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Abstract. Integrals are considered which can be transformed into the Laplace integral 

where/ is holomorphic, z is a large parameter,µ= "A/z is a uniformity parameter,µ;;,; 0. 
A uniform asymptotic expansion is given with error bounds for the remainders. Applica­
tions are given for special functions, with a detailed analysis for a ratio of gamma 
functions. Further applications are mentioned for Bessel functions and parabolic cylinder 
functions. Analogue results are given for loop integrals in the complex plane. 

1. Introduction. We consider Laplace integrals of the form 

(1.1) 

where f is holomorphic in a domain 0 that contains the non-negative reals in its interior; A 
and z are real or complex variables for which Fx(z) is properly defined. We are interested 
in the asymptotic expansion of Fx(z) for z ~ oo, which is uniformly valid with respect to 
the parameterµ:= "A/z. This is earlier considered in Temme (1983). 

The present paper gives results for integrals with the same asymptotic phenomena and 
for which a non-trivial transformation is required to bring these integrals into the standard 
form (1.1). After this transformation the function/ of (1.1) usually depends onµ. In view 
of this aspect we generalize the previous paper. 

*Received November 9, 1983. 
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This generalization is understood and motivated by considering the following integrals: 

{'° e-zx[x(x + 1)] ;\.-l dx, 
0 

Modified Bessel function, 

{'
0 e-zx[x(x + 1)'] ;\.-l dx, Whittakerfunction, 

0 

("" 2 Jn e-z[x+ax ]X;\.-ldx, 
0 

iDOe-zx[l - e-x1A-l dx, 
0 

Parabolic cylinder function, 

Beta function. 

(1.2) 

The nature of the asymptotic expansion of these integrals for z - oo with JL = A./z as a 
uniformity paramete~ in [O, oo) is the same as that of (1.1). However, due to the 
transformation of these integrals into (1.1), the theory of our earlier paper needs 

modifications. 
To describe the method for (1.1) we use positive A. and z. The function f is expanded at 

t = µ.,at which point t;\.e-•1 is maximal. We write 
DO 

f(t) = L as(µ)(t - µ)' (1.3) 

which is substituted in (1.1) to give the expansion 
DO 

Fh(z) - z-;\. E a,(µ)P,(A.)z-s, z - 00, (1.4) 
s=O 

where Ps(A.) are polynomials. The first few are P0(A.) = 1, P1(A.) = 0, P2(A.) = A, P3(A.) = 

2i\, P4(i\) = 3A.(A. + 2). In our earlier paper we discussed the asymptotic nature of (1.4) 
and we constructed error bounds. The error bounds in the present paper are new and may 
be more realistic. 

The integrals in (1.2) can be written in the form 

{q(x) ;\.-le-zp(x>h(x) dx 
0 

(1.5) 

and in fact this type of integral is the starting point of the present investigations. Remark 
that for the examples of (1.2) p and q are positive increasing functions. Hence one of them 
can be taken as a new variable of integration. 

In Sec. 2 we transform (1.5) into (1.1), with f depending on µ. The necessary 
modifications of earlier results is given in Sec. 3. The remaining sections contain 
applications for the special functions in (1.2), with in Sec. 4 a detailed analysis for the Beta 
integral. These results are also important for a future paper on the incomplete Beta 
function. 

The applications considered here do not give essentially new expansions for the Beta 
function, parabolic cylinder function and modified Bessel function. For the last case the 
expansion is, in some sense, equivalent to that given by Olver (1974, Ch. 10) with as 
starting point the differential equation for the Bessel function. There is a different role for 
the parameters, however. In Olver's approach the Bessel function K.(vz) is considered for 
11 - oo, and uniformity with respect to z. Here we write K,..(z) with z - oo andµ as a 
uniformity parameter. Both expansions can be transformed into each other. 
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Olver developed fundamental methods for obtaining rigorous and realistic error bounds 
for uniform asymptotic expansions. In almost all cases the starting point is a differential 
equation. It is important to develop a theory for integrals. Interesting results in this field 
are obtained and reviewed by Wong (1980). 

Terminology. We call a variable fixed when it is independent of z andµ. The argument 
or phase of a complex number z is denoted by ph z. 

2. Transformation to standard form. We consider the transformation of (1.5) into (1.1). 
We suppose temporarily that A and z are positive. As a preparatory step we take p(x) = x, 
since the conditions onp and q in the general case (1.5) make it possible to consider either 
p or q as a new variable of integration. In fact we consider 

1 1"° ( ),\-1 -zxh( ) d r(""A) 0 q x e x x. 

2.1. Main assumptions. The assumptions are: 
(2.2.a) a is a connected domain of the complex x-plane with 

where dis a fixed positive number; 

inf Ix - w\ = d, 
x;;>O 

wEa!1 

(2.1) 

(2.2.b) q and hare holomorphic in fJ, they are not depending on ""A and z; q(O) = 0, other 
possible zeros of q are outside fJ; q is real and increasing on [ 0, oo); by redefining A and h 

we take q'(O) = 1; 
(2.2.c) (2.1) should converge for sufficiently large z and all A > 0; 
(2.2.d) the function x - µln q(x) is convex on (0, oo) and its unique simple positive 

saddle-point x 0(µ), µ > 0, is an increasing function on (0, oo), 

lim x 0 ( µ) = 0, lim x 0 ( µ ) = oo ; 
µ,-+0+ µ-+co 

possible other saddle-points are outside fJ. 
Remark 2.1. The saddle-point x 0(µ) is found by solving the equation 

q(x) = µq'(x), µ = "A/z. (2.3) 

In (2.2.d) we assume that the logarithmic derivative of q is a decreasing function on (0, oo) 
with limiting values + oo (at o+) and 0 (at + oo). 

2.2. The transformation. The integral (2.1) is transformed in the standard form (1.1) by 
the mapping x -+ t( x) defined by 

x - µlnq(x) = t - µln t +A(µ), (2.4) 

where A(µ) is a function to be determined. We observe that the right-hand side has a 
saddle-point at t = µ and that 

dx q(x )(t - µ) 
dt = t[q(x) - µq'(x)] · 

(2.5) 

The prime in q'( x) denotes a derivative with respect to x. 
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We see that dx/dt is finite and non-zero for each x E [O, oo ), except possibly when 
x = 0, x = x0 or t = 0, t = µ. Therefore, we require for the mapping x-+ t(x) the 
correspondences 

X = 0 ~ t = 0, X = x0 (µ) ~ t = µ, X = + 00 +-+ t = + 00, (2.6) 

with the expectation that with these relations dx/ dt will be finite and non-zero at t = 0, 
t = µalso. A(µ) is determined by substituting t = µin (2.4), from which we obtain 

A(µ)= x 0 - µlnq(x 0 ) - µ + µlnµ. (2.7) 

The analytical aspects of the transformations (2.4) are discussed below. First we consider 
the result, which reads 

e-zA(µ) oo --1 t'lo.-le-ztf(t) dt 
f(A) o ' 

(2.8) 

h(x)tdx t-µ 
f(t) = q(x) dt = h(x) q(x) - µq'(x) · (2.9) 

2.3. The regularity of the transformation. In Sec. 3 it is assumed that f is holomorphic as 
a function oft in a µ-dependent domain 0 1 of the complex t-plane and that it is a regular 
function ofµ,µ;;;: 0. In this section we establish that this is the case when q(x) and h(x) 
satisfy the conditions given in 2.1. 

We shall need to know the behaviour of x0 asµ-+ 0. The conditions on q allow us to 
write 

(2.10) 

and this expansion has a fixed positive radius of convergence. From the implicit function 
theorem for analytic functions it follows that the solution of (2.3) is an analytic function 
ofµ and that for small !µI the series 

Xo(µ) = µ + X2µ 2 + X3µ 3 + · · · (2.11) 

has a positive radius of convergence. The first coefficients are x 2 = q2, x 3 = 2q3• 

The function A(µ.) defined in (2. 7) has the expansion 

A(µ)= -q2µ2 - q3µ3 + . . . . (2.12) 

It is easily shown that A is analytic at µ = 0 and hence the series has a positive radius of 
convergence. 

A complication in the proof of the regularity of the mapping (2.4) is that the 
saddle-points of the functions in (2.4) at x = x 0 , t = µ tend to 0 when µ. -+ 0. In the limit 
µ = 0 both saddle-points vanish and the mapping reduces to the identity. Moreover, the 
(removable) logarithmic singularities of the functions in (2.4) disappear in the limitµ = 0. 
These phenomena make the mapping for small values of µ and x (or t) quite complicated. 

To prove the regularity of the mapping (2.4) we introduce a function T(x) by writing 

t = [ :
0 

+ (x - x0)T ]x. (2.13) 
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This matches the points (x = 0, t = 0) and also (x = x 0 , t = µ). Moreover, it gives the 
proper linear relation between x and t for small µ and x. Note that µ/x 0 is finite and 
regular atµ = 0 (see (2.11)). 

Substituting (2.13) in (2.4), we try to solve for 'T. We show that 'T can be expanded in 
powers of x (when Ix! is small) with coefficients regular inµ. The substitution yields 

x(l - µ/x 0 ) - µln[q(x)/x] = xT(x - x 0 ) -11ln(µ/x 0 ) + A(11) 

-µln[l + x 0T(x - x 0)/µ]. 

By expanding the last log-term we can write this as 

<P(x) X~'T 2 ~ (-1)'[ ( ) ]s-2 
2 - 'T - -- £.... -s- Xo'T x - xo /µ = 0, 

(x - x0 ) µ s=2 
(2.14) 

with 

<P(x) = x(l - µ/x 0 ) - µln q(x) - A(11) + µln(11/x 0 ). 
x 

From (2.3) and (2.7) it follows that </>(x 0 ) = </>'(x 0 ) = 0. Hence <t>(x)/(x - x 0 ) 2 is 
analytic at x = x 0 , uniformly in /1 (11 small). Note that µ/x 0 - 1, </>(O) = 0(112 ), µ - 0. 
Also, the series in (2.14) represents an analytic function for small values of µ, 'T and x. 
Whenµ= 0, the mapping (2.4) reduces to x = t. Hence 'T of (2.13) has to vanish in the 
limitµ= 0. 

Now we are ready to apply the following implicit function theorem (Chow & Hale 
(1982, p. 36)). 

THEOREM 2.1. Consider the equation F(w, z) = 0, where F: C X C 2 - C is analytic in a 
neighborhood of (0, 0) and F(O, 0) = 0, DwF(O, 0) =fo 0. Then there exists e > 0 such that 
for every z, lzl < e, the equation F(w, z) = 0 has a unique solution w(z) which is analytic 
in a neighborhood of zero. 

We take w = 'T, z = (x, µ) and we denote the left-hand side of (2.14) by F(w, z). It 
follows that 'T, and hence t, is analytic in x and µ for small values of these variables, and 
that the mapping (2.4) is uniformly one-to-one for small values of x and µ. It also follows 
that x is an analytic function of ( t, µ) in a neighborhood of (0, 0). For the remaining 
values ofµ and x the regularity is much easier to prove. 

The first term in the expansion 

x(t) = C1(µ)t + c2 (µ)t 2 + 
follows from (2.4) and (2.10), giving 

c1(µ) = lim ~ = lim exp[x - t - A(µ)]= exp[-A(µ)/µ], 
1--0 t 1-0 µ 

which limit is indeed analytic inµ at µ = 0. 
Remark that the implicit function theorem can be applied also for z = (x - x 0 , µ), 

since <t>"(x0 ) = O(µ), µ - 0. The limiting value of dt/dx at x = x 0 follows from an 
application of l'Hopital's rule on the right-hand side of (2.5). The result is (by using (2.3)) 

ddt I = + {l - µ2q"(xo)/q(xo)} 1/2 (2.15) 
x x-xo 
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where the sign of the square root is +, since we assume that t is an increasing function of 
x. The assumption in (2.2.d) that x 0 is a simple saddle-point implies that this expression 
does not vanish. For small values ofµ., the expansions (2.10), (2.11) give 

dt I = 1 - qzµ + ... 
dx x-x0 

where the series has a positive radius of convergence. 
The main result of this section is that the function/ of (2.8) is analytic in t and µ, where 

t and µ. range in connected domains containing the positive reals in their interior. Here 
and in the following sections we consider applications with complex analytic functions. 
However, the regularity of the mapping can be proved also for real functions h ( x) and 
q(x) belonging to continuity classes ck[ 0, 00 ). 

3. Asymptotic expansion. In this section we reconsider the asymptotic expansion of (1.1) 
as given in Temme (1983); z is the large parameter,µ.:= A./z is the uniformity parameter, 
µ. ;;:: 0. The conditions on/ are now more general than in the earlier analysis. 

3.1. Assumptions on f. We suppose that/ is holomorphic in a connected µ-dependent 
domain 0 1 of the complex !-plane, with the condition (2.2.a) with x replaced by t. Let R"' 
denote the radius of convergence of (1.3). Then we suppose moreover that 

µ.;;;;. 0, (IC fixed, IC;;:: 1/2). (3.1) 

We assume that/ has the following growth condition in 01 : there is a real fixed number 
p such that 

sup(l +ltl)-pl/{t)I {3.2) 
1en1 

is bounded for all finite values ofµ.,µ ~ 0. 
Remark 3.1. For IC < 1/2 the singularities of/ are too close to the saddle-point t = µ.. 

This case will be excluded here. 

Remark 3.2. The conditions on the location of the singularities of/ and (3.2) are quite 
natural for the examples in (1.2), when transformed into the standard form. 

3.2. Asymptotic scale. The coefficients as(JL) of (1.3) can be written as 

a ( ) = _1 j I ( t) dt 
s µ. 2'11"i ( )s+l ' c, t - µ 

(3.3) 

where C, is a circle with centreµ and radius r(l + µ, )"'; r may depend on µ but it should be 
uniformly bounded from zero and it should be small enough to keep C, inside 0 1• Using 
(3.2) we obtain the bound 

(3.4) 

where 

M,(µ) = [l + µ, + r(l + µ)"]P sup (1 +ltl)-pl/(t)I. (3.5) 
IEC,U[ 0,oo) 
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For later purposes, Mr(µ) describes also the growth of l/(t)I on [O, oo). We introduce 
the sequence { if; r} by defining 

t/;s = t/;s(z,µ) = M,.(µ)(1 + µ)-sKz-s(l + ;\)'12 , S = 0,1,2,.... (3.6) 

THEOREM 3.1. { tj; s} is an asymptotic sequence as z -> oo, uniformly inµ ~ 0. 

Proof. 1/ls+ilifis = (1 + A)112(1 + µ)-Kz- 1 ~ z-l/l whenµ~ 0 and z ~ 1. D 

Remark 3.3. The value of K is important here, the value 1/2 being critical: 
(i) The theorem is not true when K < 1/2. 
(ii) When K > 1/2, {if; s} is also an asymptotic sequence as µ -> oo, uniformly with 

respect to z ~ z0 > 0 (z 0 fixed). 
(iii) When K = 1/2, we have i/ls = M,(µ)zs!lXs' with Xs = [(1 + µz)/(z + µz)]-' 12 ~ 1 

(s ~ 1). { Xs} is not an asymptotic sequence asµ -> oo. 
3.3. Asymptotic nature of the expansion (1.4). The expansion (1.4) is written as 

OCJ 

z'-F,,,.(z) - L as(µ)Ps(;\)z-s; { i/ls(z, µ)} as z-> oo, (3.7) 
s=O 

where for the notation we refer to Olver (1974, p. 25) or to Erdelyi & Wyman (1963). The 
functions Ps ( ;>..) are polynomials in ;\ defined as 

PS(;\)= r(\) fo""'x'--le-x(x - ;\) 5 dx, s = 0,1,2,. . ., (3.8) 

of which the first few are given after (1.4). They follow the recursion Ps+ 1(;\) = s[P,(;\) + 
;\ P5 _ 1 ( ;\)), s ~ 1. In the proof of the following theorem we also use 

- ( 1 loo A-I -x1 \s P, ;\) = f( ;\) 0 x e x - ;\ dx, s ~ o. (3.9) 

By applying Laplace's method it is found that 

PS(;\)_ 17 -1;2(2;i..r12r( s ~ 1 ), ;\->oo. (3.10) 

To prove (3.7), we need a representation of the remainder. Let us write (1.3) in the form 
n-1 

f(t) = L as(µ)(t - µ}' +(t - µrRn(t, µ). 
s=O 

Then we obtain for (1.4) 

F,_(z) = z-'-[~>,(µ)Ps(;\)z-s + z-nEn(z, ;>..)], 

where the remainder En is defined by 

z'- 1""' z-nEn(z, ;\) = f(;\) 
0 

t'-- 1e-z1(t - µrR,,(t, µ) dt. 

(3.11) 

(3.12) 

(3.13) 

THEOREM 3.2. The expansion (3.7) is a uniform asymptotic expansion for z -> oo, the 
uniformity holding with respect toµ E [ 0, oo ). 
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Remark 3.4. According to the definition of generalized (uniform) asymptotic expansion, 
we have to prove 

n = 0,1,· ·., (3.14) 

as z - oo, uniformly inµ. ;;;::., 0. 
3.4. Proof of Theorem 3.2. The interval of integration in (3.13) is split up as follows 

[O, oo) = A_u [t_, t+) u A+, (3.15) 

where 

A_= [O, t_], A+= [t+, oo), t ±= µ ± r1(1 + µ)", 0 < r1 < r, r1 fixed,(3.16) 

with r as in (3.3). When t_ happens to be negative we replace it by 0. Fort E [t_, t+) we 
can write with C, as in (3.3) 

1 ( j( T) 
R"(t, µ.) = 2'1Ti le,( T - t)( T - µ.)"dT. (3.17) 

For -r E C, we have 1-r - tl ~ (r - r 1)(1 +µ.)".Thus we obtain as in (3.4) 

jRn(t, µ)I~ M,(:}l~l + µ\-"" (3.18) 
r r - r1 

Hence the integral over [t_, t+) in (3.13) gives a contribution which is bounded by 

~ M,(µ)(1 + µ.)-"" Jt.,.t>..-le-ztlt - µ.( dt 
r(> .. ) r"- 1(r - r1) t_ (3.19) 

= M,(µ)(1 + µ.)-""z-"Pn(>..)O(l), z - oo, 

uniformly inµ. ;;;::., 0. Using (3.10), we conclude that 

z - oo, uniformly inµ ;;;::., 0, where I± are the contributions to (3.13) due tot E A±· 
For these t-values R"(t, µ)is written as 

n-1 

(t - µ.)"Rn(t, µ) = f(t) - L a,(µ.)(t - µ.)8. 
s-0 

The proof is finished when we have shown that 

z>.. 1 -- t>..-le-z1g(t) dt = 0[1/in] 
f(X) a± 

asz - oo, 

(3.20) 

(3.21) 

uniformly inµ.;;;::., 0, where g(t) is l/(t)I or la,(µ)(t - µ)'I (0 ~ s::;;;; n - 1). In fact we will 
prove more than in (3.21), namely that the integrals in (3.21), and hence I±' are 
asymptotically equal to 0 with respect to the scale { ~s}· 

To give an estimate for I±' it is important to do so for the function 

!J>(t) = r!x) z>..t>..e-•1, t ~ 0. 
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For eachµ.~ 0 it attains its maximum value in A_, A+ at the endpoints t_, t+. So we 
proceed with <I>( t ±). 

LEMMA 3.1. We have the following bound 

ct>(t ±)..; [A./(2'1T)] 112 exp[-p±z(l + µ.r±<K)] 

where p ±~ Po> 0 (p0 fixed) and a+(K) = min(K, 2K - 1), a_(K) = 2K - 1. 

Proof. It easily follows that <l>(t+)..; [A./(2'1T)] 112 exp[-z.P+(JJ.)], where we used 1/f(A.) 
..; [A./(2'1T)]112e>..>._ -:>..and where 

Using 

1 _ ln(l + y):;,, y/2 
y """'l+y 

(y ~ 0) 

we have 

1/2 2(1 )2" 
( ) '1 + µ, 

.P+ µ. > " µ,+r1(1+µ,) 

When"> 1, we useµ.+ r1(1 + µ.)"..; (r1 + l)(µ. + 1)\ from which we obtain 

ri2{1 + µ,r 
</>+(µ.) > 2h + 1) 

When 1/2 ~ "~ 1, we useµ.+ r1(1 + µ.t..; (r1 + 1)(1 +µ.),resulting into 

r?(l + µ,)2"-1 
.P+(µ.) > 2h + 1) 

This proves the lemma for <I>(t +). 
For cl> ( t _) we take p _ = + oo for the µ-values that make t _ negative, and we continue 

with t _> 0. We have <P(t_) ~ [A./(2'1T)] 112 exp[-z<f>_(µ.)], where 

<f>_(µ.) = -µ.[y + ln(l - y)], y= 
r1(1 + µ.)" 

µ. 

with the condition t _ > 0, or µ. > r 1 (1 + µ,) \ which for y implies 0 ~ y < 1. Expanding 
ln(l - y) we obtain 

<f>_(µ.) ~ l/2rf(l + µ.) 2"/µ. > 1/2r12 (1 + µ.) 2"- 1 • 

This proves the lemma. D 
The bounds for the integrals in (3.21) are essentially given in the following lemma. 

LEMMA 3.2. Consider the following integrals 

G +(a, q) = j It - alqt:>..-Ie-zt dt, 
- il ± 
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where (a, q) = (µ, s) or ( -1, p ). Then we have the bounds 

G±(a,q) ~ r1- 1<P(t±)lt±- alq(l + µ)-"[z - a]- 1, 

Here a is a fixed real number, which is given below. 

z >a. 

Proof. When t_= 0, the D._ integral vanishes, together with <P(t_). So we can proceed 

with t _ > 0. We compute a real number a which satisfies 

Taking logarithms we write this as <P(t).::;; 0, t ED.±' where 

<P(t) = qlnl /±-=_:I+ µaln(t/t ±) - a(t - t ±). 

The derivative <P'( t) is non-negative (non-positive) on D._( D.+) when <P'( t _) ;;;; 0 ( <P'( t +) .::;; 0). 
This yields for a the inequality 

qt_ 
a ;;;; ----=------

1 t ± - al(t±- µ) 

All combinations of ±, a = µ., a = -1 show that the right-hand side is a bounded 

function ofµ(µ ;;;; 0," ;;;; 1/2) and we take a as the supremum of this function (and of the 

four combinations). With this bound for It - al q we obtain for G ± 

where T(t) = (t/t ±)" exp(t ± - t). Taking x = -In T(t) as a new variable of integration, 
we have 

G±(a,q) :::;It+- al <P(t+) e-<z-.,)x __ _ q loo dx 
- - o It - µI 

Replacing Jt-µl- 1 by the larger quantity It±- µl- 1 = r1- 1(1 +µ)-"we arrive at the 
desired results. 0 

Now we are ready to establish the final result for I± of (3.20). 

LEMMA 3.3. 

1±-0; {ifs(z,µ)} asz--+ oo, 

uniformly with respect toµ ;;;; 0. 

Proof. We consider the integrals in (3.21) for the following cases 
(i) g(t) = l/(t)j. Using (3.5) we obtain the bound 

M,( µ) [ 1 + µ + r ( 1 + µ. r] -PG ± ( - 1, p ) . 

The results of Lemma 3.1 and Lemma 3.2 show that this is o[ifm], m=O,l, ... , as 
z --+ oo, uniformly inµ. ;;;; 0. 

(ii) g(t) = las(µ.)(t - µ.)51. We now have the bound 

M,(µ.)r-s(l + µ.)-s"G±(µ., s), s = 0,1, ... ,n - 1. 
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Again it easily follows that this is o[ if,,,]. 
This proves the lemma and Theorem 3.2. O 

113 

Remark 3.5. When K > 1/2, <I>(t ±) is exponentially small as z--> oo, uniformly in 
µ ~ 0. When K = 1 /2, this is not true. Then the factor (1 + µ) - " in the bound for 
G ±(a, q) in Lemma 3.2 is needed to absorb 1(12 which occurs in the bound of <l>(t ±) in 
Lemma 3.1. See also Remark 3.3 for the peculiar case K = 1/2. 

3.5. Error bounds. Using (3.10), (3.19) and the smallness of I± (see (3.20)) it follows 
from the proof of Theorem 3.2 that (3.13) satisfies 

n = 0, l,· · ·, (3.22) 

where mn are fixed and approximately equal to 11"- 1122112nr(I/2 + n/2)r-". This gives 
an error bound for (3.12). 

A more rigorous approach is based on computing the maximal value of R,,(t, µ) in 
(3.13). When a,,(µ) =f. 0 and a,,+,,,(µ) =f. 0 we define 

M,,(µ) =sup IR,,(t, µ)I (3.23) 
r;;.o la"(µ)I + Om\an+m(µ,)(t - µ)m\ 

m = max(O, -[n - p]), where[·] is the entier-function, 8,,, = 1 (m ~ 1), 80 = 0. This 
choice of m is based on (3.2) and it makes the function at the right-hand side of (3.23) a 
bounded function of t on [ 0, oo). With this definition we obtain 

IEn(z )I~ M,,(µ) { la,,(µ)IP,,(/\) + 8,,,lan+m(µ)IP,,+m(!..)z-m}. (3.24) 

The value of M,,(µ) may be determined by t-values far from the point t = µ. In these 
cases the bound in (3.24) grossly overestimates the actual error. Therefore it is preferable 
to seek a majorant that concentrates upon values near t = µ. Modifying Olver's method 
for Laplace integrals (see Olver (1974, p. 89)) we introduce a number a,, such that 

IR,,(t, µ)I~ Mla,,(µ)l[(t/µ)- 11 e 1-1<] 0" (0 < t < oo). (3.25) 

Mis an arbitrary factor exceeding unity. 
The best value of a,, is given by 

a,,= supx,,(t, µ) (3.26) 
t>O 

where 

( ) _ lnlR,,(t, µ)/(Ma,,(µ))I 
Xn t,µ, - t-µ-µln(t/µ) · (3.27) 

For small It - .ul we have 

-In M + ~(t - µ) + O(t - µ) 2 

x,,(t,µ)- 2 3 
(t-µ,) +O(t-µ) 

(3.28) 

and it follows that a,, is finite. It depends onµ. In place of (3.24) we derive for z > a,, 

IEn(z)I~ M[a,,(µ)1(1 - a,,/z)-"[.P,,(>..- µa,,)Q,,, 

Qn = (1 - a,,/z)-1'[(>.. - µa,,)/e] 110"f(/.. - µa,,)/f(>..). 
(3.29) 
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In applications an is small. When z - an and;\ = µz are large the factor Qn is close to 
unity, which follows from the Stirling approximation for the gamma functions. In fact we 
have 

(3.30) 

where 

(3.31) 

Example 3.1. With f(t) = 1/(1 + t), (1.1) reduces to the exponential integral. In this 
case Rn(t• µ)/an(µ)= (1 + µ)/(1 + t). Hence (3.23) gives Mn(µ)= 1 + µ. For largeµ 
this factor is unacceptable large for the bound (3.24). The function Xn(t, µ) of (3.27) is 
positive on (0, T) with T = (1 + µ)/M - 1. Numerical calculations give with M = 1.1 
the following table for an. Note that Xn and an do not depend on n, in this example. We 
also give the values of Qn of (3.30) when z = 5. 

TABLE 1. a. and Q. of(3.29),/(t) = 1/(1+t),M=1.1, z = 5. 

µ (Jn Qn µ (Jn Qn 

0.5 0.912 1.114 25 0.206 1.022 
1.0 1.207 1.155 50 0.108 1.011 
2.5 1.078 1.132 100 0.055 1.006 
5.0 0.755 1.086 500 0.012 1.002 
7.5 0.570 1.063 1000 0.006 1.001 

10.0 0.456 1.050 5000 0.002 1.000 
15.0 0.325 1.035 10000 0.001 1.000 

Remark 3.6. The exponential integral is considered in our previous paper, sections 3.5 
and 6.1. The error bounds of the present section are new and are not given there. 

Remark 3.7. Error analysis based on (3.17) (by deforming C, into a contour around the 
positive T-axis) gave rather poor numerical results, compared with (3.24) and (3.29). 

To evaluate the bounds in (3.24) and (3.29) it is convenient to have expressions for 
P,.(;\) defined in (3.9). Recall that for n even Pn(;\) = Pn(;\), the polynomial (3.8). In 
general we have 

Pn(> .. ) = ;\nn![un +(-lrvn]/f(;\); 

u,,, Pn both satisfy the recursion nA.wn = (n - l)wn-l + wn_ 2 with initial values u0 = 
f(;\, ;\), v0 = y(A, A), u1 = -v1 = e-"A")l!'- 1. It follows that P1(;\) = 2e-"A;\"A/f(;\), 

w3 = [Wo +(A+ l)w1]/(3;\2 ), 

ws = [(6 + 5;\)Wo +(6 + llA + 2A.2 )w1]/(30;\4 ) 

where ws is us or v •. Using the above initial values for u, and v., P3 and P5 easily follow. We 
have 

.... 
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For integer values of a, the incomplete gamma function f(a, z) is an elementary function: 
n m 

r(n + 1, z) = n!e-' :E ~-
m=o m. 

3.6. A related expansion. In Sec. 5 of Temme (1983) a related expansion for (1.1) is 

obtained by partial integration. For this expansion the sequence { fs( t)} is used, which is 

defined by l 0 (t) = l(t), 

f (t)=t!!_fs(t)-J,(µ) s=0,1,2,···. (3.32) 
s+l dt f - µ ' 

Then the expansion reads 

Fh) ~ ,-t~: /,(µ )z-' + z-"E:( z, A) l (3.33) 

E*(z A.)= ~100r"'- 1e- 211 (t) dt 
n ' r( ;\) 0 Jn • (3.34) 

The coefficientsfs(µ) can be expressed in terms of as(µ). We have 

fo(µ) = ao(µ), !1(µ) = µa2(µ), 

!2(µ) = µ[3µa 4 (µ) + 2a 3 (µ)], (3.35) 

/ 3(µ) = µ[15µ 2a6 (µ) + 20µa 5 (µ) + 6a 4 (µ)]. 

An interesting point is that in (3.33) the parameters z andµ are separated from each other, 

whereas in (3.7) the parameter;\ = µz explicitly occurs. 

From (3.32) it follows that Is is holomorphic in !JI' as is f itself. By induction it follows 

I.(µ)= (1 + µ)qs- 2'"MJµ)O(l), µ;;;. 0, (3.36) 

cf. (3.5), where q = max(K, 1). When K;;;. 1/2, {f,(µ)z-s} is an asymptotic scale for 

z ~ oo uniformly with respect to µ ;;;. 0. When K > 1/2 the same is true for µ ~ oo, 

uniformly with respect to z, z ;;;. z 0 > 0; z 0 fixed. 

An error bound easily follows from (3.34). Let !J 1 contain a sector containing the 

positive real t-axis in its interior. From (3.2) and Temme (1983, section 2) it follows that 

sup(l + t)s-plfs(t)I 
t;;.O 

is bounded for fixed finite values of µ, µ;;;. 0. For those n for which In(µ)* 0, we 

introduce a number a: such that 

(O<t<oo), (3.37) 

where M* is a fixed arbitrary factor exceeding unity (cf. (3.25)). Then E:(z, ;\)of (3.27) is 

bounded by 

\E:(z, A.)i ~ M*IJn(µ)\Qn, 

where Qn is given in (3.29) (replace an by a:). 

The best value of a: is given by 

ln\fn( t )/( M* fn(µ) )I 
t - µ - µln(t/µ) . 

(3.38) 

(3.39) 
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Example 3.2. With/(t) = 1/(1 + t), we have 

/2(t)//2(µ) = [(µ + l) 2t(µt - µ - 2)];[,u(,u - 2)(t + 1)3), ,u =I= 2, ,u =fa 0. 

Take M* = 2. For the ,u-values of Table 1, ,u = 2.5 gives a positive at-value. For the 
remaining ,u-values we can take at = 0. 

3.7. Expansions for loop integrals. In Temme (1983) loop integrals of the form 

G~Jz) = f(~: l) JW>ez 1t-A.-lf(t) dt (3.40) 
- 00 

were considered. The asymptotic expansion is in this case 
00 

GA.(z) - ZX L (-l)'as(,u)Ps(-A.)z-s, z--> 00, (3.41) 
s=O 

with as and Ps as in (1.4). This result remains valid when f depends on ,u with the 
assumptions of section 3.1. The domain of holomorphy of /(t) may be different of course. 
Again, the expansion holds uniformly with respect toµ:= "A/z in [ 0, oo ). The asymptotic 
scale is as in (3.6), (3.7). Error bounds may be constructed as in section 3.3. A suitable 
contourisforthatpurpose 

L = { t = pe;8lp(<t>) = µ<j>/sincp, -'TT< et>< w }, ( 3.42) 

the path of steepest descent for the integral in (3.40). 
3.8. Extension to complex parameters. In Sec. 2.2 we considered the regularity of the 

transformation x--> t(x) with emphasis on nonnegative µ-values. It is possible to repeat 
the analysis for complex µ-values; the essential step, Theorem 2.1, is not restricted to real 
values. It follows that we can assume that f of (1.1) is a holomorphic function of t and µ in 
a domain Q1 x !Jµ c C2. Both domains QI' Qµ satisfy (2.2.a) with x replaced by t, µ, and 
for some d. 

Complex values ofµ= "A/z occur when "A and or z are complex. Let fJ = ph z, v = ph "A, 
x = ph µ, with v = B + X· For the convergence of (1.1) at t = 0 we need - l/2w < v < 
1/2?T. The convergence at t = oo is determined by fJ. Suppose we can rotate the path of 
integration of (1.1), or deform it at oo, such that the upper limit is at ooe;1, - a ~ y ~ f:J 
where a and {3 are positive numbers. Then the range for Bis -1/2?T - {3 < fJ < l/2?T + a. 
Given Bin this range and fixing y E ( - a, /3) we can try to deform the path of integration 
of (1.1) into a contour P so that it has the following properties: 

(i) 0 E P, µ E P, ooeh E P; 
(ii) Plies in !J1; 

(iii) Re e;8[ cf>( t) - cp(,u )] is positive on P, except at t = µ, and is bounded away from 
zero as t --> 0 or oo along P; here <j>(t) = t - ,u ln t. 

Let v E (- l/2?T, l/27r) and D(v, fJ) c Qµ be the subset of the pointsµ for which a 
path P can be constructed having the above three properties. Then for fixed values of 
µ E D(v, fJ) a theorem of Olver (1974, p. 127) can be used to prove that (1.4) is valid for 
these values of z and ,u. A uniform version of this requires extra conditions, for instance 
on the location of the singularities of f. 
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4. A ratio of gamma functions. The expansion of this section is related to 
00 

f*(z) - L ckz-k, 
k=O 

z ~ oo, lph zl < 'Tr, 

117 

(4.1) 

c0 = 1, c1 = 1/12, c2 = 1/288, c3 = -139/51840; f*(z) is defined in (3.31). By dividing 
this expansion by a similar one with z replaced by z(l + µ) we obtain (with A = µz) 

00 

f*(z)/f*(z +A) - L dk(µ)z-k z - 00, (4.2) 
k=O 

d0 (µ) = 1, d 1(µ) = µ/[12(1 + µ)], d 2 (µ) = µ2/[288(1 + µ) 2]. It is expected that this 
expansion holds uniformly with respect to µ ~ 0. In this section we give an expansion for 
f(z)/f(z +A) which is related to the above expansion. Starting point is the Beta integral 
and bounds for the remainder follow from the previous section. The formal above method 
will not give this information. However, (4.2) can be obtained by the methods of Sec. 3.4, 
with (4.7) as starting point. 

Another known expansion is 

I'(z )/f(z +A.) - z-x{1 - A.(A. - 1) + A.(A.2 - 1)(3A. - 2) + ... } (4.3) 
2z 24z 2 

(z - oo) as given in Olver (1974, p. 118) and in Luke (1969, Vol. I), where more 
expansions of this kind can be found. All these results lack uniformity with respect to 
unbounded A-domains; (4.3) can be used when A < < z112• 

4.1. Uniform asymptotic expansion. A simple transformation in the Beta integral gives 

(4.4) 

which is of the form (2.1); q is an entire function and the conditions in (2.2) are readily 
verified. The saddle-point of (2.2.d) is 

x 0 = ln(l + µ), µ = A/z, (4.5) 

and the transformation (2.4) reads 

x - µln(l - e-x) = t - µIn t +A(µ), 
A(µ)= (1 + µ)ln(l + µ) - µ. 

The transformed version of (4.4) is 
e-zA(µ,) oo 

Fx(z) = f(A) la tx-1e-z1f(t) dt, 

[ ] t dx /(t) = (t - µ)/ 1 -(1 + µ)e-x = -. 1 - e-x dt 

The first few coefficients of (1.3) are given by 

(4.6) 

(4.7) 

a 0 (µ) = (1 + µ) 112 , a1(µ) = [µ - 1 + a 0 (µ)]/(3µ), a 2 (µ) = l/[12a0 (µ)], 

a 3 (µ) = (8µ 3 + 12µ 2 - 12µ - 8 +(8 + 8µ - 15µ 2 )a0 (µ)]/[540(1 + µ)µ 3 ], (4.8) 

a 4 (µ) = [µa 2 (µ)/12 - 4(1 + µ)a 3(µ)]/[6µ(l + µ)]. 
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A possible starting point for the computations is the differential equation (obtained from 

the second line in (2.9)) 

tr(l + µ) fi = [(1 + µ)t + r 2 ]/ +(µ.- l)r/ 2 - µf 3 , 

with r = t - µ. Forµ= 0 the function f(t) reduces to t/(l - e-r). Hence, the limiting 

value a 5 (0) satisfies a5(0) = (-1)5B5/s!, s = 0, 1,2,· ··,where Bs are the Bernoulli num­

bers. 
The normalized expansion (1.4) reads (cf. (4.2)) 

f*(z )/f*(z +A) - s~O =:~:~ Ps(A)z-s - [ 1 + l2z(~ +A) + · · ·]. (4.9) 

Information on error bounds is given in section 4.3. 
4.2. The logarithmic mapping (4.6). The singular points of the mapping are the points in 

the x-plane 

gm= 27Tim, xn = ln(l + µ) + 27Tin, m,n E Z\{O}. (4.10) 

At ~m the function ln(l - e-x) is singular and corresponding t-values are at infinity in the 

right half-plane (whenµ > 0). Forµ = 0 the points gm are regular. 

The points xn are the zeros of dt/dx. Note that x 0 = ln(l + µ) is a regular point. 

Corresponding values tn(µ) := t(xn) are defined by the equation 

t n - µ In t n = µ - µ ln µ + 2 7T in , nEZ\{0}. (4.11) 

We consider solutions with lph tnl ~ w. Forµ--. o+ the points tn(µ) approach 2win. In 
the limitµ. = 0 these points are regular. 

Writing t = µs, s = pei8, µ. > 0, p > 0, -7T < {) < w, we obtain from (4.11) the set of 
equations 

{ 
p cos {) - 1 - ln p = 0 
psin{) - {) = w, w = 2wn/µ. (4.12) 

Let w > 0. When 0 ~ p ~ 1 and {) ~ 0, then p sin{) ~ {) and hence the second equation 

cannot be satisfied. It follows that p should be larger than unity, to have roots of (4.12) in 

the half-plane Im t > 0. A more detailed analysis shows that the solutions of (4.12) 

( w > 0) in the half-plane Im t < 0 belong to a different branch of the many-valued 
function tn(µ), which is implicitly defined by (4.11). 

To obtain the asymptotic behaviour oft n for largeµ we introduces n = t nl µ. Then for s n 

(4.11) reads 

Sn - 1 - In Sn = 27Tni/µ. 

Hence, for largeµ., sn .... 1 and it easily follows 

µ .... 00, (4.13) 

where i 1/ 2 = e"i/4 . The other sign of the square root gives an estimate for a solution 
belonging to the above mentioned different branch. 

It follows that the number K introduced in Sec. 3, see for instance (3.1), equals 1/2, 

which is already predicted by the ratios aja1, a1/a 0 of the coefficients in (4.8). For r in 



LAPLACE TYPE INTEGRALS 119 

(3.4) and (3.17) we take a positive decreasing function r(µ), with r(O) < 2w, r(oo) < 
(2w)112, (only t ±l are relevant for the singularities of j). The set {t1(µ)1µ;;;.: O} in the 
complex !-plane is drawn in Fig. 4.1. It cuts the imaginary t-axis at 2wi. The set 
{f _1(µ)1µ. :::> O} is obtained by reflexion, since t1(µ) = t_ 1(µ). The parametric equation 
of the curve is given in (4.11) with n = 1. The curves for tn(µ), n ;;;.: 2, are located above he 
curve for ti(µ). 

The domain nr of holomorphy of j can be taken µ-independent by using for Re t > 0 
the curves fort ±1(µ) (see Fig. 4.1) as its boundary with arbitrary extension into Re t < 0, 
where f has no singularities. For the real variable case this domain suffices. A more 
general µ-dependent domain nt comprises several Riemann sheets, with branch points 
t ± n(µ) defined in (4.11). 

The analytical aspects of the conformal mapping x ~ t( x) are well understood when 
we consider the image of the strip in the complex x-plane 

S = { x = u + ivlu E R, lvJ < 2w}. 

The boundary points g ± 1 = ± 2wi of S (see (4.10)) are mapped into infinity, the boundary 
points x ±l = ln(l + µ) ± 2rri are mapped into t ± 1(µ). In Fig. 4.2 we give the image of a 
finite part of S. A local analysis at C and D shows that in the !-plane the vertical distance 
between C and D is approximately µw (when C and D are close to 2wi in the x-plane). At 
t 1 ( µ ),f has an algebraic singularity, 

J(t) = o[(t - 11(µ))- 112], t ~ t1(µ). 

Im t1 (µ) 

2n 

Re t1 (µ.) 

Fig. 4.1. Singular point 11 ( µ.), µ. ~ 0 

x-plane t-plane 

B c D x, E B 
,,:,. c 

tll:- ID 

0 0 IE 

A Xo F A µ F 

Fig. 4.2. The logarithmic mapping ( 4.6) 
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4.3. Error bounds. We apply the method of section 3.5 leading to (3.24). It appeared that 
in this case the bounds Mn(µ) are slowly varying functions of µ; we checked the cases 
n = 2, 3. In (3.23) m = 0 for these values, since p = 1 (cf. (3.2) and (4.7)). Numerical 
values of Mn(µ.) are given in Table 4.1. We also give the ratio 

n = 2,3, 

where En is the error defined in (3.12) and En is the a priori computed bound in the 
right-hand side of (3.24). Since Mn(µ) is rather close to unity, an approach as leading to 
(3.29) is not considered here. 

TABLE 4.1. Bounds Mn and ratios on; z = 10. 

µ. M2(µ.) 82 M3(µ) 83 

1 1.015 1.014 1.325 9.48 

5 1.081 1.078 1.129 12.8 

10 1.125 1.121 1.040 14.2 

Observe that 83 is much larger then 82 • An explanation is found in the occurrence of 
Pn('>..) in (3.24). For even n we have Pn('>-...) = Pn(>-...). For odd n, PnC>..) may be much larger 
than Pn( ;\ ), and this may overestimate the bound En considerably. 

Application of the method leading to (3.38) with n = l, z = 10 gives Table 4.2; af is 
defined in (3.39) and 8i = Et /Et. where Et is the exact error in (3.33) and Ef the bound 
in (3.38). 

TABLE 4.2. Parameters aj of (3.39) and ratiosoj; z = 10. 

M* = 1.1 M* = 1.5 
µ. E* 1 a* 1 8* 1 a* 1 8* 1 

1 0.0042 5.375 1.250 0.999 1.581 
5 0.0070 1.697 1.204 0.269 1.515 
10 0.0076 1.240 1.172 0.170 1.508 

Observe that in this example the ratios 8f are rather close to M*. Larger z-values will 
make Qn of (3.38) closer to unity and hence they will make M* and 8i more equal. 

The case n = 1 in this example gives an error bound for the expansion ( 4.2), taking only 
the term d 0(µ) = 1. 

4.4. Representation as a loop integral. The expansion (4.1) has the interesting property 
that the reciprocal function has the expansion with coefficients (- l)kck. This gives for 
f*(z + A.)/f*(z) the expansion (4.2) with coefficients (- l)kdk(µ.). A similar operation is 
also possible for ( 4.4) by using 

(4.14) 
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A. = µ/z. This representation is of the form (3.40) and it can be obtained from Luke (1969, 
Vol. I, p. 34). Using the transformation (4.6) we obtain 

G,(z) = f(l + A.)ezA'.µ) J(O+)eztt-,\-lf(t) dt, ( ) 
,... (1 + µ )2'17'1 - 00 4.15 

with/(t) given by (4.7). A suitable contour for integration is given by (3.42). Observe that 
Lis the path of steepest ascent for (1.1) and that (0, oo) is the path of steepest ascent for 
(4.15). This makes the expansions of (1.1) and (4.15) quite symmetric. We have (cf. (4.9) 
and (3.41)) 

( 4.16) 

where the first as(µ) are given in (4.8). This expansion is valid for z --> oo, uniformly with 
respect toµ = A./z, µ E [ 0, oo ). 

4.5. Extension to complex parameters. We expect that the expansions (4.9) and (4.16) are 
valid for complexµ and z values in the range phz E (-77, 77), ph(l + µ) E (-77, 'IT). For 
µ = -1 the mapping (4.6) is not defined; x 0 becomes - oo in that event. For all 
remaining complex µ-values the mapping and the coefficients as(µ) are defined properly. 
A more detailed analysis is needed to trace the singularities of f(t) and the path of 
integration for complex values of µ. These technical aspects are not considered in this 
paper. 

5. Modified Bessel function K"(z). We give a brief description how the methods of Sees. 
2 and 3 can be used to derive an expansion for Kv(z) as z--> oo, which is uniformly valid 
in v. The starting point is 

1/2( /2)" - z 
K.(z) = 'IT f(v: l/;) fooo e-zx[x(x + 2)]"-1;2 dx. (5.1) 

The saddle-points of exp(-zx)[x(x + 2)],\ are 

x 0 = eY - 1, x 1 = -1 - e-y (5.2) 

where sinh y = µ, µ = A./z, ;\ = v + 1/2; we suppose z > 0, ;\ > 0. The mapping (2.4) is 

x - µln[x(x + 2)] = t - µIn t +A 
A= coshy -(y + ln2)sinhy - 1. 

With 

t dx 
f(t) = (t - µ)J[x2 + 2x(l - µ) - 2µ] = x(x + 2) dt, 

we obtain for (5.1) the standard form (1.1) with 

F,\(z) = 77- 1/ 2(z/2)-"ez(A+l)Kv(z). 

The first few coefficients of (1.3) are found to be 

a0 (µ) = [2(1 + exp(2y))]- 112 , 

( _ 2a0 (µ) [ _ 2y ( )] a 1 µ) - 3 . h 2 cosh y 2e a0 µ . sm y 

(5.3) 

(5 .4) 

(5.5) 

(5.6) 
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The function t(x), which is defined by (5.3), is singular at the negative saddle-point x1 

and at x = - 2. The latter is mapped into oo and it has no influence upon the asymptotic 
expansion. The point x1 is more interesting. The corresponding point t 1 in the !-plane, 
giving a singularity for f ( t ), satisfies the equation 

t1 - µlnt 1 = µ[l + 2(y - cothy) -lnµ ± i'lT] (5.7) 

where phx1 = ± 77; the two signs give conjugate pairs of solutions. For µ = 0 we have 
11 = x 1 = -2 (the mapping (5.3) reduces to the identity and t1 is no longer a singular 
point). By writing t 1 = µs 1, (5.7) reads whenµ =I= 0: 

s1 - lns1 - 1 = 2(y - cothy) ± i7T. 

Hence, for y---+ oo we have s1 = (2y ± i7T)(l + o(l)), t1 - µ[2ln(2µ) ± i'lT], µ ~ + oo. It 
follows that K of (3.1), (3.4) and (3.6) satisfies K = 1. 

The expansion for K.(z) reads 
00 

K.(z) - (27T/z)1/2e-z(coshy-ysinhy) L as(µ)Ps(A)z-s, (5.8) 
s=O 

z ~ oo, uniformly with respect to µ, µ. ;;:. 0. Since K is greater than 1/2 it is also an 
expansion for v ---+ oo, uniformly in z ;;:. z0 > 0 (see Remark 3.3). Inspection of coeffi­
cients as(µ) shows that it is allowed to take z0 = 0. The above expansion is related to the 
expansion given by Olver (1974, Ch. 10.7). 

Loop integrals are also available; for instance for the /-function we have 

7Tl/1(zj2)"e-zf"(z) = f(~ ~ 1) f(O\zx[x(x + 2)]-/..-ldx, 
'/TI - co 

= A + 1/2, which can be transformed by using (5.3) into the standard form (3.40). 

6. Parabolic cylinder functions. The methods of Sees. 2 and 3 can be applied to the 
parabolic cylinder function with integral representation 

z"e-l/4z2100 i ' D (z) = e-z <x+112x lx"-1dx 
-• f(v) o (6.1) 

z > 0, v > 0. With µ = v /z 1, the saddle-points are x 0 = sinh2 y, x 1 = - cosh2 y, where 
µ. = 1/4 sinh2 2y. The expansion obtained in this way is not essentially new compared 
with known expansions for parabolic cylinder functions. A corresponding loop integral is 
also available; it represents the above function for negative values of its argument. The 
representation is 

z-"e114' 2 j+ioo 2 2 D (-z) = ez <x+112x lx-v-1 dx 
-v-1 r;::;:-:: ' 

iv 2'1T - ioo 
(6.2) 

where the path cuts the real axis at a positive x-value. 
For both functions (6.1) and (6.2) we can obtain related expansions valid for z ~ oo 

holding uniformly inµ.= v/z 1, µ.;;:. O. 
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