD OF CONJUGATE GRADIENTS,
POSITIVE DEFINITE MATRIX BY THE CHOLESKY METHOD,

POSITIVE DEFINITE MATRIX, WHICH WAS BEEN DECOMPOSED BY CHLDECBND,

POSITIVE DEFINITE BAND MATRIX, WH!ICH WAS BEENM DECCMPOSED BY CHLDECEND,

POSITIVE DEFINITE BAKRD MATRIY AND SOLVES THE SYSTEM OF LiNEAR EQUATIONS BY THE CHOLESKY
POSITIVE DCFINITE MATRIX, STORED IN A& TWOwDIMENSICMNAL ARRAY,

POSITIVE DEFINITE MATRIX, STORED COLUMNWISE IM A ONE«DIMENSIONAL ARRAY,

POSITIVE DEFINITE MATRIX, WHICH WAS BEEM DECOMPOSED BY CHLDEC2,

PROVIDED HiGHER QRDER DERIVATIVES CAN BE EASILY OBTAINED,

THE SECOND R

METHOD,

34342
34340
34343
34344
33060
34240
34210
34211
34212
34213
34214
34215
33060
33010
33011
33012
33013
33014
23015
33018
33040
33060
33120
33360
33430
33151
33010
33060
24260
34281
34231
34232
33040
34300
34301
34426
34428
35060
34426
34300
34231
34301
34232
34428
34344
36022
36010
31040
31041
31050
36022
31040
34220
34330
34331
34332
34353
34310
34311
34312
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HE DETERMINANT OF A SYMMETRIC
CHLSOL2 SOLVES A SYMMETRIC
CHLSOL1 SOLVES A SYMMETRIC

CHLDECSOL2 SOLVES A SYMRETRIC

CHLDECSOLY SOLVES A SYMMETRIC

ES THE INVERSE OF A SYMWMETRIC

ES THE INVERSE OF A SYMMETR'C

D, THE INVERSE OF A SYMHETRIC

D, THE INVERSE OF A SYMMETRIC

M OF A CONVERGENT SERIES WIiTH

PSTTFMMAT CALCULATES TKFE
HSHCOMPRD

PRETFMMAT CALCULATES THE

TED TO THE NORMAL OR GAUSS!IAN

EFERK SOLVES thiITIAL
EFSIRK SOLVES INITIAL
LINIGERY SOLVES INMNITIAL
LIN]JGER? SOLVES INITIAL
AN )NITiaL ( BOUN[LARY
AN INITtAL { BOUNDARY )

ISTEP SOLVES AN
TAMVEC CONPUTES

N DOUBLE PRECISIiOK
MATVEC COMPUTES
MATMAT COMPUTES

N DOUBLE PRECISION
N DOUBLE PRECISION
SYMMATVEC COMPUTES
N DOUBLE PRECISION
VECVEC COMPUTES
TAMMAT COINPUTES
MATTAM COMPUTES
SEQVEC COMPUTES
SCAPRD1 COMPUTES
DOUBLE PRECISION
DOUBLE PRECISION
DOouBLE PRECISION
DOYBLE PRECISION
DOUBLE PRECIS!ION

zZZzZzZzZZ

INITHAL

THE
THE
THE
THE
THE
THE
THF
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE

VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE

SCALAR

SCALAR

SCALAR

SCALAR

SCALAR

SCALAR

SCALAR

SCALAR

SCALAR

SCALAR

SCALAR

SCALAR

SCALAR

SCALAR

SCALAR

SCALAR

SCALAR

SCALAR

PSDINVSVD CALCULATES THE
PSDIKRV CALCULATES THE

MMETRIC TRIDIAGONAL
MMETRIC TRIDIAGONAL

N A ONE~-DIMENS{ONAL ARRAVY,

MATR X BY
MATRiX BRY

BY

POSITIVE
POSITIVE
POSITIVE
PCSITIVE
POSITIVE
PCSITIVE
PCSITIVE
POSITIVE

DEFINITE
DEFINITE
DEFINITE
DEFINITE
DEFINITE
DEFINITE
DEFINITE
DEFINITE
POSITIVE DEFINITE

MATRIX,
SYSTEM
SYSTEM
SYSTE™
SYSTEM
MATRIX
MATRIX

WHICH MAS BEEN DECOMPOSED BY CHLDECY,

OF LINEAR EQUATIONS, THE MATRIX BREING DECCMPOSED BY CHLDEC2,
OF LINEAR EQUATIONS, THE MATRIX BEING DECOMPOBED RY CHLPECH,
OF LINEAR EGUATIONS BY TmE CHOLESKY METHOD, THE MATRIX BEING
OF LINEAR EGUATIONS BY THE CHOLESKY METHOD, THE MATRIX BEING
WHICH HAS BEEN DECOMPOSED BY CHLDEC?,
WHICKH HAS BEEN DECOMPOSED BY CHLDECY,
MATRIX, STORED IN A TWOWDIMENSICNAL ARRAY,
MATRIX, STORED IN A OMNEDIMENSICNAL ARRAY,
POSITIVE TERMS, USING THE VAN WiJNGAARREN TRANSFORMATION,
POSTHMULTIPLYING MATRIX USED BY HSHREABID TO TRANSPORM A MATRIX INTO B!DIAGONAL FORM,
PREMULTIPLIES A COMPLEX MATRIX WITH A COMPLEX HOUSEHOLDER MATRIiX,
PREMULTIPLYING MATRIX USED BY HSHREAB(|D TO TRANSFORM A MATRIX [NTO BIDIAGONAL FORM,
PRETFMMAT CALCULATES THE PREMULTIPLYINGE MATRIX USED BY HSHREABID TO TRANSFORIM A MATRIX
PROBABILITY FUNCTION,

STORED
STCRED

IN A TW
'N A GN

INTC BIDIAGON

PROBLEMS, GIVEN AS AN ATONOMOUS SYSTEM OF FiRST CRDER DIFFERENTIAL EQUATIONS, BY AN EXPONENTIALLY F
PROBLEMS, GIVEN AS AN AUTOMOMOUS SYSTEM OF FIRST CRDER DIFFERENTIAL EQUATIONS, BY AN EXPCNENTIALLY F
PROBLEMS, GIVEN AS AN AUTONOMOUS SYSTEM OF FiRST CRDER DIFFERENTIAL EQUATIONS, BY AN IMPLICIT, EXPON
PROBLEMS, G!VEN AS AN AUTONOMOUS SYSTEM OF FiRST ORDER DIFFERENTAL EQUATIONS, BY AN IMPLICIT, EXPCN
PROBLEM, GI!VEN AS A SYSTEM OF FIRST ORDER DIFFERENTIAL EQUAT|ONS, BY A ONE.STEP TAYLOR METHOD; THIS
PROBLEM, GIVEN AS A SYSTEM OF FIRST ORDER ( MONalLINEAR ) DIFFERENTIAL EQUATIONS, BY A STABILIZED RUN
PROBLEM, GIVEN AS A SYSTEM OF F{RST ORDER DIFFERENT(AL EQUATIONS, BY ONE OF THE FOLLOWING NMULTISTEP
PRODUCT OF A COLUMN VECTOR AND VECZTOR,

PRODUCT OF COLUMN VECTCR AND A VECTQOR,

PRODUCT OF A ROW VEGCTOR ANR VECTOR,

PRODUCT OF A ROW VECTOR AND COLUMN VECTOR,

PRODUCT GF A ROW VECTOR AND A VECTOR,

PRODUCT OF A ROW VECTOR AND A COLUMN VECTOR,

PRODUCT OF A VECTOR AND A ROW OF A SYMMETR:iC MATR|X,

PRODUCT OF A VECTOR AND A ROV IN A SYMMETR|C MATRIX,

PROCUCT OF TwOo VECTORS,

PRCDUCT OF Twe COLUMN VECTORS,

PRODUCT OF TWO ROW VECTORS,

PRCDUCT COF TWQ VECTOKS,

PRCOCUCT OF TWO VECTORS.,

PRODUCT OF Two VECTOKS,

PRODUCT OF Two COLUMN VECTORS,

PRCDUCT OF Twe RCw VECTNRS,

PRODUCT OF Twe VECTORS,

PRODUCT OF TwOo VECTORS,

PSDINVSVD CALCULATES THE PSFEUDO INVERSE OF A MATRIX, PROVIDED ThHAT THE SINGULAR VALUE DECCMPOSITiON
PSP NV CALCHYLATES THE PSEUDO {NVERSE QF A MATR({X/BY MEANS OF THE SINGULAR VALUE DECCMPOS|TIiCON,
PSEULDO !NVERSE CF A MATRIX, PRAVIDED THAT THE SINGULAR VALUE CECOMPOSITION IS GiVEN,

PSEUNGC INVERSE CF A NATR{X Bv MEANS OF THE SINGULAR VALUE DECCMPUSIiTIiOM,

PSTTFMMAT CALCULATES THE POSTMULT!PLYING MATRiX USED BY HSHREAB!D TO TRANSFORM A MATRIX INTC BIDIAGD
QADRAT ( QUADRATURE ) COMPUTES THE DEFINITE INTEGRAL OF A FUMCTION OF ONE VARIAEBLE OVER A FINITE iNT
NRICON COMPUTES ALL EIGENVECTORS AND EIGENVALUES CF A COMPLEX UPPER RESSENARERG mATRIX WITh A REAL SU
QR IHRM COMPUTES ALL EIGENVECTORS AND E|GENVALUES CF A HERMITiAN HMATRIX,

QR!SNGVALBID CALCULATES THE SINGULAR VALUES OF A REAL 3ID!AGCNAL MATRIX BY MEANS OF IMPLI|CIT QR-!TER
ORISNGVALDECBID CALCULATES THE SINGULAR VALUE DECOMPCSITION OF a4 REAL MATRIX OF WHICH A EiDIAGONAL D
ORISNGVALDEC CALCULATES THE SINGULAR VALUE DECOMPOSITION OF A REAL MATRI{X BY MEANS OF AN [MPL|CIT QR
NRiISNGVAL CALCULATES THE SINGULAR VALUES OF A REAL MATRIX BY MEANS OF AN IMPLICIT QR=iTERATION,
QRISYMTRI COMPUTES ALl E|GENVECTORS AND EIGENVALUYES OF A SYMMETR|C TRINDIAGONAL MATRIX BY QR=JTERATIO
QRISYM COMPUTES ALL EIGENVALUES AND EIGENVECTORS CF A SYMMETRIC MATRIX BY QR-ITERATION,

QRIVALHRM COMPUTES ALL EI!GENVALUES OF A HERMiT|AN MATRIX,
QRIVALSYM] COMPUTES alLl EIGENVALUES OF A SYMMETRIC MATRIX,
ORIVALSYM2 COMPUTES al L EIGENVALUES OF A SVMMETRIC MATRIX,
QR~ I TERATION,

QR~1TERATICN,

QR-{TERAT!CN,

BY ORm
BY ORp

STORED
STORED

IN A ONELDIMENSIONAL ARRAY,
IN A TWOLDIMENS|ONAL ARRAY,

24313
34390
34391
34392
34393
34400
34401
34402
34403
32020
34261
34356
34262
34262
35020
33120
33160
33130
33131
33040
33060
33080
34012
34412
34011
34013
34411
34413
34018
34418
34010
34014
34015
34016
34017
24410
34414
34415
34416
34417
34266
34287
34286
34287
34261
32070
34373
34371
34270
34271
24273
34272
34361
34163
34370
34164
34462
34165
34461
34164

MOOMMEAEMOIIIIGANIIIIIIIIIIVOVOOUOIODOIIOOIONAMNDODANANOIIMIM™M MMM

™

~N
Lo o I N 0o Ko o N0 e R N g S

W
n o

NN W W
o O D

w
oo

"N
H




N A TWO-DIMENS|ONAL
TORS OF A SYMMETRIC
ARE REAL, BY MEANS
ARE REAL, BY MEANS
ERG MATRIX BY MEANS
L MATRIX BY NEANS OF
IVEN, BY MEANS OF AN
ATRIX BY MEANS OF AN IMPLICIT
ATR|X BY MEANS OF AN (MPL|CIT
OMKWD COMPUTES THE RUOTS CF A

QADRAT (

INTEGRAL (

CONMDIV COMPUTES THE

ATES THE SINGULAR VALUES OF
ATES THE SINGULAR VALUES OF
TFMREAHES TRAMSFORMS
HSHREABID TRANSFORNMS

ULAR VALUE DECOMPOSITION OF
TFMSYMTR12 TRANSFCRMS
TFMSYMTRI1 TRANSFORKS

ARRAY, BY
MATRIX BY
OF SINGLE
OF SINGLE
OF DPOWBLE

ITMPLICHT

IMPLICHIT

> P Pr>r P

RECIP GAMMA COMPUTES TFE

TISOL COMPUTES AN {TERATIVELV
TISOL COMPUTES AN (TERATIVELY
OLERB COMPUTES AN ITERATIVELY

COMPUTES AN ITERATIVELY

SNDREMEZ (SECOND
ISCRETE ARGUMENTS; THE SECOND
EWGRN TRANSFORMS A POLYNO 1AL

OLERB

COMKWD COMPUTES THE

COMSQRT COMPUTES THE SQUARFE
ROTCOMCOL PERFURNS A
ROTCOMROY PERFORMS A

ROTCQL PERFORMS AN ELEMENTARY
ROTROW PERFORMS AN ELEMENTARY

INISYMROW INITIALIZES A

LAR PRODUCT OF A VECTOR AND A
TES THE SCALAR PRGDUCT OF TwoO
INTERCHANGES ELEKENTS OF Two
ARY ROTATION OPERATION ON TWwWO

QR~I1TERATION,

QR=ITERATION,

QR~ I TERAT!ON,

OR=~ I TERATION,

QR~1TERATION,

QR~ITERAT|ON,

QR= | TERATION,

QR~ITERATION,

QR=~ | TERATION,

NAUADRATIC EQUATION ViTH COMPLEX COEPF|CIENTS,
QUADRATURE ) CONRUTES THE DEFINITE INTEGRAL OF OF ONE VARIABLE OVER A FINITE

A FUNCTION INTERVAL,

QUADRATURE ) COMPUTES THE DEFINITE INTEGRAL OF A FUNCT|ON OF OME VARIABLE OVER A FINITE OR INFINITE
QUOTIENT OF TWO COMPLEX NUMBERS,

REAL BIDIAGONAL MATRIX BY MEANS OF IMPLICIT QR«ITERATION,

REAL MATRIX BY MEANS OF AN IMPLICIT QRw!ITERATION,

REAL MATRIX INTO A SiMILAR UPPER HESEFENBERG MATRIX BY THE WILK|NSON TRANSFORMATION,

REAL MATRIX INTO BIDIAGOHAL FORM BY MEANS OF HOUSEHOLDER TRANSFORMATION,

REAL MATRIX OF WHICH A SID|AGONAL DECOMPOSITION 1S GIVEN, BY MFANS OF AN IMPLICIT QRw I TERATION,
REAL SYMMETRIC MATRIX INTO A SIMILAR TRID!AGONAL CNE BY HOUSEHOLDERS TRANSFORMATION,

REAL SYMMETRIC MATRIX INTO A SIMILAR TRIDIAGONAL CNE BY HOUSEHOLDERS TRANSFORMATION,

REAGR! CALCULATES THE EIGENVALUES AND EIGENVECTORS OF A REAL UPPER HESSENBERG MATRIX, PROVIDED THAT

REASCL NORMAL |ZES THE COLUMNS OF A TwQuDIMENSIONAL ARRAY,

REAVALQR! CALCULATES THE E|GENVALUES OF A REAL UPPER MESSENBERG HATRIX, PROVIDED THAT ALL EIGENVALUE
REAVECHES CALCULATES THE E[GENVECTOR CORRESPOND!NG TO A GIVEN REAL EJGENVALUE OF A REAL UPPER HESSEN
RECIPROCAL OF THE GAMMA FUNCTION FOR ARGUMENTS [N THE RANGE [1,2,3/2); ODO AND EVEN PARTS ARE ALSO D

RECIP GAMMA COMPUTES THE RECIPROCAL OF THE GAMMA FUNCTION FCR ARGUMENTS IN THE RANGE (1/2,3/2]) 00D

REFINED SOLUTION OF A SySTEM OF | INEAR EQUATIONS, THE MATRIX OF WHICH IS GIVEN [N (TS TRIANGULARLY D
REF INED SOLUTION OF & SYSTEM OF L INEAR EQUAT!ONMS,

REF INED SOLUTION AMD AN UPPER ROUND FOR iTS ERROR, OF A SYSTEM OF LINEAR EQUATIONS, OF WriCr THE TRI

OF A SYSTEM OF | INEAR EQUATIONS,

EXCHANGES NUMBERS WITH NUMBERS OUT OF A REFERFNCE SET,

REMEZ EXCHANGE ALGORITHY 18 USED POR THWIS MINIMAX POLYNOMIAL APPROX!IMATION,

REPRESENTAT!ION FROM HNEWTON FORM INTO GRUNERT FORM,

RK1N SOLVES A SYSTEM OF FIRST ORDER DIFFERENTiAL EQUAT|ONS USiING A 5=TH ORDER RUNGE KUTTA FMETHCD,
fK1 SOLVES A SINGLE FIRST ORDER DIFFERENT{AL EQUATION USING £ 5=-TH ORDER RUNGE KUTTA METHOOC,

RKON SOLVES A SYSTEIt OF SECOND ORDER DIFFERENTIAL EQUATIONS US|NG A 5.TH ORDER RUNGE KUTTA FETFOD,
RKP SOLVES A SECOND ORDER DIFFERENTIAL EQUAT!ON USING A BaThH ORDER RUNGE KUTTA METROD,

RK3IN SOLVES A SySTEN OF SECOMD ORDER DIFFERENT AL EQUATIONS US|NG A 5~TH ORDER RUNGE KUTTA METHOD) N
RKZ SOLVES A SECOND ORDER DIFFERENTIAL EQUATIOM USING A 5-TH ORDER RUNGE KUTTA FMETHOD; NC DERIVATIVE
RK4A SOLVES A SINGLE OIFFERENTIAL EQUATION By SOMETIMES USING A DEPENDENT VARIABLE AS INTEGRATION VA
RKANA SCLVES A SYSTEM OP D|FFERENT{AL EQUATIONS By SOMETIMES USING THE DEPENDENT VARIABLE AS INTEGRA
RKSNA SCLVES A SYSTEM OF FIRST ORDER O(FFERENT{AL EQUATIONS USING THE ARC LENGTH AS INTEGRATION VARI
RNKLMIN ( OPTIMIZATION ) M(NiIMIZES A G/'VEN DIFFERENTIARLE FUNCTION OF BEVERAL VARIABLES BY A VARIABL
RNK1UPD 1§ AN AUX!LIARY PROCEDURE FOR QPTIMIZATION,

RONTS OF A QUADRATIC EQUATION W!TH COMPLEX COEFFICIENTS,

RONT OF A COMPLEX MNUMBER,

ROTATION ON TWC COMPLEX COLUMN VECTORS,

ROTATION ON TWO COMPLEX ROV VECTORS,

ROTATION QPERATION ON TWwO COLUMN VECTORS,

ROTATION OPERATION ON TYO ROW VEECTORS,

RCTCOL PERFORMS AN ELEMENTARY ROTATION OPERATION ON TWO COLUNMN VECTORS,

RCTCOMCCL PERFORMS A ROTATION ON TWO COMPLEX COLUMN VECTORS,

Q0TCOMRCYW PERFORMS A ROTAT|ON ON TWO COMPLEX ROW VECTORS,

ROTROW PERFORMS AN ELEMENTARY ROTATI!QON OPERATION ON TWC RCW VECTORS,

RGWCST MULTIPLIES A ROW VECTOR BY A SCALAR STORING THE RESULT (N ANOTHER ROWVECTOR,

REFINED SOLUT!ION
RENMEZ ALGORITHM)

RCY OF A SYMMETRIC MATRIY WITH A CONSTANT,
ROY OF A SYMMETRIC HMATRIX,

ROW VECTORS,

ROW VECTORS,

ROV VECTORS,

34462
34463
34180
34186
34490
34270
34271
34272
34273
34345
32070
32051
34342
34270
34272
34170
34260
34271
34440
34143
34486
34183
34160
34461
35060
35060
34250
34251
34253
34254
36021
36022
31050
33011
33010
33013
338012
33015
33014
33016
33017
33018
34214
34211
34345
34343
34357
34358
34040
34041
34040
34357
34358
34041
31132
31014
34018
34015
34032
34041
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PUTES

oL
MULROW

DUPVECROW CUPIE
ELMROW ADDS A S
MYECRQW ADDS A S
MCOLRO% ADDS A S
XELMRO¥ ADDS A §
L EQUATION USING
EQUATIONS USING
L EQUATION USING
EQUATIONS USING
L EQUATION USING
EQUATIONS USING
AL EQUATIONS, BY
XPONENTALLY FIT
lALLY FITTED, SE
VECVEC

MATVEC

TAMVEC

MATMAT

TANMAT

MATTAM

SEQVEC

SCAPRD1
SYMMATVEC
COMMATVEC

PUTES N DOUHLE
PUTES N DOUSLE
PUTES !N DOUBLE
PUTES N DOUBLE
PUTES IN DOUBLE
PUTES IN DOUBLE
PUTES IN DOUBLE
PUTES IN DOUSLE
PUTES IN DOUSBLE
EL#
ELM
ELM
ELF
ELM
E LM
MAX

THE SCALAR PRODUCT OF
PUTES THE SCALAR PRODUCT OF
INTERCHANGES ELEMENTS OF
MULTIPLIES
ROWCST (ULTIPLIES
OMROWCST MULTIPLIES A COMPLE
S (PART OF)
TIinkEs
TinkEs
TIinEs
TINES A
ORDER
ORDER
ORDER
ORDER
ORDER
ORDER

CALAR
CALAR
CALAK
CALAR
A S=TH
5eTH

A HaThH
A B=Th
A B-TH
A 5-TH

> rPrprpX>®»rPr>pr

A STARILIZED

TED,
Ml -
COMPUTES
COMPYTES
CONPUTES
COIPUTES
COMPUTES
COMPYTES
CONPYTES
COMPUTES
CONPUTES
COMPUTES
PRECISION
PRECISION
PRECISION
PRECIS 1 ON
PRECISiON
PRECISION
PRECISiON
PRECISiCN
PRECISION
ELMVEC
ELMCOL
VECCOL
ELMRAOY
COLVEC
VECROYW
RCwVEC
COLROY
ROWCOL
ELMROY

KKP

EXPLICIT
TMPLICIT

THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE

ADDS A
ADDS A
AGDS &
ADDS A
ADDS A
ApDS A
ADDS A
ADDS A
ADDS A
ALDS A

SOLVES 4

RK2N SOLVES A SYSTE!" CF
RKZ SCLVES A
RKZN SOLVES A SYSTeM OF

N FOR DISCRETE A

SNDREIEZ (

RGUIMENTS

TFE

, BY AN EXPOMENTIALLY FITTED,

TES THE SUM

OF aN ALTERNATING

VECTOR
VECTOR
VECTOR
VECTQR
VYECTOR
VECTOR
VECTOR
VECTOR
VECTOR
Rov¥ VECTOR
reY VECTOR
RUNGE KUTTA
RUNGE KuTTA
RUMNGE KUTTA
RUNGE KUTTA
RU'GE KyTTA
RUNHGE KUTTA
RUNGE KUTTA
RUNGE KUTTA
RUNGE KUTTA
SCALAR PRQDUCT
SCALAR PRODUCT
SCALAR PRODUCT
3CALAR PRODYCT
SCALAR PRODUYCT
SCALAR PROODUCT
SCALAR PRODUCT
SCALAR PRODUCT
SCALAR PRODUCT
SCALAR PRQOUCT
SCALAR PRODUCT
SCALAR PRODUCT
SCALAR PRODUCT
SCALAR PRODUCT
SCALAR PRODUCT
SCALAR PRQODUCT
SCALAR PRODUCT
SCALAR PRODYCT
SCALAR PRODUCT
SCALAR TIMES A
SCALAR TiMES 4
SCALAR TIiMES A
S5CALAR TIMES A
SCALAR TIMES A
SCALAR TIMES A
A
A
A

Ro\-‘l
ROY
ROY
ROV
RCY
RGY
ROY
RCV
ROV

BY
By
BY
TO
T0
TO
TO
TO

SCALAR TIiMES
SCALAR TiMES
SCALAR T [ES
SCALAR TIBES A

AND VECTOUR,
AND CopUpn
AND CoLUN
A SCA|LAR STORING THE RESULT
A BCALAR STORING THE RESULT
A

VECTQR,
VECTOR,

CONMPLEX NUMBER,
A VECTOR.,

ANOTHER

ROV VECTOR,

A VECTOR.
A CoLUmMN VECTOR,

A ROV VECTOR,
METROD,
METROD.
METHROD,
METHOUD,
METROD;
METHOD

METROD
METFOUD;

CF
CF
CF
CF
CF

CF
CF

EUITABLE FOR
TWO VECTORS,

A ROW VECTOR AND VECTYOR,
A COLUMN VECTOR ANE VECTOR,

A ROW VECTOR AND COLUMM
TYO CNHLUMN VECTERS,
VECTORS,

TWO RNY
TYU VECTORS,
Tuo VECTORS,

A VECTNR AND A ROW

VECTOR,

NF A SYMMETHRIC

MATRIX AND AUTOMATIC STEP CONTROL;
INTEGRATION OF STIFF DIFFERENT!AL EQUATIONS,

IN ANOTHER VECTOPR,
IN ANOCTHER ROWVECTOR,

AND RETURYS THE SUBSCRIPT VALUE oF THE NEW ROW ELEMENT OF MAXiwUM ABSOLU

NO DER|VATIVES ALLOWED ON RIGKHT MAND SIDE,
NO DERIVATIVES ALLOWED ON RIGHT HAWD SIDE,
METHOD % ITH LIMITED STORAGE REQUIRFEMENTS,

WrHiCH4 USES THE JACOR!AN

SUITABLE FOR INTEGRATI

MATRIX,

A COMPLEX ROW VECTOR AND A CHMPLEX VECTOP,

TWu VECTORS,

A RoW VECTOR AND A VECTOR,
A COLJMN VECTOR AND A VECTOR,

A ROW VECTOR AKRD A COLUMHN
Two CALUMN VECTORS,
VECTORS,

TR0 ROY
TWO VECTOCRS,
TWoO VECTORS,

A VECTOR AND A ROW

VECTOR,

IN A SYIIMETR:C

VECTOR TO ANOTHER VECTOR,

coLunn

VECTOR T0 ANQTHER COLUMN
COLUMI VECTOR TO A VECTOR,
ROW VECTNR TO ANOTHER ROW

VECTOR,

VECTOR T2 A COLUMN VECTOR,
ROW VECTOR TO A VECTOR,

VECTOR TQ A ROW
VECTIR TO A COLUMK
COLUN VECTOR TG A ROw
VECTIR TO A ROV

ROwW

ROW

VECTOR,

VECTOR,

VECTOR,
VECTCR,

SCAPRD: COMPUTES THE SCALAR PRODUCT OF TwQ VECTORS,

SCLCOM NORMAL|ZES THE

SECCHD CRDER

SECCND CRDER DIFFERENTIAL EQUATIONS US!ING
DIFFERENTIAL EQUATIGN USING A 5-TH ORDER
DIFFERENTIAL EQUATIONS USING A SaTH ORDER RUNGE KUTTA METHOD;
ALGORITHM) EXCGHANGES NUMAERS wiTH NUMBERS OUT OF A REFERENCE SET,

1S USED FOR TH{S MINIMAX POLYNOM{AL APPROXIMATICN,
'HTEGRATION OF STIFF DIFFERENTIAL EQUATIONS,

SECOND CRDER
SECCHD CRDER
SECOND REMEZ
SECOND REMEZ
SEM!

EXCHANGE ALGOR|THM
IMPLICIT RUNGE KiITTA METHQD|

SUITABLE FOR

COLUMNS 0OF A COQIPLEX MATRIX,
DIFFERENT!AL EQUATIOMN USING A 5-TH ORDER RUNGE KUTTa
A 5«TH ORDER RUNGE KUTTA METHOD,

SEQVEC COMPUTES THE SCALAR PRODUCT OF TWO VECTORS,

SERIES,

AtD RETURNS THE SUB3CRIPT VALUE OF TrE NEV

MATRIX,

VECTOR,
’

ROw ELEMENT OF

METHOD ,

N0 DERIVATIVES ALLOWED ON
NO DERIVATIVES ALLOWED ON

RUNGE KUTTA METHDD;

34011
34013
34033
31021
31132
34353
31031
34024
34026
34029
34025
33010
33011
33012
33013
33014
33015
33060
33120
33160
34010
34011
34012
34013
34014
34015
34016
34017
34018
34354
34410
34411
34412
34413
34414
34415
34416
34417
34418
34020
34023
34021
34024
34022
34026
34027
34029
34028
34025
34017
34360
33042
33013
33014
33015
36021
36022
33160
34016
32010
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PUTES THE SUM OF A CONVERGENT
EN DIFFERENTIABLE FUNCTION CF

EN DIFFERENTIABLE FUNCTION OF
BR TRANSFORMS A MATRIX INTO A
FORMS A COMPLEX MATRIX INTO A
RMS A HERMITIAN MATRIX INTO A
GONAL MATRIX WHICh 1S UNITARY

REAL SYMMETRIC MATRIX INTQO A
REAL SYMMETRIC MATRIX INTO A
FORMS A COMPLEX MATRIX INTO A
ANSFORMS A REAL MATRIX INTO &

RK4A SOLVES a

FK1 SOLVES &

QRISNGVALBID CALCULATES THE
QRISNGVAL CALCULATES THE
EQUATIONS, PROVIDED THAT TKE
LINEAR EQUATIONS BY MEANS OF
EQUATIONS, PROVILED THAT THE
LINEAR EQUATIONS BY MEAMS CF
EQUATIONS, PROVILED THAT THE
LINEAR EQUATIONS BY MEANS CF
F A MATRIX, PROVIDED THAT THKE
E OF A MATRIX BY MEANS OF TKE
RISNGVALDECBID CALCULATES TKE
QRISNGVALDEC CALCULATES THE

CALCULATES THE LEAST SQUARES
CALCULATES THE LEAST SQUARES
ER BOUND FOR THE ERROR IN TrE
ULATES THE BEST LEAST SQUARES
ULATES THE HBEST LEAST SQUARES
MODIFIEDR TaYLCR

MOD I F {ED RUNGE KUTTA
MULTISTEP

HOMSOLSVE

roMsSOL

LSGSOL

LSQORTDFCSOL

RK2

RK3

RK 1

RK4A

CONJ GRAD

cHLSOL?

cHLSoLs

CHLDECSOLD

CHLLDECSOLY

RK1N

RK2N

RK3N

RK4NA

SERIES W
SEVERAL

SEVERAL

SIMILAR

S|MILAR

SIMILAR

SIMILAR

SIMILAR

S|MILAR

SIMILAR

SIMILAR

SINGLE D
SINGLE F
S INGULAR
SINGULAR
SINGULAR
SIHGULAR
STHGULAR
S |NGULAR
S1NGULAR
SINGULAR
SINGULAR
SINGULAR
SINGULAR
SINGULAR
SNOREMEZ
SOLBND S
SCLELM S
SCLOVR ¢
S0LSVDOV
SOLSVDUN
SOLSYMTR
SOLTRIPI
SOLTRI §
SOLUND C
SOLUTION
SCLUTION
SOLUTION
SOLUTION
SOLUTION
SCLVES A
SCLVES A
SOLVES A
SOLVES A
SOLVES A
SOLVES A
S0LVES A
SOLVES A
SCLVES A
SOLVES A
SOLVES &
SOLVES A
SCLVES A
SOLVES A
SCLVES A
SOLVES A
SOLVES A
SOLVES A
SCOLVES A
SOLVES A

ITH POSITIVE TE]MS, USING THE VAN WIJNGAARDEN TRANSFORMATION,

VARIABLES BY A VARIABLE METR|{ METHOD,

VARIABLES BY A VARIABLE METRIC METHOD,

EQUIL I BRATED MATRIX,

EQUILIBRATED COMPLEX MATRIX,

REAL SYMMETRIC TRIDIAGONAL MATRIX,

TO A GIVEN HERMITIAN MATRIX,

TRIDIAGCNAL ONE 3Y HOUSEHOLDERS TRANSFORMATION,

TRIDIAGONAL ONE 8Y HOUSEHOLDERS TRANSFORMATION,

UNITARY UPPER HESSENBERG MATRIX WITH A REAL NON=NEGATIVE SUBDIAGONAL,

UPPER HESSENBERG MATRIX 8Y THE WILKINSON TRANSFORMATION,

|FFERENTIAL EQUATION BY SOMETIMES USING A DEPENDENT VARIABLE AS INTEGRATION VARIABLE,
IRST ORDER DIFFERENTIAL EQUATION USING A 5-TH ORDER RUMGE KUTTA METHOD,
VALUES OF A REAL BIDIAGONAL MATRIX By MEANS OF IMPLIC|T QR=ITERAT{ON,

VALUES OF A REAL MATRIX BY MEANS OF AN IMPLICIT QR«ITERATION,

VALUE DECOMPOSITION OF THE COEFFICIENT MATRIX IS GIVEN,

VALUE DECOMPOSITION,

VALUE DECOMPOSITIQN OF THE CQEFFICIENT MATRIX IS5 GIVEN,

VALUE PECOMPOSITION,

VALUE DECOMPOSITION OF THE GCQEFFICIENT MATRIX 15 GIVEN,

VALUE DECOMPOSITION,

VALUE DECOMPOSIT|ON 18 GIVEN,

VALUE CECOMPOSITION,

VALUE DECOMPOSITION OF A REA|, MATRIX OF WHICH A BIDIAGONAL DECOMPNSITION 1S GIVEN, BY MEANS
VALUE DECOMPOSITION OF A REAlL MATRIX AY MEANS OF AN [MPLICIT GR-ITERATION,

(SECOND REMEZ ALGORITHM) EXCHANGES NUMBERS WIThH NUMBERS OUT OF A REFERENCE SET,
OLVES A SYSTEM OF LINEAR EGUATIONS WiTH oAND MATRIX, WHICH IS DECOMPOSED BY DECBND,
QLVES A SYSTEM OF LI!NEAR EQUATIONS, OF WH|CH THE TRIANGULARLY DECOMPOSED FORM OF THE MATRIX
ALCULATES THE LEAST SQUARES SQLUTION OF A OVERDETERM|NED SYSTEM OF LINEAR EQUATICONS BY MEANS
R CALCULATES THE LEAST SQUARES SOLUTION OF A OVERDETERMIMED SYSTEM OF LINEAR EQUATIONS, PROV
D CALCULATES THE BEST LEAST SQUARES SOLUT|{ON OF A UNDERDETERMINED SYSTEM OF LINEAR EQUATIONS
| SOLVES A SYSTEM OF LINEAR EQUATIONS WITH SYMMETRIC TRID!AGONAL CNEFFICIENT MATRIX, PROVIDE
V SOLVES A SYSTEM OF LINEAR EQUATIONS wITH TRIDIAGONAL COEFFICIENT MATRIX, PROVIDED THAT THE
OLVES A SYSTEM 0OF L INEAR EQUATIONS WITH TR)DIAGONAL COEFFICIENT MATRIX, PROVIDED THAT THE LU
ALCULATES THE BEST LEAST SQUARES SOLUT|ON OF A UNDERDETERMINED SYSTEM OF LINEAR EQUATICNS BY
OF A OVERDETER“|NED SYSTEM OF LINEAR £QUAT(ONS, PROVIDED THAT THE SINGULAR VALUE DECONMPOSIT
OF A OVERDETERINED SYSTEM OF LINEAR EQUAT|ONS BY MEANS OF SINMGULAR VALUE DECOMPOS|TICN,

OF A4 SYSTE" OF INEAR EQUATIAONS,

OF A UNDERDETERMINED SYSTEM OF LINEAR EQUATIONS, PROV|DED THAT THF SINGULAR VALUE DECCMPOS|
OF A UNDERDETERMINED SYSTEM OF LINEAR EQUATIONS BY MEANS OF SINGULAR VALUE DECOMPCS|TIiON,
N INITIAL ( BOUNDARY ) VALUE PROBLEM, GIVEN AS A SYSTEM OF FIRST ORDER DIFFERENTIAL EQUATION
N INITIAL ( BOUMDARY ) VALUE PROJILEM, GIVEN AS A SYSTEM OF FIRST ORDER ( NON«LINEAR ) DIFFER
NCOINITIAL VALUE PROBLEM, GIVEH AS A SYSTEM OF FIRST ORDER DIFFERENTIAL EQUATIONS, BY ONE OF
HOMOGENEQUS SYSTEM OF LINEAR EQUATIONS, PROVIDED THAT THE SINGULAR VALUE DECOMPOSITION OF T
HOMOGENEOUS SYSTE™ OF L{WEAR EQUATIONS BY MEANS OF SINGULAR VALUE DECOMPOSITION,

LINEAR LEAST SQUARES PROSLEM, PRQOVIDED THAT THE COEFF|CIENT MATRIX HAS BEEN DECOMPCSED BY L
LINEAR LEAST SNUARES PROBLEM AND COMPUTES THE DIAGOMAL FELEMENTS OF ThE INVERSE OF MiM (M CO
SECOND ORDER DIFFERENT!AL EQUATION USIN% A 5=TH ORDER RUNGE KUTTA METHOCD,

SECOND ORDER DIFFERENT!AL EQUATION USING A 5mTH ORDER RUNGE KUTTA METHOD; NO DERIVATIVES AL
SINGLE FIRST ORDER DIFFERENTiAL EQUATION USING A 5-TH CRDER RUNGE KUTTA METHOD,

SINGLE DIFFERENT|AL EQUATION BY SOMETIMES USING A DEPENDENT VARIASBLE AS INTEGRATICN VARIABL
SYMMETRIC AND POS|T(VE DEFIN|TE, SYSTEM OF LINEAR EQUAT(ONS BY THE METHOD OF CONJUGATE GRAD
SYMMETR|C PUSITIVE DEFINITE GYSTEM OF LINEAR EQUATIONS, THE MATRIX BEING DECOMPOSED BY CHLD
SVMMETRIC PUSIT|VE DEFINITE SYSTEM OF LINEAR EQUATIONS, THE MATRIX BEING DECOMPOSED BY CHLD
SYMMETRIC POSIT{VE DEFINITE SYSTEM OF LINEAR EQUATIONS BY THE CHOLESKY METHOD, THE MATRIX B
SYMMETRIC PUSITI{VE DEFINITE SYSTEM OF LINEAR EQUATIONS 3Y THE CHOLESKY METHOD, THE MATRIX B
SYSTEM FIRS™ ORDER DIFFERENTIAL EQUATIONS USING A S5oTH ORDER RUNGE KUTTA METHOD,

SYSTEM SECOND ORDER DIFFERENT!AL EQUATIONS USING A 5.TH ORDER RUNGE KYTTA METHOD,

SYSTEM SECOND DRDER DIFFERENTIAL EQUATIONS USING A 5.TH ORDER RUNGE KUTTA METHOD; NO DER
SYSTEM DIFFFRENTIAL EQUAT!IONS BY SOMET(MES USING THE DEPENDENT VARIABLE AS INTEGRATION V

32020
34214
34215
34173
34361
34363
34364
34140
34143
34366
34170
33016
33010
34270
34272
34280
34281
34282
34283
34284
34285
34286
34287
34271
34273
36021
34071
34061
34281
34280
34282
34421
34427
34424
34283
34280
34281
34241
34282
34283
33040
33060
33080
34264
34285
24131
24135
33012
33014
33010
33016
34220
34390
34391
34392
34393
33011
33013
33015
33017
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RKSNA

SoL.BND
CHLSOLAND
SCL

GECSCL
SOLELM
GSSSOL
GSSSOLERSA
SOLTR!
DECSOLTR
SOLTRIP IV
SOLSYMTR
[LECSOLSYMTR|
EFERK

EFSIRK
LIN|GERY
LINIGERD
BANC P'ATRIY AND
LECSCLTRIRP IV

TIVE DEFINITE

COMSQRT COIPUTES THE
DIFFERENTIAL EQUATIONS, BY A
HFORTH METHOD; WiTH AUTCMATIC
JACOBIAN MATRIX AND pUTOMATIC
ITABLE FOR THE INTEGRATION CF
3 SUITABLE FOR INTEGRATION CF
i SUITABLE FOR INTEGRATION CF
3 SUITABLE FOR INTEGRATION CF
5 SUITABLE FOR INTEGRATIQN CF
NGE KUTTA METHOL wiTH LIKITED

LINEAR [INTERPOLATION US(ING A
LINEAR |NTERPOLATION USING A
LINEAR [NTERPOLATION US|NG A

A ROY VECTOR, AND RETURNS THE
EULER COFPUTES THE
SUMPOSSERIES COMPUTES THE

CONJ GFAL SOLVES a
INITIALIZES A CODIAGONAL OF &
SYMROW INITIALIZES A KOW CF A

TFMSYMTRI2 TRANSFORMS A REAL

TFMESYMTR L TRANSFORNS p REAL

CONSECUTIVE EIGELVALUES CF A

CONSECUTIVE E{GERVALUES CF

NVALUES AND EIGENVECTORS OF
NVALUES AND EIGENVECTCRS OF
COMPUTES ALL EIGERVALVES CF
COMPUTES ALL E!GENVALUES OF
NVALUES AND E!GENVECTORS OF
CT OF A VECTOR AND A KOw N
TRIANGULAR DECOMPQSITION CF
COMPUTES THE DETERMINANT CF
STEM OF LINEAR EQUATIONS Ww|TH
RFORMS THE DECOMP(SITION CF
E CHOLESKY DECOMPCSIT!ION COF
E CHOLESKY DECOMPCSITION OF
COMPUTES THE DETERMINANT CF
COMPUTES THE DETERMINANT CF
CHLSCLY? SOLVES

> > > >» > Pk

> PP Pr >

FIRST™ ORDER DIFFERENTIAL EQUATIONS USiING THE 4RC LEMNGTH AS
1S DECOMPOSED AY DECBND,

FQUAT!ONS w1TH SYMMETRIC POSITIVE DEFINITE BAND MATRIX,
WH1CH THE TRIANGULARLY DECOMPOSED FORM OF
EQUATIONS B8y CROUT FACTORIZATION WITH PART!IAL PIVOTING,

TRIDIAGINAL COEFFICIENT MATRIX,

TRIDIAGIONAL COEFFCIENT MATR'X,
SYMMETRIC TRIDIAGONAL CCEFFICIENT MATRIX,
SYMHETRIC TRINDIAGONAL COEFFICIENT MATRIX,
OF FIRST ORDER DIFFERENTIAL
SYSTEM OF FIRST ORDE® DIFFERENTIAL
SYSTEM OF FIRST GRNER DIFFERENTIAL
ORDER DIFFERENT AL

TRIANGULARLY DECOMPOSED FORM CF
8Y GAUSSIAN ELIMINAT{OM WITH COMBINED PARTIAL

JPPER BCUND FOR 1T8& ERRCR,
PROV!DED
HATRIX,

POV INED

SYSTEM OF FIRS™

SOLVES A SYSTEM UF

SCLVES A SYSTEM OF L INEAR EQUATIONS wITH BAND MATRIX, WH{CH
SCLVES A SYSTEM OF LINEAR

SOLVES A SYSTEM OF | INEAR EQUATIONS, OF

SCLVES A SYSTEM OF LINEAR

SOLVES A SYSTEM OF LINEAR EQUATIONS, OF

SOLVES A SYSTEM OF LIMEAR EQUATIONS

SCLVES A SYSTEM OF [ INEAR EQUATIONS AND COMPUTES AN

SCLVES A SYSTEM OF L iINFAR EQUATIONS WwiTH

SOLVES A SYSTEM OF LINEAR EQUATIONS YiTH TRIDIAGONAL COEFFICIENT
SCLVES A SYSTEM OF Li1NEAR EQUATIONS ¢1TH

SCLVES A SYSTEM OF L INEAR EQUATIONS wiTH

SOLVES A SYSTEM OF LINEAR PQUAT!ONS w1TH

SCLVES INITIAL VALUE PRNSLEMS, GIVEN A4S AN AUTONOMOUS SYSTEN
SCLVES INITIAL ValLUE PRABLEMS, GIVEN AS AN AUTANOMOUS

SOLVES 1HiITIAL VALUE PRNABLEMS, GIVEN A4S AN AUTONOMOUS

S3CLVEIS INITHAL VALUE PROSLEMS, G!VEN AS AN AUTONDMOUS

SCLVES THE SYSTEI OF L!INEAR EQUAT|ONS AY Trik CHOLESKY "ETHOD,
SCLVES Ww!

5CL SOLVES A SYSTE™ OF LINLAR EQUATIONS,

SGUARE RO
STABILIZE

STEP AMD ORDER CONTROL AND SUITABLE FOR THE

STEP CONT
STIFF DIF
STIFF DIF
STIFF DIF
STIFF DIF
STIFF DIF
STCRAGE R
STLRI SEG
STUR'Y SER
STURIT SEQ
SUSSCRIPT
SUI'POSSER
Sul OF AN

SUf OF A CONVERGENT SERIES WITH POSITIVE TERAS,
CONPUTES THE SCALAR PRODUCT BF A VECTOR AND
OF LINEAR EQUATIONS 3y THE

SYIWATVEC
SYMVETRIC
SYIMETRIC
SYI'VETRIC
SYI'METRIC
SYI'FETRIC
SYIRMETRIC
SYUMETRIC
SYI'FETRIC
SYDMETRIC
SYPMETRIC
SYI'METRIC
SYNMETRIC
SYI'METRIC
SYUMETRIC
SYPMETRIC
SYNVMETRIC
SYI'METRIC
SYI'METRIC
SYI'"METRC
SYNMETRIC
SYDIMETRIC
SYI'METRIC

INTEGRATION VARIABLE,

WHICH HAS BEEN DEC
THE MATRIX 1S GiVE

THE MATRIX IS GIVE
AND COMPLETE P{VOT

THAT THE LU CECOMP

THAT THE LU CECOMP
PROVIDED THAT THE

EGUAT | ONS,
ECUATICONS,
EQUAT IONS,
EGUATICNS,

TH PARTIAL PIVATING A SYSTEM OF LINEAR EQUAT|NANS ¥WITH TRIDIAGONAL COEFFICIENT MATRIX,

OT OF A COUPLEX NUMBER,
D RUNGE KUTTA

ROL; SUITAILE FOR INTEGRATION
FERENT I AL EQUATIONS,
FERENT I AL EWUATIONS,
FERENT AL ENUAT|ONS,
FERENT AL EQUAT|ONS,
FERENT Il EQUAT™IQNS,
EQUIRENENTS,
VENCE.
UENCE,
UENCE,

VALUE OF TrE
IES COMPUTES THE SU™ OF
ALTERNAT MG SERIES,

AND PCS1T{VE DEF[NITE,

FPATRIX wiITH A CONSTANT,
TATRIX wiTH A CONSTANT,
CATRIX

SYSTFM™

YEW ROW ELEMENT OF

METHOD WiTH LIVITED STOPABE REQUIREMENTS,
INTEGRATIOY OF STIFF DI{FFERENT (AL EQUATIONS,
DIFFERENTIAL EQUAT{O%S,

ABSOLUTE VALUE,
A COMVERGENT SER|ES wiTH POSITIVE TERWVS,

A ROW OF A SYMMETRIC

INTO A SIMILAR TRID(AGOMAL ONE v HOUGSEHOLDERS TRANSFCRMATION,

FATRIX INTO A SIMILAR TRIDIAGONAL ONE 3V HOUSEHOLDERS TRANSFARMAT(ON,
MATRIX, STOREN (N A& ONE=DIMENSIONAL ARRAY, BY LINEAR

FATRIX, STORED 1M A TWO=DIMENSIOMAL ARRAV, BV LINEAR

PATRIX, YriCH |S STORED 1IN A ONE=DIMENS|ONAL ARRAY,

MATRIX, VmicH iS STORED N 4 TWO=DIMENSiONAL ARRAY,

MATRIX, STORED |H A ONE=DIMENS|OMNAL ARRAY, BY QR~!ITERATICN,

WATRiX, STORED [N A TwO«DIMENSIOMNAL ARRAY, BY QR~ITERAT!CON,

MATRIX BY QR-1ITERATION,

HATRIX,

POSITIVE DEFIM|TE MATRIX BY THE CHOLESKY METHIOD,

ROSITIVE QEFINI{TE MATRIX, wHicCH DECOMPOSED 3Y CHLDECBND,
POS|TIVE DEFIMITE BAMD MATRIY, BEE!) DECCHPOSED B8Y CHLDECAND,
POS|ITIVE DEFIHITE 3AND MATRIX AND SOLVES THE SYSTEM OF LINEAR EQUATIONS
PCS|TIVE DLFIMITE MATRIX, STORED it A TwO-DJNENS|ONAL ARRAY,

BOSITIVE DEFIMITE MATRIX, STORCD COLUMNWISE IN A ONELDIMENS | ANAL ARRAY,
POSITIVE NDEFINITE MATRIX, wriiCH HAS AEEN DECOMPOSED AaY CHLDECD,

POSITIVE DEFIHITE MATRIX,
POSITIVE DEFINITE

WHiiCH HAS

BEEN DECOMPOSED 8Y CHLDECY,
SYSTEM OF LINEAR EOUAT(ONS, THE

WHICY THE TRIANGULARLY DECOMPOSED FORM OF THE MATRIX IS

US NG THE VAN wIJNGAARDEN

USING THE VAN %!, NGAARDEN TRANSFORMATION,
MATRIX,
METHOD OF CONJUGATE GRADIENTS,

LTERPOLATION USING A STURM SEGUENCE,
PNTERPOLATION USING A STURM SEQUENCE,

BY THE CrCLESKY ME

MATRIX BEING DECOMPCSED BY CHLDECZ,

33018
34071
343382
34051
34301
34061
24232
34243
34424
34425
34427
34421
34422
33120
33160
33130
33131
34333
34428
34051
34343
33060
33060
33120
33060
33120
33160
33130
33131
33060
34151
34155
34153
34025
32020
32010
32020
34018
34220
31013
31014
34140
24143
34155
34153
34156
34154
34164
34362
34163
34418
34330
34331
34332
34333
34310
24311
34312
34313
34390
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26
26
26
26
26
18
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22
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32
34
3e
36
10
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26
16
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32
34
38
386




CHLSCLY SOLVES
CHLDECSGL2 SOLVES
CHLDECSCLY SOLVES

THE
THE

I NVERSE
INVERSE
THE |NVERSE

NV2 COMPUTES
NV1 COMPUTES
ESKY METHOD,
ESKY METHOD, THE |INVERSE
CONSECUT|VE, EIGENVALUES
R] COMPUTES EIGENVECTORS
COMPUTES ALL E!GEMVALUVES
NVECTORS AND EIGEMVALUES
AN MATRIX INTO A SIMILAR
S THE U'DU DECOMPCSITION
STEM OF LINEAR EQUATIGCNS
STEM OF LINEAR EQUATIONS
CT OF A VECTOR AN[L A ROW

FOR THE INTEGRAT|ON

OF
QoF
OF
oF
CF
OF
CF
OF A
REAL
OF A
wiTH
ViTH
oF A

»e>>>r> P P>P P

OF LARGE

RKaNA SOLVES 4

RK1N SOLVES
RK5NA SOLVES

GIVEN
GIVEN
GIVEN

Y ) VALUE PROBLE™,
Y ) VALUE PROBLEM,
FAL VALUE PROBLEM,
BLEMS, GIVEN AS AN
BLEMS, GIVEN AS AK
BLEMS, G)IVEN AS AN
BLEMS, GIVEN AS AR
METRIC

AS
AS
AS A

> > D>

AUTONONMOUS
AUTONONMOUS
AUTONONOUS
AUTORNONOUS
AND POSITIVE DEFINITE,

SCLEND SOLVES A

AN ELIMINAT!ON AN

SOLVES TrE

CHLSOLEBND SOLVES A

TE BAND
HE ERROR IN THE SCLUTION
soL
DECSOL
SCOLELM
GSSSOlL
GSSSCLERR
ATIVELY REFINED SCLUTION
ATIVELY REFIMNED SGLUTION
PER BOUND FOR (T8 ERHOQOR,
ATIVELY REFINED SOQLUTION
A SYMMETRIC POSI{TIiVE
A SYIMETRIC
A SYMMETRIC

A SYMMETRIC POSITIVE

SNLVES
SOLVES
SNLVES
SNLVES
SOLVES

MATRIX AN SCLVES TrE

CF

P> P P»r>>>D

DEFINITE
POSIT!IVE DRFINITE
POSIT|VE DEFINITE
DEFINITE

SOLUTION OF A OVLRLETERMINED

SOLUTION OF A CVFRDETERI
OF A UNDERDETERMINED
0OF A UNDERDETERMINED
SOLVES A HOMOGENEOUS
HOMOGENEOU
SNLVES
SNLVES
SOLTRIPIV SOLVES
OLVES WITH PARTIAL PIVNTING
SOLVES
SOLVES
SOLVES
SOLVES

SQLUTION
SOLUTION
OMSOLSVD
HOMSOL SOLVES 4
SOLTRI

DECSCLTRI

SOLSYMTRI
DECSOLSYMTRI
RKQN

Rk 3N

AINED

P >»>» P > >N

SYISMETRIC
SYNMMETRIC
SVHMETRIC
SYNMETRIC
SYNMETRIC
SYNMHMETRIC
SYNMETRIC
SYPNMETRIC
SYNMETRIC
SYNMETRIC
SYI'METRIC
SYNRETRIC
SYI'METRIC
SYIMETRIC
SYHMETRIC
SYNMETRIC

GYSTEMS ARISING FROM PARTIAL DIFFERENTIAL EQUATIONS,

SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYETEM
SYSTEMW
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
FYSTEM
SVYETLH
SYSTE®™
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEMW
SYSTEM™
SYSTEM
SYSTEM

CF
CF
CF

POSITH
POSITI
PASITI
POSITH
POSITI
POS|TI
POSITI
TRIDIA
TRIDIA
TRIDIA
TRIDIA
TRIDIA
TRIDIA
TRIDIA
TRIDIA

MATRI

DIFFER
FIRST

FIRST

FIRST

FIRST

FIRST

FIRST

FIRST

FIRST

FIRST

L INEAR
LINEAR
L IHEAR
LiNEAR
LI NEAR
LINEAR
L{NEAR
LiNEAR
L iNEAR
LIHEAR
LINEAR
I. INEAR
L iNEAR
LINEAR
LINEAR
L INEAR
L. iNEAR
L INEAR
L. I NEAR
L INEAR
L. IHEAR
L IMEAR
L iHEAR
L INEAR
LINEAR
LINEAR
LINEAR
LINEAR
. IMEAR
LINEAR
LINEAR
SECOND
SECOND

VE DEFIN|TE SYSTEM OF LINEAR EQUAT|ONS, THE MATRIX BEING DECO
VE DEFIN|[TE SYSTEM OF L INEAR EQUAT(ONS BY THE CHOLESKY METHOD,
VE DEFIN|TE SYSTEM OF L!NEAR EQUATIONS BY THE CHOLESKY METHOD
VE DEFIN|TE MATRIX WHiCH HAS BEEN DECQIPOSED BY CHLDEC?,

VE DEFINITE MATRIX WHicH HAS BEEN DECOMPOSED BY CHLDECT,

VE DEFIM|TE MATRIX, STORED !N A TWO-DIMENS |ONAL aRRAY,

VE DEFIN|TE MATRIX, STORED IN A ONE=DIMENSIONAL ARRAY,

GONAL MATRIX BY LINEAR INTERPOLAT!ON USING A STURM SEQUENCE,
GOHAL MATRIX BY INVERSE (TERAT|ON,

GOMNAL MATRIX BY QRwITERATION,

GONAL MATRIX BY QR«ITERATION,

GONAL MATRIX,

GONAL MATRIX,

GOMAL CNEFFICIENT MATR(X, PROVI(DED THAT THE U'DU DECOMPOSITIO
GONAL COEFFICIENT MATRIX,

X,

PROVIDED HWIGHER ORDER DE
ENTIaL EQUATIONS BY SOMETIMES USING THE DEPENDENT VAR{ABLE AS
ORDER DIFFERENTIAL EQUATIONS USING A 5.TH ORDER RUNGE KUTTA N
ORDER DIFFERENTIAL EQUATIONS USING THE ARC LENGTH AS IMTEGRAT
ORDER DIFFERENTIAL EGUATIONS, BY A ONERSTEP TAYLOR METHOD; TH
ORDER ( MOMsL INEAR ) OIFFERENT AL EQUATIONS, BY A STABILIZFD
ORDER DIFFERENT!IAL EQUATIONS, ONE OF THE FOLLOW!NG MULTIST
ORDER DIFFERENTIAL EQUATIONS, AN EXPONENTIALLY FITTED, EXP
ORDER DIFFERENTIAL EQUATIONS, AN EXPONENTIALLY FITTED, SEN
ORDEKR DIFFERENT!AL EQUATIONS, AN IMPLICIT, EXPOMNENTIALLY F
ORDEKR DIFFERENT 1AL EQUATIONS, AN JMPLICIT, EXPONENTIALLY F
EQUATINANS BY THE METHOD OF CONJUGATE SRADIENTS,
EQUATIANS WITH BAND MATRIX, WHICH 1S5 DECOMPOSED BV DECBND,
EQUATINNS,
EGUATINNSG WiTH SYMMETRIC POSITIVE DEFINITE BAND MATRIX, wHIC
EOUATIANS BY THE CHOLESKY METHOD,
EQUATIANS,
EOUATINNS, OF WHICH THE TRIANGULARLY DECOMPOSED FORM CF
EQUATINNS BY CROUT FACTORIZATIOM WITH PARTIAL PIVOTING,
EOUATIONS, OF WHICH THE TRIANGULARLY DECONMPOSED FORM OF
FOUATINNS BY GAUSSIAN ELIMINATION WITH COMBINED PARTIAL
EQUATIANS AND COMPUTES AN UPPER BOUND FOR ITS ERRCR,
EQUATIONS, THE MATR{X OF wHiCH IS GIVEN N TS TRIAMGULARLY
EQUATIONS,
EOQUATIONS,
EQUATIONS,
EQUATIONS, THE MATRIX BE!NG DECOMPOSED B3Y CHLPECZ,
EQDATIONS, THE MATR1IX BE NG DECOMPOSED B8Y ChHLGECT,
EQUATIONS BY THE CHOLESKY METHOD, THE MATRIX REING STORED
EOUATIONS BY THE CHOLESKY METHOD, THE MATRIX RE!NG BTORED
EQUATINNS, PROVIDED THAT THE S!NGULAR VALUE DECOMPOS|TION
EQUATIONS BY MEANS OF SINGULAR VALUE DECOMPOS|TION,
EQUAT!ONS, PROVIDED THAT THE SINGULAR VALUE DECOMPOS:TION
EQUATIANS BY MEANS OF SINGULAR VALUE DECOMPOS|T ON,
ENUATIONS, PROVIDED THAT THE SiNGULAR VALUE DECUMPOSITION
EQUATIONS BY MEANS OF SINGULAR VALUE DECOMPOS|T(OM,
EQUATIONS WITH TRIDIAGONAL COEFFICIENT MATRIX, PROVIDED THAT
EQUATIANMS W{TH TRID{AGOMAL COEFFICIENT MATRIX,
EOUATIONS WITH TRIDIAGONAL COEFFICIENT MATRIX,
EQUATINNS WITH TRIDIAGONAL COEFFICIENT MATRIX,
EQUATINANS W TH SYMMETRIC TRID[IAGONAL COEFFICIENT MATRIX,
EQUATIONS W1TH SYMMETRIC TRID|AGONAL COEFFICIENT MATRIX,
ORDLR D|{FFERENTIAL EQUATIONS USING A 5-TH CRDER RUNGE KUTTA
ORDER D|FFERENTIAL EQUATIONS USING A S5-TH ORDER RUNGE KUTTA

THE

THE
AMD

OF WHICH THWE TRIANGULARLY DECOMPQOSED FURM OF THE
’

N
N
OF
CF

OF

PROVIDED THAT

PRO

MPCSED BY CHLDEC1,
THE MATRIX BEING STOK
, THE FMATRIX BEING STOR

N IS GIVEN,

RIVATIVES CAN BE EASILY
INTEGRATION VARIABLE,

ETHOD,
ION VARIABLE,
IS METHOD 1S PARTICULAR

RUNGE KUTTA METHOD WITH
EP METHODS: GEARS, ADAM
LICIT RUNGE KUTTA METHO
IMPLICIT RUNGE KUTT
I\ TTED, FIRST ORDER ONEr
ITTED, SECOND CRDER ONE

I -

H HAS BEEN DECCMPCSED 8

MATRIX (S GIVEN,

MATRIX 1S GIVEN,
COVPLETE PIVOTING,

DECOMPOSED FORM,
MATRIX 1S GIVEN,

A TwO=DIMENSICNAL ARRA
A ONE.DIMENSIONAL ARRA
THE COEFFICIENT MATRIX

THE COEFFICIENT MATRIX

THE COEFFICIENT MATRIX
THE LU DECCMPCSITION |
THE LU DECOMPCSITION A
VIDED THAT THE uU'Du DEC

METHOD,

NETHOD; NO DERIVATIVES

34391
34392
34393
34400
34401
34402
34403
34151
34152
34105
34161
34363
34420
344214
34422
34018
33040
33017
33011
33018
33040
33060
33080
33120
23160
33130
33431
34220
34071
34322
34332
34333
34241
34051
34301
34061
24232
34243
34250
34251
34253
34254
34390
34391
34392
34393
34280
34281
34262
342¢3
34284
34285
344¢4
34425
34427
34428
34421
24422
33013
33015
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BY A ONELSTEP
MOD I FIED

TIAL EQUATIONS,

RANSFORMATION AS
RANSFORMATION AS

FERFORMED RY
PERFORMED BY
RANSFORMATION AS PERFORMED RV

RANSFORMATION AS PERFORMED Bv
IN COMBINATION WITH PROCEDURE

ELMCOL ACDS A
ELMVECCOL ADDS A
ELLMROWCOL ALDS A

MVECCOL ADDS A COMPLEX
MCOMCOL ADDS A COMPLEX
MROWVEC aADDS A CONPLEX

ELMROW AGDS A
ELVMVECROY ADDS A
ELMCOLROW ADDS A
MAXELMROW ADDS A

A
A

SCALAR
SCALAR
SCALAR
NUMRER
NUMBER
NUMBER
SCALAR
SCALAR
SCALAR
SCALAR
ELMVEC ADDS SCALAR
ELYCOLVEC ALDS SCALAR
ELMROWVEC ADDS A SCALAR
IDIAGONAL ONE BY HOUSEHOLDFERS
IDIAGONAL ONE BY FOUSEHOLLEFRS
NBERG MATRIX BY THE wILK(NSCM
FORM BY MEANS OF HOUSFHOLDER
BAKSYMTRI2 PERFORMS THE BaCK

ESPONDING TO THE RNOUSEHOLDEPS
BAKSYMTRIZ PERFORMS THE BACK
ESPONDING TO THE FOUSEHCLUFRS
BAKLBR PERFORIMS THE BACK
BAKREAHES1 PERFOKNMS THE BACK
BAKREAHES? PERFOPMS THE EACK
BAKHRMTRI PERFORMS THE BACK
BAKCOMHES PERFORKMS THE BACK
BAKLBRCOM PERFORMS THE BACK
TFMPREVEC COMPUTES TrE
CaRPCL

HSHCOMHE S

EQIL8RCOH

HSHCOMCOL

HEHHRMTR

EQILER

NEWGRY

TFMSYHTRI D

TEMSYNTR 1

TFMREAHES

HSHREABID

G MATRIX USED BY RSHREABID TO
G MATRIX USED 3vY FSKREABID TO
TDEC PERFORMS ThE HOUSEROLDER
DECBND PERFCKRMS ThE

CHLDECBND PERFCRMS THE

CEC PERFORMS THE

GSSELM PERFORMS THE

STEM OF LINEAR EQUATIONS WwiTH

TAMMAT COMPUTES THE SCALAR PRODUCT OF TWO COLUMN VECTORS,

TAMVEC COMRUTES THE SCALAR PRODUCT OF A COLUMN VECTOR AND VECTOR,

TAYLOR METHQD; THIS HETHOD |S PARTICYLARLY SUITABLE FO? THE INTEGRATION OF LARGE SYSTEMS ARISING FRO
TAYLOR SOLVES AN [MITIAL BOUNDARY ) VALUE PROBLEM, G|VEN AS A SYSTEM OF FIRST ORDER DIFFERENTIAL E

TFMPREVEC COMPUTES THE TRANSFORMING MATRIX
TFI'REAMES, OM A VECTOUR,
TFI'REAHES, ON TRE COLUMNS OF A MATRIX,

IN COMBINATION WITH PROCEDURE TFMSYMTR| 2,

TFMREAMES TRANMSFORMS A REAL MATRIX INTO A SIMILAR UPPER HESSENBERG MATRIX 8Y THE WILKINSON TRANSFORM
TFI'SYMTRIY,
TFNSYMTRI{ TRANSFORMS A DEAL SYMMETRIC MATRIX INTO A SIMILAR TR|DIAGONAL ONE EY HOUSEROLDERS TRANSFO
TFHSYMTRI2,
TFNSYMTRI2,

TFMSYMTR|2 TRANSFORMS A REAL SYMMETRIC MATRIX |NTO A SIMILAR TR(DIAGONAL ONE BY HOUSEHOLDERS TRANSFO

TINES A COLWMN VECTOR T2 ANOTHER COLUMN VECTOR,
TI'ES A COLUMN VECTOR T2 A VECTOR,

TIMES A COLUIIN VECTOR TO A ROW VECTOR,

TINES A COMPLEX COLUMN VECTOR TO A COMPLEX VECTOR,

TIMES A COMPLEX COLUMN VECTOR TO ANOTAHER COMPLEX COLUMY VECTOR,
TIMES A COMPLEX VECTOR TO 4 COMPLEX RQW VECTOR,

TIMES A RQO¥ VECTOR TO ANOTHER ROW VECTOR,

TIMES A ROW VECTOR TU A VEGTOR,

TIMES A ROW YECTOR TU A COLUMN VECTOR,

TIMES A RO% VECTOR TO A ROW VECTOR, AND RETURNS THE SY3ISCRIPT VALUE OF THE NEW ROW ELEMENT CF MAXIMY
TINES 4 VECTOR TO ANOTHER VECTOR,

TINES A VECTOR TO A COLUMN VECTOR,

TIMES VECTOR TU A ROW VECTOR,

A
TRANSFORMATION,
TRANSFORMATION,
TRANSFORNMATION,
TRANSFORMAT I ON
TRANSFORMAT I ON
TRANSFORMATION
TRANSFORMATION
TRANSFORMATION
TRANSFORMAT ! ON
TRALMNSFORMAT I ON
TRANSFORMATION
TRANSFORMATION

CORRESPONDING TO THE HOUSEHOLDERS TRANSFORMATIOM AS PERFORMED
AS PERFORNED AY TFMSYMTRIZ,

CORRESPONDING TO THE HOUSEHOLDERS TRANSFORMAT|ON A4S PERFORMED
AS PERFORNED 8Y TEM3YMTRIYL,

CORRESPNOMDING TO THE EQUILIRBRATION AS PIRFORMED By EQILABR,
CORRESPONDIMNG TH THE w!LKINSON TRANSFORMATION AS PERFORMED 83Y
CORRESPOMDING TO THE WILKINSOMN TRANSFORMATION AS PERFORMED 3V
CORPESPONDING TO HSHHRMTR |,

TRAM SFORMATION CORPESPONDIHG TO HSHCOMRES,

TRANSFORMAT ION CURRESPONDING TO THE BEQUILI3RATION AS PERFORMED BY EQILARCOM,
TRANSFORM NG MATRIX N COMBINATION WITH PROCEDURE TFYSYMTRIZ2,

TRANSFORMS A COMPLEX NUIBER GIVEM IN GARTES/I AN CHORDINATES INTO POLAR COORDINATES,

BY TFMSYMTRI2,

EY TFMSYMTRIY,

TF¥REARES,
TFWREARES,

ON A VECTOR,
ON THE coLum

TRANSFORH”S COMPLEX MATRIX 1NTO A S|'4'LAR UMNITARY UPPER HESSENBERG MATRIX WITH A REAL NONeNEGAT|VE
TRANSFORMS A CONMPLEX MATRI{X INTO A SI'1ILAR EQUILIBRATED COMPLEX NATRIX,

TRANSFORMS A CCONPLEY VECTOR INTO A VECTOR PROPORTIONAL TO A UN|T VECTOR,

TRANSFORMS A HERINITIAN ATRIX INTO A SIMILAR REAL SYMMETRIC TRIDIAGOMNAL MATRIX,

TRANSFORMS A MATRIX INTH A SiMILAR EQUILIBRATED MATRIX,

TRANSFOR!S A POLYNOMIAL REPRESENTATION FR0OM NEWTIN FOR'Y INTO GRUNWERT FNRM,

TRANSFORIMS A REAL SYNMETR|C MATRIX INTO A SIMILA? TRIDIAGONAL ONE BY HOUSEHOLDERS TRANSFORMATICON,
TRANSFORMS A REAL SYIMETRIC MATR{X INTO A SIMILAR TRIDIAGONAL ONE BY HOUSEHOLDERS TRANSFORWFATICN,
TRANSFORMS A REAL MATRIX INTO A SI™ILAR UPPER HESSENBERG MATRIX AY THE WILKINSON TRANSFORMATION,
TRANSFOR!"S A REAL IATRIX [NTO BIDIAGONAL FORM BY MEANS OF HOUSEHOLDER TRANSFORMATION,

TRANSFORY A MATRIX INTO BIDIAGONAL FORM,

TRANSFOR A MATRIX INTO 8iD{AGONAL FORM,

TRIANGULARIZATICH OF THE
TRIANGULAR DECONROSITION
TRIANGULAR DECOMPOSITION

COEFFICIENT 4ATRIX OF A LINEAR LEAST SQUARES PROBLEM,

OF A BAND MATRIX RY GAUSS|AN ELIMINATION,

OF A SYMMETRIC POSITIVE DEFINITE MATRIX BY THE CHOLESKY METHOD,

TRUAHGULAR DECOMPOSITION OF A MATRIX 3Y CROUT FACTORIZATION WITH PARTIAL PIVOTING,

TRIANGULAR DECONMPOSITION OF a MATRIX 3Y GAUSSIAN ELIMINATION W|TH COMBINED PARTIAL AND COMPLETE PIVD
TRIDIAGCHAL COEFFICIENT MATRIX, PROVIDED THAT THE LU DECOMPOSITION (S GIVEN,

34014
34012
33040
33040
34142
34171
34172
34170
34144
34143
34141
34142
34140
34023
34021
34028
34376
34377
34378
34024
34026
34029
34025
34020
34022
34027
34140
24143
34170
34260
34141
34141
34144
34144
34174
34171
34172
34365
34367
24362
34342
34344
34366
34361
34355
34363
34173
31050
34140
34143
34170
34260
34261
34262
34134
34320
24330
24300
34231
34424
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STEM
STEM
STEM

OF LINEAR
OF LINEAR
OF LINEAR
NEAR EGQUATIONS
NEAR EQUATIONS
E, EIGENVALUES
S EIGENVECTORS
LL EIGENVALUES
NO EIGENVALUES

EQUATICNS WITH
EQUATIONS WITH
EQUATIONS WITH
WITH SYMMETRIC
WITH SYMMETRIC
OF A SYMMETRIC
OF A SYMMETRIC
OF A SYMMETRIC
OF A SYMMETRIC
INTO A SIMILAR REAL SYMMETRIC
GONAL ELEMENTS OF A HERM|TiAN
NG, THE LU DECOMPOSITION OF A
NG, THE LU DECOMPOSITION CF 4
DECOMPOSITION OF A SYMMETRIC
MMETRIC MATRIX INTO A SIMILAR
MMETRIC MATRIX INTO A SIn|LAR
T LEAST SQUARES SCLUTION CF &
T LEAST SQUARES SOLUTION OF a
N TRIDIAGONAL MATRIX WhicH 15§
COMPLEX MATRIX INTO A SIMILAR
ERBELM COMPUTES AN

EAR EQUATIONS AND COMPUTES AN
HE |NVERSE OF a4 MATRIX AND AN
IVELY REFINED SOLUTION AND AN
A REAL WMATRIX INTO A SIMILAR
TES THE EIGENMVALUES OF A REaL
VEN REAL EIGENVALUE OF A REAL
ES AND EIGENVECTORS OF A REAL
COMPLEX EIGENVALUES OF A REAL
COMPLEX EIGENVALUE OF A REAL
ALL EV'GENVALUES OF A COMPLEX
AND EIGENVALUES CF A COMPLEX
MATRIX INTO A SIMI{LAR UN|TARY
DECSYMTRI CALCULATES TrE

ENT MATRIX, PROVIDED THAT TrE

W ELEMENT OF MAXIMUM ABSOLUTE
X ELEMENT OF MAXIMUM ARSOLUTE

EFSIRK SOLVES IN|T|aL
ITH POSITIVE TERMS, USING THE
RENTIABLE FUNCTION OF SEVERAL
RENTIABLE FUNCTION OF SEVERAL
ION OF SEVERAL VARIABLES BY A
ION OF SEVERAL VARIABLFS BY A

TES THE SCALAR PRODUCT OF TwO
SCALAR PRODUCT OF TWO COLUMN
THE SCALAR PRODUCT OF TwWwo ROW
TES THE SCALAR PRCDUCT OF Twn
TES THE SCALAR PRODUCT OF Two
INTERCHANGES ELEMENTS OF Two
INTERCHANGES ELEMENTS OF Two
INTERCHANGES ELERENTS OF TwO
HANGES ELEMENTS OF TWwO CGOLUMN
ERCHANGES ELEMENTS OF TwWO RCW
ATION OPERATION ON TWQ COLUMN
ROTATION OPERATION OMN TWO ROW
1ON THE SCALAR PRODUCT OF Two

TRIDIAGCNAL COEFFICIENT MATRIX, .

TRIDIAGCNAL COEFFICIENT MATRIX, PROVIDED THAT THE LU DECOMPOS|TION AS CALCULATED BY DECTRIPIV IS GIV
TRIDIAGONAL COEFFICIENT MATRIX,

TRIDIAGCNAL COEFFICILNT MATRIX, PROVIQED THAT THE U'DU DECOMPOSITION 18 GIVEN,
TRIDIAGCNAL COEFFICIENT MATRIX,

TRIDIAGCNAL MATRIX BY LINEAR INTERPOLATION USING A STURM SEQUENCE,

TRICIAGCNAL MATRIX BY INVERSE |TERATION,

TRIDIAGCNAL MATRIX BY QR-|TERATION,

TRICIAGCHAL MATRIX 8Y QR~ITERATION,

TRIDIAGCHAL MATRIX,

TRIDIAGCNAL MATRIX WHICH S UNITARY S|MILAR TO A GJVEN HERMITIAN MATRiX,
TRIDIAGCHAL MATRIX,

TRIGIAGCNAL MATRIX,

TRIDIAGCNAL MATRIX.

TRIDIAGCNAL ONE 3Y HOUSEHOLDERS TRANSFORMATION,

TRILGIAGCNAL ONE BY HOUSEHOLDERS TRANSFORMATION,

UNGERDETERMINED SYSTEM OF LINEAR EQUATIONS, PROVIDED THAT THE SIMGULAR VALUE DECOMPOSITION CF THE CO
UNDERDETERIMINED SYSTEM NF L INEAR EQUAT|ONS By MEANS OF SINGULAR VALUE DECOMPOSITION,

UNITARY SIMILAR TO A GIVEN HERMITIAN MATRIX,

UNITARY UPPER HESSEWHERG MATRIX W|TH A REAL NON-HEGATIVE SUBDIAGONAL,

UPPER BCUND FOR THE ERROR |N THE SOLUTION OF A SYSTEM OF LINEAR EQUATIONS,

UPPER BCUND FOR |ITS ERROR,

UPPER BCUND FOR ITS ERROR,

UPPER BCUND FOR 1TS ERRNOR, OF A SYSTEM OF LINEAR EQUATIONS,
UPPER HMESSENBERG MATRIX BY THE WILKINSON TRANSFORMATION,
UPPER HESSENBERG MATRIX, PROVIDED THAT ALL EIGENVALUES ARE REAL,
UPPER HESSENBERG MATRIX, BY MEANS OF [NVERSE |TERATION,

UPPER HESSENBERG MATR|X, PROVIDED THAT ALL EIGENVALUES ARE REAL,
UPPER HESSENBERE MATRIX BY MEANS OF DOUBLE QR~|TERATION,

UPPER HESSENBERG MATRIX BY MEANS OF INVERSE ITERAT|ON,

UPPER HESSENBERG MATRIX WITH A REAL SUBDIAGONAL,

UPPER HESSENBERG MATRIX WITH A REAL SUBDIAGONAL,

YPPER HESSENBERG MATRIX WITH A REAL NONSNEGATIVE SUBD|AGONAL,
ULV DECOMPOS|TIDN OF A SYMMETRIC TRID|AGOMNAL MATRI|X,

V'L DECOMPDSITION 1S GIVEN,

VALGRICCHM COMPUTES ALL ©]GENVALUES OF A COMPLEX JPPER HESSENBERG MATRIX WITH A REAL SUBDJAGCNAL,
VALGRISYMTR| CONMPUTES ALL EIGENVALUES OF A SYMMETR|C TRIDIAGONAL MATRIX BY QR-I1TERATION,

VALSYMTRI COMPUTES ALL, OR SOME CONSECUTIVE, EIGENVALUES OF A SYMMETRIC TRIDIAGONAL MATRIX BY LINEAR
VALUVE,

VALUVE,

VALUE PROBLEMS, GIVEN AS AN AUTONOMOUS SYSTEM OF FIRST ORDER D|FFERENTIAL EQUATIONS,
VAN WI1JNGAARDEN TRANSFORMATION, 4

VAP IABLES BY A VARIABLE METRIC METHOD,

VARIABLES BY A VARIABLE METRIC METHOD,

VARIABLE METR|C METHOD,

VARIABLE METRIC HETHUD,

VECSYMTR| COMPUTES EIGENMVECTORS OF A SYMMETRIC TRIDIAGONAL MATRIX BY
VECTORS,

VECTORS,

VECTORS,

VECTORS,

VECTORS,

VECTORS,

VECTORS,

VECTORS,

VECTORS,

VECTORS,

VECTORS

VECTORS,

VECTORS,

OF wHICH THE TRIANGULARLY DECONPOSED FOR
BY MEANS OF SINGLE OR-ITERATICN,

BY MEANS OF SINGLE QR«-ITERATICN,

8Y AN EXPCNENTI

INVERSE (TERATION,

34425
34427
34428
34421
34422
34154
34152
34165
34164
343¢3
34364
34423
34426
34420
34140
24143
34262
34283
34364
34366
34241
34243
34244
34253
34170
34160
241831
34186
34190
34191
34372
34373
34366
34420
34421
34372
34165
34151
34025
34230
33160
32020
34214
34215
34214
34215
34152
34010
34014
34015
34016
34017
34030
34034
34035
34031
34032
34040
34041
34410

TOOUODUUUUUODODOURDOUOUUODDMACDO VDO AIIMAEMIMIIATNIAIMMMAMMAGGIIVOOIIINMMAMOUOOIIIIYX




R PRODUCT OF A ROW VECTOR AND VECTOR, 34011

ROBUCT OF A COLUMH VECTOR AND VECTOR, 34012
CT OF A ROW VECTOR AND COLUMN VECTOR, 34013
TS OF A ROW VECTOR AND COLUNMN VECTOR, 34033
PUTES THE SCALAR PRODUCT OF A VECTOR AND A ROW OF A SyMMETRIC MATRIX, 34018
S THE SCALAR PRODUCT OF a RCW VECTOR AND COLUMN VECTOR, 34013
NTERCHANGES ELEMENTS OF A RCW VECTOR AND COLUMH VECTOR, 34033
MPUTES THE INFINITY NORM OF A VECTOR AWD DELIVERS THE INDEX FOR AN ELEMENT MAXIMAL N MODULUS, 31060
S THE SCALAR PRODUCT OF A RCY VECTOR AND VECTCR, 34611
HE SCALAR PRODUCT OF A COLUNN VECTOR AND VECTOR, 24012
T MULTIPLIES A COIPLEX COLUMN VECTOR By A COMPLEX HUMBER, 34352
WCST MULTIPLIES A COMPLEX RCY  VECTOR BY A COMPLEX WUMAIER, 34353
MULVEC FULTIPLIES A VECTOR BY A SCALAR, 31020

MULROW MULTIPLIES A ROV VECTOR BY A SCALAR STORING THE RESULT [N ANOTHER VECTOR, 31021
ROWCST MULTIPLIES A RCY VECTOR BY A SCALAR STORING THE RESULT (N ANOTHFR ROWVECTOR, 31432
MULCOL MULTIPLIES A COLUMN VECTOR BY A SCALAR, 31022
COLCST MULTIPLIES A COLUFN VECTOR RY A SCALAR, 31131
ELMVEC ADDS A SCALAR TIMES A VECTOR TO ANOTHER VECTOR, 34020
ROW ADDS A SCALAR TIMES A RCY VECTOR TO ANOTRER ROU VECTOR, 34024
DUPCOLVEC COPIES (PART OF) A VYECTOR TO A COLUMN VECTOR, 31034
MCOLVEC ADDS A SCALAR TIiMES A VECTNR TO A COLUNN VECTIR, 34022
ROW ADDS A SCALAR TIMES A RCW VECTOR TO A COLUNWN VECTNHR, 34029
DUPROWVEC COPIES (PART QF) A VECTOR TO A RQY VECTUR, 31032
MROWVEC ADDS A SCALAR TIMES A VECTOR TO A RQOW VECTOUR, 34027
ADDS A SCALAR TIFES A COLUMN VECTOR TC A RQVW VECTOR, 34028
ROW ADDS A SCALAR TIMES A ROW VECTOR T0D a ROW VECTOP, AND RETURNS THE SUBSCR!PT VALUE OF THE NEW ROw ELEMENT OF MAXiMUM AESOLUTE V 34025
DUPVEC COP{ES (PART 0OF) A VECTOR TO A VECTOR, 31030
VECROW COPIES (PART OF) A RCW VECTOR TO A VECTOR, 31051
COL COPIES (PART OF) A Colkuru VECTOR TO A VECTOR, 310633
ADDS A SCALAR TIiMmES A COLuMN VECTOR TO A VECTOR, 34021
ROW ADDS A SCALAR TIHMES A RCWY YECTOR TC A VECTOR, 34026
NIVEC INITIALIZES (PART OF) A VECTOR WiITH A CCHSTANT, 31010
VECVEC COMPUTES THE SCALAR PRODUCT OF TWO VECTORS, 34010

POSITIVE TERNS, USING THE VAH VIJNGAARDEN TRANSFORMATION, 32020
PPER HESSENBERG MATRIX BY THE LK INGSCN TRANSFORMAT ON, 34470
ORMATION CORRESPONDING TO TwE UILKINSCN TRANSFORIMATION AS PERFORMED 8Y TFMREAHES, ON A VECTOR, 34171
ORMATION CORRESPORDING TO TrE UILKINSCN TRANSFORMATIONM AS PERFORMED BY TFMREAHES, ON THE COLUMNS OF A MATRIX, 34172
ZERCIN SEARCHES FOR a ZERO OF A FUNCTION OF ONE VARIABLE IM A GIVEN INTERVAL, 34150

ZEROIN SEARCHES FCR A ZERC OF A FUNCTION OF ONE VARIABLE IN A GIVEN NTERVAL, 34150
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INIVEC INITIALIZES (PART OF) A VECTCR WITH A CONSTANT,

INIMAT INITIALIZES (PART OF) A MATRIX W|TH A CONSTANT,

INIMATD INITIALIZES (PART OF) A DIAGONAL OR CODIAGONAL WITH A CONSTANT,

INISYFD INITIALIZES A CCDIAGONAL OF A SYMMETRIC MATRIX WITH A CONSTANT,

INISYMROW IN|T]ALIZ2ES A ROW OF A SYMHAETRIC MATRIX WITH A CONSTANT,

MULVEC MULTIPLIES A VECTOR BY A SCALAR,

MULROW MULTIPLIES A ROW VECTOR BY A SCALaR STORING THE RESULT IN ANOTKRER VECTOR,

MULCOL MULTIPLIES A COLUMN VECTOR BY A SCALAR,

DUPVEC COPIES (PART OF) A VECTOR TO A VECTOR,

DUPVECROW COPIES (PART CF) A ROW VECTOR To A VECTOR,

DUPKROWVEC COPIES (PART CF) A VECTOR TO A ROY VECTOR,

DUPVECCOL COPIES (PART OF) A COLUMN VECTOR TO A VECTOR,

DUPCOLVEC COPIES (PART CF) A VECTOR TO A COLUMN VECTOR,

DUPMAT COPIES (PART OF) A MATRIX TO (AN OTHER) MATRIX,

POL EVALUATES A POLYNCPIAL GIVEMN IN THE GRUMERT FORM BY THE HORNER SChEME,

NEWPOL EVALUATES A POLVNOM|AL GIVEN N THE NEWTON FORM BY THE HORNER SCHEME,

MEWGRN TRANSFORNS A POLYNO'"|AL REPRESENTATION FROM NEWTON FORM INTO GRUNERT FORM,

ABSMAXVEC COMRUTES THE INFINITY MORM OF a VECTOR AND DELIVERS THE (NDEX FOR AN ELEMENT MAXIMAL N MODULUS,

COLCST MULTIPLIES A COLUIN VECTOR BY A SCALAR,

ROWCST MULTIPLIFES A RCY VECTOR BY A SCALAR

EULER COMPUTES THE SUM OF AN ALTERNATING SERJ|ES,

SUMPOSSERIES COMPUTES THE SUM OF A CONVERGENT SERIES WiTW POS|{TIVE TERMS, USING THE VAN WIJUNGAARDEN TRANSFORMATION,

INTEGRAL { QUADRATURE ) CCMPUTES THE DEFINITE |NTEGRAL OF A FUNCTION OF ONE VARIABLE OVER A FIN|TE OR INFINITE INTERVAL OR OVER A NU

MBER CF CONSECUTIVE (INTERVALS,

QADRAT ( QUADRATURE ) COMPUTES THE DEFIMITE INTEGRAL OF A FUNCTION OF ONE VARIABLE OVER A FINITE INTERVAL,

RK1 SCLVES A SINGLE FIRST ORDER DIFFEREYT(AL EQUATION USING A 5-TH ORDER RJUNGE KUTTA METHOD,

RK1N SOLVES A SYSTEM CF FIRST CRDER DIFFERENT{AL EQUATIONS USING A 5-TH ORDER RUNGE KUTTA METHOD,

RK2 SCLVES A SECOND ORDER DIFFERENTIAL EWUAT|ON USING A 5=TH ORDER RUNGE KIUTTA METHOD,

RK2N SOLVES A SVSTENM CF SECCND ORDER DIFFERENT|AL EQUATIONS USING A DeTH QORDER RUNGE XKUTTA METHOD,

RKZ SCLVES A SECOND ORDER DIFFERENTIAL EQUAT{ON USING A 5«TH ORDER RUNGE KJTTA METHOU; NC DERIVATIVES ALLOWED ON RIGHT RANC SIDE,
RKIN SOLVES A SYSTFM OF SECCND ORDER DIFFFRENTIAL EQUATIONS USING A “mTH ORDER RUMGE KUTTa METHOD; NO DERIVATIVES ALLOVWER CON RIGHT nH

AND SIDE,

RK4A SOLVES A SIMGLE DIFFERENTIAL EGUATION 3v SOMET!IMES USING 4 DEPENDENT vARIABLE AS INTEGRATICM VAR | ABLE,

RK4NA SOLVES A SYSTEN OF DIFFERENTIAL EQUAT!ONS 8Yy SOMETIMES USING THE DEPENDEMT VAR|ABLE AS IHTEGRATION VARIABLE,

RKS5NA SOLYES A SvSTEN OF FIRST ORDER DIFFEREMT AL EQUATIONS USING THE ARC LENGTR AS |NTEGRATIOM VARIABLE,

HODIFIER TAYLCP SOLVES At INITIAL ( BOUNUARY ) VALUE PROBLEM, GIVEM AS A SySTEM OF FRST ORDER DIFFERENTIAL EQUATICNS, By A ONE=STEP
TAYLCR METHOL} THIS METHOD 18 PARTICULARLY SUITABLE FOR THE INTEGRATION OF LARGE SySTEMS aRISING FROM PARTIAL DIFFERENTIAL EQUATION
S, PRCVIDED HIGFEP CRDER DERIVATIVES CAM BE EASILY OBTAINED,

MODIFIEL RUNGE KUTTA SOLVES AN IN|JTIlaL ( BOUNDARY ) VALUE PROBLEM, GIVEN AS A SYSTEM OF FiRST ORDER ( NON=-LINEAR ) DIFFERENTIAL EQUp

TIONS, BY A STARILIZED RUNGE KUTTA METHOL WITH LIMITED STORAGE REQU!IREMENTS,

MULTISTEP SOLVES AN INITIAL VALUE PROARLERM, G|IVEN AS A SYSTEM OF FIRST ORDER DIFFERENTIAL EQUATIONS, BY ONE OF ThE FOLLOWING MULTS5Tg

P METHODS| GFARS, ADaMS - UCULTOH, CR ADAMS ~ RASHFORTH METHOD; WITH AUTOMATIC STEP AND ORDER CCNTRCL AND SUITARLE FCR THE INTEGRAT|

ON OF STIFF DIFFERENTIAL EQUATIONS,

EFERK SOLVES |NITIAL VALUE PROBLEMS, GIVEN AS AN AUTONOMOUS SySTEM OF FIRST ORDER DIFFERENTIAL EQUATIONS, By AN ExPONENTIALLY FITTED
, EXPLICIT RUNGE KUTTA METHCD wHICH USES THE JACOBIAN MATRIX AND AUTOMATIC STEP CONTROL; SUITARLE FOR INTEGRATICN CF STIFF DIFFERENT
VAL EGUATIONS,

LINIGERT SOLVES INITIAL VALUE PROBLE[S, GIVEN AS AN AUTONOMOUS SYSTEM OF FIRST ORDER DIFFERENT AL EGUATIONS, By AN [MPLICIT, EXPONEN

TiALLY FiTTED, FIRST ORDER CHNE~STEP METHOD W|TH NO AUTOMATIC STEP CONTROL) SUITABLE FOR INTEGRATION OF STIFF DIFFERENTIAL EQUATIONS,

LINIGER2 SOWLVES [N!TIAL VALUE PROBLEMS, GIVEN AS AN AUTONOMOUS SYSTEM OF F|RST ORCER D|FFERENT|AL EQUATIONS, BY AN iMPLICIT, EXPONEN
TIALLY FITTED, SECOMD ORDER ONE~STEP METHOD ¥ITH NO AUTOMATIC STER CONTROL; SUITABLE FOR (NTEGRATION OF STIFF DIFFERENT IaL EQUATIONS

éFS!RK SOLVES INITiaL VALUE PROBLEMS, GIVEN AS AN AUTONOMQOUS SYSTEM OF FI{RST ORPDER O|FFERENTIAL EQUATIONS, BY AN EXPONENTIALLY FITTEg
D, SEFI = IMPLICIT RUNGE KUTTA METHOD; SUITABLE FOR INTEGRATICH OF ST|FF DIFFERENT|AL EQUATIONS,

VECVEC COMPUTES THE SCALAR PRODUCT CF Twou VECTORS,

MATVEC COMPUTES THE SCALAR PRODUCT CF A ROW VECTOR AND VECTOR,

TAMVEC COMPUTES THE SCALAR PRODUCT CF A COLUMN VECTOR AND VECTOR,

MATMAT COMPUTES THE SCALAR PROCUCT CF A ROW VECTOR AND COLUMN VECTOR,

TAMMAT COMPUTES THE SCALAR PRODUCT CF TWO COLUMN VECTORS,



34015 D 6 HMATTAM COMPUTES THE SCALAR PRODUCT CF TWO ROW VECTORS,

34016 D 6 SEQVEC COMPUTES ThHE S3CALAR PROLUCT CF TWO VECTORS,

34017 D 6 SCAPRD1 €COMPUTES THE SCALAR PRODUCT OF TWo VECTORS,

34018 D 6 SYMMATVEC COMPUTES THE SCALAR PRODUCT OF A VECTOR AND A ROW OF A SYMMETRIC MATRIX,

34020 D B8 ELMVEC ADDS A SCALAR TIMES A YECTOR TO ANOTHER VECTOR,

34021 D 8 ELMVECCOL ADpDS A SCALAR TIMES A COLUMN VECTOR TO A VECTOR,

34022 D B ELMCOLVEC ADDS A SCALAP TIMES A VECTOR TO A COLUMN VECTOR,

34023 D 8 ELMCOL ADDS A SCALAR TIMES A COLUMN VECTOR TO ANOTHER COLUMN VECTOR,

34024 D 8 ELMROV ADDS A SCALAR TIMES A ROW VECTOR TO AMOTHER ROW VECTOR,

34025 O B8 HMAXELMROW ADDS A SCALAR TIMES A RQW VECTOR TO A ROW VECTOR, AND RETURNS THE SUBSCR(PT VALUE OF THE NEWY ROW ELENMENT OF MAXIMUM ABSOLU
TE VALUE,

34026 O 8 ELMVECRCW ADDS A SCALAF TIHMES A ROW VECTOR TO A VECTOR,

34027 O 8 ELMROWVEC ARDS A SCALAR TIMES A VECTOR TU A ROW VECTOR,

34026 D 8 ELMROVWCOL ADDS A SCALAR TIMES A COLUNMN VECTOR TO A ROW VECTOR,

34029 O 8 ELMCOLROwW ADDS A SCALAR TIMES A ROW VECTUR TO A COLUMN VECTOR,

340305 O 10 JCHVEC INTERCHANGES ELENMENTS OF TwO VECTORS,

34031 D 410 ICHCOL INTERCHANGES ELEMFENTS OF TwO COLUMN VECTORS,

34032 D 10 I CHROVW INTERCHANGES ELEMENTS OF TwC ROV VECTORS,

34033 O 10 ICHROWCOL INTERCHAMGES ELEMEMTS OF A ROW VECTOR AND COLUMN VECTOR,

34034 D 10 ICHSEGVEC INTERCHANGES ELEMENTS OF TwO VECTORS,

34035 D 10 ICHSEG INTERCHANGES ELEMENTS OF TwO VECTORS,

34040 D 12 ROTCOL PERFORMS AN ELEMENTARY ROTATION OPERATION OM TWO COLUMN VECTORS,

34041 D 12 ROTROW PERFORMS AN ELEMEMTARY ROTATION OPERATION ON TWC ROW VECTORS,

34051 E 26 SOL SOLVES A SYSTE® OF LINEAR EQUATIONS, OF WH|CH THE TRIANGULARLY DECOMPOSED FCRM OF THE MATRIX 18 GIVEN,

34053 E 28 INV CCMPUTES THE INMVERSE OF A FATRIX OF WkiCH THE TRIANGULARLY DECOMPOSED FORM 1S GIVEN,

34061 E 26 SOLELF SOLVES A SYSTEM OF LINEAR EQUATIONG, OF WHICH THE TRIANGULARLY DECOMPOSED FORI OF THE #WATRIX 18 GIiVEN,

34071 E 4 SOLBN[ SOLVES A SYSTEN CF LINEAR EGUATIONS /| TH BAND MATRIX, WH!CH |3 DECO4POSED BY DECBND,

34131 € 34 (.SOSOL SOLVES 4 LINEAR LEAST SCUARES PROBLEY, PROVIDED THAT THE CORFFICIENT MATRIX HAS BEEN DECOMPOSED BY LSQORTDEC,

34132 E 32 LSODGLINV COMPUTES THE CIAGCNAL FLENMENTS OF THE (NVERSE OF MrM (M COEFFICIENT MATR(X) OF A LINEAR LEAST SQUARES PRCBLEM,

34134 E 32 LSQORTNEC PERFORMS THE HOUSEROLDER TRIANGULARIZAT{ON OF Ti{E COEFFICIENT MATRIX OF A ([[(NEAR LEAST SQUARES PROEBLEN,

34135 E 34 LSQORTNECSOL SOLVES A LiNEAR LEAST SWUARES PROBLEM AND COMPUTES THE D[AGONAL ELEMENTS OF THE (NVERSE OF "'M (M COEFFICIENT MATRIX),

34140 D 34 TFMSYFTRIZ TRANSFORFS A REAL SVMMETRIC MATRIX INTO A SIMILAR TRIDIAGONAL ONE BY HOUSEHOLDERS TRAMSFORMATION,

34141 D 34 BAKSYMTRI2 PERFCRMS THE 3ACK TRANSFCRMATION CORRESPOUNDING TQO THE HOUSEHOLDERS TRANSFORMATION AS PERFORMED BRY TF¥SYNTR{P,

34142 D 34 TFMPREVEC COMPUTES THE TRANSFORMING “ATRIX IN COMBINATION W|TH PROCEDURE TFMSYMTR!2,

34143 D 34 TFMSYETRi1 TRANSFORFS A REAL SYMHETRIC “taTRIX [NTO A S|IMILAR TRIDIAGONAL ONE BY HOUSEROLDERS TRANSFORMATION,

34144 DO 34 BAKSYLTRIJ PERFORMS THE BACK TRANSFCRMATION CORRESPONDING TO THE HNUSEHOLDERS TRANSFORMAT:ON AS PERFORMED BY TFMSYNTRIY,

34150 F 18 ZEROIN SEARCHES FCR A ZERO CF A FUMCTIOH OF ONE VARIABLE IN A GIVEY INTERVAL, .

34151 D 36 VALSYMTRi COnPyUTES ALL, OR SOME CONSCCUTIVE, EIGENVALUES OF A SYMMETRIC TRIDIAGONAL MATRIX BY LINEAR INTERPOLATION USING A STURM SHp

UENCE,
34152 D 36 VECSYFTR| COMPUYTES EJGENVECTODRS OF A SVIHMETR|C TRIDIAGONAL MATRIX B8Y |NVERSE |TERAT!ON,
34153 E 12 EIGVALSYM2 COMPUTES aLL, OR SOME CONSECUTIVE E|GENVALUES OF A SYMHETRIC MATRIX, STORED iM A Two-DIMENS{ONAL ARRAV, BY LINEAR !NTERPO

LATION USING A STURNM SEQUENCE, /
34154 E 12 E!GSYFr2 COMPUTES ALL, OR SONE CONSECUTIVE EIGENVALUES AND EIGENVECTORS OF A SYMMETR!IC MATRIX, WHICH 1§ STORED IN A TwO~DIMENSIONAL A
RRAV,

34155 E 12 EiIGVALSYN]1 COMPUTES ALL, OR SOME CONSECUTIVE E|GENVALUES OF A SYMMETR|C MATRIX, STORED !M A ONE-DIMENSIONAL ARRAvY, BY LINEAR INTERPO
LATION USING A STURNM SEQUENCE,

34156 E {2 EI1GSYt1 COMPUTES ALL, PR SOMNE CONSECUTIVE EIGENVALUES AND EIGENVECTORS OF A SYMMETRIC MATRIX, WHICH 18 STORED iN A ONE~DIMENSIONAL A
RRAY,

34161 D 36 GRISYITRI COMPUTES ALL EIGENVECTORS AND EIGENVALUES OF A SYMMETRIC TRIDIAGONAL MATRIX BY QR=ITERATION,

34162 E 12 QRIVALSYF? COMPLTES ALL EIGENVALUES OF A $YIMETRIC MATRIX, STORED IN A TWO.D|MENS|ONAL ARRAY, BY QR=|TERATION,

34163 E 12 QR!SYI. COMPUTES ALL EIGENVALUES AND EIGENVECTORS OF A SYMMETRIC MATRIX BY AR=-|TERATION,

34164 E 12 ORIVALSYMNZ COMPUTES ALL EIGENVALUES OF A fVHMETRIC MATRIX, STORED IN A ONE-DIMENS(ONAL ARRAY, BY QR=ITERAT!ON,

34165 D 36 VALORISYMTRI COMPUTES ALL EIGENMVALUES OF 4 SYMMETR!C TRIDIAGONAL MATR{X BY QR~ITERATION,

34170 F 14 TFMREAHES TKANSFORMS A REAL MATRIX INTO A Si"|LAR UPPER HESSENRERG MATRIX 3Y THE W|LKINSON TRANSFORMATION,

34171 F 14 DAKREAHESY PERFCRIS THE 8ACK TRANSFORMATICN CORRESPONDING TO THE W(LK|NSON TRAMSFORMAT{ON aS PERFORMED BY TFMREAHES, ON 4 VECTOR,
F

34172 14 HAKREAHMESZ PERFCRI'S THE BACK TRANSFORMATION CORRESPONDING TO THE W(LKINSON TRAMSFORMATION AS PERFORMED BY TFMREAWES, ON THE COLUMNS
OF A FATRIX,

34173 F 42 EQILBK TRANSFORNFS A UATRIX (NTO A SIMILAR EQUILIRRATED MATRIX,

34174 F 12 ©AKLHK PERFORNS THE HBACK TRANSFORMATION CORRESPONDING TO TRE EQUILIBRATION AS PERFORMED BY EQILBR,

34180 F 16 REAVALARI CALCULATES THE EIGENVALUES OF a REAL UPPER HESSENBERG MATRIX, PROVIDED THAT ALL EIGENVALUES ARE REAL, BY MEANS OF SINGLE @
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34186

34190
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34193
34210
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R= | TERATION,

REAVECHFS CALCULATES THE EIGENVECTOR CORRESPONDING TO A GIVEN REAL EIGENVALUE OF A REAL UPPER HESSENBERG MATRIX, By MEANS OF INVERSE
ITERATION,

REASCL NORMAL|ZES THE COLUMNS OF A TwO=-DIMEMSIONAL ARRAY,

REAGR| CalLCULATES TFE FIGENVALUES AND E|GENVECTORS OF A REAL UPPER HESSENBERG MATR|X, FROVIDED THAT ALL EIGENVALUES ARE REAL, BY MEa

NS OF SINGLE QR~|ITERATIOHN,

COMVALOR| CALCULATES THE REAL AND CCHPLEX EIGENVALUES OF A REAL UPPER HESSENBERG MATRIX BY MEAMS CF DOUBLE GR-|TERATION,

COMVECHES CALCULATES THE E|GENVECTOR CORRESPONDING TO A GIVEN COMPLEX EIGENVALUE OF A REAL UPPER HESSENBERG MATRIX BY MEANS OF INVER

SE ITERATION,

COMSCL 1S AN AUXILIARY PROCEDURE FOR THE CO#PUTATION OF COMPLEX EIGENVECTORS OF A REAL MATRIX,

LINEMIN 1STAN/AUXILIARY PROCEDURE FCR OPTIMIZATION,

RNK1UPD 15} AM AUXILIARY PROCEDURE FOR OPTIMIZATION,

DAVUPD 1S AN AUXILIARY PROCEDURE FCR OPTIMIZATION,

FLEUPD 1S AN AUXIiL IA?Y PROCEDURE FOR OPTIMIZATION,

RNK1MIN ( OPTIM(ZATION ) MINIMIZES A GIVEN DIFFERENT|ABLE FUNCTION OF SEVERAL VARIABLES BY A VARIABLE METRIC METHOD,

FLEMIN ( OPTIM{ZATICH ) MIN|M|ZES A GIVEN DIFFERENTIABLE FUNCTION OF SEVERAL VAR|ABLES BY A VARIABLE METRIC METHOD,

CONJ GRAD SOLVES A SYMIETRIC AND ROSITIVE DEFINITE, SYSTE') OF LINEAR EQUAT|ONS BY THE METHOD OF CONJUGATE GRADIENTS,

HAXMAT FINDS THE INDICES AND MODULUS OF THAT MATRIX ELEMENT OF MAX(MUM ABSOLUTE VALUE,

GSSELI® PERFORMS THE TRIAHGULAR DECONPOSITIOM OF A MATRIX BY GAUSSIAN ELIMIHATION W|TH COMBINED PARTIAL AND COMPLETE PIVCTING,

GSSSOL SOLVES A SYSTE# OF LIWEAR EQUATIONS 3Y GAUSSIAN ELIMINATION WITH COMBINED PARTIAL AND COMPLETE PIVOTING,

INV1 COMPUTES THE INVERSE OF A MATRIX OF WHICH THE TRIANGULARLY DECOMPOSED FORM 1S G|VEN,

GSSINV COMPUTES THE INVERSE OF A MATRIX,

ONENRN NV COMPYTES THE 1-NORM OF THE INYERSE OF A MATRI(X, WHICH 1S TRIANGULARLY DECONPOSED,

ERBELM COMPUTES aN UPPER BOUND FOR THE ERROR |IN THE SOLUT|ON OF A SYSTEM OF LINEAR EQUATIONS,

GSSERB IS AN AUXILIARY PROCEDURE FOR THE SOLUT|ON OF LINEAR EQUATION WITH AN UPPER BOUND FOR THE ERROR,

GSSSOLERA SOLVES A SYSTEN OF LINEAR EQUAT{OYS AND COMPUTES AN UPPER BOUND FOR |TS RRROR,

GSSINVERB COMPUTES THE INVERSE OF A MATRIX AND AN UPPER BOUND FOR |TS ERROR,

ITISOL COMPUTES AN ITERATIVELY REFINED SOLUT|ON OF A SYSTEM OF LINEAR EQUATIONS, THE MATRIX OF WHICh IS GIVEN IN ITS TRIANGULARLY DE

COMPOSED FORM,

GSSITISOL COMPUTES Al ITERATIVELY REFINEL SOLUTION OF A SYSTEM OF LINEAR EQUATIONS,

GSSNR| 15 AN AUXILIARy PROCEDURE FOR THE |TERATIVELY REFINED SOLUTION OF A SYSTEM OF LINEAR EQUATIONS,

ITISOLERS COMPUTES AN ITERAT|VELY REFINED SALUTION AND AN UPPER 730UND FOR 1TS ERROR, OF A SYSTEM OF LINEAR EQUATIONS, OF WrICH THE T

RIANGULARLY DECOMPOSED FOR!N OF THE MATRIX (S GIVEN,

GSSITISOLERB COMPUTES AN ITERATIVELY REFINED SOLUTION OF A SYSTEM OF LINEAR EQUATIONS,

HSHREARID TRANSFORMS A REAL MATRIX (NTO BID{AGOMAL FORM BY MEANS OF MOUSEROLDER TRANSFORMATION,

PSTTFI+MAT CALCULATES THE POSTMULTIPLYING MATRIX USED BY HSHREARID TO TRANSFORM A MATRIX INTO 8{DIAGONAL FORM,

PRETFIMAT CALCULATES THE PREMULTIPLYING [ATRIX USED BY HS4REABID To TRANSFORM A MATRIX INTO 31N IAGONAL FORM,

ORISNGVALBID CALCULATES THE SINGULAR VALUES OF A REAL B!/DIAGONAL MATRIX BY MEANS OF |MPLICIT QR-ITERATION,

ORISNGVALDECS3ID CALCJULATES THE SINGULAR VALUE DECOMPOSITION OF A REAL MATRIX OF WHICH A BIDIAGONAL DECOMPOSITION IS GIVEN, BY MEANS

OF AN 1MPLICIT GR~jTERATION,

QRISNGVAL CALCULATES THE SINGULAR VALUES OF A REAL MATRIX BY MEANS of AN IMPLICIT QR ITERATION,

QRISNGVALDEC CALCULATES THE S8!HGULAR VALUE DECOMPOSITION QF A REAL MATRIX 3y MEANS OF AN (MPLICIT QR=«ITERATION,

SOLSVDOVR CALCULATES THE LEAST SQUARES SOLUT|ON OF A OVERDETERMINED SVSTEM OF LINEAR EQUATIONS, PROVIDED THAT THE SINGULAR VALUE DEC

OMPOSITION OF THE CCEFFICIENT MATRIX 1S GIVEN,

SOLOVR CALCULATES THE LEAST SQUARES SOLUT|ON OF A OVERDETERMINED SYSTEM OF LINEAR EQUATIONS BY MEANS OF SINGULAK VALUE LECCMPOS)TION

éOLSVDUND CALCULATES THE BEST LEAST SQUARES SOLUTION OF A UNDERDETERMINED SYSTEM OF L[ INEAR EQUATIONS, PROVIDED THAT THE SINGULAR VaL
JE DECOMPOS|ITION OF THE COEFFICIENT MATRIX S GIVEN,

SOLUN[* CALCULATES THFE BEST LEAST SQUARES SOLUT|ON OF A UNDERDETERMINED SYSTEM OF L|NEAR EQUATIONS 3Y MEANS OF SINGULAR VaALVE DECOMPO
SITION,

HOMSOLSYD SOLVES A FOMOGENECUS SYSTEM OF LIMEAR EQUATIONS, PROVIDED THAT THE SINGULAR VALUE DECOMPOSITICN OF THRE CCEFFICIENT MATRIX
1S GIVEN,

HOMSOL SOLVES A HOMCGENEOUS SYSTEM CF LIMEA® EQUATIONS By MEANS OF S{NGULAR VALUE DECOMPOSITION,

PSDINVSYD CALCULATES THE PSEUDO INVERSE OF A MATRIX, PROVIDED THAT THE SINGULAR VALUE DECOMPOSITION 18 GIVEN,

PSDINV CALCULATES THE PSEUDC !'MVERSE OF A MATRIX BY MEANS OF THE SINGULAR VALUE DECONPOSITION,

DEC PERFORMS THE TRIANGULAR DECOMPOS|TION OF A MATRIX BY CROUT FACTORIZAT|ON WITH PARTIAL PIVOTING,

DECSOL SOLVES A SYSTEM OF LINEAR EQUATIONS 3Y CROUT FACTORIZATION WIThH PARTIAL PIVOTING,

DECINV COMPUTES THE INVERSE OF A MATRIX,

DETERK COMPUTES THE DETERMINANT OF A MATRIX PROVIDED THAT THE MATRIX HAS BEEN DECOMPOSED BY DEC OR GSSELM,

CHLDEC2 ( LINEAR EQUATIOHS ) COMPUTES THE CHOLESKY DECOMPOSITION OF A SYMMETRIC POSITIVE DEFINITE MATRIX, STORED IN A TWOeDIMENS|IONp
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CHLDECl.( LINEAR EQUATICNS ) COMPUTES THE CHOLESKY DECOMPQOSITION OF A SYMMETRIC POSITIVE DEFINITE MATRIX, STORED CCLUMNW(SE IN A ONE
=D IMENSTONAL ARRAY,

CHLDETERMZ COMPUTES THE DETERMINANT OF A SYIMETRIC POSIT(VE DEFIN|{TE MATRI(X, WHICH HAS BEEN DECOMPOSED BY CHLDEC2,

CHLDETERMY COMPUTES TRE DETERMINANT OF A SYUMETRIC POSITIVE DEFINITE MATRIX, WHICH HaS BEEN NDECCMPOSEDR BY CHLDECY,

DECBND PERFORMS THE TRIAHNGULAR DECOMPOSITiON OF A BAND MATRIX BY GaUSS|AN ELiMINAT|ON,

DETERMBND COMPUTES THE DETERMINANT CF A SANN MATRIX, WHICH HAS BEEN DECOMPOSED By DECBND,

DECSOLBMD PERFORIS THE DECOMPOSITION OF 4 BAMND MATRIX BY GAUSSIAN ELIMINATION AND SO|.VES THE SYSTEM OF LINEAR EGUATIONS,

CHLDECRBND PERFORMS THE TRIANGULAR DECOMPOSIT|ON OF A SYMMETRIC POS|TIVE DEFINITE MATRiX Bv THE CHCLESKY METHOD,

CHLDETERMBHND COMPUTES THE DETERMINANT OF A SYMMETRIC POSITIVE DEFINITE MATRIX, WHiCH HAS BEEMN DECCMPOSED BY CHLDECEND,

CHLSOLBND SOLVES A SYSTEN OF LINEAR EQUATIOMNS WiTH SYMMETRIC POSITIVE DEFi'11TE BAND HATR!X, UmICH HAS BEEN DECONMPOSED BY CHLDECBND,
CHLDECSOLBND PERFORNMS ThE DECOMPOSITIOMN UF A SYMMETRIC POSITIVE DEFINITE BAND MATR(X AND SOLVES THE SYSTEM OF LINEAR EQUATIONS BY TH
E CHOLESKY METHOOD,

COMABS COMPUTES TrRE "0DULUS OF A COMPLEX NUISER,

COMMUL MULTIPLIES Twd CONMPLEX WUMBERS,

COMD IV COMPUTES THE QUOTIENT OF Tw0 COIMPLEX “UMBERS,

COMSQRT COMPUTES THE SQUARE ROOT OF A COMPLEX NUMBER,

CARPOL TRANSFORWMS5 A COMPLEX NUWBER GiVEH N CARTES|AN CONRDINATES (NTO POLAR COORD|NATES,

COMKWD COMPUTES THE RCOTS OF A QUADRATIC EQJATION wiTH COPLEX COEFFICIENTS,

COMCOLCST MULTIPLIES A COMPLEX COLUMN VECTOR BY A COMPLEX NUBER,

COMROWCST MULTIPLIES A COMPLEX ROW VECTOR BvY A COMPLEX NUMBER,

COMMATVEC COMPUTES THE SCALAR PRODUCT OF A COMRLEX ROW VECTO AND A CONPLEX VECTOR,

ASHCOMCOL TRANSFORMS A COMPLEX VECTOR 19T0 A VECTOR PROIPORTIONAL TO A UNIT VECTCR,

HSHCOMPRD PREMULTIPLIES A CCHPLEX MATRIX wi™r A COMPLEX ~OUSEHOLDER “ATRIX,

ROTCOLCOL FERFORMS A ROTATICH ON TWC CONPLEY COLUMN VECTAORS,

ROTCOI'RC» PERFORMS A ROTATICN OGN TWC COMPLEX ROW VECTORS,

COMEUCNRM COMPUTES THE EUCLIDEAN NOR!T OF A COMPLEX MATRIX,

SCLCONM NORMALIZES THE COLUIINS OF A COMPLEX 1ATRIX,

EQILBRCO™ TRANSFORMS A COMPLEX MATRIX INTO A SIiMILAR EQUIL IBRATED COMPLEX "MATRIX,

JAKLBRCOM PERFORIS THE RACK TRANSFCRMNATIUN CORRESPONDING ¥0 THE EQUILIBRATION AS PERFORMED BY EQILBRCOM,

ASHHERITRI TRANSFORMS A FERIITIAN MATRIX inTH A SIMILAR REAL SYMMETD!IC TRIDJAGONAL “ATRIX,

ASHHRF TR VAL DEL!VFRS THE “TAN DIAGCNAL ELE 'ENTS AND SRUARES OF THE CCD{AGINAL ELEMENTS NF A HERMITIAN TRIDIAGCNAL MATRIX WHICH |8 u
HITARY S17%iLAR TO A GIVEYW HERMITIAN MATRIX,

JAKHRNTRI PERFORNS TI{E RACK TRANSFORIMAT!IORN CORRESPONDING T3 ASHRRUTR,

HSHCOLHES TRANGFORMS Ao COMPLEX MATRIX INTC A SIMILAR YY¥!TARY UPPER HESSENBERG MATR|X WiThH A REAL NON=NEGATIVE SUBDIAGONAL,

JAKCOIHMES PERFQORMS THE EACK TRANSFORMATION CORRESPONDING TO ASHCOMHES,

E1GVALHRIY COMPYTES ALL E:1GENVALUES CF A HER VITIAN MATRIX,

E1GHRREY COMPUTES ALL EIGENVECTORS AND E!GENVALUES OF A MERJAITIAMN MATRIX,

AR VALHRIE COMPUTES ALL EIGENVALUES OF A HERITIAN MATRIX,

QR IHRf, COMPUTES ALL EIGENVECTORS AND EIGEMVALUFES OF A HERWITIAN MATRIX,

VALWURICOM COMPUTES ALL EIGENVALUES OF A COMPLEX UPPER HESSENS3ERG MATRIX WITH A REAL SUBDIAGGNAL,

QRICONM COAPUTES ALL EtGEIVECTORS AND EIGENVALUES OF A COMPLEX UPPER 4EGGENIERG MATRIX #iTH A REAL SUBDIAGONAL,

EI1GVALCO! COMPUTES ALL EIGENVALUES OF A COMPLEX MATRIX,

E1GCOM COMPUTES ALL EIGE'NVECTORS AND EISRENVALUES OF A COMPLEX MATRIX,

ELMCOI VECCOL ADDS A CO''PLEX MUPBER TIMES A AOMPLEX COLUMN VECTOR Tn A COMPLEX VECTOR,

ELMCOMCOL ADDS A COMPLEX NUNMABER TIMES A COMPLEX COLUMN VELTOR TO ANOTHER COMPLEX COLUMN VECTOR,

SLMCOIROWVEC ADDS A CCHMPLEX ~UMBER TIMES A COMPLEX VECTOR TO A CoMpLEX ROW VECTOR,

CHLSOL? SOLVES A SYMIAETRIC PASITIVE DEFIMITE SVYSTEM OF LINEAR EQUATIONS, THE MATRIX BEING DECOMPOSED BY CHLDEC2,

CHLSOL1 3OLVES A SYMIETRIC POS(TIVE DEF|HITE SYSTEM OF LINEAR EQUATIONS, THE MATRiX B8EING DECOPNSED BY CHLDEC1,

CHLDECSOLY SOLVES A SY!'METRIC POS{TIVE NDEF!Y|TE SYSTEM OF LINEAR EAUAT|ONS BY THE CHOLESKY METHOD, THE MATRiX EBEING STORED IN A TWOe
DIMENS I ONAL ARRAY,

CHLDECSOLY SOLVES A SYIIMETRIC POSITIVE DEFIY|TE SYSTEM OF | INEAR EQUAT|ONS BY THE CHOLESKY METHOD, THE MATRIX EEING STORED IN A ONEw
DIMENS 1OMNAL ARRAV,

CHL IHVD COMPyTES THE | !VORSE OF A SYNMETRIC POSITIVE DEFINITE MATR!X WHICH HAS BEEN DECOMPOSED BY CHLDEC2,

CHLINVL COMPUTES THE |1IVERSE OF A SYNMETRIC POSIT!VE DEFINITE MATRiX WHICH HAS BEEN DECOMPBSED BY CHLDECL,

CHLDECINV2 COMPUTES, 8V THE CHOLESKY METHOD, THE INVERSE OF A SYMMETR|C PO3ITIVE DEFINJTE MATRIX, STORED IN & TWO=DIMENSIONAL ARRAY,

GHLDEC iNvy COMPUTES, gY THE CHOLESKY %ETHOD, THE !NVERSE OF A SYMMETRIC POS)ITIVE DEF INITE MATRIX, STORED IN A ONEDIMENSIONAL ARRAY,

LNGVECVEC COMPUTES 1! DOUBLE PRECISION THE SCALAR PRODUCT OF TwO VECTORS,




34411 H {4 NGMATVEC COMPUTES I3 DOUBLE PRECISION ThE SCALAR PRODUCT OF A ROY VECTOR AND A VECTOR,

34412 H 14 LNGTAMVEC COMPUTES 1IN DOUBLE PRECISION THE SCALAR PRODUCT OF A COLUMW VECTOR AND A VECTOR,

34413 H 14 LNGMATMAT COMPUTES In DOUBLE PRECISION THE SCALAR PRODUCT OF A RNY VECTOR AND A COLUMN VECTOR,

34416 H 14 LNGTAMMAT COMPUTES 1H DOUBLE PRECISION THE SCALAR PRODUCT OF TwO COLJMN VECTORS,

34415 H 14 LNGMATTAN COMPUTES (% DOUBLE PRECISION THE SCALAR PRODUCT OF TwO RnW VECTORS,

34416 - 14 LNGSEQVEC COMPUTES | DOUBLE PRECISION THE SCALAR PRODUCT OF TWO VECTORS,

34417 H 14 LNGSCAPRDL COMPUTES iN DOUBLE PRECISIOM THE SCALAR PRODUCT OF TWO VECTORS,

34418 H 14 LNGSYNFMATVEC COMPUTES IN DOUBLE PRECISION T4E SCALAR PRODUCT OF A VECTOR AND A ROW IH A SYMMETRIC MATRIX,

34420 H 20 DECSYMTR| CALCULATES THE U'DU DECOMPOSITION OF A SYMMETRIC TRIDIAGONAL MATRIX,

34421 H 22 SOLSYWTR| SOLVES A SYSTE! OF LINEAR EQUATIOIS WITH SYMMETRIC TRIDIAGONAL COEFFICIENT MATRIX, PROVIDED THAT THE LiDU DECOMPCSITION 18
GIVEN,

34422 H 22 DECSOLSYMTR! SOLVES A SYSTEM OF LINEAR EQUATIONS WITH SYMMETRIC TRIDIAGONAL COEFFICIENT MATRIX,

34423 1 16 DECTR! CALCULATES, WITHCUT PIVOTING, THE LU DECOMPOSITICON OF A TRIDIAGONAL MATRIX,

344724 H 18 SOLTR) SOLVES A SYSTEM OF LINEAR EQUATIONS ¥|TH TRIDIAGONAL COEFFICIENT MATRIX, PROVIDED THAT THE LU DECOMPOSITION |6 GIVEN,

34425 A 18 DECSOLTRI SOLVES A SYSTE! OF LINEAR EQUATIONMS W(TH TRIDIAGONAL COEFFIC{ENT MATRIX,

34426 H 16 DECTRIPIV CALCULATES, YITH PARTIAL PIVOTING, THWE LU DECOMPQOSITION OF A TRINIAGONAL MATRIX,

34427 = 18 SOLTRIP(V SOLVES A SYSTEN OF LINEAR EQUATIO4S WITH TRIDIAGONAL COEFFICIENT MATRIX, PROVIDED THAT THE LU DECOMPOS|TION AS CALCULATED
AY DECTRIPIV 1S GIVEN,

34426 H 18 DECSOLTRIPIV SOLVES YITk PART[AL P!VOTING A SYSTEM OF LINEAR EQUATIONS WI|TH TRIDIAGOWAL COEFFICIENT MATRIX,

35020 C 38 ERF COMPUTES THE ERROR FUNCT|O% AND COMPLEMENTARY ERROR FUNCTION FNR A REAL ARGUMENTy THESE FUNMCTIONS ARE RELATED 7C ThE NCRMAL OR 6
AUSS 1 AN PROBABILITY FUNCTION,

35030 C 40 INCOMGAM COMPUTES THE INCOMPLETE GAMMA FUNCT{ON 8Y PADE APPROXIMAT{OWS,

35050 E 14 INCBETA COMPITES THE [NCOMPLETE BETA FUNCTIAN 1 (X,P,Q),0e=Xx<=1,P>0,0>0,

35051 E 14 |BPPLUSN COMPUTES THE INCOMPLETE BETA FUNCTION [ (X,PuaN,Qy,N0c=Xe¢=1,P>0,050, FOR N=z0(1)NHAX,

35052 E 14 IBQPLUSN COMPUTES THE INCOMPLETE BETA FUNCTION 1(X,P,QeN),0<=Xc=1,P>0,Q50, FOR N=zO(l)NMAX,

35053 £ 14 IXQFIX 15 AN AUXI| IARY PROCEDURE FOR THE |INCOMPLETE BETA FUNCTION,

35054 E 14 IXPFix 18 AN AUXILI|IARY PROCEDURE FOR THE INCOMPLETE BETA FUNCTION,

35055 € 1 FORWARD 1S AN AUXILIARY PROCEDURE FCR THE (NCOMPLETE BETA FUNCTION,

35056 E 14 DACKWARD 1S AN AUXILIARY PRCCEDURE FOR THE (NCOMPLETE BETA FUNCTION,

35060 C 42 RECIP GAMMA COMPUTES THE RECIPROCAL OF THE GAMMA FUNCTION FOR ARGJMEITS IN THE RANGE [1/2,3/2); ODD AND EVEN PARTS ARE ALSC DELIVERE
D,

35061 C 42 GAMNMA CONMPUTES THE GAMI'A FUNCTION FOR A REAL ARGUMENT,

35062 C 42 LOG GAMWA CONPUTES THE NATURAL LOGARITH OF THE GAMMA FUNCTION FNR POS|TIVE ARGUMENTS,

36040 C 44 NEWTON DETERMINES THL COEFFICIENTS CF THE NRWTAON INTERPOLATION POLVNOMIAL FOR GIVEN ARGUNMENTS AND FUNCTION VALUES,

36020 E 48 IN| IS AN AUXILIARY PROCEDURE FOR MINIfIAX APPROXIMATION,

36021 £ 20 SNDRE(EZ (SECONC REMEZ ALGORITRM) EXCHANGES NUMBERS #!TH *JUM3ERS JuUT OF A REFERENCE SET,

36022 C 46 MINMAXPOL PETERPFINES THE COEFFICIENTS OF THZ POLYNOMIAL (IN GRUNERT FORM) THAT APPROXIMATES A FUNCTION GIVEN FOR DISCRETE ARGUMENTS;

THE SECHND REMEZ EXCHANGE ALGORITHM 1§ USEN FOR THIS MIN|YAX POLYNOAJAL APPROXIMATION,




