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The numerical simulation of biochemical systems, as well as the 
fitting of theoretical curves to experimental data, is serious­
ly hampered by the fact that standard methods for the numerical 
solution of differential equations are not suitable for the 
solution of the equations that arise from enzyme kinetics. This 
has led to serious difficulties (cf. Garfinkel and Hess,1964). 
This is the reason why we set out to systematically investigate 
numerical methods suitable to approach the socalled "stiff 
equations". 
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1, The a~proximate solution of ordinary differential 
eg,uations 

1.1 Introduction 

If we are given a first order differential equation 

dy/dt :: f(t,y) ( 1. 1 l 

we may represent it graphically as a collection of slopes, for 
at each value of the independent variable t and the dependent 
variable y the equation defines a dy/dt. If we are now given 
a point A, through which our solution is required to pass (the 
initidl oondition), we may easily sketch this solution by 
drawing a curve smoothly through the slopes. We then have ap­
proximately integrated the differential equation. In fact, the 
numerical techniques for solving systems of differential 
equations are only elaborations of this simple graphical tech­
nique. 
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We are directly faced with the major difference between the 
analytical and the numerical solution of a differential equa~­
tion. The differential system defines mathematically a unique 
solution, 11 the" solution of the system. However, when the dif­
ferential system is given numerically, the equations and the 
initial conditions normally involve one or more rounded con­
stants, which ~ave a permissible range of variation; these 
correspond to a set of possible solutions. Moreover, the 
numerical processes of obtaining a solution involve errors, 
increasing further the variation in the possible set of 
solutions. A numerical procedure picks out a single member of 
this set. 

In most computer libraries, standard routines are available 
that will perform the integration in a great number of cases. 
These routines usually are based on a fourth of fifth order 
Runge-Kutta type algorithm, or on predictor-corrector or 
rational extrapolation methods. However, in the study of 
biochemical systems a set of differential equations arises 
that are particularly difficult to solve by ordinary proce­
dures. The solutions to these equations contain rapidly 
as well as slowly varying components. They arise when a system 
is very stable for some kind of perturbations, but much less 
stable for another kind. This, for instance, is the case in 
chemical systems, where some reaction rates are much faster 
than others. The differential equations exhibiting such a 
behaviour are called stiff equations, since they were first 
encountered during the numerical solution of a mechanical 
system containing a stiff spring. 

As an example of a stiff equation we show the differential 
equation 

dy/dt :: -2. 5 y + (St + 3) (t + 1)-2 ( 1. 2 J 

Solutions can be found, following the slopes in the t-y-plane. 
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fig. 1. Slopes of equation (1.2). 

A differential equation is stiff when all solutions, corres­
ponding to different initial conditions, rapidly converge to 
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the same set of slowly varying integral curves (the aBymptotia 
s~Zuti~ns). In figure 1 a number of slopes are shown for the 
differential equation (1.2), In figure 2, a number of solu­
tions are shown for the same differential equation. It clearly 
can be seen that all solutions converge to the same asymptotic 
solution. It is a feature of stiff equations that the initial 
phase of a solution is characterized by a time constant which 
has another order of magnitude than the asymptotic phase. 

These stiff equations, describing phenomena with widely spread 
time constants, cause difficulties upon computation, because 
of the requirement of numerieaZ stability, i.e. we want 
numerical perturbations (rounding errors etc.) not to accumul­
ate during the numerical process. Standard methods only are 
numerically stable when a differential equation is integrated 
with time steps that are of the same order of m~gnitude as the 
shortest time constant of the system under consideration. Thus 
it will be very timeconsuming to obtain an asymptotic solution 
to a stiff differential equation. Since, on the other hand, 
stiff systems are very stable - in the sense that they are 
insensitive to some kind of perturbations - , this may be an 
indication that there are algorithms which remove the diffi­
culties. Clearly, there is no sharp division between stiff 
and non-stiff equations, and so it remains difficult to combine 
the ease of standard methods with the power of methods suitable 
to overcome stiffness. A quantitative description of stiffness 
therefore is necessary. 

1.2 Quantitative description of stiffness 

Now we will give a method to describe quantitatively the stiff­
ness of a system of differential equations. Consider the sys­
tem of differential equation written in vector notation 

d ... i: ... 
dt y(t) = r(t ,y). ( 1. 3) 

.... .... 
If the vector function f is differentiable with res~ect to y, 
we.can ... expand 1 in a Taylor series with respect toy at the 
point y 0 : 

d ... ... ... .... ... 
dt y(t) = h(t) + J(t,y0 )Cy-y0 ) + (1.4) 

where h(t) = f(t,y ) is a vector, and J(t,y ~epresents the 
Jaaobian matrix of0 the system at the point ?t,y ) : 

0 ... 
JCt,y > = caf./ayJ. >t ... _ .... o 1 ,y-y0 

( 1. 5) 

In the case where h(t) only slowly varies with t, we obtain 
a good quantitative description of the local behaviour of the 
solutions by locating the eigenvalues of the matrix J in 
the complex plane. In order to explain this~ we consider the 
solution in a neighbourhood of a point (t ,y ) and we linearize 

0 0 
eq. ( l. 4-) : 

(dy/dt)t=t 
0 

+ + + + = h(t) + J(t ,y )(y-y ). 
0 0 0 0 

( 1. 6) 
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By assuming that the 
the local analytical 

eigenvalues of J(t ,y } all are different, 
solution can be wr~ttgn 

..,. + + + Ai(t-t 0 ) 
y(t)-y(t 0 ) = b t EiCiwi e (1. 7) 

where{A.} and {w.} aie the eigenvalues and eigenvectors 
of J(t ~y ) and w~ere b and {ci} are determined by the 
linear0 eq8ations 

+ .... ,,. 
J(t0 ,y0 }b + h(t} = O 

t +re.~.= o. 
1 1 

£quation ( 1. 7) shows that the time-dependent behaviour ,of 
the solutions is mainly deteI'ffiined by the eigenvalues of 
J (that are the inverse values of the time constants of 
the system). Only the behaviour induced by ~(t) and non­
linearity have been left out of consideration. A stable system 
of differential equations will have its eigenvalues in the 
left half of the complex plane (Re A. <O). A stiff system is 
characterised by a wide spread of th~ values I Ail (Re Ai <0). 

1.3 Numerical stability 

A numerical process is called numeriaaZZy unstabZe if errors 
induced by the process (e.g. rounding errors) will grow system~ 
atically, affecting the results of the calculation in an in­
admissible way. A process is called numeriaaZZy stabZeif an 
error, once induced, will decrease. 

We will illustrate the idea of numerical stability by a very 
simple but representative example. With the Euler method we 
solve the single differential equation 

dy/dt = Ay + g(x), ( 1. 8) 

Choosing a fixed stepsize h, departing from a point y(t), we 
will calculate y(t+h) at every step. According to the EuZer 
method we set 

y(t + h) = y(t) + hf(t,y(t)) 

= y ( t ) + hA y ( t ) + hg ( t ) 

= ( 1 + h Aly C t) + hg C t) . ( 1. 9) 

The value of y(t) ,already calculated, consists of the true 
value y(t) and an error £ : 

y(t) = y(t) + £ • (1.10) 

This error £ will cause an error (y+hA)e in the calculated 
value of y(t+h) 

y(t + hl = (1 + hAlCyCt) + el + hg(t) 

= (1 + hAlf Ct) + hg(t) + (1+hA)e 

= y(t + h) + (1 + hA)e (1.11) 
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The requirement that an error, once induced, decreases is equi­
valent with 

IC1+h>Je:l<le:I or (1.12) 

We see that the requirement of numerical stability gives us 
a bound for the admissible stepsize. In figure 2 we show some 
integration steps with A= -2.5 and h=1. 

Fig; 2. Unstable integration with the Euler 
method. 

We also show that there are simple methods that do not restrict 
the stepsize. However, these methods have the disadvantage that 
in each step of the integration process a (nonlinear) system 
of equations must be solved. As an example we solve the 
same differential equation (1.8) with the turnkwa.rd Eule~ 

.fizethod. -Now we set 

y(t+h) = y(t) + h.f(t+h,y(t+h)) 

= y(t} + hAy(t+h) + h.g(t+h) 

= (1-hA}-l (y(t) + h.g(t+h)). 

Here an error e: in y(t) causes an error e:/(1-hA) in 

(1.13) 

y(t+h). For this method the condition of numerical stability 
reads 

(1.14) 

Hence in this case numerical stability does not impose any ' 
restriction on the stepsize. 
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Fig. 3. Stable integration with the backward-
Euler method. 

The far~ of our numerical stability conditi0ns (1.12) and 
(1.14) also give some justification for the suppression of 
the ter~ h(t) in the quantitative description of stiffness. 

In the foregoing we only considered the behaviour of an error 
induced by steps already performed. It is clear that in each 
step some new errors are also introduced. First, we notice 
that, e.g. in the Euler method (1.9), the value set for y(t+hJ 
is not a very gooq_approximation to the "real" value 

y(t+h) = y(t) + h.y'(t) + h 2y"(t)/2 + 

The neglected term(of order h 2 ) is called the trunaation error. 
Sir;ce a numerical process must be finite, any method will in­
troduce this kind of error. Secondly, we neglected rounding 
errors: in a computer arithmatic operations introduce errors 
since every real number is represented with finite precision. 

Now we will show how these errors, introduced in each step, 
all act together. Let E:* denote the total error in the cal­
culated value y(t ) , anB: let the contribution to q!f caused by 
En~ be given by tinEn~ (0, is the amplifiaation raator, e.g. 
1¥hl in our example wi~h tRe Euler method). In every step a 
new error En is introduced. 

Thus we find 

s* a e: * + e: n n n-1 n (1.15) 
Our demands upon a were [a [ ~A < 1. If we assume that 
there exists some Bositive E, so that [e: I <E for all e:, 
we show that the total error of the compfitation is boundgd 
by E It follows from the following inequility. 

1-A . 
For every n 
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IE~I ' !En I + Ian I IEn;l 

' !En I + Ian I IEn-l 
'E + AE + A2E + ... 

+la Ila 1 !1e: ?I+··· n n- n-~ 

2 E 
E (1 +A+ A .... ) ~ l-A 

Analogous reasoning snows that A = 1 may give a linear 
growth and A> 1 an exponential growth of the total error. 

1.4 Application to enzyme kinetics 

Let us now take a simple problem from practice ,'!_:·, j let us 
give an example of a mathematical analysis. We choose this 
problem from enzyme kinetics because (1) it describes a 
system that frequently appears as a subsystem when ~~0 simul­
ates real biochemical systems, and (2) it e;:tti.bit::: th•2 
typical features that hamper solution by standard me:hods: 
nonlinearity and stiff behaviour. 

We treat a simple enzymatic reaction of the Michaelis-Menten 
type. This chemical reaction reads 

An enzyme E combines with a reactant S at one stage and is 
(irreversibly) regenerated at a subsequent stage of the 
reaction. We will refer to this system as ESCEP. The rate 
constants are k 1 , k_ 1 , and k 2 • As a rule the ccncentration 
of E will be much less than the concentration cf S. Besides, 
in many cases we have k_ 1 >> k 2 . The mass-action la~ enables 
us to describe the concentrations S and C as a function 
of time 

(1.15) 
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As initial conditions we have S(O)=S and C(O)=O. In order 
to simplify the notation we write th~s equation in a dimension­
less form by substituting 

s(t) = S/S 0 

E- = E /S 
0 0 

p = (k2+k_1)/(k1So) 

We obtain 

ds/dT = -(1-c)s + qc 

~dc/dT (1-c)s - pc 

s(O) = 1, c(O) = O. 

c(t) = C/E 
0 

T = tk1E0 

q = k_1/(k1So). ( 1. 1 7) 

(1.18) 
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We know the following inequalities 

E,T,q>O; p>q; 

0 .s c; s ~ 1. 

Normally E <<1 Cs is a small parameter) 

ctnd often 0 < p - q << q. 

Apart from that, the numerical values of p, q and smay 
differ much in individual cases (cf. Briggs and Haldane,1925) 

Ln order to show that the system (1.18) is a stiff one, we 
calculate the Jacobian matrix of the system, together with 

it< :r:[~;'.::,:t, ~;::~::r:t, 
tr(J) = -(1-c + (p+s)/E ), 

det(J) = (p-q)(1-c)/E . 

The eigenvalues of J being AM and Arn' 

obviously AM < Am < 0 and 

CA 2 
tr(J) 2 

2 c 1 + AMn'm) ~ 
m + AM) 

= > A .AM det(J) 
rn 

>[~JI [7J ~2 
(1.19) 

= s(p-q) 

Hence, it appears that both eigenvalues are negative and 
that their ratio AM/A is very large. These are the characte­
ristic properties of ~ stiff differential equation. 

This analysis clarifies why the simulation of systems that 
contain the system ESCEP as a subsystem,often demands an 
excessive use of computer time when standard routines are 
used: in order to solve the equations such routines are forced 
to take time-steps 0£ order h ~1/AM , whereas the signifi­
cant time constant of the system is 1/Am· 

1.5 An analytical approximation method 

In enzyme kinetics some approximate solutions are well known 
for the system ESCEP, viz. the Briggs-Haldane formula 
(Briggs and Haldane, 1925), and the Gutfreund formula 
(Gutfreund, 1965 , see also Hemker and Hemker, 1969}. A method 
for the solution of systems of differential equations, in 
which a highest derivative is multiplied by a small parameter 
(as can be seen in(1.18))~s furnished by the theory of singutar 
perturbation problems (see J.D. Cole, 1968). We show that, in 
the case where E is a small parameter, this theory will give 
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a combination of the Briggs-Haldane and the Gutfreund formulae 
as a first approximation to the solution of (1,16). Higher 
order approximations can be obtained (Heineken et.al. ,1967). 

We consider system (1.18) and we try to find a solution that 
is asymptotically correct for e+O. To that end we first take 
e=O to obtain 

ds/d< = -(1-c)s + qc 

0 = (1-c)s - pc 

s(O) = 1, c(O) = 0. 

Solving the system we get 

s 
c = ---s + p 

(1.20) 

(1.21) 

(i.e. the dimensionless form of the Briggs-Haldane formula) 
and 

ds/dT = -(p-q). ~8~ s + p 
(1.22) 

This single differential equation admits an implicit solution 
to S ( T}: 

s(<) + p ln(s(;)) + (p-q)< = 1. (1.23) 

This is the first order apprQx.im.ation to s (T), which is asympt­
otically truefor e+O. Given\_some_walues for p, q, and<, it is 
very easy to compute the numerical value s(<) from this 
formula. 

However, with equations (1.23), and (1.21), the second initial 
condition c(O)=O cannot be satisfied. To match this condition 
we introduce at <=0 a ZoaaZ aoordinate e=</E. Substituting 
eE into equation (1.18) we get a description of the initial 
phase of the system 

ds/de = -e(l-c)s + Eqc 

de/de = (1-c)s - pc 

s(O) = 1, c(O) = O. 

Taking again E = O, we obtain 

ds/de = 0 

de/de = (1-c)s - pc 

this admits the solution 

sCeJ = 1 

c( e) 1 [1-e-( 1+p) e] = i+p 

(i.e. the dimensionless form of the Gutfreund formula). 

( 1. 24) 

(1.25) 

(1.26) 

Now we have to satisfy the condition that the end of the 
initial phase matches the beginning of the asymptotic phase. 
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So we have the matahing aonditions (cf, Cole, 1968} 

lim s(~) = 1 = lim s(T) 

and 
lim c( ~) = 
~+cO 

1 
l+p = lim c('r) 

T+OO 

(1. 27) 

The first order approximation - with respect to e: - to the 
solution of (1.18) is now easily obtained: 

S(T) 

c(T) 

= s(T) defined by (1,23) 
= s(T) 1 -(1+p)T/E: 

S ( T) + p - 1 +p e ' 

2. A survey of modern numerical techniques 

2.1 General remarks 

(1.28) 

This brief space does not allow us to give a list of all 
methods (algorithms, features, comparions, etc.) that are 
available for solving initial value problems. The reader can 
find an extensive exposition of this kind in Lapidus and Sein­
feld (1971). We only want to give a bird's eye view on the main 
types of integration techniques that are used by the numerical 
analyst and we will stress those methods that may be of use 
in the simulation of real (bio)chemical systems. References 
are given to the literature where methods are explained in 
more detail and where computer programs are available. Books 
containing general information on the subject are a.o. Henrici 
(1962) and Gear (1971). 

Any method that solves an initial value problem step by step 
will approximate the mathematical solution if steps are taken 
small enough and, at least theoretically, this approximation 
will become better when smaller time steps are taken. However, 
numerical stability may command extremely small steps. In or­
der to examine the stability behaviour of a method during the 
integration of the system of differential equations 

dy/dt = f (t ,y), ( 2. 1) 

it is useful to consider the Jacobian matrix 

J = Ofi/Clyj) 
and its eigenvalues {A.} , that also served to quantitate 
stiffness (see sectionJ1.2). In general this Jacobian matrix 
depends on t and y, and therefore the eigenvalues are a set 
of real and conjugate complex numbers, each one depending on 
t and y. To each method is associated a stabiZity region, i.e. 
a set of complex numbers hA (h stepsize, A eigenvalue of J) 
for which the method is numerically stable. Thus, a system 
of differential equations (2.1) only can be solved with a 
stepsize h such that all values {hAj} lie inside the stability 
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region of the method. 

In section 1 we already have become acquainted with the stabi­
lity regions of the Euler and the backward-Euler methods. The 
stability region of the Euler method, given by \1+hA\~1 (cf. 
eq. 1.12) is a disc in the complex h A-plane with radius 1 and 
centre -1. The stability region of the backward-Euler method 
given by I 1-h!.I > 1 (eq. 1.14) is the outside of a disc with 
radius 1 and centre +1. 

Methods which are stable for all hi. with Re hA < O are said 
to be A-stable (Dahlquist, 1963). Methods which are stable for 
all hA with Re hA < d < 0 and for all real values hi- < O are 
called stiffiy stable (Gear, 1968). 

2.2 Linear multistep methods 

A linear k-step method for the solution of initial value 
problem (2.1) is defined by the vector equation 

( 2 • 2) 

where ~ 1 is a linear combination of values y . and 
f(t · ,9+ . ) Ci = 0,1, ... , k-1) that already h~~~ been comput­
ed.nif ~;iO, the method is explicit and implicit if St 0. 
When a constant stepsize h is used, the formula is normally 
written 

k 

~ o..y . 1+ hSi·f(tn-i·+1'Yn-i·+1) = O. i=O l n-i+ 
( 2 . 3) 

A method is defined by a choice of the parameters a. and S· 
(i = 0,1, ... ,k) and methods are available which arelstablel 
and accurate for h ~D. A comprehensive theory on these methods 
exists (see e.g. Henrici, 1962) the main resultsbeing: 
1. the order of accuracy of a stable k-step method cannot 

exceed k+1 
2. all explicit linear multistep methods have a finite stabil­

ity region 
3. the maximum order of an A-stable linear mul tistep method is 2. 

A large number of linear multistep methods have been proposed. 
However, it seems that three types are of practical interest, 
each type being available for different values of k. The three 
types are (cf. equation (2.3)): 
1. The expiioit Adams or Adams-Bashforth methods, 

characterized by S = D,o.. = 0 (i = 2, ... ,k). These methods 
have small stabili~y regions that decrease with increasing 
k. However, the formulae directly give a value y +l' and 
therefore are often used in conjunction with thenapplica­
tion of an implicit formula (2.3). The resulting explicit 
methods are called prediotor-correotor methods. 

2. The impZioit Adams or Adams-Moulton methods characterized 
by a,= 0 (i = 2,3, .•. ,k). The order of accuracy being 
k+1, 1 these methods have the highest possible order of ac­
curacy ~n the class of linear mu~tistep methods. 
The staJ:l·111tyr>egion·of these met'hods is bounded 
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for k>1 but when stability does not limit the stepsize, 
these m~thods may be very efficient. . .. 

3. The stiffly stable me~hode (cf. Gear,~968). These implicit 
methods are characterized by ~i = 0 (i = 1,2, .. ·,kl ~nd by 
the order of accuracy being k. These methods only exist for 
k,6. Because of their special stability properties, they 
are very efficient in the case of stiff equations. 

We notice that one has to pay for the nice properties of the 
implicit methods by the fact that we have to solve a (no~­
linear) set of algebraic equations at each stage of the i~t~­
gration process. On the othe~ ~and, when accuracy o~ ~tability 
questions do not arise, explicit methods may be efficient 
because of the simplicity of the procedure. 

Frequently the use of Runge-Kutta methods is advised in order 
to find the k-1 values y. and f(t.,y.) (i = 1,2, ... ,k-1) 
that are needed to startithe multtst@p methods. However, a 
good routine will have the flexability not only to adjust the 
stepsize, but also to start with a linear 1-step method and to 
adjust the order of the methods during the integration process. 
Routines have been published by Gear (1971) in FORTRAN and by 
Hemker (1971) in ALGOL 60. 

2.3 Runge-Kutta methods 

Another family of integration formulae are the Runge-Kutta 
methods. They are of the type 

k. 
i 

m 
h.f(t+µ.h ,Yn+ l.:/- .. k.) 

n i j =l iJ J 
m 

Yn+1 = y + z 8.k. 
n j=1 J J 

i=1, ... ,m ( 2. 4) 

Each method is defined by a choice of the parameters µ., 8., 
and A .• and, again, a great number of methods are avaiiabl~, 
whichi~re stable and accurate for h+O. If A .. = 0 for i~j, 
the methods are explicit; y +l can be obtainJd by the success­
ive computation k .. ( i= 1, . ~.,ml. Otherwise, if I-. . :j: O for any 
is.j, the method ts implicit and the computation 6! k. 
(i = 1, ... ,ml requires the solution of a (large) syst§m of non­
linear equations. 

As was the case with linear multistep methods, the explicit 
formulae only have a finite stability region. However, the 
large number of parameters (µ. ,8., and A .• ) leaves the possi­
bility to find explicit formuiaelwhich ficive in corrunon their 
high accuracy but differ by their stability properties. For 
instance,rnethods are available which have optimal stability 
regions for real or imaginary eigenvalues of the Jacobian 
matrix (v.d.Houwen, 1970a). Also methods are available which 
are stable with respect both to the small eigenvalues and to 
some eigenvalues (real or conjugate complex), anywhere in the 
left half of the complex plane (v.d,Houwen,1970b). The latter 
type, where one.selects the parameters based on some judgement 
about the solution, are called exponentially fitted Runge-
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Kutta methods. They represent the asymptotic solution as well 
as the components of the solution with the known (large nega­
tive) eigenvalues. A survey of Runge-Kutta formulae with in­
creased stability regions can be found in v.d.Houwen (1972b). 
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A more complicated type of Runge-Kutta methods is found if the 
parameters A .. , Cj<i; if j>i then A .. =O) are rational expres­
sions of theiJJacobian matrix. Thes~Jmethods, called semi-im­
piiait Runge-Kutta methods, do not require the solution of a 
nonlinear set but only of a linear set of algebraic equations 
at each stage of the integration process. They are A-stable 
and also may be exponentially fitted to two or three clusters 
of eigenvalues (v.d.Houwen, 1972a). 

When the differential equations are not stiff, the 
use of simple explicit Runge-Kutta methods is very popular. 
Many good implementations with automatic stepsize control are 
available (e.g. Zonneveld,1964). If the equations are stiff 
and something is known about the position of the eigenvalues 
in the complex plane, the use of some explicit methods with 
special stability properties can be recommended. Routines, 
written in ALGOL 60, are available in Beentjes (1972) and in 
Dekker (1972). If one is not able to evaluate the Jacobian 
matrix and if nothing is known about the eigenvalues, implicit 
Runge-Kutta methods might be used (Ehle, 1968). 

2.4 Trapezoidal rule with smoothing,backward Euler 

In 1963, Dahlquist ,proved that no explicit linear multistep 
method can be A-stable and that the maximumorder of an A-stable 
linear multistep method is 2. Moreover, for fixed stepsize h, 
the method with the minimum truncation error is the trapezoi­
dal rule 

( 2. 5} 

Since direct substitution causes convergence difficulties, when 
applied to stiff equations, the use of Newton-Raphson iterati­
on is recommended to ~olve ~his nonlinear equation in Yn+l'. 
Hence, the number of iterations necessary for convergence is 
a measure for the local nonlinearity of the differential equa­
tion and therefore can be used to control the stepsize. If we 
take a sufficiently small stepsize, we may linearize equation 
( 1. 1} , obtaining 

f(t,y) = h(t) + J(t,y0 )(y-y0 ). ( 2. 6) 

Then the execution of a step can be written 
I-hJ/2 

vn+l = CChJ)yn where C(hJ) = I+hJ/ 2 (2.7) 

Even though l!C(hJ)ll E; 1 for Re hA< O (i.e. the method is 
A-stable), we have C(/..h) _,. -1 as h/..+ -<», 

That is, the numerical process has a t~nden7y to i~troduce in­
to the solution some slowly damped oscillations which can be 
very troublesome during the calculation of the asymptotic 
phase of the solution. To overcome this difficulty Lindberg 



.·.:._.,. ··"·1;:[1rr; . .-.·,.111cwz••••••••••••••••••••m•111•m•ri&•WWW• 

72 P. W. Hemker 

(1971) suggested that one calculates the function values y 1 , 
y , and y +l· Then one sets y = Cy _ + 2y + y +l)/4 forp­
s8me p anH continues the inteiratioR from tp usiRg the smooth-
ed value Yp· p 

In conjunction with this smoothing process Lindberg also 
proposes global extrapolation to increase the accuracy. How­
ever, it remains a question whether>this technique is appro­
priate for efficient calculation in system simulation, where 
only limited accuracy is re~uired. 

Another way to avoid the oscillations in an A-stable linear 
method is to use the backward Euler scheme, which is only 
first order accurate. Analogous to equation (2,7) one obtains 

Yn+l = C(hJ)yn' 
I 

where C(hJ) = I-hJ , ( 2 • 8) 

which is also A-stable. However, one has that C (h1'.) + O as 
Re h1'. +-~, which is desirable in the asymptotic phase when 
the contributions to the solution corresponding to the eigen~ 
values with large negative real parts may be neglected. 

2.5 Exponentially fitted methods 

A special exponentially fitted method - cf. exponentially 
fitted Runge-Kutta methods - is given by Fowler and Warten 
(1967). Their algorithm is explicit and there is no need for 
the user to specify the large negative eigenvalue. However, 
their algorithm is only efficient in the case of one 
real cluster of eigenvalues. 

Another family of exponentially fitted method (where, again, 
one selects the parameters based on some judgement about the 
solution) is given in the work of Liniger and Willoughby (1970). 
A special feature is the A-stability of these exponentially 
fitted methods. They consider the schemes 

and 

Yn+1 = Yn +h((µf(tn,yn) + (l-µ)f(tn+1•Yn+l)) 

0 $ \l ~ ~ 

Yn+l = Yn + h((1-a)f(tn,yn) + (1+a)f(tn+l'Yn+l))/2 

( 2. 9) 

2 • • 
-h ((b-a)f(tn,yn) + (b+a)f (tn+l'Yn+l))/24 (2.10) 

O $ b-a ~ 1/3 , 1/3 ~b+a ' 2 

It should be noted that in the first scheme µ= O gives the 
backward-Euler and µ= ~ gives the trapezoidal rule. Thus, the 
choice of µ allows a selection either of these extremes or 
an intermediate scheme at any point during the integration. 

These implicit schemes allow the user to combine the approxi­
mate integration of the slowly varying component with the 
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ion of some component with a previous known 
ue A. The schemes are A-stable, hence, some 
ation of the eigenvalue will not harm but only 
bour of exponential fitting. 

stimation 

:m 

representation of a biochemical system will 
by a set of differential equations in which 

s are unknown. On basis of data obtained in 
ese parameters have to be determined. In order 
ters to make sense, it is necessary for the 
e a fair enough representation of the situation 
he other hand, when the best set of parameters 
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not compatible with the outcome of the experi­
hematical representation is unlikely to be valid. 
with two problems 

tive prohZem of how well the situation in vitro 
d by a given set of equations - or, in bioche­
' what is the mechanism of the reaction -, and 
ative probtem of how the parameters can be 
rom experimental data given a likely set of 

lem is not a mathematical one. It very much 
art" in biochemical research. The quantiiative 
er, is a mathematical one, and its results 

feedback to the biochemist, who has to solve 
e problem. In this section we will confine 
he solution of the quantitative problem. 

stated, the ~foblem is this: a set of n diffe­
ons is giveJ"l 

f(t,y,p) (3.1) 

ents an m-vectoi of parimeters. In the process 
has the value p , but p is not known. Some 
the vector y can be measured for different 
ut these measurements are affected by some ran­
is assumed that the form of f is known, to-

me statistical properties of the measurement 
oblem is to deduce an estimate p of the vector 

~ N) we denote the observed value of some 
time t .. Thus the index i identifies an ob­

also determines what component of y has been 
'e have a set of observations {yi} , a corres­
i} (t :S. t? S ... ~ tN) and, for some p, we 
set ot theoretical values yGti,p). The problem 
•e quite simple: we define the N-vector 

:ion we use Vfictormnotfition throughout, so p E Rm, 
~n, f e: R x R x R -+- R etc .. 
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Y(p) = (y(ti,p) yi) 1 s. i $. N ( 3 . 2) 

and we define 

S(p)::: 11Y(p)11 
2 l:N 2 = (y(ti,p)-yi) 

i=1 
( 3. 3) 

the sum of the squares of the discrepancies. Using an inte~ 
gration procedure to solve y(t,,p), we can solve the problem 
stated by minimizing S(p) usin~ standard techniques. Even when 
we assume that the minimum is unique and that the function 
S(p) is the best one to minimize (this can be justified under 
certain conditions), the question still remains as to how bad~ 
ly conditioned the problem is. I.e., how small a perturbation 
in some values of Yr will cause how large a variation in the 
minimizing vector p. In relation to this question it is clear 
that not only an estimate of p* has to be determined but 
also an estimate of its reliability. 

Here we will assume that the measurement errors are statisti­
cally independent and that thzY have a Gaussian distribution 
with zero mean and variance n . Thus the covariance matrix 
of the vector of errors n is 

ECnnT) =a 2r ( 3. 4) 

and the probability density ofnis given by 

p(n} = (2w)-N/ 2 exp <-1lnl1 2120 2 ) 

3. 2 The method 

The dependence of Y(p) on p 

The solution of the differential equation (3.1) can be consi­
dered to be a function of t as well as a function of p. We 
consider the difference between two adjacent solutions y 1 Ct,p} 
and y 2 Ct,p+o) of equation (3.1), both starting at y CO,pJ = 
y 2 CO,p+o) =c. We compute the difference between y11and y2 due 
to the small change in p. The functions y 1and y 2 are defined 
by 

( 3. 5) 

( 3. 6) 

Expanding ( 3. 6) :in a Taylorseries and keeping only first order 
terms in o and in y2-y1 , we obtain 

( 3. 7) 

where 

( 3. 8) 
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s an n x n matrix, and 

- a FP -Cap fCt,y 1 ,p)) (3.9) 

5 an n x p matrix, both matrices being functions oft, p, and 
1 , but not of o or y 2-y1 . 

t would be expedient to know how the computable values 
~ti,p} depend upon small variations o a~ound p .. since eq~a-
1on (3.7) enables us to construct the differential equation 
1ich defines the n x m matrix 

yp = ~ p y ( t 'p ) ' 

use (3.7) and write 

a d a ap dt y(t,p} = fP + fY.cip y(t,pl 

in shorthand, 

d 
dt YP = FP + FY.YP. 

(3.10) 

(3.11) 

(3.12} 

iis is a system of n x m differential equations. If we solve 
iis system together with system (3.1}, we are able to 
)mpute · 

A(p) a :: ap y(ti ,p)' (3.13} 

' N x m matrix, giving the dependence of Y(p) (see equation 
2))upon variations top. 

nimizing S(pl 

nsider the function S(p) defined by equation (3.3). The 
lue p that minimizes S(p) is an estimate of the true value 
. In equation (3.3) y is a nonlinear function of p. Without 
me further assumptions the analysis would therefore be too 
valved to give hope of useful results. This difficulty is 
alt with by assuming that p is a reasonably good approxim­
ion top. Using a generalized Newton-Raphson technique, we 
nearize the nonlinearity for small departures op from p. 
ppose that p is a trial vector and op is the required 
rrection (p +op= pJ. The residual vector Y(p) is approxirn­
ed by a linear function of the parameter 

Y(p) = Y(p-op) = Y(p) - A op 

d for the residual function 

S(p) = S(p+op) = llYCp+opl 11 2 

"I IYCp) + A(p) op 11 2 

= I IY I 12 + 2opTATY + opTATAop 
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:"he apnr~'ximating function to S(p) has a minimum at the point 

g1ve~ S~· the nor;al equations 

r-, (p)!\(p)Cp = -AT(p)Y(p). (3.14) 

!f the ~natrix P~ is nonsingular, this equation determines 

In the lir:ear theory p + op SO determined W<;'Uld be the requir­

ed so:ution and the minimum value of S attained there would be 

~ T T 
S(p) = j/y(plff'" ~op A AOp (3.15) 

Ir: general, S(p + op) will not be the minimal value of S and 

the whole orocess is repeated using p + op as an approxima­

tion to p ior the next lteration. 

If it appears that S(p + op) > s Cpl, some other techniques 

car, be applied. firstly the method of steepest descent is 

recommended with p as a Point of der>arture. For this puTpose 

the gradient vect01° r=~AT(p) Y(p) is calculated and a new 

trial step is executed with 

o P = r I I r I I 2 I I I Ar [ [ 2 

If even with this op it appears that S(p + op)> S(pl, the 

direction of the step should not be changed, but a relaxation 

factor can be used, e.g. the step op may be multiplied by 

S(p)/ (S(p) + S(p + op)) and a new trial step executed from p. 

3.3 Statistics 

Let p be the final estimate of p so that S(p) ~ S(p) for all 

p; we assume that the linear theory holds in a sufficiently 

large neighbourhood of p. 

for the ~erturbations n" of the observed values y. we assume 

an N(O,a} distribution-'-and so it follows from eqdation (3.14) 

that the estimated value p will also be normally distributed. 

We define op = p-p*- , hence the expectation of op will be 

zero when p=p. We are also interested in the Tovariance 

matrix of op, i.e. the expected value of opop . 

E(opopT) = E((ATA)- 1 AT.Y YTA (ATA)- 1 } = 

= (ATA)-l AT E(YYT) A CATA)-l = a 2 (ATAJ- 1 . 

from this covariance matrix we derive r .. , the corTelations 

between the estimates /lp. and (ip.. l.J 
l. J 

_ qij T 
rij -;q .. q.. with q .. =(A A).. (3.16) 

l.J. ]] l] l] 

By equation (3.14) p is a linear function of Y. Hence its 

probability density will be Gaussian and will be given by 
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P(dp) = ((2rrcr)m det((ATA)- 1 ))-~ expC-opTATAop/2cr2). 

(3.15) follows immediately 

11 YC£ + op) 11 2 = sCp) + opT T 
A A op. 

Now it is clear that 11_: 11 2 1a 2 ' opTATA6p/cr2' and S(p)/o2 

have a x2 distribution with N, 2m, and N-m degrees of freedom, 
respectively. An estimate of o is given by 
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s 2 = SCp)/(N-m) = I /YCp)/ [ 2 /CN-ml (3.17) 

The confidence region at level a is the ellipsoidal region 

( 3 .18) 

where fa(n,N-m) is the a-point of the f-distribution with m 
and N-m degrees of freedom. The principal axes ofthe ellips­
oidal region are given by the eigenvectors of ATA and the 
length of the axes is A.-~ (A. is the eigenvalue of the corres­
ponding eigenvector). Tfie confidence limits for each estimate, 
supposing that the other estimates are exact, are 

where 

o p . = i,Nm S (I.i ) F I CAT A ) . . 
i -m a ii 

Other confidence limits for the individual estimates Gndepen­
dently) are 

where 

(3.20) 

The geometrical interpretation is that the tangent planes to 
the ellipsoi~ with normals to the direction i are at a 
distance op. from the centre of the ellipsoid and that the 
axis i inte~cepts the ellipsoid at points opi from the centre. 

3.4 Integration of the differential equations 

The system of the differential equations which we have to 
solve in each iteration step of the optimizing process is, 
in geheral, a rather large one. In the system we distinguish 
two parts 
1. (see equation (3.1)) 

d dt y(t,p) = f(t,y,p) (3.21) 

a coupled system of n differem.ial equations. 
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2. (see equation (3.12)) 

d - p dt yp - FP + FY.Y . (3.22) 

This is a set of m systems; each system consists of n differ­
ential equations and is coupled with system (3.21). 

The structure of the system (3.21 - 3.22) as a whole can be 
clarified by writing: 

1. the system (3.21 - 3.22) as 

y = f 

Yp1 = f P1 + f YP1 y 

Ypm ::: f + f Ypm pm y 
(3.23) 

where y . = 8Y/8pi'·' f . =8f/8p., and pi pi ;i; 

fy = af/oy the Jacobian matrix of the system (3.21~, 

and by writing 

2. the Jacobian matrix of the system (3.21 - 3. 2 2 ) as 

f 0 0 y 

J = f f 0 py1 y 

f 
pym 0 ~f y 

where f . = acaf/8pi. )/8y. pyi 

In this Jacobian matrix the one way coupling of the system is 
clearly demonstrated. Besides we notice that the eigenvalues 
of J are all the same as the eigenvalues of f , and so the 
stability behaviours of system (3.23) and system (3.24) are 
similar. 

In order to solve the system of differential equations effi­
ciently, we apply implicit linear multistep methods and we 
make use of the particular structure mentioned. In each step 
of the integrating process, equation (3.21) is solved as an 
independent system. When this part of the integration has been 
succesfully completed, the m systems of equations (3.22) 
can be solved with only a little work. We will show this in 
more detail. 

Since we only use implicit linear multistep methods, the re­
sult of one integration step during the solution of 

y = f(y) 
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corresponds to the solution of the nonlinear equatio1. 

C3.2oJ 

w~ere ~ contains the information about a number of completed 
steps. A¥ter the choice of a suitable starting value y , this 
equation is solved with a modified Newton-Raphson metRoH 

r+ 1Yn = ~Yn - CI-hSf )-le y -~ -hSf( y )). (3.26) • y r m n r n 
When we solve the system of differencial equations 

y = f(y) 

w = g(y} + f w 
y 

we make use of the one-way coupling of the system. In each 
step, we have to solve the nonlinear system 

Yn hS f(yn} + ~n 

wn = hS glyn} + hS fy{yn).wn + ~n 

(3.27) 

(3.28} 

We do•not iterate this system simultaneously, but we solve the 
nonlinear equation (3.27) by the iteration process (3.26), we 
substitute the computed value of Yn in (3.28), and we solve 
the linear equation (3.28) directly. For the solution of this 
linear equation one needs CI-hSf (y ))-1: the same factor that 
will be used in (3.26). Y n 

The solution of the system (3.23) is obtained in the same way. 
In each step of the integration process, the first system of 
n equations (3.21) is solved by iteration. When this iteration 
has been completed, each of the m systems of the n equations 
(3.22) is solved directly. Each one of these m systems needs 
the LU-decomposition of one and the same matrix I-hSf Cy ). 
Moreover, this L U-decomposition can be used again in ¥hen 
next modified Newton-Raphson iteration. 

We notice that the possibility of coupling the integration 
of (3.22) with the integration of (3.21) with this ease, 
depends crucially on the form of the linear integration for­
mula (3.25}. It cannot be done, for instance, with Runge-Kutta 
methods. 

We can use another feature of the integration method. On an in­
terval containing some meshpoints, the linear multistep methods 
approximate the solution of the differential equation to a 
polynomial of a certain degree. As a consequence, there is no 
need to take the meshpoints of our integrating procedure to­
gether with the points {t.} where the solution is wanted. The 
solution is obtained by iftterpolating the approximating poly­
nomial. 

The method is effectively used in a number of problems. Re­
sults and an ALGOL 60 program are available in Hemker (1972). 
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