
Algorithm 819: AIZ, BIZ: Two Fortran 77
Routines for the Computation of Complex
Airy Functions

AMPARO GIL

U. Aut6noma de Madrid

JAVIER SEGURA

U. Carlos Ill de Madrid

and

NICO M. TEMME

CWI

Two Fortran 77 routines for the evaluation of Airy functions of complex arguments Ai(z), Bi(z) and
their first derivatives are presented. The routines are based on the use of Gaussian quadrature,
Maclaurin series and asymptotic expansions. Comparison with a previous code by D. E. Amos [1986]
is provided.

Categories and Subject Descriptors: G.4 [Mathematics of Computing]: Mathematical software

General Terms: Algorithms

Additional Key Words and Phrases: Airy functions, complex values, Gauss quadrature

1. INTRODUCTION

This algorithm computes the Airy functions Ai(z) and Bi(z) and their first
derivatives in the complex plane. Airy functions are solutions of the differential
equation

w"-zw = 0. (1)

A. Gil acknowledges financial support from the Alexander von Humboldt Foundation for her re­
search stay at Kassel University, Mathematics Department, where this work was concluded.
J. Segura acknowledges financial support from DAAD for his research stay at Kassel University,
Mathematics Department.
Authors' addresses: A. Gil, Departamento de Mathematicas, U. Aut6noma de Madrid, 28049-
Madrid, Spain; email: amparo.gil@uam.es; J. Segura, Departamento de Mathematicas, U. Carlos III
de Madrid, 28911-Leganes (Madrid), Spain; email:jsegura@math.uc3m.es; N. M. Temme, CWI, P.O.
Box 94079, 1090 GB Amsterdam, The Netherlands; email: nico.temme@cwi.nl.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1(212)869-0481, or permissions@acm.org.
© 2002 ACM 0098-3500/02/0900-0325 $5.00

ACM Transactions on Mathematical Software, Vol. 28, No. 3, September 2002, Pages 325-336.

326 • A. Gil etal.

The program gives the option of computing scaled Airy functions in order both
to enlarge the range of computation and to reduce accuracy problems for large
lz I [Gil et al. 2002].

Amos' [1986] code is a well-known package and includes an algorithm for
the computation of complex Airy functions. The algorithms are based on the
evaluation of modified Bessel functions for complex arguments, and the Airy
functions are evaluated through relations between Airy and Bessel functions.
Our goal is to provide a stand-alone algorithm, which is more convenient for
the direct computation of Airy functions. In addition, as we will show, the com­
bination of two complex modified Bessel functions produces, in certain regions,
quite extensive errors, and we found that it is better to avoid combining the
Bessel functions in this way.

The current algorithm is based on Maclaurin series for small Jz I, Gauss­
Laguerre quadrature for intermediate values and asymptotic expansions for
large JzJ.

The relative accuracy is better than 10-13 when scaled Airy functions are
computed, with the natural exception of the vicinity of the real or complex zeros
of Airy functions, where relative precision loses meaning and scaling does not
help. The functions Ai and Bi (and their derivatives) have zeros on the negative
real axis, while Bi and its derivative have zeros close to the anti-Stokes lines
phz = ±rr/3.

The computation gradually loses accuracy for the modulus of unscaled Airy
function as lz I becomes large (for jz I > 30). The source of these errors is the eval­
uation of the dominant exponential factor e-~z312 for large complex arguments.
A similar gradual loss of accuracy takes place for the phase of unscaled Airy
functions. Additionally, the dominant exponential factor introduces an infinite
number of curves where the real or imaginary parts of the unscaled functions
cancel; over these curves, relative precision for the phase loses meaning. The
code provides an absolute error smaller that 10-13 for min(JR(z)J, 1/IR(z)j) be­
ing the ratio between the real and the imaginary part of the function (Ai(z),
Ai'(z), Bi(z) or Bi'(z)), except very close to the zeros of the function.

It is observed that when these unavoidable cancellations take place, the codes
AIZ and BIZ behave better than Amos' code. See Section 4.2 for further details.

2. METHOD OF COMPUTATION

We briefly describe the numerical methods considered for different regions in
the complex plane. For a detailed discussion, we refer the reader to [Gil et al.
2002].

The three ingredients of the algorithm are:

(1) Maclaurin series ([Abramowitz and Stegun 1964], 10.4.2) for jy I < 3 and
-2.6 < x < 1.3 (z = x + iy).

(2) Gauss-Laguerre quadrature [Gil et al. 2002] for lz j < 15 and where
Maclaurin series are not used.

(3) Asymptotic expansions ([Abramowitz and Stegun 1964]. 10.4.59) for
lzl > 15.

ACM Transactions on Mathematica! Software, Vol. 28, No. 3, September 2002.

1
l

A Code to Compute Complex Airy Functions 327

Except in the case of Maclaurin series, the domain of computation is the
principal sector jphz I ~ 2JT /3. For 2Jr /3 < jphz I ~ JT the connection formula
([Abramowitz and Stegun 1964], 10.4.7) is considered:

(2)

The conjugation property Ai(x + iy) = Ai(x - iy) is considered for nega­
tive ~z.

The code also computes scaled Airy functions. The dominant term in the
asymptotic behavior of Ai(z) for large jz I is the quantity e-1;, with~ = iz ~;this
factor appears explicitly both in the integral representations that we consider
and in the asymptotic expansions. The scaling of the Airy functions consists in
eliminating this exponential behavior by considering the new functions:

A.i(z) = eZ: Ai(z), Ai' (z) = eZ: Ai' (z). (3)

The same scaling was considered by Amos [1986). With this, not only is the
range of computation extended, but errors are reduced by eliminating the expo­
nential factor, which, as discussed in Gil et al. [2002), unavoidably introduces
gradual loss of precision as jz I grows. Also, in many physical problems, combi­
nations (ratios, for example, see Jeffreys [1956)) of Airy functions are used, and
scaled functions may then be very convenient.

When scaling is considered, the connection formula (2) has to be modified (see
Gil et al. [2002]). The function Ai is analytic in the complex plane cut along the
negative real axis. At the negative real axis, phz = rr, we take the prescription
of continuity of this function when approaching the negative real axis through
positive values of ~z.

2.1 Connection Formulas and Scaling

The computation of Ai(z) in jphz I ~ 2l'l' /3 provides two numerically satisfactory
solutions of the differential equation (1) in the whole complex plane, that is, two
independent solutions such that both are not simultaneously dominant. This is
so because Ai(z), Ai(e2iri/3z) and Ai(e-2iri/3z) are independent solutions ofEq. (1)
and Ai(z) is dominant only in Jr /3 < jphz I < Jr. However, for completeness we
extended the range of computation to the whole complex plane through the use
ofEq. (2). Similarly, we also compute the solution Bi(z) through two connection
formulas ([Abramowitz and Stegun 1964], 10.4.9, 10.4.6):

Bi(z) = iAi(z) + 2e-iir/6 Ai(e-2iri/3z),

Bi(z) = eiir/6Ai(e2iri/3z) + e-iir/6Ai(e-2iri/3z).
(4)

We apply the first connection formula for 0 < jphz I ~ 2rr /3 and the second
one for the rest of the complex plane. In this way, both relations are numerically
satisfactory and the computation through (2) is avoided (therefore we avoid an
extra evaluation).

The scaling of Bi(z) is not so obvious as that of Ai(z) because Bi(z) shows
different dominant behavior depending on the sector in the complex plane: for

ACM Transactions on Mathematical Software, Vol. 28, No. 3, September 2002.

328 • A. Gil et al.

large lz I it behaves as e' for lphz I < TC /3 and as e-{ for rr /3 < jphz I < TC. The
Amos solution is to rescale using a factor e-1mw1, which indeed enlarges the
range of computation. We find this method has a major drawback: although
scaling succeeds in enlarging the range of computation, it does not get rid of
the whole dominant exponential contribution which introduces, as we will later
show, a gradual decrease of accuracy as izl increases for any value of lphzl.
In other words, the computable range includes values of z for which preci­
sion can be completely lost. We prefer to rescale the function in the following
way:

Bi(z) = e-{Bi(z), where lphzl < rr/3,
Bi(z) = e'Bi(z), where jphz I ~ TC /3.

(5)

We have now an additional discontinuity at jphz I = rr /3. However, the main
advantage is that errors are considerably reduced by scaling out the dominant
exponential factors.

As happened with Ai, the connection formulas must be modified for the com­
putation of Bi. Namely, we consider the following relations:

Bi(z) = ie-2{ Af(z) + 2e-i,,./6 Af(e-2,,.i13z) where 0 ::s phz < rr /3,

Bi(z) = iAf(z) + 2e-inf6e2'Af(e-2,,.i/3z) where rr/3 ::s phz:::; 2rr/3, (6)
Bi(z) = ei,,.16A.i.(e2,,.il3z) + e-i,,./6e2{Af(e-2,,.il3z) where 2rr/3 < phz ~ rr,

and use complex conjugation when ~z < 0.

2.2 Representations Near the Negative Real Axis and Near the Anti-Stokes Lines

The Airy functions Ai(z) and Bi(z) and their derivatives have zeros on the neg­
ative real axis [Abramowitz and Stegun 1964, pg 450]. Convenient representa­
tions in a region that contains the negative axis are

where

l l
Ai(-z) = z-irr-2[sinx P(z) - cos x Q(z)],

l l
Bi(-z) = z-4TC-2[cosx P(z)+sinx Q(z)],

Ai'(-z) = -ztrr-~[cosxS(z)+sinxT(z)],

Bi'(-z) = z iTC-~ [sin x S(z) - cos x T(z)],

2 3
~ = -z2.

3

(7)

(8)

These representations can be used in the sector lphz I < 2TC /3, z =f. 0, and are
obtained by writing the asymptotic expansions [Abramowitz and Stegun 1964,
10.4.60, 10.4,62, 10.4.64, 10.4.67] as exact identities. The functions P, Q, S, T
represent the slowly varying parts of the Airy functions for large iz I and the
user of the algorithms may be interested in these quantities which, gener­
ally speaking, can be computed with better accuracy than the Airy functions
themselves.

Explicit representations for the functions P, Q, S, T follow from inverting
the relations in (7). More interesting is a representation in terms of scaled Airy

ACM Transactions on Mathematical Software, Vol. 28, No. 3, September 2002.

A Code to Compute Complex Airy Functions 329

functions, and, by using the connection formulas (2) and (4), it is straightforward
to verify that

P(z) = z ! Jr~ [e-rri/12Af(e-iri/3 z) + erri/12 Af(erri/3 z)],

Q(z) = iz ! :Jr ~ [e-rri/12 Ai<e-rri/3 z) - erri/12 Aiceiri/3 z)],

S(z) = -z-i Jr~ [eiri/12 Ai' (e-rri/3 z) + e-rri/12 Ai' (erri/3 z)],

T(z) = -iz-!:Jrl [erri/12.Ai'(e-iri/3 z) -e-rri/12},j_'(erri/3 z)].

From the Wronskian relation for Ai(z) and Bi(z), that is,

Ai(z)Bi'(z)-Ai'(z)Bi(z) = l/rr,

it follows that

P(z)S(z) + Q(z)T(z) = 1.

(9)

(10)

(11)

Considering the relations in (7), we notice that some loss of accuracy is ex­
pected in the evaluation of Ai(-z) (and Bi(-z) and their derivatives) close to
the negative real axis when lz I becomes large. This is due to the evaluation of
the sine of cosine functions for large arguments together with the cancellation
between the P and Q (8 and T) terms. The scaled functions, as described in
the previous section, do not improve the accuracy near the negative real axis
and similar problems take place (in fact, scaling on the negative real axis is
of no practical use). In Section 4.2, we will describe these intrinsic numerical
difficulties in more detail.

The functions Bi(z) and Bi' (z) have complex zeros near the anti-Stokes lines
phz = ±rr /3, and in this area also difficulties arise. We have

Ai(erri/3 z) = ~e-rri/3 [Ai(-z) + iBi(-z)],

Bi(erri/3 z) = ~erri/S [3Ai(-z) - iBi(-z)] ,
(12)

and similar formulas with i replaced by -i throughout. The first relation follows
from the first relation in (4), and the second one then follows from the second
relation in (4). We have in terms of the auxiliary functions

. 3 1 l l '/6 . Ai(em/ z) = 2z-•rr-2err1 -ix [P(z) + iQ(z)],

Bi(erri/3z) = 12J;z-ierrif6[sinK P(z)- COSK Q(z)],

'/3 1 l I 2 '/3 . • Ai'(erri z) = 2z•Jl'-2e- m -ix [S(z) + iT(z)],

(13)

Bi'(erri/3 z) = 12J;z![cosK S(z) + sinK T(z)],

where K = x - ~ i In 2. Compare the results for Bi' (erri/3 z) and Bi' (erri/3 z) with the
asymptotic expansions in Abramowitz and Stegun [1964, 10.4.65 and 10.4.67].

We can expect that, unavoidably, the accuracy in the evaluation of Bi(z) and
its derivative will decrease as larger values of lz I are considered close to the
anti-Stokes lines phz = ±:Jr /3 (see Section 4.2). Scaling does not avoid this loss
of accuracy and, in fact, it is of little practical use over the anti-Stokes lines.

ACM Transactions on Mathematical Software, Vol. 28, No. 3, September 2002.

330 • A. Gil et al.

3. DESCRIPTION OF THE ROUTINES

We now describe the inputs and outputs of the main routines AIZ and BIZ. We
also describe the dependencies between the subroutines in AIZ (and BIZ).

Both AIZ and BIZ call the function DlMACH to obtain the machine depen­
dent constants (overflow and underflow numbers and the smallest relative spac­
ing). The user should uncomment the corresponding data lines in DlMACH.

SUBROUTINE AIZCIFUN,IFAC,XO,YO,GAIR,GAII,IERRO)

• INPUT:

• !FUN
• IFUN=l, the code computes Ai(z).
• !FUN =2, the code computes Ai' (z)

• IFAC:
• IFAC=l, the code computes Ai(z) or Ai'(z)
• IFAC=2, the code computes normalized Airy functions.

• XO: real part of the argument Z
• YO: imaginary part of the argument Z

• OUTPUT:

• GAIR: real part of the Airy function (or derivative)
• GAII: imaginary part of the Airy function (or derivative)
• IERRO: control of over/underflow for unscaled Airy functions. If IERRO=O,

the computation was successful. IfIERRO=l, the Airy function overflows
or underflows. Scaled functions do not overflow or underflow.

The routine AIZ uses complex conjugation and a connection formula in order to
restrict the computations to the principal sector 0 :::: phz < 2rr /3. The routine
AIZ depends on the following subroutines (included in the code):

(1) SERA! (SERAID): implements the Maclaurin series for Ai(z) (Ai'(z)).

(2) EXPAI (EXPAID): computes the asymptotic expansion for Ai(z) (Ai'(z)) in
the sector 0 :::: phz :::: 2rr /3

(3) AIRYl (AlRYlD): computes Ai(z) (Ai' (z)) by Gauss-Laguerre quadrature in
the sector 0 :::: phz :::: n /2

(4) AIRY2 (AIRY2D): computes Ai(z) (Ai' (z)) by Gauss-Laguerre quadrature in
the sector n /2 < phz :::: 2n /3

(5) Auxiliary routines:
PHASE: computes the phase ofz in -n < phz:::: n
FG (called by SERA!), FGP (called by SERAID)

SUBROUTINE BIZCIFUN,IFAC,XO,YO,GBIR,GBII,IERRO)

• INPUT: Same as for AIZ
• OUTPUT:

• GBIR: real part of the Airy function (or derivative)
• GBII: imaginary part of the Airy function (or derivative)

ACM Transactions on Mathematical Software, Vol. 28, No. 3, September 2002.

A Code to Compute Complex Airy Functions • 331

• IERRO: control of over/underflow for unscaled Airy functions. IfIERRO=O,
the computation was successful. IfIERRO=l, the Airy function overflows
or underflows. Scaled functions do not overflow or underflow.

As previously described, the computation of Bi(z) is based on that of Ai(z)
through connection formulas.

4. NUMERICAL VERIFICATION

Three independent numerical verifications of the code have been performed:
Wronskian tests, comparison with trapezoidal quadrature method [Gil et al.
2002] and comparison with Amos' code. We conclude that the relative accuracy
reachable for scaled Airy functions is better than 10-13 while the unscaled
functions tend to lose precision gradually as lz I increases. The accuracy is fixed
by the selection of the number of points for the Gauss-Laguerre quadrature
(40 points truncated to 25 function evaluations, see Gil et al. [2002]), which
provides a good compromise between accuracy and efficiency.

As noted in the introduction, there are unavoidable exceptions where relative
precision can be lost. At the real or complex zeros of Airy functions, both the real
and imaginary parts cancel and relative precision loses meaning; near the zeros,
both for scaled and unscaled functions, 10-13 is the absolute precision attainable
for the modulus of the functions while their phase becomes meaningless.

When either the real or imaginary part of the function vanish (but not both
simultaneously), the modulus does not suffer loss of relative accuracy, but the
phase of the function does. For the case of unscaled Airy functions, these cancel­
lations are mainly caused by the leading exponential factor e-iz312 (see Figure 2,
left), which is removed in the case of scaled functions. For the case of unscaled
Airy functions, the real or imaginary parts can vanish only near the real axis
and near the zeros.

Of course, the same cancellations take place for Amos' code. As we will
show, our codes behave better than Amos' in the regions where cancellations
occur.

4.1 Wronskian Checks

We can test formulas 10.4.10-13 in Abramowitz and Stegun [1964] to check the
accuracy of the algorithm. One should only perform such tests for satisfactory
pairs of solutions, otherwise, if the two functions are dominant within one sector,
the result will unavoidably suffer from strong cancellations.

We test the Wronskians for ::'.lz :;: 0 (as explained for ~z < 0 we apply com­
plex conjugation). This test is included in the package (WRTEST.F). The four
Wronskian tests are not independent, and it is sufficient to test, for instance,
10.4.11and10.4.12, where the solutions involved constitute a satisfactory pair
of numerical solutions, namely:

e2rri/3Af(z)Ai'(ze2"'i/3) -Ai(z)'Ai(ze2"'i/3) 0:::: phz :::: rr/3,
(14)

0:::: phz :::: 1C.

ACM Transactions on Mathematical Software, Vol. 28, No. 3, September 2002.

332 A. Gil et al.

For scaled functions Ai, exactly the same relations hold. We only need to
decide how to deal with the discontinuity cut at the negative real axis. If the
normalized functions are defined to be continuous when approaching the neg­
ative real axis with positive real values of ;Jz, then both equations hold in the
same sectors (otherwise the cases phz = ;r /3 and phz = ;r should be considered
separately). We adopt the continuity convention described above.

The Wronskians between Bi and Ai are not independent of the above men­
tioned results. However, it is useful to also check such Wronskians particularly
in the case of scaled functions Bi, given the different scaling used for two dif­
ferent sectors. Two numerically satisfactory Wronskians are:

W [Bi(z), Ai(e_z,,.i/3z)]
e2,,.i/3

= ~ for n/3 S ph(z) Sn,

(15)
W [Ai(z), Bi(z)] = l/n for 0 s phz s ;r /3,

which, with the scaling prescriptions previously described, also apply when
replacing Ai and Bi by Ai and Bi, except for phz = Jt /3 in the first Wronskian.

All the Wronskian checks for scaled Airy functions Ai and Bi are consistent
with a relative accuracy better than 10-13 . For unscaled Airy functions Ai and
Bi, gradual loss of precision is observed for !z I > 30 (see Figure 2).

4.2 Comparison with Nonoscillating Integral Representations. Accuracy
of the Codes

In Gil et al. [2002], nonoscillating integral representations, based on steepest
descent contours of integration, were introduced. These integral representa­
tions are numerically stable for the computation of Airy functions in the com­
plex plane. The trapezoidal rule is a good choice for the computation of the
resulting integrals due to the steep decrease of the integrands at infinity.

Although the computation using the trapezoidal rule is less efficient than the
methods actually used in the code AIZ and BIZ, the accuracy can be selected
and then it is a convenient test-bench for the codes. In particular, the normal­
ized functions Ai and Ai' can be checked against the non-oscillating integrals,
computed with an accuracy better than 10-14 .

4.2.1 Scaled Airy Functions. It is observed that the relative accuracy when
evaluating scaled Airy functions with the codes AIZ and BIZ is better than
10-13 . For the comparisons, we check the quantities

M(z) = 1m.Ai1 +\~Ail and R(z) = r;sA.i;mAi.
between both codes.

(16)

As explained, there is an exception to this. Close to the curves m.Ai = 0,
relative error for the evaluation of the real part loses meaning; of course, similar
things happen with the imaginary part. And when both the real and imaginary
parts tend tocancel(at the zeros of Ai(-x), x > 0), only the absolute error for the
modulus of the function makes sense. Figure 1 shows these points of discrepancy
near the negative real axis. The rings where the code fails to compute R(z) with
10-13 relative accuracy correspond to the level curves mAi = 0, .'JA.i = 0 which
appear in couples and touch at the zeros of Ai in the negative real axis. As can

ACM Transactions on Mathematical Software, Vol. 28, No. 3, September 2002.

A Code to Compute Complex Airy Functions 333

0.15 0.2

0.1

0.05 ... - ii
.:::::. ~

~ I ~ ~ ;; M - ii ~ lll f i'fi iH > 0

w
f= iil >- , i~ iii \~·

fi
ea: $% ~i

~ -0.05 ' r " ,~ ~,
-0.1

-0.15
-12 -10 -8 -6 -4 -0.2

-12 -10 -8 -6 -4
x x

Fig. 1. Points where AIZ and ZAIRY (Amos' code) fail to compute the scaled Airy function with
10-13 relative accuracy. On the left, the points of discrepancy for M(z) (Eq. (16)) are shown. The
figure on the right is for R(z). Black points correspond to AIZ and grey points to ZAIRY.

be seen in the same figure, this unavoidable error is under better control in our
code than in Amos'.

In the case of scaled Airy functions Bi(z) the same phenomena appear near its
negative real zeros and its complex zeros, which lie close to the rays phz = ±rr /3.
The same happens for the derivatives.

The loss of accuracy near the zeros of Airy functions increases as jz I becomes
larger. In particular, we observe that for jz I ~ 1000, the absolute accuracy
for the modulus near the zeros of Ai is better than 10-13 but as [z I increases,
the absolute accuracy worsens. This is as expected because the spacing between
zeros is b.x '.:::'. rr /.;=:;for large -x. For -x as large as 106, the absolute accuracy
reachable for the modulus goes down to 10-8• The same loss of accuracy for large
lz I takes places for Bi when phz '.:::'. ±rr /3, phz '.:::'. ±rr, where the zeros of this
function lie.

4.2.2 Unscaled Airy Functions. Unscaled Airy functions overflow or un­
derflow for values of i jz j312 larger than log(OVER), OVER being the machine
overflow number.

The relative error in the evaluation of the modulus of unscaled Airy functions
tends to decrease as lz I increases and becomes generally worse than 10-13 for
lz I > 30. The main reason lies in the errors that the leading exponential term
e-2z31213 unavoidably introduces for large !zl, as discussed in Gil et al. [2002].
This source of error is common to Amos' codes and AIZ/BIZ and is also present
when computing the Airy functions through steepest descent integrals. Figure 2
(left) illustrates such gradual loss of accuracy.

Furthermore, when considering unscaled functions, the phase of Airy func­
tions suffers infinitely many cancellations, given the oscillatory nature of the
dominant exponential factor in the complex plane. This factor introduces an in­
finite number of curves where the real or imaginary parts of the function vanish,
apart from those close to the zeros of the function, see Figure 2 (right). Over
these curves relative precision for the phase is meaningless. The code computes
min(IR(z)I, l/!R(z)!) with absolute accuracy better than 10-13 for lzl < 30. Of
course, at the zeros of the function, R(z) becomes meaningless.

ACM Transactions on Mathematical Software, Vol. 28, No. 3, September 2002.

334

100

80

60

40

20

> 0

-20

-40

-60

-80

A. Gil et al.

-1 ~100-80 -60 -40 -20 0 20 40 60 80 100
x

5.-r-.,......-..--...,..,.--,~,-,......,....,--<:T~~.--.::::i

4

3

2
,~~S:?~

-~- -

> 0~1--1~~-+-~~~~~--1
_,
-2 /,./ _,....----· "

~: /< /:>-:~-~=-:::::-
./ ',/ ,,,,..,,. .// ./_. _.,..,,--­

_51-L......,__....__u..._.,~'--'-""--'--""'"---'""-~

-5 -4 -3 -2 -1 0 1 2 3 4 5
x

Fig. 2. Points where AIZ fails to compute M (z) (left) and R(z) (right) for the unscaled Airy function
with 10-1s relative accuracy. AIZ is tested against steepest descent integrals. In the left :figure, Ai
overflows in the darker shaded regions (top and bottom left corners).

Figure 2 (right) illustrates the regions where a relative accuracy of 10-13 is
not attainable for the computation of the phase (related to R(z)) of Ai(z). Over
these curves the real or imaginary parts of the Airy function tend to cancel. As
commented, the absolute errorformin(IR(z)I, 1/IR(z)l)is betterthan 10-13 over
these curves. The comparison between Amos' and steepest descent integrals is
similar, except that larger errors are observed near the negative real zeros and
additional errors appear close to the line phz = rr /3 and z real and positive (see
next section and Figures 1, 3 and 4).

4.3 Comparison with Amos' Code

Amos' code computes Airy functions through its connection with Bessel func­
tions of complex arguments. In particular, Eq. 10.4.14 in Abramowitz and
Stegun [1964] is used:

Ai(z) = .!:. JZ/3K 1;a<n, s = ~z 312 , (17)
7C 3

and similar relations are applied for the rest of Airy functions. The code relies
on the computation of Bessel functions for ffis > 0, that is, lphz I :::: n /3, and for
the rest of the complex plane connection formulas of the type:

(18)

are used.
However, the implementation of these connection formulas seems to pro­

duce some accuracy problems, particularly near the anti-Stokes lines (see also
Section 2.2). Other accuracy problems appear, as we discuss next. We compare
our code with Amos' code, focusing on the lines ph(z) = 0, ph(z) = rr /3 and
ph(z) = rr.

Figure 1 shows the discrepancies with Amos' code close to the negative real
axis, both for M(z) and R(z). As previously mentioned, loss ofrelative precision
is expected near the zeros of Af(-x); however, it is apparent that our code is
more stable in this region.

Figure 3, shows the discrepancies found with Amos' code on the positive
real axis, clearly due to a failure in the evaluation of the imaginary part for

ACM Transactions on Mathematical Software, Vol. 28, No. 3, September 2002.

A Code to Compute Complex Airy Functions 335

0.5

>- 0 t\:

-0.5

x

Fig. 3. Points near the positive real axis where ZAIRY (Amos' code) fails to compute R(z) for the
scaled Airy function with 10-13 relative accuracy. The results from AIZ match with those from
steepest descent methods within this precision.

0.08 0.2

0.06 0.15

>- 0.04 >- 0.1

0.02 0.05

0 0
8 8.2 8.4 8.6 8.8 9 0 10 20 30 40 50

x x

Fig. 4. Points close to the ray phz = :rt/3 where ZAIRY (Amos' code) fails to compute M(z) (left)
and R(z) (right) for the scaled Airy function with 10-13 relative accuracy. The match between AIZ
and steepest descent integrals is perfect for this precision. The axes have been rotated by 60°.

moderate values of z close to this axis. Our code matches perfectly with the
non-oscillating integral representation for the same demanded accuracy.

Finally, Figure 4 shows the discrepancies found close to the ray phz = rr /3 for
Amos' code. Again AIZ shows no discrepancies with respect to steepest descent
integrals.

4.4 Performance of the Code

The codes have been tested in different platforms (Sun OS, Linux-Debian,
Windows), different computers (Sun station, PC Pentium II, Laptop Pentium II)
and different compilers (g77 for Unix/Linux, g77 for MS-DOS, f90 for Sun OS,
Compaq FORTRAN) with similar results.

When compared with Amos' code, it is observed that our codes run generally
faster and that, in the rare situations where they are slower (less than a factor 2
slower) they are more accurate. Figure 5, shows the regions where AIZ is faster
thanZAIRY.

For a Pentium II-300 MHz computer, with g77 running under Debian
Linux 2.1, the typical running times are in the range 10 µs to 100 µs for the

ACM Transactions on Mathematical Software, Vol. 28, No. 3, September 2002.

336 A. Gil et al.

x

Fig. 5. Points in the complex plane where AIZ is faster than ZAIRY (Amos' code).

evaluation of one complex function for one value of z. When computing series or
asymptotic expansions, the typical running times are in the range 10 µs-20 µs
while the Gauss-Laguerre integrals spend around 100 µs for each z. Consider­
ing a Pentium II-500 MHz, with Compaq Fortran running under Windows 98,
the typical range of CPU times becomes 5-60 µs; series and asymptotic expan­
sions spend from 5 µs to 9 µs while Gauss-Laguerre quadrature typically needs
60µs.

When using connection formulas, two functions have to be evaluated; in this
case, the total running time will be twice as large.

ACKNOWLEDGMENTS

The authors thank the editor and the referees for the valuable comments on
the first version of the paper.

REFERENCES

ABRAMOWITZ, M. AND STEGUN, I. 1964 (Eds). Handbook of Mathematical Functions. National
Bureau of Standards. Applied Mathematics Series, no. 55. U.S. Government Printing Office,
Washington DC.

AMos, D. E. 1986. ALGORITHM 644: a Portable Package for Bessel Functions of a Complex
argument and Nonnegative Order. ACM Trans. Math. Softw. 12, 265-273.

GrL A., SEGURA, J., TEMME, N. M. 2002. Computing complex Airy functions by numerical quadra­
ture. Numer. Algo. 30, 1, 11-23.

JEFFREYS, B. 1956. The use of the Airy functions in a potential barrier problem. Proc. Cambridge
Philos. Soc. 52, 273-279.

Received October 2001; revised October 2001, November 2001, March 2002; accepted April 2002

ACM Transactions on Mathematical Software, Vol. 28, No. 3, September 2002.

