
JOURNAL OF COMPUTATIONAL PHYSICS 32, 27(}...279 (1979)

Note

An Algorithm with ALGOL 60 Program for the Computation of the
Zeros of Ordinary Bessel Functions and those of their Derivatives

1. INTRODUCTION

In this note we describe an algorithm for the numerical computation of the zeros
of the Bessel functions

Ja(x), Ya(x), J~(x), Y~(x). (1.1)

When a is real, these functions each have an infinite number of real zeros, all of which
are simple with the possible exception of x = 0. For non-negative a the sth positive
zeros of these functions are denoted by

ja.s' Ya,s, j~,s, Y~.s (s = I, 2, 3, ...) (1.2)

except that x = 0 is counted as the first zero of J~(x). For properties of the zeros
the reader is referred to the literature, for instance to Olver [3], or to his contribution
in Abramowitz and Stegun [1, Chap. 9].

In Section 2 we describe the algorithm for computing the zeros. It is based on a higher
order Newton process. In Section 3 we give methods for obtaining first approximations
of the zeros. We use asymptotic expansions as given in the literature. In Section 4 we
give the implementation of the algorithm as an ALGOL 60 procedure. In order to
compute values of the functions of (1.1) we use the ALGOL 60 procedures published
earlier in Temme [4], which procedures are not incorporated here.

2. HIGHER ORDER NEWTON PROCESS

It is well-known (cf., for instance, Hofsommer [2]) that, if a function satisfies a
second order differential equation, this fact may be used with advantage in the compu
tation of its zeros. In that event it is convenient to use a process in which derivatives
of the function are needed. Such a process is the Newton-Raphson method. We use a
higher order version of it.

Let/be the function, the roots of which are to be computed. Leto: be such a (simple!)
root and let x be a first approximation. If the approximation is sufficiently accurate
we have

o: = x - p(x)[1 + o:i(x)p(x) + o:2(x) p2(x) + CO(p3(x))]

270
0021-9991/79/08027f>-10$02.00/0
Copyright © 1979 by Academic Press, Inc.
All rights of reproduction in any form reserved.

(2.1)

with

AN ALGORITHM WITH ALGOL 60 PROGRAM

p(x) = f(x)/f'(x)

exi(x) = tf"(x)/f'(x)

ex2(x) = i{3[f"(x)/.f'(x)]2 -f"'(x)ff'(x)}.

By using the differential equation of the Bessel functions

271

(2.2)

(2.3)

the derivatives f" and/"' can be eliminated. Furthermore we remark that derivatives
of the Bessel functions can be expressed in terms of other Bessel functions by using

C~(x) = !!._ Ca(x) - Ca+1(x). x

In (2.3) and (2.4) Ca stands for la or Ya .

(2.4)

The expression (2.1) will be modified in several ways. A first modification comes
I from replacing p(x) = Ca(x)/C~(x) by r(x) = Ca(x)/Ca+1(x) (for the case of la and Ya)

and from replacing p(x) = C~(x)f C~(x) by r(x) = C~(x)f Ca(x) (for l~ and Y~). In
both cases p(x)/r(x) =@(I) for x--+ ex, hence the @-term remains of the same order,
if we change ex1 and cx2 in the right way.

A second modification comes from writing the quadratic polynomial in (2.1) as a
Pade-fraction. An expression of the type

x--+ 0, (2.5)

may be converted by Pade-methods into

x--+ 0, (2.6)

where, if cx1 =I= 0,

(2.7)

In an asymptotic sense (2.5) and (2.6) are equivalent, but numerically the fraction in
(2.6) may yield a better approximation to f than the polynomial part in (2.5). From
numerical experiments we concluded that this is indeed the case for the representation

I in (2.1).
A third modification of (2. I) comes from eliminating the derivatives of the Bessel

functions appearing in cx1 and ex2 of (2.2). In the following subsections we give more
details for the computation of the coefficients p and q appearing in the form obtained
after the modifications, viz.

ex = x - r(x) ~ ! ~~~~~ + @(r4(x)), x --+ ex. (2.8)

,;··,·,

272 N. M. TEMME

2.1. The Coefficients p and q for JaCx) and Ya(x)

First we remark that

p(x) = Ca(x)/C~(x) = -r(x) /[I - ~ r(x)],

r(x) = Ca(x)/Ca+l(x).

Further we have for cx1 and ix2 of (2.2) the relation

1 [a2 - x 2]
ll!1(x) = - 2x 1 + x r(x) + <O(r2(x)) ,

l+x2 -a2
cx2(x) = 6x2 + @(r(x)),

This gives (2.8) (by using (2.5), (2.6), (2.7)), with

x-+ cx,

x-+ a.

1 + 4x2 - 4a2

p = 6x(2a + 1)
2x2 - 1 - 6a - 8a2

q=
3x(2a + 1)

(2.9)

Formula (2.8) is then used in the sense that if x is an approximation for the sth zero of
Ja(x) or Ya(x), then

. 1 + pr(x)
]a,s, Ya,s = X - r(x) I + qr(x)

is a better approximation, with p and q given in (2.9) and

r(x) = Ja(x)/la+1(x) or r(x) = Ya(x)/ Ya+l(x).

2.2. The Coefficients p and q for J~(x) and Y~(x)

In this case we write in (2.1)

C~(x) x2

p(x) = C=(x) = r(x) a2 - x2 - xr(x) '

and we change a 1 and a 2 as before. The result is

r(x) = C~(x)/C0(x)

., , x2 () I + pr(x)
la.s 'Ya.s = x - a2 - x2 r x ...,.1-+--"-q-r(.,_x_,_) '

where x is an approximation of the sth zero of J~(x) or Y~(x),

r(x) = J~(x)/Ja(x) or r(x) = Y~(x)/Ya(x)

(2.10)

(2.11)

AN ALGORITHM WITH ALGOL 60 PROGRAM 273

and

4x(a2 - x2) [I + 10x2a 2 + 3x4 - a4] p=
6(a2 + x 2) 4(a2 - x2)3 ,

q=
4x(a2 - x2) [I + 8x2a2 + 3x4 + a4]

6(a2 + x 2) 2(a2 - x2)s .

Formulas (2.10) and (2.11) will be repeatedly used until the approximation is suffi
ciently accurate. In the next section we describe methods for obtaining first (i.e.,
initial) approximations to the zeros.

3. FIRST APPROXIMATIONS TO THE ZEROS

From Abramowitz and Stegun [l, p. 371] we take the following expansions of the
sth zeroja,s (or Ya.s) of Ja(x) (or Ya(x))

. = (3 - ,u - 1 [1 + 4(7µ, - 31) ' 32(83,u2 - 982µ, + 3779)] + @((3-7)
fa,s 'Ya.s 8(3 3(8(3)2 I 15(8,8)4 '

(3.1)

for s - oo, where µ, = 4a2 and

.B =-' (s + ta - !) rr
(3.2)

,B = (s -+- ~a - t) rr for Ya.s ·

This approximation can be written as (following the method described by (2.5),
(2.6), (2.7))

. - - fL - I [1 - p/(8(3)2] i -1
)a,so Ya. s --- (3 - ---sr] __ q/(8,8)2 + fJ((3), (3.3)

for s - oo, with (3 given in (3.2) and

4(253µ, 2 - 3722µ, + 17869)
p = 15(7 ,u - 3 I) '

8(83µ, 2 - 982,u + 3779)
q = 5(7 µ, - 31) .

The relations in (3.1) and (3.3) are valid for s - co. However, for small values of a
they give good approximations for small values of s, even for s = I. For a = 0,
s = !, (3.3) gives j 0 ,1 = 2.4052 ... while in 7 significant digits it is 2.404825. Hence,
the absolute error is 0.00043. (Formula (3.1) gives a result with absolute error 0.0016.)
For large values of a (3.3) (and (3.1)) is useless for the smaller s-values. Other approxi
mations will be given for this case. First we give the results for the zeros of J~(x)
and Y~(x) for small a.

274 N. M. TEMME

In this case we have for large s

•I I QI µ + 3 4(7µ2 + 82µ - 9)
la,s • Ya,s = /" - -sr- - 3(8(3')3

32(83µ3 + 2075µ 2 - 3039µ + 3537) + (O(r:i'-1)
15(8,8')5 /" '

where µ = 4a2 and

,8' = (s + !a - !) 7T

,8' = (s + !a - i) 7T

for j~ .•

for Y~.s.

The Pade-version of (3.4) reads as follows:

•I I - ,8' 1 [Po - P1/(8,8')2] + mca'-7)
.la.s' Ya.s - - 8,8' 1 _ qi/(8,8')2 /" '

where

Po=µ+ 3,

4(253µ4 + 8204µ3 - 13874µ2 - 26100µ + 63261)
Pi= 15(7µ2 + 82µ - 9)

8(83µ3 + 2075µ 2 - 3039µ + 3537)
ql = 5(7µ 2 + 82µ - 9)

(3.4)

(3.5)

(3.6)

As mentioned earlier, the approximations (3.3) and (3.6) are valid for small values
of a. If a is large (this "large" will be specified in more detail further on) we need
other approximations for the early zeros. These can be obtained from Olver's result
on uniform asymptotic expansions for the Bessel functions. We use the formulas in
Abramowitz and Stegun [1, p. 371, 9.5.22-9.5.26]. The zeros are expressed in terms
of the zeros of Airy functions. The formulas are valid for all s :;:;;::: 1.

For ia.s ,}~ •• the formulas read as follows:

with

.ia,s = az(O + Ji~') + @(a-2)

K .• = az(S) + g1~') + (O(a-2)

'= a-21sa.

' = a-21sa~

for ja,s

for .i~ .•

a-+ oo (3.7)

(3.8)

I

1

t
I

I
I

•

AN ALGORITHM WITH ALGOL 60 PROGRAM 275

(where a., a~ is the sth negative zero of A,(z), A;(z)) and with z(O defined implicitly by

f(-0312 = (z2 - 1)112 - arc cos(l/z), z;;:,, 1.

The functions Ji. and g1 appearing in (3.7) are given by

J~m = -z(') ,_1h(O [5,-1/48 + h(() (z2 ~ 1 + 3)/24],

g1m = z(O ,-1h(O (1,-1/48 + h(O (z2 ~ 1 + 9)/24],

hm = [((1 - z2)]1/2.

(3.9)

The expansions for Ya,s, Y~ •• are given by (3.7) if in (3.8) the zeros h., b~ of B;,(z),
B;(z) are used instead of a. , a:.

From numerical experiments it follows that (3.7) gives good initial approximations,
even if a is rather small. For a = 3 and s = 1 the approximations based on (3.7) are
of the same order of accuracy as those based on (3.3) or (3.6). However, the numerical
process based on (3.7) is more intricate than the other one, since we need the inversion
of (3.9), which must be carried out numerically. At the end of this section we pay
attention to this problem, first, however, we give an indication for which values of a
and s the approximations in (3.3), (3.6) and (3.7) are to be used.

A safe bound for using (3.3) and (3.6) is s > 3a, even when a is large. In order to
take into account the smaller values of s and a we propose the following criterion: if

s)! 3a- 8, a)! 0

then (3.3) and (3.6) are to be used, otherwise (3.7). Consequently, for 0 ~a~ 3,
we use (3.3) and (3.6) for all s; if a becomes larger than 3 it is better to use (3.7) for
the early zeros.

Finally we describe a method for the inversion of (3.9). By substituting z = 1 /cos(x),
y = i(-()312, it follows that we need the inversion of

tg x - x = y, y)! 0, (3.10)

Since we need the solution of this equation for a first approximation in (3.7), it is not
necessary to solve (3.10) with high accuracy precision. Four significant digits in x is
enough.

For small y we can expand

rt:J

X- - " c p2i+l . - l..J 2i+l '
i~O

where the first few coefficients are

p = (3y)1/3,

C1 = 1, C3 = -2/15, C5 = 3/175, C7 = -2/1575.

58r/32/2-ro

(3.11)

276 N. M. TEMME

For large y we write x = 7Tj2 - t, and (3.10) becomes

tg g = 1 !__ Pt '

and again we can expand

"'
i: - ~ d p2i+1 s - L- 2i+l .

i=O

In this case the first coefficients are

(3.12)

d1 = I, d3 = 2/3, d5 = 13/15, d7 = 146/105, d9 = 781/315, d11 = 16328/3465.

If we use the above given coefficients C; and d;, both (3.11) and (3.12) give about
four correct significant digits for y = I.

4. AN ALGOL 60 PROCEDURE

The heading of the procedure given in this section reads as follows:

procedure bess zeros (a,n,z,d,e); value a,n,d,e; real a, e; integer n,d; array z;

The meaning of the formal parameters is:

a: (arithmetic expression);

the order of the Bessel function, a ;;:;: 0.

n: (arithmetic expression);

the number of zeros to be computed, n ;;:;: I.

z: (array identifier);

array z[I: n];

exit: z[j] is the jth zero of the selected Bessel function.

d: (arithmetic expression);

the thoice of d determines the type of the Bessel function of which the zeros are
to be computed:

if d = 1 then la,
if d = 2 then Y0 ,

if d = 3 then J~ ,
if d = 4 then Y~ .

e: (arithmetic expression);

the desired relative accuracy in the zeros;
e should be larger than the machine accuracy.

AN ALGORITHM WITH ALGOL 60 PROGRAM 277

The procedure calls for the nonlocal procedure besspqa, which is published in
Temme [4]. It computes the functions Pa, Qa appearing in the relations

J0 (x) ~- [2/(rrx)]11 2[Pa(x) cos X - Qa(x) sin xJ,
Y"(x) = [2/(7TX)]112[Pa(x) sin X + Qa(x) cos x],

with x = x - 7r(2a + I)/4, and Pa+i, Qa+i which are defined equivalently.
If for the computation of a zero more than 5 iterations are needed in the Newton

process then the last computed value of the zero is accepted. Otherwise the computa
tion is stopped if consecutive approximations agree within a relative precision e (see
the heading of the procedure) with each other. From various tests it followed that not
more than 3 iterations are needed if e ~~ 10-l 3. In many cases only 1 iteration is
needed for obtaining this precision.

procedure bess zeros (a,n,z,d,e); value a,n,d,e; real a,e; integer n,d; array z;
comment computes z[I], ... , z[n], the first n zeros of a bessel function.

the choice of d determines the type of the bessel function:
if d == 1 then ja else
if d = 2 then ya else
if d = 3 then Ja-prime else
if d = 4 then ya-prime.
a is the order of the bessel function, it must be non-negative.
e is a measure for the relative accuracy;

begin real aa, al, a2, b, bb, c, chi, co, mu, mu2, mu3, mu4, p, pi, pa, pal, pO, pi, pp!,
psi, q, qa, qal, qi, qql, ro, si, t, tt, u, v, w, x, xx, x4, y; integerj, s;

real procecurefi(y); value y; real y;
comment computes fi from the equation

tan(fi) - .fi = y, where y ~ 0.
the relative accuracy is at least 5 digits;
if y = 0 then.fi: 0 else
if y > 100000 then fi: == 1.570796 else
begin real r, p, pp;

if y < 1 then
begin p := (3 X y) t (1/3); pp:= p ;< p;

p:=p x (I tpp x (-2IO+pp x (27--2 xpp))/1575)
end else
begin p := l/(y + 1.570796); pp:= p x p;
p := 1.570796 - p x (I +pp x (2310 +pp x (3003 +pp x (4818 +pp

x (8591 + pp > 16328))))/3465)
end;
pp>" (y + p) x (y + p); r := (p - arctan(p + y))/pp;
.fi := p - (I +pp) X r X (I + rf(p + y))

endfi;

278 N. M. TEMME

real procedure r;
begin besspqa(a,x,e,pa,qa,pal,qal);

chi:= x - psi;
si := sin(chi); co:= cos(chi);
r :=if d = I then (pa x co - qa X si)/(pal x si + qal x co) else

if d = 2 then (pa x si + qa X co)/(qaI x si - pal x co) else
if d = 3 then a/x - (pal X si + qal x co)/(pa x co - qa x si) else

a/x - (qaI x si - pal X co)/(pa x si + qa x co)
end r;
pi:= 4 x arctan(l); aa :=a x a; mu:= 4 X aa; mu2 :=mu X mu;
mu3 : = mu x mu2; mu4 : = mu2 X mu2;
ifd<3then

begin p : = 7 x mu - 31; pO : = mu - 1; if l + p = p then p 1 : = q I : = 0 else
begin pi := 4 x (253 x mu2 - 3722 x mu+ 17869) x pO/(p x 15);

ql := 1.6 X (83 x mu2 - 982 X mu+ 3779)/p
end

end else

begin p : = 7 x mu2 + 82 x mu - 9; pO : = mu + 3;
ifp + l = 1 thenpl := ql := 0 else
begin pl : = (4048 x mu4 + 131264 x mu3 - 221984 X mu2 - 417600 X mu +

1012176)/(p x 60);
qi : = 1.6 x (83 x mu3 + 2075 x mu2 - 3039 x mu + 3537)/p

end

end;
t :=if d = l v d = 4 then 0.25 else 0.75; tt := 4 x t;
if d < 3 then

beginppl := 5/48; qql := -5/36 end else
beginppl := -7/48; qql := 35/288 end;
y := .375 x pi; bb :=if a;:;: 3 then at (-2/3) else l;
al:= 3 x a - 8;psi:=pi x (.5 x a+ .25);
for s : ~"' I step I until n do

beginifa=OAs=I Ad=3then
begin x := O;j := 0 end else
begin if s ;:;: a I then

begin b := (s + .5 x a - t) x pi; c := .015625/(b x b);
x := b - .125 x (pO - pl x c)/(b X (l - ql x c))

end else
begin (f s = l then

begin x : = if d = 1 then -2.33811 else
if d = 2 then -1.17371 else
if d = 3 then -1.01879 else -2.29444

end else

AN ALGORITHM WITH ALGOL 60 PROGRAM

begin x := y X (4 X s - tt); v :=' l/(x X x);

x := -x t (2/3) >< (l + v ;< (ppl + qql xv))
end;
u : 0= x x bb; v : =c fi(2/3 x (- u) t 1.5);

w : = I /cos(v); xx : = I - H' x w; c : = sqrt(u/xx);
x := w X (a+ c/(48 x a x u) x

279

(if d < 3 then -5/u - c x (-10/xx + 6) else 7/u + c x (-14/ xx + 18)))
end; j := 0;

II: xx := x ;< x; x4 :== xx X xx: a2 :=0 aa - xx; ro := r;j :=j +I;
if d < 3 then

begin u : ~= ro; w: = 6 X x x (2 x a + 1); p : === (1 - 4 x a2)/w;

q := (4 >< (xx - mu) - 2 - 12 x a)/w
end else

begin u : ,., --xx x ro/a2; v : = 2 ;< x x a2/(3 x (aa + xx));
1v:=c64 .X a2 X a2 X a2;

q : = 2 X v X (I + mu2 + 32 X mu x xx + 48 X x4)/w);

p := v x (l + (-mu2 + 40 x mu ;< xx + 48 x x4)/w)
end;

w := u X (I + p X ro)/(I + q X ro); x := x + w;
if abs(w/x) > e /\ j < 5 then goto II

end; z[s] := x
end

end bess zeros;

ACKNOWLEDGMENTS

I wish to thank Mr. Rob Montijn of the Mathematical Centre for his help in programming and
testing the ALGOL 60 program.

REFERENCES

1. M. ABRAMOWITZ AND I. A. STEGUN (Eds.), ""Handbook of Mathematical Functions with Formulas,

Graphs and Mathematical Tables," Appl. Math. Ser. 55, U.S. Govt. Printing Office, Washington,
D. C., 1965.

2. D. J. HoFSOMMER, in '"Math. Tables Aid Comput. XII," pp. 58-60, 1958.

3. F. W. J. OLVER (Ed.), "Royal Society Mathematical Tables, Bessel Functions. Part III. Zeros
and Associated Values," Vol. 7, Cambridge Univ. Press, London/New York, 1960.

4. N. M. TEMME, J. Computational Phys. 21 (1976), 343-350.

RECEIVED: July 18, 1978; REVISED: October 16, 1978

N. M. TEMME

Mathematisch Centrum
2e Boerhaavestraat 49
1091 AL Amsterdam,

Netherlands

