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Abstract. Based on a weakly relativistic consideration 
of the condition of marginal stability of parallel whis
tler-mode waves, it is pointed out that these waves 
tend to be stabilized by a reduction of electron density. 
As a result the range of whistler-mode instability for a 
given value of anisotropy of electron distribution func
tion can differ up to a factor of two for the range of 
electron densities typical for magnetospheric condi
tions. This effect, not noticed so far, needs to be taken 
into account when interpreting observations of whis
tler-mode waves in the magnetosphere. 

Introduction 

Since the publication of Kennel and Petschek's (1966) 
pioneering paper it has generally been believed that par
allel whistler-mode waves propagating through a hot an
isotropic but nonrelativistic plasma are unstable when: 

(1) 

where A,. is the anisotropy of the electron distribution 
function (ratio of the electron perpendicular temperature 
T 1 to the electron parallel temperature T11 ), Y = Q/w, Q is 
the modulus of electron gyrofrequency, w is the wave 
frequency. 

Condition ( 1) seems to be confirmed by simultaneous 
observations of natural whistler-mode radio-emissions in 
the inner magnetosphere (Burton, 1976; Solomon et al., 
1988) and in the magnetosheath (Thorne and Tsurutani, 
1981; Tsurutani et al., 1982), and has been widely used in 
the interpretation of whistler-mode wave phenomena in 
different regions of the magnetosphere (e.g. Hayashi et al., 
1968; Haugstad, 1976). Nonrelativistic approximation 
seemed to be justified by the condition: 
Wll ~C (2) 

Ojfj1rint requests tu: S. S. Sazhin 

(where w 11 is the parallel thermal velocity of the electrons, 
c is the velocity of light), valid in most regions of the 
magnetosphere. 

At the same time in many theoretical papers (see e.g. 
Jacquinot and Leloup, 1971; Sazhin, 1987a, b, 1989; 
Sazhin and Temme, 1990) it has been pointed out that the 
inequality (2) is the condition of weakly relativistic rather 
than nonrelativistic plasma. In particular, it has been 
shown that relativistic corrections to the whistler-mode 
refractive index N can be of the same order or even exceed 
the corresponding thermal corrections, and also relativis
tic corrections influence the threshold of whistler-mode 
instability determined by condition (1). However, the 
analyses of this threshold presented by Jacquinot and 
Leloup (1971) and Sazhin and Temme (1990) have not 
answered the question whether the relativistic effects on 
whistler-mode instability are in fact important in the 
magnetospheric conditions. The numerical curves pre
sented by Jacquinot and Leloup (1971) refer to extreme, 
rather than typical, values of the magnetospheric parame
ters, while the analysis of Sazhin and Temme ( 1990) refers 
to the extreme case when: 

2(Y-1) ---iii ___ ~ 1 . (3) 

The condition (3) is satisfied for rather large values 
of N, unless w is close to Q. In this case the relativistic 
correction to Aeo appeared to be of the order of: 

1 
b=2N2~1 (4) 

which seems to be not very significant in magnetospheric 
conditions, unless a very refined analysis of the instability 
is required. 

In this paper we present an alternative analysis of the 
threshold of whistler-mode instability in a weakly rela
tivistic plasma [inequality (2) is valid] without imposing 
any specific restrictions on the value of N, but assuming 
that: 

(5) 
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Inequality (5) seems to be satisfied in some regions of 
the magnetosphere and the magnetosheath (e.g. Tsuru
tani et al., 1982; Cornilleau-Wehrlin et al., 1985; Bahnsen 
et al., 1985; Solomon et al., 1988), although in other re
gions higher values of Ae were observed (e.g. Cornilleau
Wehrlin et al., 1985; Solomon et al., 1988). At this stage 
our theory cannot be applied to the case of highly aniso
tropic plasma. Another major restriction of our theory is 
that it does not take into account the possible dependence 
of Ae on y- i = w/Q (see the discussion of this problem 
by Cornilleau-Wehrlin et al., 1985; and Solomon et al., 
1989). The values of Ae, which we will eventually calcu
late, will refer to y- 1 corresponding to the frequency of 
marginal stability of whistler-mode waves. 

The theoretical background of our analysis is dis
cussed below, where we derive the weakly relativistic ver
sion of the condition for marginal stability of whistler
mode waves. Later, the latter condition is analysed, and 
we discuss its relevance to the magnetosphere. 

Theory 

Following Sazhin and Temme (1990), we assume an elec
tron distribution function in the form: 

f (p .L' P11)=(n312 PL Po11)- 1 exp(- p2
2
J. - P}) 

Po J. Po11 
(6) 

where p 0 J.( 11 l is the electron thermal momentum in the 
direction perpendicular (parallel) to the magnetic field, p J. 

and p 11 are the electron momenta in the corresponding 
directions. 

We restrict our analysis to considering wave frequen
cies well above proton gyrofrequency, so that the protons 
and other heavy ions can be considered as a neutralizing 
background. Finally, we assume the plasma to be weakly 
relativistic, so that (2) is valid. In view of all these assump
tions and neglecting the contribution of higher order 
terms, we can write the dispersion equation for parallel 
whistler-mode waves as (Sazhin and Temme, 1990): 

2 2X [" d:F_,12.2 zJ N =1--r- ,:7' 112 . 2 --d~-(Ae-1)N (7) 

where 
rx) . ac2 

-~-P=~.P(z, a, b)= -i J e1='-1-ir (1-it)-q(1-ibt)-p dt 
0 (8) 

is the generalized Shkarofsky function, 

2(1-Y) N 2 
Z=----~ U==----~ 

r r 

p2 
r=-01_1 . m;c2 ' 

is the same in (1); II 0 and Q0 are the electron plasma 
frequency and electron gyrofrequency at rest (in the non
relativistic limit, Yin this definition is the same as in (1)); 
and me is the electron mass at rest. 

In view of our condition (5), Eq. (7) can be consider
ably simplified and written as (Sazhin 1989): 

D=N2 -1+ 2 X [~'i 12 +LIAe(2-N2)ff;12 ]=0 (9) 
r 

where: 
oc . U/2 

~=~(z, a)= -i J e1='-1-;r (1-it)-q dt 
0 

(10) 

is the Shkarofsky function (Shkarofsky, 1966; Airoldi and 
Orefice, 1982; Krivenski and Orefice, 1983; Robinson, 
1986, 1987): 

(11) 

In general, Eq. (9) can be analysed by numerical meth
ods only. Its analytical solution is possible only in some 
particular limiting cases (see e.g. Sazhin, 1987 a, 1989; 
Sazhin and Temme, 1990). Here, we consider one more 
particular solution of(9) corresponding to marginally sta
ble waves. This solution follows from the equation 
(Hasegawa, 1975): 

(12) 

in which the arguments of the Shkarofsky functions are 
assumed to be real. In view of(9) and (11), Eq. (12) can be 
written as: 

'.J ff512 + LIAe(2 - N 2 ) ('.J .?'712 - ::3 .?'512 ) = 0. (13) 

In view of the fact that the argument z of the Shkarof
sky function is negative for whistler-mode waves, we ob
tain (Robinson, 1986): 

3.~= -ne=- 2"[(a-z)/a](q-l)/Z Jq_ 1 [2a 112 (a-z) 112 ] (14) 

q = 5/2; 7 /2; I, are the modified Bessel functions; a and 
a - z lie on the principal branch of the Riemann surface. 

Substituting (14) into (13) we have: 

(15) 

where the argument of the Bessel functions is the same as 
in (14). 

When deriving (15) we took into account that 

-Rz [cosh z _ sinh z] 0 I 3;2 - 2 =I= · 
1[ z z 

Equation (15) can be further simplified if we remember 
that we consider a weakly relativistic plasma for which 
r ~ 1, a~ 1 and - z ~ 1. In this case the argument of the 
Bessel functions is large and we can write their asymp
totics as (z=2a 112 (a-z) 112 ): 

_ exp(z) " (-1t r(v+k+~) 
l,(z)~ J2nzk'fo (2Z)k k!f(v-k+~) (16) 

or, more specifically: 

_ exp(Z)( 3 ) 
ls;2(z)~ jW 1-2+ ... (17) 

exp(Z) ( 1 ) 
l3;2(ZJ~ flni 1-2 + .... (18) 
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In view of (17)-( 18) and remembering 
12Ja(a-z)l~1 we can simplify (15) to: 

a-" - 1 LlAe= .[ ___ (. )') J · · . 
1- ~ +; (2-N2) 

that 

( 19) 

In most cases of whistler-mode propagation in the 
magnetosphere where r ~ 1 the term 1 /a is very small and 
can be neglected. Hence, Eq. ( 19) can be further simplified 
to: 

1 
L1 A = --- ;=-::;.:=====::---· 

e [1-JN2-~:2Y}2-N2) 
(20) 

For the case when N 2 ~ 1 we obtain from (20): 

1 1 (y +3) 
L1Ae=Y-1+2N 2 Y-1. (21) 

In the limit N 2 -+ oo condition (21) reduces to: 

(22) 

This is the nonrelativistic threshold of whistler-mode 
instability similar to that expressed by inequality (1 ). In 
view of our assumption (5) we should restrict our analysis 
to Y ~ 1. Hence, (20) reduces to: 

1 1 
LlAe= Y-i+2N2· (23) 

This expression is similar to that obtained by Sazhin 
and Temme (1990) based on a different approach to the 
problem. This coincidence of the results can justify both 
approaches. Also, as was indicated by Sazhin and Temme 
(1990), Eq. (23) is essentially consistent with the results of 
Jacquinot and Leloup ( 1971 ). 

Analysis 

When analysing the condition (20) of marginal whistler
mode stability, we assume for simplicity that the plasma 
temperature is so low that the thermal and relativistic 
corrections to N 2 can be neglected, so that we can write: 

N2=1 vY2 
+ Y-1 

(24) 

where: v = ll6/Q6. 
Also, Eq. (24) could be obtained if we assume that 

plasma consists of two species of electrons: hot, which are 
responsible for wave amplification or damping; and cold 
which are responsible for wave propagation. This as
sumption has been widely used for the analysis of whis
tler-mode waves in the magnetosphere (see e.g. Etcheto 
et al., 1973 ). 

The inclusion of thermal and relativistic corrections 
to N 2 typical for magnetospheric conditions (Te:::;; 1 keV) 
would slightly change the value of .dAe defined by (20), 
but not the conclusions of the paper. These corrections 
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Fig. 1. The plots of LIA,., corresponding to marginal whistler-mode 
instability, versus y-'=w/Q0 for v=lll/D~=0.5 (curve/), v=1 
(curve 2), v = 5 (curve 3), and v = 100 (curve 4). The region of wave 
instability is to the left of the corresponding curves 

have been considered in detail by Sazhin (1987 a, b, 1989) 
and Sazhin and Temme (1990). 

In Fig. 1 we show the plots .dAe versus y- 1 based on 
Eq. (19) with N 2 determined by Eq. (24). As one can sec 
from this figure, the value of .dAe dramatically increases 
with decreasing electron plasma density. In particular, the 
decrease of v from 100 to 0.5 results in almost a doubling 
of .dAe for a given frequency. This means that in a rarefied 
plasma (v = 0.5) the threshold value of .dAe at which an 
instability can develop at a given frequency is about twice 
as large, when compared with that predicted by the condi
tion (1), valid for infinitely large values of N 2 • In other 
words, in a rarefied plasma ( v = 0.5) with a given value of 
LIA", the instability develops below about half the fre
quency predicted by (1). As soon as the range of v from 0.5 
or less to about 100 or more becomes applicable under 
magnetospheric conditions (see Curtis, 1978; Tsurutani 
et al., 1982), the dependence of .d Ae on v, as shown in 
Fig. 1, cannot be neglected when interpreting whistler
mode wave observations in the magnetosphere and, in 
particular, chorus emissions observed in the outer magne
tosphere where v < 1 (see Anderson and Maeda, 1977; 
Curtis, 1978). Nonrelativistic analysis of this phe
nomenon similar to that of Curtis (1978) predicts a con
siderably wider frequency band of these emissions, when 
compared with the results which would follow from 
weakly relativistic analysis (cf. curves 1 and 4 in Fig. 1 ). 

Note that although the curves 1, 2 and 3 in Fig. 1 
follow from relativistic consideration of the problem of 
marginal stability of the waves, they do not depend on 
electron energy. Hence, they remain valid for arbitrarily 
low energy plasma, although in this case the increment of 
whistler-mode instability or decrement of their damping 
is very small as well. In other words, the effect of relativis
tic stabilization of whistler-mode instability considered, 
for example by Jacquinot and Leloup (1971) and Sazhin 
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and Temme (1990), turns into its stabilization due to finite 
electron density. To our knowledge this effect has not 
been noticed before. 
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