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Introduction. Let x be a partition of n, Ky = (K’,...,Km), Ky 22 > 0,
~nptroduction Zee 2 ¥ 2

in = n. We identify partitions (Kl,...,Km) and (K], ..,Km,O, .,0). One

de‘es a partial order on the set of all partitions as follows

' 1 r r
(1.1) (Kl,....Km) > (Kl,...,Km) - I K < I Ki, r=1, ..., m
im) i=}

Thus for example (2,2,1) > (3,2). If k > k' we say that x specializes to k' or

that K is more general than x'. The reverse order has been called the dominance

order. It occurs naturally in several seemingly rather unrelated parts of pure

and applied mathematics. Some of these occurrences can be labelled by the words
and phrases

(i) Snapper conjecture (on the representations of symmetric groups)

(ii) Gale Ryser theorem (on existence of (0,l)-matrices)

{iii) Muirheads inequality (a symmetric mean inequality)

(iv) Gerstenhaber-Hesselink theorem (on orbit closure properties of SLn
acting on nilpotent matrices)

(v) Kronecker indices (on the orbit closure, or degeneration, properties
of linear control systems acted on by the socalled feedback group)

(vi) Double stochastic matrices (when is a partition "an average' of another
partition)

. (vii) Shatz's theorem (on degeneration of vectorbundles (over the Riemann

sphere))

These will be described in more detail in section 2 below.

In addition the same ordening plays a considerable role in theouretical chemis—

try in the theory of chiral molecules, i.e

. molecules that are optically active
[)1,16}18].

Certain of these manifestations of this specialization order are known tn be

intimatedly related. Thus (i), (ii), (iii) and (vi) are very much related [2,13]
and so are (v) and (vii) [15]. This talk is a report of work dene ‘ointly with
Clyde Martin of Case Western Reserve Univ, which shows that all these manisfesta-

tions of this order are intimately related and that their commen reeting ground,

su to speak, seems to be the ordering defined by clusure relatirns o! the Srhubere-

Cells (with respect to a standard basis) of a Grassmann manifeld. l.e. a Schuberc-
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cell SC(}) is more general than SC(A'); in symbols: SC(X) > SC(A'), iff
SClA) > SC(v").

This order in turn is much related to the Bernstein-Gelfand-

Gelfand ordening cn the Weyl group Sn' It is in fact the quotient ordering induced

by the canonical map of the manifold of all flags in R™P to the Grassmann mani-~

fold of n-planes in (n+m)-space. Full details will appear elsewhere [8].

“

2. SEVERAL MANIFESTATIONS OF THE SPECIALIZATION ORDER

7

2.1. The Snapper conjecture. Let K = (Kl,...,rm) be a partition of n. Let 8

be the corresponding Young subgroup SK = S’< Xeo X S'< , where S’< is seen as the'
i m i
subgroup of S acting on the lerters Kbt Ko+ ly, vouy K+t K, (IF Kn « 0

i1 1
the factor S, is deleted). Take the trivial representation of SK and induce this up
m

Let £(x) denute the resulting representation. It is of dimension n!/K]!...Kml

to S
n

and it can be easily described as follows. Take m symbols Brs eees 8 and consider

all asscciatrive (but noncommutative)words €y er £ of length n in the symbols
oAy such that a, occurs precisely i times. Let N(Kl,...,xm) = W(<) denote

this set. Tuen Sn acts on W(K) by 0((.l ces En) -

al,

.o . Let V(k) b
€a(1)%(2) " Coqmy Lot V(<) e
the vectorspace with the elements of W(k) as basis vectors. Extending the action of
Sn linearly this gives a representation of Sn and this is the representation p(x).
Now the irreducible representations of Sn are also labelled by partitions. Let

[x{ be the irreducible representation belonging to the partition k. Snapper [21]

proved that [k] occurs in p(k') only if x < k' and conjectured the reverse impli-

cation. Liebler and Vitale [14]) proved that k¥ < x'-w p(k) is a direct summand of

p(x') which 0f course implies that x < k' = [K] occurs in p(x'). Another proof of

this implication (via a different generalization) was given by Lar [13].

2.2. The Gale-Ryser theorem ([5,19]). Let L and V be two partitions of n. .
Then there is a matrix consisting of zero's and one's whose columns sum to b and

whose rows sum to o 1ff v > p*. Here u* is the dual partition of yu defined by

uy - ¥ {jiu, > i} (Uf S is a set then ¥ S stands for the number of elements in
32
that set) For example (2,2,1)* = (3,2).

2.3, Duubly stochastic matrices. A matrix M -'(mij) is called doubly stochastic

if mij >0 fur all i,j and if all the columns and all the rows add up to 1. Let u

and ¢ be two partitions of n. One says that u is an average of v if there is a
doubly stochastic matrix M such that ©. = Mv. Then there is the thecrem that u is an
average of v iff L > Vv (in the specialization order).

2.4, Muirhead's inequality. One of the best-known inequalities is (x,. .xn)]/nﬁ
-1

n o {x +...ex .
1 n

A far-reaching generalization due tc Muirhead [22] goes as follows.
Given a vectsr p = {p),...,pn), Py > 0 one defines a symmetrical mean (of the non-

negative variables xl‘...,xn) by the formula
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- P
(2.5) lplx) = 7' x,"“) x:°‘“’
o]

where the sum runs over all permutations o € S“. Then one has Muirhead's inequality
which states that [pl(x) < [q](x) for all non-negative values of the variables

Xy osees X iff p is an average of q, 80 that in case p and q are partitions of n
this happens iff p > q. The geometric mean - arithmetic mean inequality thus

arises from the specialization relation (1,...,1) > (n,0,...,0).

2.6, Completely reachable systems. Let Lm a denote the space of all pairs of
’
real matrices (A,B) of sizes n x n and n x m respectively. To such a pair (A,B)

y associates a control system given by the differential equations
(2.7 %X = Ax + Bu, x €R", u €R"

where the u's are the inputs or controls. The pair (A,B), or equivalently, the

system (2.7), i‘.l said to be completely reachable if the reachability matrix

R(A,B) = (BIAB! ... EAnb) consisting of the (n+}) (nxm)-blocks AiB. i=0, ..., n
has maximal rank n. In system theoretic terms this is equivalent to the property
that for any two points x, x' eR" one can steer x(t) to x' in finite time star-
ting from x(0) = x by means of suitable control functions u(t).

Let L:fn denote the space of all completely reachable pairs of matrices (A,B).

The Lie-group F of all block lower diagonal matrices (]S( 2), S € GLnGR), T € GLNGR),

: c .
K anm x n matrix, acts on Lnrn by according to the formula
»

(2.8) (A,B)8 = (sas”'+sBTs™'K,SBT), g~ (: 2)

The generating transformations' (A,B) » (SAS-I,SB) (base change in state space),
B) = (A,BT) (base change in input space) and (A,B)~— (A+BK,B) (state space
feedback), occur naturally in design problems (of control loops) in electrical
engineering. It is now a theorem of Kalman [10] that the orbits of F acting on
L::n correspond bijectively with partitions of n. The partition belonging to
(A,B) € L'c‘fn is found as.follous. Let dj be the dimension of the subspace of r"
spanned by the vectors Albr, r=1, ..., m i < j where br is the r-th colummn of B.
Let ej y dj - dj-l’ d_l = 0 then the partition corresponding to (A,B) is the dual
partit‘ion of (co.e],ez,...,en). i.e. ¥(A,B) = (eo,e)....,en)*. The numbers
Ky 2.02 k0 making up k(A,B) are called the Kronecker indices of (A,B). (Because
the problem of classifying pairs (A,B) up to feedback equivalence, i.e. up to the
action of P, is & subproblem of the problem of classifying pencils of matrices

studied by Xronecker: to (A,B) one associates the pencil (A-sIEB)).
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Let B‘_ be e :rbit of F acting on L:rn labelled by x. Then & second theorem,
»

noted by a fair m.=ter of people independently of each other (Kalman, Hazewinkel,

Byrnes, Martim,... , Sut never yet published, states that e( o GK. == K > K .

In control thecrez.:

terms this theorem says something about degeneration of sys-—
tems or system [ail.:re.

2.9. Vectort.males over the Riemann sphere. Let E be a holomorphic vectorbundle

cver the Riemann :z:zhere § -PI(Q). Then according to Grothendieck [4] E splits as a
direct sum of Iize tundles )

(2.10) E=L(k) @ ...0Lk) Q

’
where L(i) is the .zigue (up to isomorphism) line bundle over P (@) of degree
i, L) = L(H®, i€

<

Z, where L(1) is the canonical very ample line bundle of
]Pl(u‘.). Thus each hziomorphic vectorbundle E over P (@ defines an m-tuple of
integers ¥(E) (ir fecreasing order)., The bundle E is called positive if Ki(E) >0
for all i = 1, ..., =. Concerning these positive bundles there is now the following
degeneration resul: 2f Shatz [20]. Let Et be a holomorphic family of =-dimensional
vectorbundles over P‘(G). Then for all small enough t, K(Et) > K(EO). And inversely

if ¥ > ' then trere is a homorphic family Et such that K(Et) = g for t small ¢ ¢ 0
and K(Eo) w it

2.11. Orbits of nilpotent matrices. Let Nn be the space of all n X n complex

nilpotent matrices. Consider Sl.nem) or GLnCG) acting on Nn by similarity, i.e.
QS = .'SAS—l (A € !in, 5 € GLn(c)). By the Jordan normal form theorem the orbits of
‘his action are iabelled by partitions of n. Let B(k) be the orbit consisting of

11 nilpotent matrices similar to the one consisting of the Jordan blocks J(Ki),
Ca ], ...

» ®whers J(<.) is the K, X K, matrix with 1's just above the diagonal

d zero's everywrere else. Then the Gerstenhaber - Hesselink theorem says that

k) D 0(k') iff v < x'. (Note the reversion of the order with respect to the result
crbits described in 2.6 abovel)

2,12, A schematic overview of the various relations between all these manifest-

ons of the spezialization order can be found in section 5 below.

3. 5PASSMANN MANIFOLDS AND CLASSIFYING VECTOR BUNDLES

Bafore outlining how the various manifestations of the specialization order are
iected to each zther we need to defime Grassmann manifclds, the classifying

.orbundle over them and their Schubert cell decowposition (in section 4 below).

3.1, Grassvann manifolds., Fix two fnumbers m,n € N. Then the Grassmann manifold

+1 . . +1
rn) consists .£ all n-dimensional subspaces of e, Thus for example Gl(tm )

ne m dimensionil complex projective space tm(t). Let t::;ﬂﬂn) be the space of

n
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all complex nx(n+m) matrices of rank n. Let GL_(E) act on this space by multiplica-
tion on the left. Then the quotient space t“"(“"“‘)/cL“(c) is Gn(r.“"‘“). The identifi-

‘ . . - |+
cation 1s done by associating to M € tnx(n =)

reg the subspace of tn+m generated by the

rows of M.

Gn(ln+n) inherits a natural holomorphic manifold structure from Enx(n*m). For a
detailed description of Gn(ln+m) cf. e.g. [17].

3.2. The classifying bundle. We define a holomorphic vector bundle £, over

G_ (¥
Benm

*m) as follows. For each x let the fibre over x, gm(x), be the quotient space
[ 5 /x. More precisely define the bundle n, over Gh(tn+m) by

(@ n, = L) €6 (8™ x €7 | v o€ x}

with the obvious projection (x,v) x. Then § is the quotient bundle of the

trivial vector bundle Gn(tn+m) x cn+m by n,- Both Em and n, can be used as universal

or classifying bundles (cf. [17] for n, as a universal bundle). Let E be an m-dimen-
sional vector bundle over a complex analytic manifold 1. Let I'(E) = I'(E,T) be the
space of all holomorphic sections of E, i.c. the space of all holomorphic maps
s : 1 + E such that p.s = id, vhere p : E -+ I is the bundle projection. The uni-
versality, or classifying, property of £ in the setting of complex analytic mani-
folds now takes the following form. Suppose V< I'(E) is an (n+m)-dimensional sub-
space such that for each x € N the vectors s(x), 8 € V span E(x), the fibre of E
over x. Now ideunty V o €™ ™ and associate to x € T the point of Gn(tn*m) represented
by Ker(V -+ E(x)). This gives a holomorphic map ?E IO Gn(tn+m) such that the pull-
back of gu by means of wz is isomorphic to E, wécm o~ E, It is universality proper-
ties such as this one which account for the importance of the bundles Em and/or nn
in differential and algebraic topology [17], algebraic geometry and also system and
control theory (cf. [24] for the last mentioned).

he bundle 5‘ has a number of obvious holomorphic sections, viz. the sections
defined by ci(x) = e mod x where ei is the i-th standard basis vector of cn+m’
i=1,...,m. And, as a matter of fact, it is not difficult to show that
r({m, Gn(ln+m)) is (n+m)-dimensional and that the Elsenrs€y from a basis for this
space of holomorphic sections.

4 4. SCHUBERT CELLS
’ —_—

4.1. Schubert cells. Consider again the Grassmann manifold Gn(€m+n). Let
A= (Al""’An) be a sequence of n-subspaces of e such that 0 ¥ A, € A

i
To each such sequence A we associate the closed subset ’

< ... CA .

2 ¥ P n

4.2) SC(A) = {x € Gn(c“"’“) | dim(x 0 &) 2 i)
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and call it the closed Schubert-cell of the sequence A. In particular if

i i i i tural aumbers
0« Ai <A, <L < ,‘«a < ném is a strictly inmcreasing sequence of ns

< n*m then we define fsetting % = (I\l,-..,)\n))

X A

(.3 sc(a) = 5C(E 1, o, €D

. on¥m _ i
where € is viewed as the subspace of all vectors in ¥ whose last o¥m-r coordi
nates are zero.

P - n4m . -
4.4, Flag manifolds and the Bruhat decomposition. A flag in € is a sequence
: ki d
of subspaces F = F, < ...<F_ _C c™™ such that dim P, o= i, Let FL(€™ ) dencil
- n

¢
the analytiz manifold of all flags im Cnﬂn. There is a natural hclomorphic mapping

+

?i(!lnm) - Gn(tmm) given by asspciating to a flag F its n~th element Fn' The flag
manifold can be seen as the space of all cosets Bg, g € Gan(t) vhere B is the
Borel subgroup of all lower triangular matrices im GL_  (E). The mapping Gan(C) +
Fi:tnm) associates to a matrix g the flag F(g) whose i-th element is the subspace
of £¥'° spanned by the first in row vectors of g.

Now view § L+t Che symmetric group on n+m letters as a subgroup of Fan(C)

jrigiid ‘

by letting it permute the basis vectors (a(pi) = Oo(i))' Then in Gan(E) we have
the socalled Bruhat decomposition

.5 GLm—m“) = g BoB (disjoint unionm)

Where ¢ runs through the Weyl group Snﬂn of Gan(E). An analogous decomposition
heids in a considerable more general setting (reductive groups, cf. [25], section 28).

4.6, The Bernstein-Gelfand-Gelfand order. The closure of a double coset BgB

is necessarily « union cf other double cosets (by comtinuity). This defines an order-
ing on the Weyl group Snﬂn defined by ‘

(4.7} o>t « BoB > BB

This ordering plays a considerable role in the study of cohomology pf flag spaces

{11 and also in the theory of highest weight representations [27, 26).

lLet H be the subgroup of Sn+m consisting of all block lower triamngular matrices
of the form (SH 0

5] 522), 5, €6,(®), 8,, € G (®), S, and arbitrary mXnmatrix. Then,

. R . 4
using the remarks made in subsectiom 4.4 above, one sees that Gn(tnm) is the coset

space (Hg | g € Ol p(E)}. Now let o € Smm and let A\{ € ...< X be the o natural

numbers in increasing order determined by c(e)‘ ) € (e‘, P en), i= 1,...,n0.

Then one easily sees that the image of BgB undér GLn*m(l:) > Gn(tnm), i.e. the set

of all spaces spanned by matrices of the form hob, b € H, b € B is the open Schubert
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cell of all elements in Gn(tnm) spanned by the rows of a2 matrix of the form

® ,...*¥0...00 0
... . *0

.
L. FF % . %D...0

n b

column x‘ column )‘2

where the last * in each row is nonzero. The closure of this open Schubert-cell
is the Schubert-cell SC(A) defined in (4.3) above.
”One easily checks that

(4.8) SCW) € SCO) @y €A, i=1, oy n

and this order on the Schubert cells SC()), or the equivalent ordening on n-
tuples of natural numbers, is therefore a quotient of the BGG order on the Weyl
group Snﬁ. It is the induced order on the set of cosets (Sn x Sm)o, o€ S\,l

+m
(Obviously if 1 € Snxsn. then m(ex )E {el. veey en) if a(eL) € {e], ceey en}).

(And inversely the Weyl order 1s determined by the assotiated orders of
Schubert cells in the sense that ¢ > 1 in Sn iff for all k = 1, ..., n-1 we have
for the associated Schubert cells in Gk(ln) that $C(o) « SC(1); this is a rather
efficient way of calculating the Weyl order).

5. INTERRELATIONS

Now that we have defined the concepts we need we can start to describe some
interrelations between the various manifestations of the specialization order we

di‘ued in section 2 above.

5.1. Overview of the various relations. A schematic overview of the various

interconnections is given by the following diagram. In this diagram we have put
together in boxes the manifestations which are more or ic  .nown to be intimatedly

related and have explicitly indicated the new relations co be discussed in detail

below.
’
» Gerstenhaber=~

Hesselink Theorem

Snapper conjecture ri(ronecker indices of systems
+

i

iGale~-Ryser theorem b D
[Doubly Stoch. Matrices
Muirhead's inequality

t B
-

{ Holomorphic vector bundles

N’} 1 g
Schubert-cell order 11
(BGG order)

1
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5.2. On the various relatiouns. The menifestations of the epusializatica

order in box I sre well kmown Lo be intimstedly zelated {2,9,11,131. Vaery much

related is alse the Ruch ~ Schonhofer theorem [18] which states that

< , » denotes the wzual iansrprodust

(which couni? how wmany craspatations theve ave in commou), iud

wheya o(u) is the

5 obtalaed by Inducing the alierna

2
represeatation of § . The link between this theorew and the Gals - Ryser theoran
e 4

are given by Mackey's imtertwining mumber theorem [29], 344 a Coleman’s

characterization [28) of Zouble costs of Young subgrouvs.

s7am is essentially established by giving e

two thesyoms and thess can then

v oa valiiplicicy sgusl to the aumber of ssmisten

it is e2sy to show thet the exlstesce of a seaistandard x-tablesu

that = < A. The inverse implication seems much move difficulr to
show divsctly. Yet this gives still snother liak between the LIbler - Viteie thevrem
(Srapper conjecture) and the cemtenh;bez - Hesselink theorem. Both cam be secen &8
consequences of the statement that theze exists a semistandaxd i-tableaux of typs

y iff A < u, cf. sectiom 7.6 belew.



'y‘pc A is the Young diagram of x with the boxes labelled by the integers |
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6. YOUNG'S RULE AND THE SPECIALIZATION ORDER

6.1. Young disgrams and semi-standard tableau. Let x = (x‘,...,,( ) be a
partition of n. As usual we picture x as a Young diagram; that is an a:ny of
n boxes arranged in m rows with x; boxes in rovw i, as in the following example

(6-2) x = (4,3,3,2)

Let ) -()-‘.- .Z.l.) be another partition of n. Thén a semistandard x-tableau of

o8
uch that i occurs li times, i = 1,...,s and such that the labels are nondecreasing
in each row of the diagram and strictly increasing along each column. An example of
s (5,3,2)-tableau of type (4,2,2,2) is

(6.3)

w N -
N -

Ve shsall use n(x,)) to denote the number of different semistandard x-tableau of
ty.pc A,

6.4. Young's rule. Let [p] denote the irreducible representation associated
to the partition p. Then Young's rule (cf. [30]) says that

6.5. Theorem. Let x and X be partitions of n. Then the number of times that
the irreducible representation [1] occurs in the permutation representation p(x) .
equal to the number of semistandard A-tablesux of type «x.

6.6. The specialization order and semistandard tableaux. The implication

i > Ao p(A) is a direct summand of p(x) follows easily from this. First, however,

ate a lemma which is standard and seemingly unavoidable when dealing with the
specialization order. Its proof is easy.
6.7. Lemma. Let ) = (kl,...,A‘) and x = (x‘,...,xn) be two partitions of n
and suppose that A > x and (A > y > x) = (u = X or u = «) for all partitions u.
Then there are an i and a j, i < j such that T A, )\i <Ay kg = xj-—l,
lj > xill, g ® Ags 8 ¢ i,j

Pictorially the situation looks as follows
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I.e. a box in row j which can be removed without upsetting # (row i) > # (row j+1)
(which means that we must have had )‘j > )‘j+l) is moved to a higher row i
which is such that it can receive it without upsetting # (row i) < # (row i-1)
(which means that we must have had xi < )\i_l).
Of course not all transformations of the type described above result in a
pair A,x such that there is no u strictly between X and x

6.8. Lemma. Let A and x be two partitions of n and suppose that there
exists a semistandard )-tableau of type x. Then xk > .

Proof. In a semistandard A-tableau of type x all labels i must occur
in the first i rows (because the labels in the columnsbmuat be strictly {€
increasing). The number of labels j with j < i is Kyteeodiy and the number Qf ’
places available in the first i vows is xl+...¢xi. Hence Al+...+ki 1:,0.-&:1
for all i so that A < x.

6.9. The implication [x] occurs in p(A)= x < A. Wow suppose that [x]
occurs in p(A). Then there is semistandard x-tableau of type A by Youngs
rule so that x < ) by lemma 6.8.

This implies of course that: (p{x) is a subrepresentatiom p(X)) = (x < 1).

Because there is obviously a semistendard x-tableau of type ¥ (in fact precisely
one).

7. HILPOTINT MATRICES AND SYSTEMS

As was remarked in section 5 above the connection A in the diagram above
esgentially consists of an almost identical proof of the two theorems. We start
with @ proof of the Gerstechaber-Hesselink thecrem. The first imgredient which
we shall also need for the feedback orbits theorem is the following slementary
remark on ranks of matrices.

7.1, Lemma. Let A{t) be a family of matrices depending polyncmislly on‘
a complex or real parsmeter t. Suppose that rank A(t) <€ raak A(to) for all t. »
Then rank A(2) = rank A(to) for all but finitely many t. This follows {mmedia-
tely from the fact that s polynomial in ¢ has only finitely amanmy zercs.

7.2. Lemma. Let & be a nilpotent n*m matrix snd let F be such that-

(7.3) F(Rer A*) c Rer A7, i = 1,2,...,n

Then tA + (i-t)F is similar to A fol all but finitely mamy ¢.
Proof. We show first that

(0.8) Ker(ta + (1-0)F) % = ger al

for 21l t. Indeed from (7.3) with i=] yo see that F(Xer 4A) = O and it follows
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that (tA + (l-t)F)(Ker A) = 0 which proves (7.4) for i=1,
Assume with induction that (7.4) holds for all i < s. Then

(th + (1-F))%Ker A% = (ta + (1-0)F)®* ' (eA + (1-0)F)Ker A®
c (th + (1=0)B) % Tker A%} = 0

because A Ker A® c Ker A®"! and 7 Ker A®  Rer A®™' by (7.3). This proves

(7.4). Using 7.4 we know by (7.1) that for almost all t (take ¢

o™V

(7.5) rank(cA + (1-0)F)} = rank(al)

and because tA + (1-t)F) and A are both nilpotent it follows that tA and
(1-t)F are similar for the all but finitely many t for which (7.5) holds.

Now let A be a nilpotent matrix. We say that A is of type < = (xl,...,xm)
if the Jordan normal form of A consists of m Jordan blocks of sizes X X is

i=1j,...,m. B.g. A is of type (4,2) iff its Jordan form is

[o1 00007
0010f00
0001/00
0000|00
0000|001
000000,

Consider Ker A, Ker Az, ...y Ker A". Then A is of type x iff dim(Ker AY) =
KT e+ :7 ie1,...,0 vhere «* is the dual partition of x. Thus in the
example the kernnl spaces Ker A are spanned by the basis vectors \el,e },
leregresiegls (e 0500585ec), (e 0,050 0050860

7.6. Semistandard tableaux and nilpotent matrices. Let A be a nilpotent

matrix of type x. Let y be another partition of n and suppose that there is a

u‘—tnbleau of type x*. Then there is nilpotent matrix F such that

F(Ker A® ) € Ker A1 ! for all i. This matrix F is comstructeli as follows. First

choose a basis LIEERRTL of B” such that the first x? + ...+ <; elements of

this bas®s form a basis for Ker Ai, i=1,...,n. Now consider a semistandard
u‘-tabléau T of type x*. Take the Young-diagram of u* and label the bexes of
it by the basis vectors LIERERTL N in such a way that the boxes markedwith { in the
semistandard tableau T are filled with t“2 basis vectors

I3 1 (‘ SO
e‘,*.‘. PP IR ez‘#...#x?' This can be done because T is of type s

tth therd Lre precisely KT bokes labelled i in T. Call this mew u*-tableau T'.

Now define F by F(ei) =ey if e is just above e; in the u*-tableau T' and

F(ej) = 0 if e; occurs in the first row of T'. Then obviously
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: . i i-1
dim Ker F' = W+ ...+ % s0 that F is of type y and F(Ker A') < Ker A

because the p*-tableau T was semistandard which implies that the labels are
strictly increasing along columns.

An example may illustrate things. Let x* = (2,2,2), y* = (4,1,1). A
u*-tableau of type «x* is then

1123
2
3

Inserting LIERERTL S in such a way that e ,e, are put into boxes marked with

1, e.e, in boxes marked with 2 and e8¢ in boxes marked with 3 gives for
example

which yields an F defined by F(e6) = e, F(et’) e, F(ei) - F(ez) - F(es) -
- F(es) = 0.

7.7. Proof of the Gerstenhaber-Hesselink theorem (Cf. 2.11 above).
The implication = is immediate. Indeed if A € 0(x) converges

to A € 0()) as t + 0 then nuk(At) 2 nnk(A ) for small t and all i = 1,...,n.

Hence dim(Ker Abs dim(Ker A ) for small t so that x, +...+ k., S A, +...*+ )

1 i
for all i, hence x* > \* and x < . To prove the oppclssite inp;icacion it
suffices to show this in case that ¢ is obtained from A by a transformation ¢
of the type described in lemma 6.7. (Because if 0(x) > 0()) and O(X) 2 O(w),
then O(x) > 0(A), and hence O(x) o O(y)). Then )\* is obtained from «* by a
similar transformation. We recall the picture

K* — A*

Now put 1's in the first row of x*, 2's in the second row, etc. Transport the

box m together with its label. The result is obviously a semistandard A%-
tableau of type «*. Now let A be a nilpatent matrix of type x. Then by the
construction of 7.6 above there is an B of type A such that F Ker Al © Ker A -1
Then tA + (1-t)F is similar to A for almost all t by lemma 7.2 so that there

is a sequence of A's in O(x) converging to F € O(\), proving that 0()) < O(x),
which finishes the proof of the theorem.

Incidentally it is quite easy to describe F directly without ressorting
to semistandard tableaux.
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7.10. Kronecker indices of systems. Let (A,B) € L

bt a completely
reachable pair of matrices. Recall that this means that the matrix

R(A,B) = (B { AB AB | ... ! ADB) has rank n. Recall that the Kronecker indices
x(A,B) of the pair (A,B) are defined as follows. Let for i = 1,...,n"

.11 Vi(A,B) = space spanned by the column vectors of A3B, j = 0,1,...,i~!

Let d; = dim Vi(A.B), e, = di - di-l' d0 = 0. Then e; S e; |, i=1,...,n"1,

and x(A,B) is defined as the dual partition of n
9.

wvhere e(A,B) = (cl,...,en).

x(A,B) = e(A,B)*

The orbits of the feedback group (cf. 2.6 above) acting on L:rn are
precisely the subsets of L;rn with constant x(A,B). Let U(x) be this orbit.
’

The "degeneration of systems theorem" now says

7.13. Theorem. U(x) > U(X) ¢ xk > )

Here follows a proof which is virtually identical with the proof of
the Gerstenhaber-Hesselink theorem given above. P1rat if (A B ) - (A B ) as
t =0, 1(llut »B) € U(x), (Aj,B0) € U(X), then rank(A Bt 5... ! AtBt'B 2
rank(A 0!...~AOBO Bo) for emall t. Hence dim V., (A B ) 2 dim V. (A BO) for
small t. Hence e(A ,B ) < e(A BO) for small t and x(A »B ) > x(A BO) for
small t which proves the xnplxcatxon -,

To prove the inverse implication it suffices to prove this in the case
A is obtained from x by a transformation as described in lemma 6.7 (exactly as

the case of the Gerstenhaber-Hesselink theorem). This means that «* is

ootained from A*by a similar transformation:

A% *

4
>

Now let (A,B) € U(x). Choose a basis CITRTRRL for RY such that the first
KT ...t KI elements of LIERRRTL form a basis for Vi(A,B), i=1,...,n.

Now write in the LEEERTT in x* in the standard way and transpcrt R

backwards together with its label. E.g. if A\* = (4,3,2,2,1) and <* = (4,4,2,1,1)

then this would give
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Then the vectors in the first i rows of x* are a basis for Vi(A,B). Now define
a pair (F,G) in terms of A* as follows. G consists of the vectors in the first
row of A* (plus a zero vector in case x? > A?), and ¥ is defined by F(ei) = e, ,
if e, occurs just below e, in A* and F(ei) = 0 otherwise. Then (F,G) hns‘A

following properties (all immediate) .

&
(i) (F,6) € U(X) < L:rn

(ii) Vi(F,G) [ vi(A'B)

(iii) Fvi(A.B) c viH(A’B)
(0f course (ii) follows from (iii) together with V](F,G) < Vl(A,B)). How con~
sider At = tA + (l-t)F, Bt = tB + (1-t)G. Then

(7.14) Vi(At'Bt) c Vi(A,B) for all t

(7.15) vi(At’Bt) - Vi(A,B) for all but finitely many t
Indeed obviously V](At,Bt) c V‘(A,B) because of (ii) above for i = 1. Now
assume that (7.14) holds for all i < r. Then
vr(At’Bt) = (tA + (l—t)F)vr_l(At,Bt) + vr_l(At,Bt)
< tav__ (a,B) + (l-t)FVr_l(A,B) * Vo (A,B)

<V (A,B) + V (A,B) + V__,(A,B) = V_(A,B)

This proves (7.14) and (7.15) follows by means of lemma 7.1 (with t
because

o= "

. i—l 1 )
dim vi(A:’Bt) - tank(At B i...1B)

t t

Now (At'Bt) - (F,G) € U(X) as t » 0 and by (7.15) (and the theorem that the
orbits under the feedback group are classified by the Kronecker indgces) all
but finitely many of the (At’Et) are feedback equivalent to (A,B). Thus
U(x) 3 (F,G) € U(x) proving the theorem.

7.16. Remarks. The two proofs are very similar (up to duality in a
certain sense). This can be given more precise form as follows. For a nilpotent

matrix N € N lec s(N) = ((4,8) € L7 | N'A''B = 0, i = 1,...,n) and for
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(AB) € L:‘:n let £(A,B) = {N€E N_ | ¥4l Be0, i = 1,...,0). Then using the
‘clulta above one shows that

£ 800 = 0(0), 8 £(30x)) = 0(x)

g0 that t and 8 set up a bijective correspondence between the closures of orbits

jn the two cases and hence induce a bijective order preserving correspondence
petween the orbits themselves.

8. VECTORBUNDLES AND SYSTEMS

This section contains a modified version of the comstruction of Martin-
[15] sssociating a vector bundle E(f) over the Riemann sphere Pl(l:) to

every £ = (A,B) € L::n. This version makes it almost trivial to see that E(X)
splits as a direct sum of line bundles L(xi), i=1,..,,n wvhere x = (Kl,...,Kn)
is the set of Kronecker indices of Z.

The first thing needed is some more informstiom on the universal bundle (S

8.1, On the universal bundle En -+ Gn(l.‘n*-). Let V be a complex n+m dimensio-
nal vectorspace and V¥ = ucnt(v,l:) its dual vectorspace. Given x € Gn(l'.mm) define

x% = {v® € V8 | <v*,v> = 0 for all v € x} where <, > denotes the usual pairing

V¥xV + €. Thea x%* is m—dimensional and xw x* defines a holomorphic isomorphism

(8.2) d : Gn(V) + G‘(V")

How v € V/xz defines 2 unique homomorphism vI : x* » € as follows: vT(a) = <a,t>
for all a € x%, where ® € V is any representant of v. This is well defined
because <a,b> = 0 for all b € x if a € x*. This defines an isomorphism between

-l ¢
the pullback (4 ’)'E‘ and the dual of the subbundle ny of G‘(V*) defined by

‘ ny = ((x*,w) € G _(V*)xv® | w € x%}

it follows that & iz a subbundle of an n+m dimensiomal trivial bundle
Gn(!nﬂ‘) x Bm. Becauvae Gn(lnm) is projective (compact) all holomorphic wmapi
Gn(tnn) + B are constant so that the space of holomorphic sections

r(Gn(t":?) I R Gn(tnh)) is of dimension nsm. As & subbundle of a
trivial (o+m)-dimensional bundle ;‘ can therefore have at most {(n+m) linearly
independent holomorphic sectiocns. But we have already found (m+m) linearly inde-
pendent sectioms viz. the Byooerno defined by Ll(x) = e mod x where ey is th
i-th atandard basis vector of £°"®, Therefore

8.3) dim T(E,, cn(r,“")) =p+m

Mow let 4 € GLM(I). Then A induces & holomorphic sutomorphism A of
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G-(I:m‘) defined by x> Ax. Then of course there is an induced isomorphism

A : €®®/ax + €"™/x which for varying x induces an isomorphism

(8.4) ME By s A€ G ()

8.5. The line bundles L(i) over Pl(l). The Riemann sphere P‘(t) - 82 can

be obtained by gluing together two copies of € along the open subsets € ~ {0}
by the isomorphism

£~ {0} » £~ {0},8 tas"!

A line bundle over P'(C) is then obtained by giving a holomorphic ho-orphin.\
£~ {0} x T+~ {0} x € linelar in the second variable compatible with the ©~
above isomorphism. Obviously the only possibilities are (s,v)ms (o-l, liv) for

i €EZ. This gives us the following commutative diagram of {dentifications

TxC > ©N{0}xE DNM0}xE © ExC
h (vies (87 stw) '\‘
'11\ ;'2
\“ o C-l‘t /‘
€ > o0} {0} <« ¢

The corresponding holomorphic line bundle is denoted L(-i). A section of L(-i)
consists of two holomorphic mappings 8,8, of the form s~ (s,£(s)), tr> (t,g(t))
such that s £(s) = g(s-l). It readily follows that f£(s) must be a polynomial of
degree < ~-i. Thus

.

(8.6) . diar(L(i)) = 0if i <0
(8.7) diar(L(i)) = i+l ££4 2 0

8.8. The (modified) Martin-Hermann vectorbundle of a system. Let I = (A'
be a pair of real or complex matrices of sizes nxn and pxm. Then (A,B) is com—

pletely reachable (cr) iff the nx(n+m) matrix (sI - A | B) is of rank n for all

complex values of s. So if £ = (A,B) is cr ope can define a holomorphic map *I by

(8.9) ¥ pl(r) ~ cn(:“"'). s~ Row(sI-A|B), =~ Row(I]|0)

where Row(M) for am nXm+n) matrix M de.notcs the subspace of € generated by
the rows of M. The vectorbundle E(I) over P‘(l) is now defined by

(8.10) E(T) = é;‘

8.11. Proposition. E(f) depends only on the feedback orbit of X.
Indeed one easily checks that ¥ = (A,B), I' = (A',B') € L:’n are feedback
t
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equivalaent {cf.2.6.above)iff thare ave comstsni lnvertible matrices P, § such
that P(aI-A1B)Q = (sI~A'{38"). Yow Row(PM) = %
1

and postmultipiication with

changes 9o 10 O, © ¥, and B{1') =» &l {f } » 0.i 3 by 8.4
& ¥ & b : K ) 4
sbove, proving the propesition.
Thus te daters thag 4 = (#,8) canpuical

e B we

i
form which means that 4,8 ¢

fo1 ¢ | 1
? o o

B |
0 0!

@
&
8
€
o
=

=

L=
© :
£y ece

01 L
! P
+] | G iy
i b ot
! i Wk
. o
N i
;
L PN

Fld)in projeeiiea

Lasdwayany

ciuves that L,

s independent soctions and heuce 1 nuifies Li 88 the

I T P s e omn erl i .
bundle L{ %2 desevibed sbove in {8.3). ¥We hawe veproved the theovem of Martin
and Herwenn {15]

8.12. Theoven. Keeping the notations introduced above im (8.10) and (8.35)
we have B{I) = L(Ki)'
is}
8.13. The correspondence B. (cf. the diajran in section 5 asbove). The mapping
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I~ E(Z) is obviously continuous. Thus the result U(x) > U(A) «» x > A can be
deduced from Shatz's theorem (cf. 2.9). Inversely Shatz's theorem for positive
bundles over P](E) can be deduced from the result on feedback orbits because
every positive bundle arises as an E(Z). By tensoring with a suitable L(r), r

high enough, the result is then extended to arbitrary bundles over P (E)

9. VECTOR BUNDLES, SYSTEMS AND SCHUBERT CELLS

9.i. Parvitions and Schubert-cells. Let x be a partition of n. To x we

associate the following increasing sequence of n numbers 1(x).

(9214 = (2,310 41,643, T S ...+n<m_‘lrn+1,...,r1+...+-<m+;$ .
- d ———rt ~— _—

<1 x2 “m

Let Tj(x), j=1,...,n be the j-th element of this sequence. It is an easy
exercise to check that

(9.3) K> A w Ti(K) 2 ri(x) for all i = |,...,n

Thus the specialization order is a suborder of the inclusion ordening between
closed Schubert cells, because SC(1) D SC(t') = T2 Ti, i=1,...,n. And in
turn as we saw above in section 4 the Schubert-cell order is

BGG order on the Weyl group sn+m’

9.4. Systems and Schubert cells. Let (A,B) € L

a quotient of the

be a systeﬂ and as in
section 8.8 consider the associated holomorphic morphlsn vz : P (€) + ¢ (t ).

Suppose that (A,B) are in Brunc:.ky canonial form. Then simple inapec;xon of the
matrix (8T-A!B) (cf. the example below proposition 8.11) shows that

Im Vg © SC(t(x)), where « - «(A,B). Now let (A,B) be any system in L:fn. Then it
is feedback equivalent to a Brunovsky canonical one so that .
(sT-AiB) = P(sT- AO_B )Q for certain constant invertible matrices P,Q where )
(A ,B ) is a canonical pair. Premultiplication with P does not change *2 and

postmu1t1p11catxon with Q induces an automorphism of G (tn’mﬁ which takes the

"standard basis' Schubert-cell SC(t(x)) into another Schubert—cell of the same

dimension type. Thus we have shown.

9.5. Theorem. Let I € L:‘u. x = x(2) and let y, : ) » cn(:“") be the

Martin-Hermann morphism of z.’Then there is a Schubert-cell SC(A), A= (A ,...,A)
such that Im ¥y < SC(A) ard dim Ai - ii(x), where ri(x) is defined by (9.2)
The converse is also true but considerably more difficult to prove, cf.[8]:
9.6. Theorem. With the notations of theorem 9.5 let the Schubert-cell SC(B),
B = (Bl....,Bn),xn Gn(l ) be such that Im w < SC(B). Then dim Bi 2 Ti(t).
9.7. Vectorbundles and Schubert cells. Because every positive vectorbundle
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H .
over P (L) arises as the bundle E(I) of some system [ one has the obvious ana-
logues of theorems 9.5 and 9.6 for positive bundles over Pl(t.). Here the morphism
¥y must of courge be replaced by the classifying morphism (cf. section 3.2 above)

of a positive vector bundle E, and n+m and m are determined respectively as
i .
dim I'(E, 2 (£)) and dim E.

10, A PAMILY OF REPRESENTATIONS OF snﬂn PARAMETRIZED BY Gn(tnm)

i0.1. Comstruction of the family. Let M be the regular representation of

. That is M h i =
h at is as a basis e, 0 € Sm_m a::iimr € sn+m acts by t(eU) e 5 Now
(@PFider the universal bundle Em over Gn(!: ) and the (n+m) holomorphic sections
Eyoreeo defined by ei(x) ey mod x € tnmlx. Take the (m+n)-fold tensor pro-

duct of g, and define a femily of homomorphisms parametrized by Gn(cmm) by

(10.2) L M o+ Em(x)ﬁ(nm)

eg_‘l g ca(!)(x) 9...8 ec(mm)(x)

(More precisely (10.2) defines a homomorphism of vectorbundles

omy 8 (n+m)
Gn(t ) x M 3 ).

+ . .

The group snﬂ: acts on ﬁn(x)e(n @) by permuting the factors and it is a
simple exercise to see that o is equivariantwith respect to this action, i.e.
that xx(-rv) = nl(v) for all v € M, 1 € snm (Bere the product 7o € Smm ig inter-
preted as first the autoworphism o of {I,...,n+m} and ther the automorphism 7).

Thus Im LI 7(x) is a representation of Sn+m for all x giving us a family
)

and choosing m independent sections of L in & neighbourhood U of Xg this gives
‘milien of homomorphisms of representations

of representations parametrized by Gn(l‘.“ﬂ‘). Fixing a point X € Gn(mmm

x'
(10.3) M 2@ ey c ¢ (&™)

such that Im a; e w(x) for x € U,

10.4. Permutation representations and Schubert-cells (On connection D).

Letxecn(ln*-) be a subspace of e spanned by the re s of a wmatrix of the
form (m=8, n=5)
’ =% 00}j00¢0]0
0%**®0j00010
co=*=loo0olo
0000!"00
oo0cooic**|0
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where all the *'s are nonzero. Then obviously the representation w(x) of S8 is
isomorphic to p(R) with z = (4,3,1). Note that x is in the standard Schubert-
cell SC(t(x)), with x = (3,2,0). This holds in general and it is not difficult
to extend this to

10.5. Proposition. Let x be an m-part partition of m, & = (r;*),. .. ).
Then for almost all x € SC(r(x)), the representation w(x) of snﬂn contains the
representation (%) and for some x € SC(r(x)) w(x) = p(R).

Conjecturally the reverse holds also. That is if for almost all x in a
standard Schulbert-cell SC(A) we have that 7(x) contains p(X) then li > Ti(‘)'
i=1,...,n. ind I am even inclined to believe that if x € SC(x) and w(x) con-

ll

(sI-A}B) for a system £ = (A,B) in feedback canonical form (s ¥ 0, =), suggesting

tains (or is equal to) p(R) then Aoz Ti(l().

Note also that the matrices (10.5) are precisely the type of matrices

that there is a natural representation of Sw’m attached to I awaiting interpre-

tation.

11. DEFORMATIONS OF REPRESENTATION HOMOMORPHISMS AND
SUBREPRESENTATIONS

11.1. On proving Snapper-type results. Suppose we have given a continuous

family of homomorphisms of finite dimensional representations over € of a finite
group G

(11.2) n::M-»V

Suppose that Im LR for t ¥ 0 (and small) and Im Ty ™ Pge Then the repre-
sentation °g is a direct summand of p. This is seen as follows. Because the

category of finite dimensional representations of G is semisimple there is a

homomorphism of representations ¥ ¢ Im LI M such that L 00 = id. Then ‘

c b Im Tg * Imom, is still injective for small t (by the continuity of

t) which gives us Py 88 a subrepresentation and hence a direct summand of p.
It is almost equally easy to construct a surjective homomorphism

mow o+ Imomg (which is more or less what we shall do below in 11.3 in (a

ketch of) a proof of the Liebler-Vitale theorem that x < A = p(x) is ; direct
ummand of p(A)).

11.2. The inverse result. Inversely if 0 is a subrepresentation of p then
‘here is a family of representations V11.2) such that Im m, o p for t ¥ 0 and
Inm Ty Py and if p is generated (as a C{G]-module) by one element one can take

for M in (11.2) the regular representation. Indeed if 9 is a subrepresentation
of p then o = o9 p,-letw : M+p= 29 @ o, be a surjective map of represen-
tations Let o7 be the two components of =, Let g = (’0"1) be a section of

n. Then 950 " id, LITTI id, "8 - o, T8y ™ 0 and it follows that =(t)
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consisting of the components LI and ml is still surjective. Hence Im n(t) = p
and Im %(0) = Pge

11.3. On a2 proof of the Liebler-Vigale theorem. It is quite conceivable

that the grand family constructed in section 10 sbove contains all subfamilies
needed to prove the Liebler-Vitale theorem by means of the deformation argument
of section !l.1 above. So far, however, we have not found them. A somewhat more
complicated argument irmediately suggested by the structure of the family of

representations comstructed in section 10 above does give a proof. It is perhaps
best illustrated by means of an example.

' Consider am x € G3(l:5) spanned by the rows of a matrix of the form

1 -1 0 0 o
0 io-1 0 0
z o 0 -i t

Let El,...,fs be the imagés of the standard basis vectors e

) L in I:S/x.
Then f = f2’ fz = f3, fA = zf + tfs so that f and fs are a basis forts/x for

all values of z and t. Let (1)€ S be the Ldentity representation. The imageof
§') € Min (¢5/x)85 is by the deflmnon (10. 2) equal to
(

1.6 Fpef,0£,8 8, 8 fg=z2f,,,5%th g

where fllllS is short for fl ] fl 9 f] 8 f, 8 f5 and similarly for other 5-

tuples of indices. Symmetrizing the element (11.4) with respect to the permu-
tation (45) gives us

(11.3) 2y s * Erisy) 2t yss

Let V‘ be the subrepresentation of Im L (generated by the elemenr. (11.5).

(The representation Im L ie the subrepreaent:txon of ([ /x) 3eneraced by
1.4)). Now (11.5) is invariant under the Young subgroup SBxsz. Hence

dim v, s 5!/3'2!. On the other hand if t ¥ O then setting z = 0 in (11.5)

(which corresponds to the surjective map mentioned just above 11.2 associatec

to a family of representations) obviously maps vl onto the vactor space with

basis all symbols f . with three of the indices equal to ! and 2 equal to &

This is p(3,2) of dxmennon 5:¢/3!12! so that V ™ p(3,2° if t ¥ 0. Now for z #

set t =50 in (11.4) to obtain a homomorphism of representations
»

Im L o(4,1)

It is now not hard to prove that (cf. [7] for a detailed proof)
11.6. Proposition., The composed homomorphism of representations
p(3,2) o V] < In L p{4,1) is surjective

Thie then proves that p{4,1) is & direct summand of 5(3,2). The argumen
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generalizes without difficulty for partitions x > X such that A is obtained
from x by a transformation of the type described in 6.7 above.

This is by no means the easiest way to prove the Liebler-Vifale theorem.
It is perfectly easy to describe the morphism p(x) + p()) directly and then
the general analogue of proposition 11.6 yields the Liebler-Vitale result. This
proof uses no representation theory at all (except the definition of the per—

mutation representations p(x)); cf. [7] for details.
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