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Note 

An Algorithm with ALGOL 60 Program for the Computation of the 
Zeros of Ordinary Bessel Functions and those of their Derivatives 

1. INTRODUCTION 

In this note we describe an algorithm for the numerical computation of the zeros 
of the Bessel functions 

Ja(x), Ya(x), J~(x), Y~(x). (1.1) 

When a is real, these functions each have an infinite number of real zeros, all of which 
are simple with the possible exception of x = 0. For non-negative a the sth positive 
zeros of these functions are denoted by 

ja.s' Ya,s, j~,s, Y~.s (s = I, 2, 3, ... ) (1.2) 

except that x = 0 is counted as the first zero of J~(x). For properties of the zeros 
the reader is referred to the literature, for instance to Olver [3], or to his contribution 
in Abramowitz and Stegun [1, Chap. 9]. 

In Section 2 we describe the algorithm for computing the zeros. It is based on a higher 
order Newton process. In Section 3 we give methods for obtaining first approximations 
of the zeros. We use asymptotic expansions as given in the literature. In Section 4 we 
give the implementation of the algorithm as an ALGOL 60 procedure. In order to 
compute values of the functions of (1.1) we use the ALGOL 60 procedures published 
earlier in Temme [4], which procedures are not incorporated here. 

2. HIGHER ORDER NEWTON PROCESS 

It is well-known (cf., for instance, Hofsommer [2]) that, if a function satisfies a 
second order differential equation, this fact may be used with advantage in the compu
tation of its zeros. In that event it is convenient to use a process in which derivatives 
of the function are needed. Such a process is the Newton-Raphson method. We use a 
higher order version of it. 

Let/be the function, the roots of which are to be computed. Leto: be such a (simple!) 
root and let x be a first approximation. If the approximation is sufficiently accurate 
we have 

o: = x - p(x)[1 + o:i(x)p(x) + o:2(x) p2(x) + CO(p3(x))] 
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p(x) = f(x)/f'(x) 

exi(x) = tf"(x)/f'(x) 

ex2(x) = i{3[f"(x)/.f'(x)]2 -f"'(x)ff'(x)}. 

By using the differential equation of the Bessel functions 
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(2.2) 

(2.3) 

the derivatives f" and/"' can be eliminated. Furthermore we remark that derivatives 
of the Bessel functions can be expressed in terms of other Bessel functions by using 

C~(x) = !!._ Ca(x) - Ca+1(x). x 

In (2.3) and (2.4) Ca stands for la or Ya . 

(2.4) 

The expression (2.1) will be modified in several ways. A first modification comes 
I from replacing p(x) = Ca(x)/C~(x) by r(x) = Ca(x)/Ca+1(x) (for the case of la and Ya) 

and from replacing p(x) = C~(x)f C~(x) by r(x) = C~(x)f Ca(x) (for l~ and Y~). In 
both cases p(x)/r(x) =@(I) for x--+ ex, hence the @-term remains of the same order, 
if we change ex1 and cx2 in the right way. 

A second modification comes from writing the quadratic polynomial in (2.1) as a 
Pade-fraction. An expression of the type 

x--+ 0, (2.5) 

may be converted by Pade-methods into 

x--+ 0, (2.6) 

where, if cx1 =I= 0, 

(2.7) 

In an asymptotic sense (2.5) and (2.6) are equivalent, but numerically the fraction in 
(2.6) may yield a better approximation to f than the polynomial part in (2.5). From 
numerical experiments we concluded that this is indeed the case for the representation 

I in (2.1). 
A third modification of (2. I) comes from eliminating the derivatives of the Bessel 

functions appearing in cx1 and ex2 of (2.2). In the following subsections we give more 
details for the computation of the coefficients p and q appearing in the form obtained 
after the modifications, viz. 

ex = x - r(x) ~ ! ~~~~~ + @(r4(x)), x --+ ex. (2.8) 

,;··,·, 
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2.1. The Coefficients p and q for JaCx) and Ya(x) 

First we remark that 

p(x) = Ca(x)/C~(x) = -r(x) /[I - ~ r(x) ], 

r(x) = Ca(x)/Ca+l(x). 

Further we have for cx1 and ix2 of (2.2) the relation 

1 [ a2 - x 2 ] 
ll!1(x) = - 2x 1 + x r(x) + <O(r2(x)) , 

l+x2 -a2 
cx2(x) = 6x2 + @(r(x)), 

This gives (2.8) (by using (2.5), (2.6), (2.7)), with 

x-+ cx, 

x-+ a. 

1 + 4x2 - 4a2 

p = 6x(2a + 1) 
2x2 - 1 - 6a - 8a2 

q= 
3x(2a + 1) 

(2.9) 

Formula (2.8) is then used in the sense that if x is an approximation for the sth zero of 
Ja(x) or Ya(x), then 

. 1 + pr(x) 
]a,s, Ya,s = X - r(x) I + qr(x) 

is a better approximation, with p and q given in (2.9) and 

r(x) = Ja(x)/la+1(x) or r(x) = Ya(x)/ Ya+l(x). 

2.2. The Coefficients p and q for J~(x) and Y~(x) 

In this case we write in (2.1) 

C~(x) x2 

p(x) = C=(x) = r(x) a2 - x2 - xr(x) ' 

and we change a 1 and a 2 as before. The result is 

r(x) = C~(x)/C0(x) 

., , x2 ( ) I + pr(x) 
la.s 'Ya.s = x - a2 - x2 r x ...,.1-+--"-q-r(.,_x_,_) ' 

where x is an approximation of the sth zero of J~(x) or Y~(x), 

r(x) = J~(x)/Ja(x) or r(x) = Y~(x)/Ya(x) 

(2.10) 

(2.11) 
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and 

4x(a2 - x2) [I + 10x2a 2 + 3x4 - a4 ] p= 
6(a2 + x 2) 4(a2 - x2)3 , 

q= 
4x(a2 - x2) [I + 8x2a2 + 3x4 + a4 ] 

6(a2 + x 2) 2(a2 - x2)s . 

Formulas (2.10) and (2.11) will be repeatedly used until the approximation is suffi
ciently accurate. In the next section we describe methods for obtaining first (i.e., 
initial) approximations to the zeros. 

3. FIRST APPROXIMATIONS TO THE ZEROS 

From Abramowitz and Stegun [l, p. 371] we take the following expansions of the 
sth zeroja,s (or Ya.s) of Ja(x) (or Ya(x)) 

. = (3 - ,u - 1 [1 + 4(7µ, - 31) ' 32(83,u2 - 982µ, + 3779)] + @((3-7) 
fa,s 'Ya.s 8(3 3(8(3)2 I 15(8,8)4 ' 

(3.1) 

for s - oo, where µ, = 4a2 and 

.B =-' (s + ta - !) rr 
(3.2) 

,B = (s -+- ~a - t) rr for Ya.s · 

This approximation can be written as (following the method described by (2.5), 
(2.6), (2.7)) 

. - - fL - I [ 1 - p/(8(3)2 ] i -1 
)a,so Ya. s --- (3 - ---sr ] __ q/(8,8)2 + fJ((3 ), (3.3) 

for s - oo, with (3 given in (3.2) and 

4(253µ, 2 - 3722µ, + 17869) 
p = 15(7 ,u - 3 I ) ' 

8(83µ, 2 - 982,u + 3779) 
q = 5(7 µ, - 31) . 

The relations in (3.1) and (3.3) are valid for s - co. However, for small values of a 
they give good approximations for small values of s, even for s = I. For a = 0, 
s = !, (3.3) gives j 0 ,1 = 2.4052 ... while in 7 significant digits it is 2.404825. Hence, 
the absolute error is 0.00043. (Formula (3.1) gives a result with absolute error 0.0016.) 
For large values of a (3.3) (and (3.1)) is useless for the smaller s-values. Other approxi
mations will be given for this case. First we give the results for the zeros of J~(x) 
and Y~(x) for small a. 
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In this case we have for large s 

•I I QI µ + 3 4(7µ2 + 82µ - 9) 
la,s • Ya,s = /" - -sr- - 3(8(3')3 

32(83µ3 + 2075µ 2 - 3039µ + 3537) + (O(r:i'-1) 
15(8,8')5 /" ' 

where µ = 4a2 and 

,8' = (s + !a - !) 7T 

,8' = (s + !a - i) 7T 

for j~ .• 

for Y~.s. 

The Pade-version of (3.4) reads as follows: 

•I I - ,8' 1 [Po - P1/(8,8')2 ] + mca'-7) 
.la.s' Ya.s - - 8,8' 1 _ qi/(8,8')2 /" ' 

where 

Po=µ+ 3, 

4(253µ4 + 8204µ3 - 13874µ2 - 26100µ + 63261) 
Pi= 15(7µ2 + 82µ - 9) 

8(83µ3 + 2075µ 2 - 3039µ + 3537) 
ql = 5(7µ 2 + 82µ - 9) 

(3.4) 

(3.5) 

(3.6) 

As mentioned earlier, the approximations (3.3) and (3.6) are valid for small values 
of a. If a is large (this "large" will be specified in more detail further on) we need 
other approximations for the early zeros. These can be obtained from Olver's result 
on uniform asymptotic expansions for the Bessel functions. We use the formulas in 
Abramowitz and Stegun [1, p. 371, 9.5.22-9.5.26]. The zeros are expressed in terms 
of the zeros of Airy functions. The formulas are valid for all s :;:;;::: 1. 

For ia.s ,}~ •• the formulas read as follows: 

with 

.ia,s = az(O + Ji~') + @(a-2) 

K .• = az(S) + g1~') + (O(a-2) 

'= a-21sa. 

' = a-21sa~ 

for ja,s 

for .i~ .• 

a-+ oo (3.7) 

(3.8) 

I 

1 

t 
I 

I 
I 

• 
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(where a., a~ is the sth negative zero of A,(z), A;(z)) and with z(O defined implicitly by 

f(-0312 = (z2 - 1)112 - arc cos(l/z), z;;:,, 1. 

The functions Ji. and g1 appearing in (3.7) are given by 

J~m = -z(') ,_1h(O [5,-1/48 + h(() ( z2 ~ 1 + 3)/24], 

g1m = z(O ,-1h(O (1,-1/48 + h(O ( z2 ~ 1 + 9)/24], 

hm = [((1 - z2)]1/2. 

(3.9) 

The expansions for Ya,s, Y~ •• are given by (3.7) if in (3.8) the zeros h., b~ of B;,(z), 
B;(z) are used instead of a. , a:. 

From numerical experiments it follows that (3.7) gives good initial approximations, 
even if a is rather small. For a = 3 and s = 1 the approximations based on (3.7) are 
of the same order of accuracy as those based on (3.3) or (3.6). However, the numerical 
process based on (3.7) is more intricate than the other one, since we need the inversion 
of (3.9), which must be carried out numerically. At the end of this section we pay 
attention to this problem, first, however, we give an indication for which values of a 
and s the approximations in (3.3), (3.6) and (3.7) are to be used. 

A safe bound for using (3.3) and (3.6) is s > 3a, even when a is large. In order to 
take into account the smaller values of s and a we propose the following criterion: if 

s)! 3a- 8, a )! 0 

then (3.3) and (3.6) are to be used, otherwise (3.7). Consequently, for 0 ~a~ 3, 
we use (3.3) and (3.6) for all s; if a becomes larger than 3 it is better to use (3.7) for 
the early zeros. 

Finally we describe a method for the inversion of (3.9). By substituting z = 1 /cos(x), 
y = i(-()312, it follows that we need the inversion of 

tg x - x = y, y )! 0, (3.10) 

Since we need the solution of this equation for a first approximation in (3.7), it is not 
necessary to solve (3.10) with high accuracy precision. Four significant digits in x is 
enough. 

For small y we can expand 

rt:J 

X- - " c p2i+l . - l..J 2i+l ' 
i~O 

where the first few coefficients are 

p = (3y)1/3, 

C1 = 1, C3 = -2/15, C5 = 3/175, C7 = -2/1575. 

58r/32/2-ro 

(3.11) 
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For large y we write x = 7Tj2 - t, and (3.10) becomes 

tg g = 1 !__ Pt ' 

and again we can expand 

"' 
i: - ~ d p2i+1 s - L- 2i+l . 

i=O 

In this case the first coefficients are 

(3.12) 

d1 = I, d3 = 2/3, d5 = 13/15, d7 = 146/105, d9 = 781/315, d11 = 16328/3465. 

If we use the above given coefficients C; and d;, both (3.11) and (3.12) give about 
four correct significant digits for y = I. 

4. AN ALGOL 60 PROCEDURE 

The heading of the procedure given in this section reads as follows: 

procedure bess zeros (a,n,z,d,e); value a,n,d,e; real a, e; integer n,d; array z; 

The meaning of the formal parameters is: 

a: (arithmetic expression); 

the order of the Bessel function, a ;;:;: 0. 

n: (arithmetic expression); 

the number of zeros to be computed, n ;;:;: I. 

z: (array identifier); 

array z[I: n]; 

exit: z[j] is the jth zero of the selected Bessel function. 

d: (arithmetic expression); 

the thoice of d determines the type of the Bessel function of which the zeros are 
to be computed: 

if d = 1 then la, 
if d = 2 then Y0 , 

if d = 3 then J~ , 
if d = 4 then Y~ . 

e: (arithmetic expression); 

the desired relative accuracy in the zeros; 
e should be larger than the machine accuracy. 
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The procedure calls for the nonlocal procedure besspqa, which is published in 
Temme [4]. It computes the functions Pa, Qa appearing in the relations 

J0 (x) ~- [2/(rrx)]11 2[Pa(x) cos X - Qa(x) sin xJ, 
Y"(x) = [2/( 7TX)]112[Pa(x) sin X + Qa(x) cos x], 

with x = x - 7r(2a + I )/4, and Pa+i, Qa+i which are defined equivalently. 
If for the computation of a zero more than 5 iterations are needed in the Newton 

process then the last computed value of the zero is accepted. Otherwise the computa
tion is stopped if consecutive approximations agree within a relative precision e (see 
the heading of the procedure) with each other. From various tests it followed that not 
more than 3 iterations are needed if e ~~ 10-l 3. In many cases only 1 iteration is 
needed for obtaining this precision. 

procedure bess zeros (a,n,z,d,e); value a,n,d,e; real a,e; integer n,d; array z; 
comment computes z[I ], ... , z[n], the first n zeros of a bessel function. 

the choice of d determines the type of the bessel function: 
if d == 1 then ja else 
if d = 2 then ya else 
if d = 3 then Ja-prime else 
if d = 4 then ya-prime. 
a is the order of the bessel function, it must be non-negative. 
e is a measure for the relative accuracy; 

begin real aa, al, a2, b, bb, c, chi, co, mu, mu2, mu3, mu4, p, pi, pa, pal, pO, pi, pp!, 
psi, q, qa, qal, qi, qql, ro, si, t, tt, u, v, w, x, xx, x4, y; integerj, s; 

real procecurefi( y); value y; real y; 
comment computes fi from the equation 

tan(fi) - .fi = y, where y ~ 0. 
the relative accuracy is at least 5 digits; 
if y = 0 then.fi: 0 else 
if y > 100000 then fi: == 1.570796 else 
begin real r, p, pp; 

if y < 1 then 
begin p := (3 X y) t (1/3); pp:= p ;< p; 

p:=p x (I tpp x (-2IO+pp x (27--2 xpp))/1575) 
end else 
begin p := l/(y + 1.570796); pp:= p x p; 
p := 1.570796 - p x (I +pp x (2310 +pp x (3003 +pp x (4818 +pp 

x (8591 + pp > 16328))))/3465) 
end; 
pp>" (y + p) x (y + p); r := (p - arctan(p + y))/pp; 
.fi := p - (I +pp) X r X (I + rf(p + y)) 

endfi; 
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real procedure r; 
begin besspqa(a,x,e,pa,qa,pal,qal); 

chi:= x - psi; 
si := sin(chi); co:= cos(chi); 
r :=if d = I then (pa x co - qa X si)/(pal x si + qal x co) else 

if d = 2 then (pa x si + qa X co)/(qaI x si - pal x co) else 
if d = 3 then a/x - (pal X si + qal x co)/(pa x co - qa x si) else 

a/x - (qaI x si - pal X co)/(pa x si + qa x co) 
end r; 
pi:= 4 x arctan(l); aa :=a x a; mu:= 4 X aa; mu2 :=mu X mu; 
mu3 : = mu x mu2; mu4 : = mu2 X mu2; 
ifd<3then 

begin p : = 7 x mu - 31; pO : = mu - 1; if l + p = p then p 1 : = q I : = 0 else 
begin pi := 4 x (253 x mu2 - 3722 x mu+ 17869) x pO/(p x 15); 

ql := 1.6 X (83 x mu2 - 982 X mu+ 3779)/p 
end 

end else 

begin p : = 7 x mu2 + 82 x mu - 9; pO : = mu + 3; 
ifp + l = 1 thenpl := ql := 0 else 
begin pl : = (4048 x mu4 + 131264 x mu3 - 221984 X mu2 - 417600 X mu + 

1012176)/(p x 60); 
qi : = 1.6 x (83 x mu3 + 2075 x mu2 - 3039 x mu + 3537)/p 

end 

end; 
t :=if d = l v d = 4 then 0.25 else 0.75; tt := 4 x t; 
if d < 3 then 

beginppl := 5/48; qql := -5/36 end else 
beginppl := -7/48; qql := 35/288 end; 
y := .375 x pi; bb :=if a;:;: 3 then at (-2/3) else l; 
al:= 3 x a - 8;psi:=pi x (.5 x a+ .25); 
for s : ~"' I step I until n do 

beginifa=OAs=I Ad=3then 
begin x := O;j := 0 end else 
begin if s ;:;: a I then 

begin b := (s + .5 x a - t) x pi; c := .015625/(b x b); 
x := b - .125 x (pO - pl x c)/(b X (l - ql x c)) 

end else 
begin (f s = l then 

begin x : = if d = 1 then -2.33811 else 
if d = 2 then -1.17371 else 
if d = 3 then -1.01879 else -2.29444 

end else 
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begin x := y X (4 X s - tt); v :=' l/(x X x); 

x := -x t (2/3) >< (l + v ;< (ppl + qql xv)) 
end; 
u : 0= x x bb; v : =c fi(2/3 x ( - u) t 1.5); 

w : = I /cos(v); xx : = I - H' x w; c : = sqrt(u/xx); 
x := w X (a+ c/(48 x a x u) x 
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(if d < 3 then -5/u - c x (-10/xx + 6) else 7/u + c x (-14/ xx + 18))) 
end; j := 0; 

II: xx := x ;< x; x4 :== xx X xx: a2 :=0 aa - xx; ro := r;j :=j +I; 
if d < 3 then 

begin u : ~= ro; w: = 6 X x x (2 x a + 1); p : === (1 - 4 x a2)/w; 

q := (4 >< (xx - mu) - 2 - 12 x a)/w 
end else 

begin u : ,., --xx x ro/a2; v : = 2 ;< x x a2/(3 x (aa + xx)); 
1v:=c64 .X a2 X a2 X a2; 

q : = 2 X v X (I + mu2 + 32 X mu x xx + 48 X x4)/w); 

p := v x (l + (-mu2 + 40 x mu ;< xx + 48 x x4)/w) 
end; 

w := u X (I + p X ro)/(I + q X ro); x := x + w; 
if abs(w/x) > e /\ j < 5 then goto II 

end; z[s] := x 
end 

end bess zeros; 
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