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1. INTRODUCTION 

This algorithm computes the Airy functions Ai(z) and Bi(z) and their first 
derivatives in the complex plane. Airy functions are solutions of the differential 
equation 

w"-zw = 0. (1) 
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The program gives the option of computing scaled Airy functions in order both 
to enlarge the range of computation and to reduce accuracy problems for large 
lz I [Gil et al. 2002]. 

Amos' [1986] code is a well-known package and includes an algorithm for 
the computation of complex Airy functions. The algorithms are based on the 
evaluation of modified Bessel functions for complex arguments, and the Airy 
functions are evaluated through relations between Airy and Bessel functions. 
Our goal is to provide a stand-alone algorithm, which is more convenient for 
the direct computation of Airy functions. In addition, as we will show, the com
bination of two complex modified Bessel functions produces, in certain regions, 
quite extensive errors, and we found that it is better to avoid combining the 
Bessel functions in this way. 

The current algorithm is based on Maclaurin series for small Jz I, Gauss
Laguerre quadrature for intermediate values and asymptotic expansions for 
large JzJ. 

The relative accuracy is better than 10-13 when scaled Airy functions are 
computed, with the natural exception of the vicinity of the real or complex zeros 
of Airy functions, where relative precision loses meaning and scaling does not 
help. The functions Ai and Bi (and their derivatives) have zeros on the negative 
real axis, while Bi and its derivative have zeros close to the anti-Stokes lines 
phz = ±rr/3. 

The computation gradually loses accuracy for the modulus of unscaled Airy 
function as lz I becomes large (for jz I > 30). The source of these errors is the eval
uation of the dominant exponential factor e-~z312 for large complex arguments. 
A similar gradual loss of accuracy takes place for the phase of unscaled Airy 
functions. Additionally, the dominant exponential factor introduces an infinite 
number of curves where the real or imaginary parts of the unscaled functions 
cancel; over these curves, relative precision for the phase loses meaning. The 
code provides an absolute error smaller that 10-13 for min(JR(z)J, 1/IR(z)j) be
ing the ratio between the real and the imaginary part of the function (Ai(z ), 
Ai'(z), Bi(z) or Bi'(z)), except very close to the zeros of the function. 

It is observed that when these unavoidable cancellations take place, the codes 
AIZ and BIZ behave better than Amos' code. See Section 4.2 for further details. 

2. METHOD OF COMPUTATION 

We briefly describe the numerical methods considered for different regions in 
the complex plane. For a detailed discussion, we refer the reader to [Gil et al. 
2002]. 

The three ingredients of the algorithm are: 

(1) Maclaurin series ([Abramowitz and Stegun 1964], 10.4.2) for jy I < 3 and 
-2.6 < x < 1.3 (z = x + iy). 

(2) Gauss-Laguerre quadrature [Gil et al. 2002] for lz j < 15 and where 
Maclaurin series are not used. 

(3) Asymptotic expansions ([Abramowitz and Stegun 1964]. 10.4.59) for 
lzl > 15. 
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A Code to Compute Complex Airy Functions 327 

Except in the case of Maclaurin series, the domain of computation is the 
principal sector jphz I ~ 2JT /3. For 2Jr /3 < jphz I ~ JT the connection formula 
([Abramowitz and Stegun 1964], 10.4.7) is considered: 

(2) 

The conjugation property Ai(x + iy) = Ai(x - iy) is considered for nega
tive ~z. 

The code also computes scaled Airy functions. The dominant term in the 
asymptotic behavior of Ai(z) for large jz I is the quantity e-1;, with~ = iz ~;this 
factor appears explicitly both in the integral representations that we consider 
and in the asymptotic expansions. The scaling of the Airy functions consists in 
eliminating this exponential behavior by considering the new functions: 

A.i(z) = eZ: Ai(z ), Ai' (z) = eZ: Ai' (z ). (3) 

The same scaling was considered by Amos [1986). With this, not only is the 
range of computation extended, but errors are reduced by eliminating the expo
nential factor, which, as discussed in Gil et al. [2002), unavoidably introduces 
gradual loss of precision as jz I grows. Also, in many physical problems, combi
nations (ratios, for example, see Jeffreys [1956)) of Airy functions are used, and 
scaled functions may then be very convenient. 

When scaling is considered, the connection formula (2) has to be modified (see 
Gil et al. [2002] ). The function Ai is analytic in the complex plane cut along the 
negative real axis. At the negative real axis, phz = rr, we take the prescription 
of continuity of this function when approaching the negative real axis through 
positive values of ~z. 

2.1 Connection Formulas and Scaling 

The computation of Ai(z) in jphz I ~ 2l'l' /3 provides two numerically satisfactory 
solutions of the differential equation (1) in the whole complex plane, that is, two 
independent solutions such that both are not simultaneously dominant. This is 
so because Ai(z ), Ai(e2iri/3z) and Ai(e-2iri/3z) are independent solutions ofEq. (1) 
and Ai(z) is dominant only in Jr /3 < jphz I < Jr. However, for completeness we 
extended the range of computation to the whole complex plane through the use 
ofEq. (2). Similarly, we also compute the solution Bi(z) through two connection 
formulas ([Abramowitz and Stegun 1964], 10.4.9, 10.4.6): 

Bi(z) = iAi(z) + 2e-iir/6 Ai(e-2iri/3z ), 

Bi(z) = eiir/6Ai(e2iri/3z) + e-iir/6Ai(e-2iri/3z). 
(4) 

We apply the first connection formula for 0 < jphz I ~ 2rr /3 and the second 
one for the rest of the complex plane. In this way, both relations are numerically 
satisfactory and the computation through (2) is avoided (therefore we avoid an 
extra evaluation). 

The scaling of Bi(z) is not so obvious as that of Ai(z) because Bi(z) shows 
different dominant behavior depending on the sector in the complex plane: for 
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large lz I it behaves as e' for lphz I < TC /3 and as e-{ for rr /3 < jphz I < TC. The 
Amos solution is to rescale using a factor e-1mw1, which indeed enlarges the 
range of computation. We find this method has a major drawback: although 
scaling succeeds in enlarging the range of computation, it does not get rid of 
the whole dominant exponential contribution which introduces, as we will later 
show, a gradual decrease of accuracy as izl increases for any value of lphzl. 
In other words, the computable range includes values of z for which preci
sion can be completely lost. We prefer to rescale the function in the following 
way: 

Bi(z) = e-{Bi(z), where lphzl < rr/3, 
Bi(z) = e'Bi(z ), where jphz I ~ TC /3. 

(5) 

We have now an additional discontinuity at jphz I = rr /3. However, the main 
advantage is that errors are considerably reduced by scaling out the dominant 
exponential factors. 

As happened with Ai, the connection formulas must be modified for the com
putation of Bi. Namely, we consider the following relations: 

Bi(z) = ie-2{ Af(z) + 2e-i,,./6 Af(e-2,,.i13z) where 0 ::s phz < rr /3, 

Bi(z) = iAf(z) + 2e-inf6e2'Af(e-2,,.i/3z) where rr/3 ::s phz:::; 2rr/3, (6) 
Bi(z) = ei,,.16A.i.(e2,,.il3z) + e-i,,./6e2{Af(e-2,,.il3z) where 2rr/3 < phz ~ rr, 

and use complex conjugation when ~z < 0. 

2.2 Representations Near the Negative Real Axis and Near the Anti-Stokes Lines 

The Airy functions Ai(z) and Bi(z) and their derivatives have zeros on the neg
ative real axis [Abramowitz and Stegun 1964, pg 450]. Convenient representa
tions in a region that contains the negative axis are 

where 

l l 
Ai(-z) = z-irr-2[sinx P(z) - cos x Q(z)], 

l l 
Bi(-z) = z-4TC-2[cosx P(z)+sinx Q(z)], 

Ai'(-z) = -ztrr-~[cosxS(z)+sinxT(z)], 

Bi'(-z) = z iTC-~ [sin x S(z) - cos x T(z)], 

2 3 
~ = -z2. 

3 

(7) 

(8) 

These representations can be used in the sector lphz I < 2TC /3, z =f. 0, and are 
obtained by writing the asymptotic expansions [Abramowitz and Stegun 1964, 
10.4.60, 10.4,62, 10.4.64, 10.4.67] as exact identities. The functions P, Q, S, T 
represent the slowly varying parts of the Airy functions for large iz I and the 
user of the algorithms may be interested in these quantities which, gener
ally speaking, can be computed with better accuracy than the Airy functions 
themselves. 

Explicit representations for the functions P, Q, S, T follow from inverting 
the relations in (7). More interesting is a representation in terms of scaled Airy 
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functions, and, by using the connection formulas (2) and ( 4), it is straightforward 
to verify that 

P(z) = z ! Jr~ [e-rri/12Af(e-iri/3 z) + erri/12 Af(erri/3 z)], 

Q(z) = iz ! :Jr ~ [e-rri/12 Ai<e-rri/3 z) - erri/12 Aiceiri/3 z )], 

S(z) = -z-i Jr~ [eiri/12 Ai' (e-rri/3 z) + e-rri/12 Ai' (erri/3 z )], 

T(z) = -iz-!:Jrl [erri/12.Ai'(e-iri/3 z) -e-rri/12},j_'(erri/3 z)]. 

From the Wronskian relation for Ai(z) and Bi(z ), that is, 

Ai(z)Bi'(z)-Ai'(z)Bi(z) = l/rr, 

it follows that 

P(z)S(z) + Q(z)T(z) = 1. 

(9) 

(10) 

(11) 

Considering the relations in (7), we notice that some loss of accuracy is ex
pected in the evaluation of Ai(-z) (and Bi(-z) and their derivatives) close to 
the negative real axis when lz I becomes large. This is due to the evaluation of 
the sine of cosine functions for large arguments together with the cancellation 
between the P and Q (8 and T) terms. The scaled functions, as described in 
the previous section, do not improve the accuracy near the negative real axis 
and similar problems take place (in fact, scaling on the negative real axis is 
of no practical use). In Section 4.2, we will describe these intrinsic numerical 
difficulties in more detail. 

The functions Bi(z) and Bi' (z) have complex zeros near the anti-Stokes lines 
phz = ±rr /3, and in this area also difficulties arise. We have 

Ai(erri/3 z) = ~e-rri/3 [Ai(-z) + iBi(-z)], 

Bi(erri/3 z) = ~erri/S [3Ai(-z) - iBi(-z )] , 
(12) 

and similar formulas with i replaced by -i throughout. The first relation follows 
from the first relation in (4), and the second one then follows from the second 
relation in (4). We have in terms of the auxiliary functions 

. 3 1 l l '/6 . Ai(em/ z) = 2z-•rr-2err1 -ix [P(z) + iQ(z)], 

Bi(erri/3z) = 12J;z-ierrif6[sinK P(z)- COSK Q(z)], 

'/3 1 l I 2 '/3 . • Ai'(erri z) = 2z•Jl'-2e- m -ix [S(z) + iT(z)], 

(13) 

Bi'(erri/3 z) = 12J;z![cosK S(z) + sinK T(z)], 

where K = x - ~ i In 2. Compare the results for Bi' (erri/3 z) and Bi' (erri/3 z) with the 
asymptotic expansions in Abramowitz and Stegun [1964, 10.4.65 and 10.4.67]. 

We can expect that, unavoidably, the accuracy in the evaluation of Bi(z) and 
its derivative will decrease as larger values of lz I are considered close to the 
anti-Stokes lines phz = ±:Jr /3 (see Section 4.2). Scaling does not avoid this loss 
of accuracy and, in fact, it is of little practical use over the anti-Stokes lines. 
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3. DESCRIPTION OF THE ROUTINES 

We now describe the inputs and outputs of the main routines AIZ and BIZ. We 
also describe the dependencies between the subroutines in AIZ (and BIZ). 

Both AIZ and BIZ call the function DlMACH to obtain the machine depen
dent constants (overflow and underflow numbers and the smallest relative spac
ing). The user should uncomment the corresponding data lines in DlMACH. 

SUBROUTINE AIZCIFUN,IFAC,XO,YO,GAIR,GAII,IERRO) 

• INPUT: 

• !FUN 
• IFUN=l, the code computes Ai(z). 
• !FUN =2, the code computes Ai' (z) 

• IFAC: 
• IFAC=l, the code computes Ai(z) or Ai'(z) 
• IFAC=2, the code computes normalized Airy functions. 

• XO: real part of the argument Z 
• YO: imaginary part of the argument Z 

• OUTPUT: 

• GAIR: real part of the Airy function (or derivative) 
• GAII: imaginary part of the Airy function (or derivative) 
• IERRO: control of over/underflow for unscaled Airy functions. If IERRO=O, 

the computation was successful. IfIERRO=l, the Airy function overflows 
or underflows. Scaled functions do not overflow or underflow. 

The routine AIZ uses complex conjugation and a connection formula in order to 
restrict the computations to the principal sector 0 :::: phz < 2rr /3. The routine 
AIZ depends on the following subroutines (included in the code): 

(1) SERA! (SERAID): implements the Maclaurin series for Ai(z) (Ai'(z)). 

(2) EXPAI (EXPAID): computes the asymptotic expansion for Ai(z) (Ai'(z)) in 
the sector 0 :::: phz :::: 2rr /3 

(3) AIRYl (AlRYlD ): computes Ai(z) (Ai' (z)) by Gauss-Laguerre quadrature in 
the sector 0 :::: phz :::: n /2 

( 4) AIRY2 (AIRY2D): computes Ai(z) (Ai' (z)) by Gauss-Laguerre quadrature in 
the sector n /2 < phz :::: 2n /3 

(5) Auxiliary routines: 
PHASE: computes the phase ofz in -n < phz:::: n 
FG (called by SERA!), FGP (called by SERAID) 

SUBROUTINE BIZCIFUN,IFAC,XO,YO,GBIR,GBII,IERRO) 

• INPUT: Same as for AIZ 
• OUTPUT: 

• GBIR: real part of the Airy function (or derivative) 
• GBII: imaginary part of the Airy function (or derivative) 
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• IERRO: control of over/underflow for unscaled Airy functions. IfIERRO=O, 
the computation was successful. IfIERRO=l, the Airy function overflows 
or underflows. Scaled functions do not overflow or underflow. 

As previously described, the computation of Bi(z) is based on that of Ai(z) 
through connection formulas. 

4. NUMERICAL VERIFICATION 

Three independent numerical verifications of the code have been performed: 
Wronskian tests, comparison with trapezoidal quadrature method [Gil et al. 
2002] and comparison with Amos' code. We conclude that the relative accuracy 
reachable for scaled Airy functions is better than 10-13 while the unscaled 
functions tend to lose precision gradually as lz I increases. The accuracy is fixed 
by the selection of the number of points for the Gauss-Laguerre quadrature 
(40 points truncated to 25 function evaluations, see Gil et al. [2002]), which 
provides a good compromise between accuracy and efficiency. 

As noted in the introduction, there are unavoidable exceptions where relative 
precision can be lost. At the real or complex zeros of Airy functions, both the real 
and imaginary parts cancel and relative precision loses meaning; near the zeros, 
both for scaled and unscaled functions, 10-13 is the absolute precision attainable 
for the modulus of the functions while their phase becomes meaningless. 

When either the real or imaginary part of the function vanish (but not both 
simultaneously), the modulus does not suffer loss of relative accuracy, but the 
phase of the function does. For the case of unscaled Airy functions, these cancel
lations are mainly caused by the leading exponential factor e-iz312 (see Figure 2, 
left), which is removed in the case of scaled functions. For the case of unscaled 
Airy functions, the real or imaginary parts can vanish only near the real axis 
and near the zeros. 

Of course, the same cancellations take place for Amos' code. As we will 
show, our codes behave better than Amos' in the regions where cancellations 
occur. 

4.1 Wronskian Checks 

We can test formulas 10.4.10-13 in Abramowitz and Stegun [1964] to check the 
accuracy of the algorithm. One should only perform such tests for satisfactory 
pairs of solutions, otherwise, if the two functions are dominant within one sector, 
the result will unavoidably suffer from strong cancellations. 

We test the Wronskians for ::'.lz :;: 0 (as explained for ~z < 0 we apply com
plex conjugation). This test is included in the package (WRTEST.F). The four 
Wronskian tests are not independent, and it is sufficient to test, for instance, 
10.4.11and10.4.12, where the solutions involved constitute a satisfactory pair 
of numerical solutions, namely: 

e2rri/3Af(z)Ai'(ze2"'i/3) -Ai(z)'Ai(ze2"'i/3) 0:::: phz :::: rr/3, 
(14) 

0:::: phz :::: 1C. 
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For scaled functions Ai, exactly the same relations hold. We only need to 
decide how to deal with the discontinuity cut at the negative real axis. If the 
normalized functions are defined to be continuous when approaching the neg
ative real axis with positive real values of ;Jz, then both equations hold in the 
same sectors (otherwise the cases phz = ;r /3 and phz = ;r should be considered 
separately). We adopt the continuity convention described above. 

The Wronskians between Bi and Ai are not independent of the above men
tioned results. However, it is useful to also check such Wronskians particularly 
in the case of scaled functions Bi, given the different scaling used for two dif
ferent sectors. Two numerically satisfactory Wronskians are: 

W [Bi(z ), Ai(e_z,,.i/3z )] 
e2,,.i/3 

= ~ for n/3 S ph(z) Sn, 

(15) 
W [Ai(z ), Bi(z )] = l/n for 0 s phz s ;r /3, 

which, with the scaling prescriptions previously described, also apply when 
replacing Ai and Bi by Ai and Bi, except for phz = Jt /3 in the first Wronskian. 

All the Wronskian checks for scaled Airy functions Ai and Bi are consistent 
with a relative accuracy better than 10-13 . For unscaled Airy functions Ai and 
Bi, gradual loss of precision is observed for !z I > 30 (see Figure 2). 

4.2 Comparison with Nonoscillating Integral Representations. Accuracy 
of the Codes 

In Gil et al. [2002], nonoscillating integral representations, based on steepest 
descent contours of integration, were introduced. These integral representa
tions are numerically stable for the computation of Airy functions in the com
plex plane. The trapezoidal rule is a good choice for the computation of the 
resulting integrals due to the steep decrease of the integrands at infinity. 

Although the computation using the trapezoidal rule is less efficient than the 
methods actually used in the code AIZ and BIZ, the accuracy can be selected 
and then it is a convenient test-bench for the codes. In particular, the normal
ized functions Ai and Ai' can be checked against the non-oscillating integrals, 
computed with an accuracy better than 10-14 . 

4.2.1 Scaled Airy Functions. It is observed that the relative accuracy when 
evaluating scaled Airy functions with the codes AIZ and BIZ is better than 
10-13 . For the comparisons, we check the quantities 

M(z) = 1m.Ai1 +\~Ail and R(z) = r;sA.i;mAi. 
between both codes. 

(16) 

As explained, there is an exception to this. Close to the curves m.Ai = 0, 
relative error for the evaluation of the real part loses meaning; of course, similar 
things happen with the imaginary part. And when both the real and imaginary 
parts tend tocancel(at the zeros of Ai(-x), x > 0), only the absolute error for the 
modulus of the function makes sense. Figure 1 shows these points of discrepancy 
near the negative real axis. The rings where the code fails to compute R(z) with 
10-13 relative accuracy correspond to the level curves mAi = 0, .'JA.i = 0 which 
appear in couples and touch at the zeros of Ai in the negative real axis. As can 
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Fig. 1. Points where AIZ and ZAIRY (Amos' code) fail to compute the scaled Airy function with 
10-13 relative accuracy. On the left, the points of discrepancy for M(z) (Eq. (16)) are shown. The 
figure on the right is for R(z). Black points correspond to AIZ and grey points to ZAIRY. 

be seen in the same figure, this unavoidable error is under better control in our 
code than in Amos'. 

In the case of scaled Airy functions Bi(z) the same phenomena appear near its 
negative real zeros and its complex zeros, which lie close to the rays phz = ±rr /3. 
The same happens for the derivatives. 

The loss of accuracy near the zeros of Airy functions increases as jz I becomes 
larger. In particular, we observe that for jz I ~ 1000, the absolute accuracy 
for the modulus near the zeros of Ai is better than 10-13 but as [z I increases, 
the absolute accuracy worsens. This is as expected because the spacing between 
zeros is b.x '.:::'. rr /.;=:;for large -x. For -x as large as 106, the absolute accuracy 
reachable for the modulus goes down to 10-8• The same loss of accuracy for large 
lz I takes places for Bi when phz '.:::'. ±rr /3, phz '.:::'. ±rr, where the zeros of this 
function lie. 

4.2.2 Unscaled Airy Functions. Unscaled Airy functions overflow or un
derflow for values of i jz j312 larger than log( OVER), OVER being the machine 
overflow number. 

The relative error in the evaluation of the modulus of unscaled Airy functions 
tends to decrease as lz I increases and becomes generally worse than 10-13 for 
lz I > 30. The main reason lies in the errors that the leading exponential term 
e-2z31213 unavoidably introduces for large !zl, as discussed in Gil et al. [2002]. 
This source of error is common to Amos' codes and AIZ/BIZ and is also present 
when computing the Airy functions through steepest descent integrals. Figure 2 
(left) illustrates such gradual loss of accuracy. 

Furthermore, when considering unscaled functions, the phase of Airy func
tions suffers infinitely many cancellations, given the oscillatory nature of the 
dominant exponential factor in the complex plane. This factor introduces an in
finite number of curves where the real or imaginary parts of the function vanish, 
apart from those close to the zeros of the function, see Figure 2 (right). Over 
these curves relative precision for the phase is meaningless. The code computes 
min(IR(z)I, l/!R(z)!) with absolute accuracy better than 10-13 for lzl < 30. Of 
course, at the zeros of the function, R(z) becomes meaningless. 
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Fig. 2. Points where AIZ fails to compute M (z) (left) and R(z) (right) for the unscaled Airy function 
with 10-1s relative accuracy. AIZ is tested against steepest descent integrals. In the left :figure, Ai 
overflows in the darker shaded regions (top and bottom left corners). 

Figure 2 (right) illustrates the regions where a relative accuracy of 10-13 is 
not attainable for the computation of the phase (related to R(z)) of Ai(z). Over 
these curves the real or imaginary parts of the Airy function tend to cancel. As 
commented, the absolute errorformin(IR(z)I, 1/IR(z)l)is betterthan 10-13 over 
these curves. The comparison between Amos' and steepest descent integrals is 
similar, except that larger errors are observed near the negative real zeros and 
additional errors appear close to the line phz = rr /3 and z real and positive (see 
next section and Figures 1, 3 and 4). 

4.3 Comparison with Amos' Code 

Amos' code computes Airy functions through its connection with Bessel func
tions of complex arguments. In particular, Eq. 10.4.14 in Abramowitz and 
Stegun [1964] is used: 

Ai(z) = .!:. JZ/3K 1;a<n, s = ~z 312 , (17) 
7C 3 

and similar relations are applied for the rest of Airy functions. The code relies 
on the computation of Bessel functions for ffis > 0, that is, lphz I :::: n /3, and for 
the rest of the complex plane connection formulas of the type: 

(18) 

are used. 
However, the implementation of these connection formulas seems to pro

duce some accuracy problems, particularly near the anti-Stokes lines (see also 
Section 2.2). Other accuracy problems appear, as we discuss next. We compare 
our code with Amos' code, focusing on the lines ph(z) = 0, ph(z) = rr /3 and 
ph(z) = rr. 

Figure 1 shows the discrepancies with Amos' code close to the negative real 
axis, both for M(z) and R(z ). As previously mentioned, loss ofrelative precision 
is expected near the zeros of Af(-x ); however, it is apparent that our code is 
more stable in this region. 

Figure 3, shows the discrepancies found with Amos' code on the positive 
real axis, clearly due to a failure in the evaluation of the imaginary part for 
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Fig. 3. Points near the positive real axis where ZAIRY (Amos' code) fails to compute R(z) for the 
scaled Airy function with 10-13 relative accuracy. The results from AIZ match with those from 
steepest descent methods within this precision. 
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Fig. 4. Points close to the ray phz = :rt/3 where ZAIRY (Amos' code) fails to compute M(z) (left) 
and R(z) (right) for the scaled Airy function with 10-13 relative accuracy. The match between AIZ 
and steepest descent integrals is perfect for this precision. The axes have been rotated by 60°. 

moderate values of z close to this axis. Our code matches perfectly with the 
non-oscillating integral representation for the same demanded accuracy. 

Finally, Figure 4 shows the discrepancies found close to the ray phz = rr /3 for 
Amos' code. Again AIZ shows no discrepancies with respect to steepest descent 
integrals. 

4.4 Performance of the Code 

The codes have been tested in different platforms (Sun OS, Linux-Debian, 
Windows), different computers (Sun station, PC Pentium II, Laptop Pentium II) 
and different compilers (g77 for Unix/Linux, g77 for MS-DOS, f90 for Sun OS, 
Compaq FORTRAN) with similar results. 

When compared with Amos' code, it is observed that our codes run generally 
faster and that, in the rare situations where they are slower (less than a factor 2 
slower) they are more accurate. Figure 5, shows the regions where AIZ is faster 
thanZAIRY. 

For a Pentium II-300 MHz computer, with g77 running under Debian 
Linux 2.1, the typical running times are in the range 10 µs to 100 µs for the 
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x 

Fig. 5. Points in the complex plane where AIZ is faster than ZAIRY (Amos' code). 

evaluation of one complex function for one value of z. When computing series or 
asymptotic expansions, the typical running times are in the range 10 µs-20 µs 
while the Gauss-Laguerre integrals spend around 100 µs for each z. Consider
ing a Pentium II-500 MHz, with Compaq Fortran running under Windows 98, 
the typical range of CPU times becomes 5-60 µs; series and asymptotic expan
sions spend from 5 µs to 9 µs while Gauss-Laguerre quadrature typically needs 
60µs. 

When using connection formulas, two functions have to be evaluated; in this 
case, the total running time will be twice as large. 
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