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1. Introduction 

The solutions of the differential equation 

d2y - (~z2 +a) y = 0 
dz2 4 

(1.1) 

are associated with the parabolic cylinder functions in harmonic analysis; see [10]. 
The solutions are called parabolic cylinder functions and are entire functions of z. 
Many properties are given in [3] and [1]; for applications to physics and many more 
properties see [2]. 

As in [3] and [l, Chapter 19], we denote two standard solutions of (1.1) by 
U(a, z), V(a, z). Another well-known notation for the parabolic cylinder function 
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is D,,(z). The relationship between D,,(z) and U(a, z) is 

(1.2) 

Wronskian relations for the solutions U(a, z), U(a, -z), V(a, z) of (1.1) are: 

U(a, z)V'(a, z) - U'(a, z)V(a, z) = ~, (1.3) 

dU(a, -z) , .,ff; 
U(a, z) dz - U (a, z)U(a, -z) = r (a+ U , (1.4) 

which shows that U(a, z) and V(a, z) are independent solutions of (1.1) for all values 
of a. 

Other relations and connection formulae are 

U(a,z)= 2 ;( 1 )[V(a,-z)-sin7raV(a,z)], (1.5) 
cos Tra a+ 2 

TrV(a, z) = r (~+a) [sin Tra U(a, z) + U(a, -z)], (1.6) 

\!'27rU(-a, iz) = r ( ~ +a) [e-i'll"(~a-i)U(a, z) + ei'll"(!a-i)U(a, -z)] , (1.7) 

. .J27i= 1 ·c 1) U(a z) = ienau(a -z) + e!f'll"' a-!f U(-a iz) (1.8) 
' ' r (a+~) ' ' 

. yl27i= 1 ·( i)uc . ) U(a z) = -ie?riaU(a -z) + e-2?r• a-2 -a,-iz (1.9) 
' ' r(a+!) 

In [5], an extensive collection of asymptotic expansions for the parabolic cylin
der functions as ial --+ oo has been derived from the differential Eq. (1.1). The ex
pansions are valid for complex values of the parameters and are given in terms 
of elementary functions and Airy functions. In [9], modified expansions are given, 
which have an extra feature that the expansions are also valid when a is fixed and z 
is large. The coefficients of the modified expansions can be generated by recursion 
formulas and are different from those of Olver's expansions. 

When Olver published the paper [5], his later work on bounds for remainders in 
asymptotic expansions was not available, and, as he remarked in [8], the construc
tion of error bounds for asymptotic expansions of the parabolic cylinder functions 
was an important problem to be considered. In this paper we discuss error bounds 
for the remainders of the standard Poincare-type expansions of U(a, z), and of some 
of the uniform expansions. 
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1.1. Contents of the paper 

We summarize the results and give an overview of the structure of the paper. 
Section 1 gives the basic properties of the parabolic cylinder functions U (a, z) and 
V (a, z) that are used in this paper. 

Section 2 gives the Poincare-type expansions of U(a, z) and V(a, z) for large 
complex z, with a fixed. Section 2.1 gives the relation of U(a, z) with the Whittaker 
function, and summarizes Olver's error bounds for the remainders in the expansion 
for the Whittaker function for several domains in the complex z plane. Section 2.2 
discusses modifications or extensions of these domains by evaluating the variation 
V(f) along certain paths in a different way. Section 2.3 gives an application for the 
complementary error function erfc z, and tables comparing the exact upper bounds 
with remainders for z in the complex plane. It gives a different upper bound for a 
quantity used in Olver's estimate ofV(t-n). 

Section 3 gives the uniform asymptotic expansions for large real a with 
t = z/(2J\ai) as a real uniformity parameter. Several t intervals are considered. 
Section 3.1 derives expansions of U(a, z) for large positive a and summarizes the 
method for obtaining the expansions by using the differential equation. Section 3.1.l 
gives expansions and coefficients for z ~ 0. Section 3.1.2 gives expansions and co
efficients for z ::; 0. Section 3.1.3 describes how to obtain error bounds for z ~ 0 
and for z ::; 0, with tables indicating the accuracy of the estimates. Section 3.1.4 
gives upper bounds for the variations of the coefficients </J1, </J2 and </J3. Section 3.2 
gives expansions for large negative a. This is the turning point case in which three 
t intervals can be indicated. Section 3.2.1 gives expansions of U(a, z) and V(a, z) 
fort> 1. Section 3.2.2 gives error bounds for the expansion of U(a, z) fort> 1. 

Section 4 gives two approaches for obtaining error bounds when a real integral 
representation of U(a, z) is used. Section 4.1 gives the construction of a uniform 
expansion of U(a, z) for large positive z, with a ~ O; Section 4.2 describes a first 
method for deriving error bounds using real function values; Section 4.3 describes a 
method for deriving error bounds using complex function values and Cauchy-type 
integrals. 

Section 5 discusses numerical aspects of computing the error bounds and the 
parabolic cylinder functions. 

2. Poincare-Type Expansions 

These expansions are for large z and a fixed. They are given in [l] and derived 
in [ll]. We have 

U( ) ""' -:!z2 -a-! ~(-l)8 (a+ ~b 
a, z e z L... 1 (2 2)8 ' 

8=0 s. Z 

3 
IPh zl < 47r' (2.1) 

(2.2) 
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By using (1.8) and (1.9), the sector of validity of (2.1) can be modified, and com
pound expansions are obtained: 

U( ) ,.._, -iz2 -a-! ~{-l)8 (a+ !h8 
a, z e z L,.; I (2 2)8 

s=O S. Z 

+ · /2ir -a?l'i lz2 a-1 Loo (-a+ ~)28 
i e e4 z 2 , 

r(a + ~) 8 =0 s!(2z2) 8 

1 5 ·:rrr < ph z < 41!', (2.3) 

U( ) ,.._, -!z2 -a-! ~(-l)8 (a+ !hs 
a, z e z L,.; s!(2z2)s 

s=O 

· J21T a?l'i lz2 a-1 Loo (-a+ !)2s 
- i e e4 z 2 

r(a+!) s=O s!(2z2)s ' 

5 1 
-41!' < ph z < -41!'. 

(2.4) 

With these results, we also can obtain compound expansions for V(a, z) for other 
sectors than the one given in (2.2). 

2.1. Error bounds of the expansions 

Bounds for remainders in the Poincare-type expansion follow from [6],where results 
are given for Whittaker functions. The function U(a, z) is a special case of this 
function. The relationship is 

1 
k= --a, 

2 

1 
m=4, 

The asymptotic expansion for the Whittaker function reads 

n-1 ( 1) 
ru ( ) k -lz L as ( ) ( )s a+ 2 2s 
ff k m z = z e 2 - + €n Z , as = -1 22 1 , 

' zS 8 8. 
s=O 

We introduce the following quantities. Let 

"'= lal, a= "-lzl-1 , a= (1 - a)-1, 

8 = I ~a2 + 1361 + u ( 1 + ~a) a2, 

{2.5) 

n = 0, 1, 2, .... (2.6) 

(2.7) 

assuming that O' < 1. Then the remainder €n{z) of (2.6) and its derivative can be 
bounded as follows 

1€n(z)I 

1,a-1€~(z)I 
(2.8) 
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where V(J) denotes the variational operator (see [7]),which for continuously differ

entiable functions in a real interval [a, b] is defined by 

Va,b(f) =lb IJ'(x)!dx. (2.9) 

For a holomorphic function f ( z) in a complex domain, the variational operator 

along a smooth arc C parameterized by z(T), a < T < /3, in which T is the arc 

parameter and z' ( T) is continuous and nonvanishing in the closure of (a, /3), we 
have 

Ve(!)= 1: !J'[z(r)]z'(r)! dr. (2.10) 

Along a path P which is a finite chain of smooth arcs (of straight lines, for example) 

Vp can be defined as the sum of the contributions from the arcs. 
In the bounds given in (2.8), the path P links the point z (with ph z E 

(- ~71', ~71')) to +oo, such that on P the condition is fulfilled that ~(t + a ln t) 
is monotonic. 

We consider the bounds in (2.8) for z in the sector [-11',11'], that is, for w used 

in (2.5) with /Rw ~ 0. For other values of w, the relations in (1.8) and (1.9) can be 

used for computing the function U (a, w). 
In [6], simple bounds are given for the variation Vp(t-n) appearing in (2.8), 

for z in certain regions in the complex plane. In Fig. 1, we show these regions in 

the z-plane and corresponding regions in the w-plane; we only show the regions in 

~z ~ 0, ~w ~ 0, but they should be extended by including the conjugated parts. 

The arc PQ is a circular arc, with radius 2K:; Q is the point -\/'311': + iK:; S is 

the point iK:; the arc ST is a circular arc, with radius II':. As in (2.7) II':= la!. 
The region R1 is the half-plane ~z ~ x;; R2 is the region above the curves VQ, 

QS, ST and the conjugated z-values; R4 is the region with !zl ~ 2A:, l~zl ::; /\':. The 

corresponding regions in the w-plane follow from z = ~w2 . 

z-plane w-plane 

u 
p 

0 T 

Fig. 1. The region R1 , R2, and~ used for bounding the variation Vp(rn) appearing in (2.8). 
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The following upper bounds for Vp (rn) are derived in [6]: 

where 

lzl-n, 
x(n)lz1-n, 

() jirr(!n+l) 
x n = r (!n + 1) ' 

For Vp (r1) set n = 1 in (2.11). 

(2.11) 

(2.12) 

For z E R4 , the quantities a, /3, and J of (2.7) should be modified: replace 17 by 
Vl7 and lzl-1 by vlz1-1. 

For the parabolic cylinder function U(a, w), these bounds are applicable if lwl 
is large compared with vfal For example, if w E R4, then we need lwl ~ 2vfal 
However, if w is not large compared with jiaj, then the asymptotic expansion does 
not make sense, and, hence, the condition lwl ~ 2VfaT does not cause a restriction 
in the use of the asymptotic expansion. 

2.2. Are these domains optimal? 

We have used the same values as in [6] for showing the regions R 1 , R2, and R4. 
When verifying Olver's analysis, we have found that the boundaries of the regions 
R1 and R2 can be modified. 

2.2.1. Extending the region R1 

For Ri, we can use the condition ~z > max[O, ~(-a)]. To verify this condition, let 

a= u +iv= laleia, z = x + iy = rei<I>. (2.13) 

In Olver's analysis, the path in the z-plane has to be selected such that along 
this path 

1 
F(x, y) = ~(z +a ln z) = x + 2u ln(x2 + y2 ) - v arctan(y/x) (2.14) 

is monotonic. Olver chose an optimal path with the constant argument cp. 
Substituting y = xtan <Pin F(x, y), we find dF/dx = (u + x)/x. This is positive on 
the path when ~ z > max[O, ~(-a)]. One can also use a vertical path x = x 0 , y :;:::: y0 

upwards, if cp E (a, a+ 7r). This follows from 

dF(xo, y) uy - vxo 
dy = x6 + y2 . (2.15) 

Similarly, one can use the vertical path downwards if </J E (a - 7r, a). In Olver's 
approach vertical paths are not used. 



Parabolic Cylinder Functions: Error Bounds 271 

2.2.2. Extending the region R2 

For R2, the condition 'Jz > max[O,~(-a)] can be used. We verify this by taking 
as region R2 (as in Olver's approach) the domain with points z0 = x0 + iyo from 
which we can draw a half line with the equation x0x + y0y = x5 + yfi. This line is 
perpendicular (at z = zo) to the line from the origin to z0 . Another equation for 
the line is y =Yo - ~(x - xo). On this path we have 

dF = 1 + u(x~ + yfi) (x _ xo) + v(x~ + yfi) 
dx Y6(x2 + y2) Yo(x2 + y2)' 

(2.16) 

and we see that dF/dx > 0 at z = zo ifO < -v < y0 or v > O,y0 > 0. With these 
conditions, we have dF/dx > 0 for all x > x0 . This explains why we can extend 
region R2 to the domain where ~z > max(O, 'J(-a)). 

2.3. Application to the complementary error function 

We have applied these bounds for the case a = ~, which corresponds to the com
plementary error function: 

(2.17) 

We have computed 

(2.18) 

where En(z) is the exact error (see (2.6)), €~e)(z) the estimated error (see (2.8)), for 
several values of n and {) = ph z as given in Table 1. We observe that the ratio p 
is almost always less than k, and that in R2, where {} = i71' with j = 4, 5, 6, 7, the 
estimated error is quite large compared with the real error. 

Table 1. Ratios p = jE,.(z)l/e~•) (z); z = rei9 , r = 10. 

(} ~71' k'lr ~7!" ~7!" ~71' i'lr ~7r ~7!" ~7r 

n=5 0.29 0.30 0.31 0.34 0.13 0.15 0.18 0.25 0.34 

n= 10 0.22 0.23 0.24 0.26 0.07 0.09 0.12 0.20 0.37 

n= 15 0.18 0.18 0.19 0.21 0.05 0.06 0.08 0.12 0.19 

The upper bound x(n) of the variation (see (2.12)) introduced by Olver is not 
very sharp for certain values of the parameter. In his analysis, the estimate of the 
variation along a certain path follows from 

rJO n dT rx; n dT 
V-p(Cn) = Jo lz + reief>ln+l =Jo I lzlei(9-ef>) + rln+l , (2.19) 
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Table 2. Ratios as in Table 1, now with variations Vp(C") according to (2.21). 

(J ~7r ~7r ~11" ~11" ~11" ~11" ~71" ~7!" i71" 
n=5 0.29 0.30 0.31 0.34 0.38 0.42 0.43 0.41 0.32 

n= 10 0.22 0.23 0.24 0.26 0.31 0.35 0.38 0.39 0.33 

n= 15 0.18 0.18 0.19 0.21 0.25 0.28 0.29 0.27 0.17 

where (} = ph z and </> E [-~7r, ~7r] is defined by cos</> = 11;/lzl, where r;, = lal is 
introduced in (2.7). The right-h8Jld side of (2.19) is estimated by Olver as follows: 

{
0

00 ndT ('° ndT X(n) 

lo llzlei(B-</>) + rin+l s lo (lzl2 + r 2)tn+t = w· (2.20) 

The right-hand side of (2.19) can be written as a Gauss hypergeometric function, 
and we find for the variation (along the same path P) 

(2.21) 

The value x(n) follows from this expression when we replace the argument of the 
hypergeometric function by unity. With this new value of Vp, we re-computed the 
ratios of Table 1, and we give the new ratios in Table 2. We see that indeed the 
ratios become larger in the regions R2 and ~. except when (} = 1r. That is, when we 
use (2.21), the estimates of the remainders become more realistic in these regions. 

3. Uniform Expansions in Terms of Elementary Functions 

We transform the differential Eq. (1.1) into a standard form and distinguish between 
the cases when there are no real turning points (when a> 0), and when there are 
two real turning points (when a< 0). For convenience, we consider real parameters. 

3.1. Positive a 

For a> 0, no oscillations occur on the real z-axis. In [5], expansions are given that 
cover all real z. We consider two different modifications, one for z ~ 0 and another 
one for z S 0. These modifications are derived in [9], and we use the notation of 
that reference. 

The function U(a, z) is a solution. of (1.1), and w(t) = U (~µ2 , µt../2) satisfies 

(3.1) 
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The function W(t) = (t2 + l)tU (~µ2 ,µtv'2) is a solution of 

d2~ = [µ4+1/l({)]w 
df.2 

where the relation between t and {is given by 

and 1f;({) is given by 

- 2- 3t2 

1/l(f.) = 4(t2 + 1)3. 

(3.2) 

(3.3) 

(3.4) 

Transformations of this kind are discussed in [7, Chapter 10]. The relation in (3.3) 
follows from 

df. ~ -
- = y t 2 + 1, f.(O) = 0, 
dt 

which arises in a Liouville-Green transformation ([5, 7]). 
The quantity F, defined by 

is a solution of 

It is convenient to introduce another parameter, 'T, by writing 

:r- ~ [ t - 1] 
- 2 ./t2+1 . 

We have 

df. 1 

ar = 872(1 + T) 2 ' 

and Eq. (3.7) becomes in terms of r: 

d2F dF 
16r2(:r + 1)2 dT2 + [32r(2r2 + 3:;:: + 1) - 4µ2) ar 

+ (2or2 + 2o:r + 3)F = o. 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 
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3.1.1. The case z ~ 0 

We give an asymptotic expansion of the U-function for a _, +oo that holds uni
formly for z ~ 0. We write 

(
1 ) e-µ2~ -

U 2µ2,µtv2 = y'2µh(µ)(t2+1)iFµ(T) (3.11) 

where Fµ(T) satisfies Eq. (3.10) and is expanded in the form 

.F (:r) "'~(-1)8</>s(T) 
µ ~ µ2s 

s=O 

(3.12) 

where 

(3.13) 

Substituting (3.12) into (3.10) and prescribing 

</>o(7) = 1, </>s(O) = 0, s 2 1, (3.14) 

we find that the coefficients </>s of (3.12) are polynomials in 7 of degree 3s and are 
given by the recursion relation 

d 11r </>s+1(7)=-472(7+1)2-d </>8 (7)-- (20u2 +20u+3)</>s(u)du., 
7 4 0 

(3.15) 

This relation follows easily when (3.10) is written in the form 

µ2 ~! =4::r [r(T+1)2 ~!] +~(2or2+2o:r+3)F. (3.16) 

The term h(µ) given in (3.13) follows from (2.1) and from the conditions on </>s 
given in (3.14). 

The expansion in (3.12) corresponds to the expansion (11.10) given in [5]. Both 
Olver's and our expansions hold for large a, uniformly for all real z. But for negative 
values of z, we prefer a slightly different expansion that will be given in the next 
subsection. The expansions also hold in unbounded complex domains. For details, 
we refer the reader to [5]. Our expansions have a double asymptotic property: they 
also are valid for bounded a with z large, and when both parameters are large. 

The first few coefficients of (3.12) are 

<Po(r) = 1, 

</J1(T) = -;2 (2072 + 30T + 9), 

72 
</>2(7) = 288 (616074 + 1848073 + 1940472 + 80287 + 945), (3.17) 

73 
</J3(T) = - 51840 (2722720076 + 12252240075 + 22054032074 

+ 20016612073 + 9406432872 + 205456507 + 1403325) ' 
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For the derivative, we have 

where the coefficients 'l/Js(7) can be obtained by formal differentiation of (3.11) and 
(3.12). It follows that 

'l/Js(7) = </Js(7) + 27(7+1)(27 + l)</Js-1(7) + 872(7+1)2d</Js-l(7), (3.19) 
d7 

s = 0, 1, 2, .... The first few coefficients are 

'l/Jo(7) = 1, 

'l/J1 (7) = ; 2 (28r2 + 427 + 15), 

72 
'l/J2(7) = - 288 (728074 + 2184073 + 2302872 + 96847 + 1215), (3.20) 

73 
'l/Js(7) = 51840 (3043040076 + 13693680075 + 24670800074 

+ 22449420073 + 10612231272 + 234891907 + 1658475). 

3.1.2. The case z :::; 0 

For negative z, we have 

( 1 2 ) J27i= h(µ)eµ 2 '£. -
U 2µ '-µt../i = r(! + !µ2) (1 + t2)~ Pµ(t), 

U' (~µ2 -µt..fi) = - ft µh(µ) eµ 2 'i.(1 + t2)t Q (t) 
2 ' r (! + ~µ2) µ ' 

where [, 'i, and h(µ) are defined in (3.3), (3.8), and (3.13), respectively, and 

j5 (t) ,.., ~ </Js(T) 
µ ~ 2s ' 

s=O µ 

Q (t) ___, ~ 1/Js(T) . 
µ ~ µ2s 

s=O 

(3.21) 

(3.22) 

Again, these expansions have a double asymptotic property: they are valid when a 

or t (or both) are large. 
The functions Fµ(t), Gµ(t), Pµ(t), and Qµ(t) satisfy the following exact relation: 

(3.23) 

To obtain expansions for V(a, z) and its derivative, the relation in (1.6) can 
be used. 
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0.15 

0.10 

0.05 

--0.05 

--0.10 

-0.15 

Fig. 2. Graphs of <fi0 (7'), s = 1, 2, 3, 7' E [-1, O]. 

3.1.3. Error bounds of the expansions 

We apply [7, p. 366, Theorem 3.1] and write the expansion in (3.12) with a remain
der. For n = 0, 1, 2, ... , we have 

Fµ(t) = Y::(-1) 8 </>s~:) +Rn(µ, t). 
s=O µ 

(3.24) 

The remainder Rn(µ, t) can be bounded as follows 

\Rn(µ, t)\:::; exp [2Ve-,,:?(</>1) l Ve-,;2~n) (3.25) 

where we take into account that we consider positive t andµ (see also [7, p. 367, 
Exercise 3.1]). 

We need the variation of the coefficients <Ps for t ;:::: 0, which corresponds with 
l;:::: 0 and -! :::; r:::; O; cf. (3.8). We have 

ve,00 (4>n) =ho l<P~(r)I dr. (3.26) 

For negative argument, the coefficients <Ps oscillate; see Fig. 2. 
In Table 3, we show the ratios \Rn(µ, t)\/ R~e) (µ, t) (with n = 3) where .RJie) (µ, t) 

is the right-hand side of (3.25). We see that the estimates for small values of t 
are much too large. An explanation is that for small t (that is, r close to - ! ) , 
the variations in (3.26) are calculated over a larger interval than when t is large. 
Expansion (3.24)" has a double asymptotic property, and large values oft are quite 
favorable for the expansion. 

For z:::; 0, we consider the remainder in the expansion of (3.22) and we write 

n-1 (-) 
- """ <f>s T -Pµ(t) = .L,, ~+Rn(µ, t). 

s=O µ 
(3.27) 

• 
I 
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Table 3. Ratios IR.i.(µ, t)i/ ~e) (µ, t); z = 2ty'a, n = 3. 

0.0 1.0 2.5 5.0 10 25 50 

a=l .21493 .14455 .84677 .94186 .98360 .99728 .99932 

a=5 .06142 .43256 .96494 .98773 .99667 .99945 .99986 

a= 10 .00343 .50123 .98214 .99382 .99833 .99973 .99993 

a= 50 .04921 .56597 .99637 .99876 .99967 .99995 .99999 

a= 100 .05601 .57478 .99818 .99938 .99983 .99997 .99999 

Table 4. Ratios j.R,.,.(µ, t)i/ ~e) (µ, t); z = -2ty'a, n = 3. 

0.0 1.0 2.5 5.0 10 25 50 

a=l .29041 .04469 .87352 .76079 .72513 .71493 .71347 

a=5 .17780 .02071 .96996 .94637 .93771 .93509 .93471 

a= 10 .12433 .01817 .98467 .97279 .96835 .96700 .96680 

a= 50 .07476 .01644 .99689 .99449 .99359 .99331 .99327 

a= 100 .06829 .01624 .99844 .99724 .99679 .99665 .99663 

In the present case, we have the bound 

IRn(µ, t)I :::; exp [ 2v _:~~(4>1) l v _:!~4>n) (3.28) 

where 

(3.29) 

In Table 4, we show the ratios l.Rn(µ,t)l/R~e)(µ,t) (with n = 3) where in the 
present case R~e) (µ, t) is the right-hand side of (3.28). We see that, in general, the 
ratios are smaller than when z 2: 0. An explanation is that the variations in (3.29) 
include the contributions from the interval [-1, -!] (corresponding with the [ 
interval ( -oo, OJ). The parameter 7 remains in the interval [- ~, 0], however, when 
t 2: 0 (z:::; 0). 

3.1.4. Upper bounds for the variations of 4>s('i) 

The variations of the coefficients 4>s('i) used in (3.26) and (3.29) can be computed 
by numerical quadrature of the integrals, but for real values, it is convenient to use 
the zeros of the polynomials <P~(T). For example, <Pi (7) has zeros at ti = -0.816 
and t2 = -0.184. Hence, for 7 E [-~ 1 0], the variation in (3.26) follows from 

o {l/>1('i) ifrE[t2,0], 

Ve,00 (4>i) =fr 1<t>~(r)ldr= 2<P1(t2)-4>1(7) if7E [-~,t2]. (3.30) 
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Fig. 3. Graphs of </!s(i'), s = 1,2,3, r E [-~,OJ, variations and upper bounds; see the text for 
more details. 

The computation of the zeros of cl>~ (T), however, may not be efficient in an algorithm. 
We can avoid this by constructing for the variations upper bounds as functions of r. 
For example, we found for the first few <Ps(T), the following simple upper bounds 
forrE [-~,o]: 

105r2 

v~.00 ( c/>2 ) :::; 32(1 + 1872) ' 

-346573 

v~,oo(c/>3 ) :::; 128(1+5272) . 

The bounds fit at the origin and are slightly larger at r = - ~. 

(3.31) 

In Fig. 3 we give the graphs of cl>s(r), s = 1 (left), s = 2 (middle), and s = 3 
(right) for 7 E [-~,O]. The first graph from the bottom is for c/>8 (r), the second 
one is for the variation in (3.26), and the third one is for the upper bound given 
in (3.31). The fourth graph is for the variation in (3.29), and the fifth one is the 
upper bound. The fourth and fifth curves are just equal to the second and third 
ones shifted upwards because of the variations over [-1, -~], which equal 0.1692, 
0.1602, 0.2415, for s = 1, 2, 3, respectively. As we explained after (3.29), in (3.29) 
we consider r E [ - ~, 0] , and the variations contain contributions from [ -1, - ~] . 

3.2. Negative a 

In this case, we consider the function U ( - ~ µ2 , µt../2). This function satisfies the 
differential equation 

d2w 4 2 
dt2 = µ (t - l)w. (3.32) 

For expansions in terms of elementary functions, three intervals should be distin
guished: (-oo, -1 - c5], [-1+c5,1 - c5], and [1 + c5, oo) (the turning points t = ±1 
should be avoided). We only consider the interval [1 + c5, oo); for the other intervals 
we refer to [9]. 

,.. 
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3.2.1. The case t > 1 

We write (see [9, (2.9)]) 

U (-~µ2 ,µt../2) = h(µ) cµ.2~ F (t) 
2 (t2 -1)! µ 

where h(µ) is defined in (3.13), Fµ(t) is expanded in the forrn 

F (t) rv ~ </Js(r) 
µ. ~µ2s' 

s=O 

T=~[~-1], 

~ = ~t02=1- ~ ln[t + Jt2 -1], 

and the coefficients </J8 (r) are as in (3.12); see also (3.15) and (3.17). 

(3.33) 

(3.34) 

(3.35) 

(3.36) 

We can derive (3.34) as (3.12) for a > 0. The function F(r) = Fµ.(t) satisfies 
the equation (compare this with (3.16)) 

dF d [ dF] 1 µ2 dr = -4 dr r2(r + 1)2 dr - 4(20r2 + 20-r + 3)F. (3.37) 

For the function V (a, z), we have 

where the ef>s(r) are the sarne as in (3.34). 
For the derivatives, we have 

and 

(3.40) 

The coefficients 'l/Js are the sarne as in (3.18); see also (3.19) and (3.20). 
The functions Fµ(t), Gµ(t), Pµ.(t), and Qµ.(t) introduced in the asymptotic rep

resentations satisfy the following exact relation: 

Fµ(t) Qµ(t) + Gµ.(t) Pµ.(t) = 2. (3.41) 
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Table 5. Ratios \Rn(µ,t)\/m:>(µ,t); z = 2tya,n = 3. 

1.5 2.0 3.0 5.0 10 20 50 

a= -1 .29990 .57546 .80676 .93078 .98282 .99572 .99932 

a= -5 .69226 .86898 .95344 .98522 .99652 .99914 .99986 

a= -10 .81624 .92930 .97608 .99256 .99826 .99956 .99994 

a= -50 .95602 .98488 .99510 .99850 .99964 .99992 .99998 

a= -100 .97744 .99236 .99754 .99924 .99982 .99996 1.0000 

3.2.2. Error bounds of the expansion 

We write the expansion in (3.34) with remainder: 

n-1 r/> ( ) 
Fµ(t) = L s 2: + R,..(µ, t). 

s=O µ 
(3.42) 

For the present values of the parameters, the remainder Rn(µ, t) can be bounded 
as follows, see [7, p. 366], 

I 0 ( t)[ < [2Voo,e(<h)] Voo,e(<Pn) 
Hn µ, - exp [µ2\ [µ2[n · (3.43) 

In Table 5, ~e show the ratios [Rn(µ, t)[/ m_e) (µ, t) (with n = 3) where R~e) (µ, t) 
is the right-hand side of (3.43). 

From the first few </J8 (r) given in (3.17) and the recursion relation in (3.15), it 
follows that all coefficients in these polynomials have the sign of ( -1) s. Hence, for 
t > 1, that is, r ~ 0, the variations in (3.43) can be easily obtained. We have for 
n ~ 1, using (2.9), 

4. Obtaining Error Bounds by Using Integrals 

A systematic approach for constructing error bounds of remainders in uniform 
asymptotic expansions is available only for expansions derived from differential 
equations; see [7]. In this section, we consider a method for expanding (3.11), using 
an integral representation of the function U (a, z). For this approach, it is convenient 
to concentrate on large positive values of z and to construct an expansion that holds 
uniformly with respect to a E [O, oo). This expansion reduces to the Poincare-type 
expansion in (2.1) when a is fixed after expanding the quantities in the expansion 
that depend on .A = a/z2 for small values of this parameter. In fact, by writing 
µ = zvU and t = 1/(2../X), the same can be done in the expansion given in (3.11) 
and (3.12). 
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4.1. An integration by parts procedure 

We summarize from [9] and start with the integral representation 

1 
a>--

2' 

which we write in the form 

where 

U( ) za+~ e-iz2 foo -z2<t>(w) dw 
a,z = r(a+~) lo e Vw 

1 
1>(w) = w + 2w2 - Alnw, 

a 1 
>.= - = -

z2 4t2 

( 4.1) 

(4.2) 

(4.3) 

where t is used earlier in the notation U ( ! µ,2 , µt\1'2). The positive saddle point wo 
of 1>(w) is 

1 
Wo = 2[Vl +4,\-1]. (4.4) 

A standard form of ( 4.2) is obtained by using the transformation 

1>( w) = s - >.. ln s + A (4.5) 

where A does not depend on s or w; we prescribe that w = 0 should correspond 

with s = 0 and w = w0 with s =.A, the saddle point in the s-plane. This gives 

I ? 
A = 2w0 + wo - >. ln w0 - >. + >. ln >., (4.6) 

(4.7) 

where 

1/f dw 1~ s->. f(s) = (1 +4>.)4 - -d = (1 +4A.)4 - 2 A. 
w s s w +w-

(4.8) 

By normalizing with the quantity (1 +4>..)i, we obtain j(>..) = 1, as can be verified 

from (4.8) and a limiting process (using l'Hopital's rule). 
For >. --+ 0, the saddle point wo tends to zero, and the mapping becomes 

I ? 

2w- +w = s. 

It is not difficult to verify that for A. = 0, we have 

f(s) = 1 + v'f+2S 
2(1 + 2s) · 

(4.9) 

(4.10) 
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If >. =/= 0, the transformation ( 4.5) also can be written in the form 

). W = Wo S et<tw2+w-s-tw5-wo+>.) ' 

in which form no logarithms occur. 
We introduce a sequence of functions {/k} with J0 (s) = J(s) and 

r: d [ r:fk(s) - Jk(>.)] Jk+i(s)=v{jds vs s->. , k=0,1,2, .... 

(4.11) 

(4.12) 

The expansion in (3.12) can be obtained by using an integration by parts pro
cedure. Consider the integral 

( ) 1 100 a -z2sJ( ) ds Fa z = r( 1 ) s e s rn. a+2 0 yS 
(4.13) 

We have (with>.= a/z2 ) 

Fa(z) = z-2a-1 !(>.) + 1 1 ('o sae-z2s[J(s) - J(.X)] ds 
r(a + 2) lo ..fS 

= z-2a-l f(.X) _ 1 100 .,;sJ(s) - J(.X) de-z2 (s->.lns) 

z2r(a+!) 0 s->. 

= z-2a-l J(>..) + 8ae-z s Ji (s) _ 1 100 
2 ds 

z2r(a+ !) 0 ..fS 
where Ji is given (4.12) with Jo = J. Repeating this procedure we obtain 

e-tz2-Az2 oo Jk(A) 
U(a z) "" '°' - . (4 14) 

' za+t (1 + 4>..) t f::o z 2k · 

The factor in front of the series in (4.14) and the factor in (3.11) are the same. This 
can be verified by using a = tµ 2 and z = µ..,/2t. Also, the two series correspond 
termwise with each other, the relation between the coefficients being 

(-l)k - 1 [ 1 ] 
rPk(TJ = (2t2)kJk(A), T = 2 y'4). + 1 -1 . (4.15) 

For example, we have 

(27+1) 2 '.::'.2 -
Jo(>-.) = 1, Ji(>.) = - 24(7 + l) (20r + 30r + 9). (4.16) 

We write (4.14) with a remainder: 

e-lz2-Az2 [n-1 Jk(A) 1 l 
U(a,z)= 1 t L2k+-2-Rn(a,z) 

za+2 (1 + 4>..) k=O Z Z n 
(4.17) 

where 

(4.18) 
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4.2. Bounding the remainder 

Ftom (4.5) and (4.8), we infer that f(s) = O(s- 114 ) ass-+ oo (see also (4.10) for a 

simple verification when,\= 0). So, f(s) is bounded on [O,oo). We also can prove 
(which will not be done here) from (4.12) that fn(s) = O(s-114 ), n ::::-: 1. Hence, the 

functions fn(s) can be bounded by lfn(s)i :::; Mn(>.) for s 2 0. When using this 
bound in (4.18), we indeed obtain an upper bound for IRn(a,z)I, but this bound 
may not be realistic. 

A much better bound is obtainable by estimating lfn(s)I accurately near the 
point s = ,\ (where the integrand of ( 4.18) has its peak) and accepting a rough 
estimate for other s-values. This can be achieved by using a "weight function" 
Wn(s, >.) and by writing 

(4.19) 

where, for example, we take 

(4.20) 

We have wn(>., >.) = 1. Observe that for s = >., the dominant part sae-z2 s of the 
integrand in (4.18) assumes its maximal value when a and z are large. We try to 

find Mn(>.) > 0 and (jn 2 0 such that (4.19) holds for alls 2 0. Then we obtain 
the bound 

(4.21) 

where 

S ( ) = AO"n ->.un (l - (jn)Ao-n-a-t I'(a + ! - AO"n) 
n a, z a e 2 ( 1 ) • z r a+ 2 

(4.22) 

For Sn (a, z), we need the conditions 

1 
a+ 2 > A(jn. (4.23) 

The quantity Sn (a, z) is close to unity when a + z is large; because f n is bounded, 
the value of O"n will be small. Numerical calculations show that for Cln = 1 and 
z 2 3, a 2 1, the maximal value of Sn(a, z) is smaller than 1.062. 

In Fig. 4, we show the graph of [(1+5>.)ifn(>-)i +Mn(>.)] (the factor (1+5>..) 
is chosen for scaling) when we take (j1 = 1 in (4.19). We have Mi(O) = 0, fi(O) = 

-3/8, and fi(,\)'"" 1/(48,\) for large>.. We also draw the graph of 

IR1(a, z)i 
Pi(>.)= [if1(>-)i +M1(>.)]S1(a,z)' (4·24) 

the ratio of the exact error and the estimated error. We see a sharp dip at ,\ = 
8.3176 ... , which is a zero of Ji(>.); for this value of>.., the asymptotic approx
imation improves, as expected. For large >., the quantity P1 tends to 1. 

We computed Mi(>.) in (4.24) as the infimum of lfi(s)/w1(s,>.)i, s 2 0, and 
this gives a continuous function M1 (>.), but it may not be smooth. For example, 
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1.0 

0.75 

20 30 A. 40 

Fig. 4. The graph of (1+5>.)[lfi(>.)J + M1(.>.)] with M1(>.) introduced in (4.19) (with u1 = 1), 
andp1(.>.) from (4.24). 

there is a noticeable non-smooth behavior near A= 11 because inf [ft(s)/w1(s,A)[ 
occurs for A < 11 in a different s-domain than for A > 11. 

4.3. Bounding the remainder by using Cauchy-type integrals 

Computing the functions f n(s) by using formula (4.12) is quite difficult, even when 
we use computer algebra. The representations contain derivatives and removable 
singularities (poles) at s = A. In particular, these removable poles are very incon
venient when computing the functions fn(s) nears= A. 

It is possible, however, to represent fn(s) as a Cauchy-type integral. The map
ping in (4.5) is singular at w = w_ = -1 - wo, the negative saddle point of <P(w) 
defined in (4.3). The corresponding values_= s(w_) is located in the half-plane 
9ts < 0. If A= 0, then w_ = -1 and the corresponding s-value is s_ = -t. Refer 
to (4.10), where indeed f(s) shows a singularity at this point. For large values of 
.\,we have the estimate (see (9, (4.45)]) 

[ 0.4356] 
s_ = s(w_),..., -A 0.2785 + IX . (4.25) 

For constructing the Cauchy-type integrals, we use the property that the func
tions f n ( s) are analytic functions in a domain V in the half-plane 9ts _; in particular, 
V contains a neighborhood of the positive real axis. 

As in [4], we start from 

fn(s) = 2
1 . { Qo(O",A,s)fn(O") da, Qo(a, .\,s) = - 1-, (4.26) mk a-s 

where s E 1J and C is a contour in T> around the point O" = s. Using the recur
sion (4.12), and integrating by parts, we obtain 

fn(s) = -2
1 . { Qi(a,A,s)fn-1(a)d0" (4.27) 
7ri le 
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where C is a contour in 'D around the points a=>.. and a= s, and 

1 [ a ] a+s 
Qi(a, >.., s) = - 2(o- - >..) Qo + 2a oa Qo = 2(a - >.)(a - s)2. 

Continuing this, we obtain for n = 0, 1, 2, ... , 

fn(s) = -21 . r Qn(a,>..,s)J(a)da. 
7rZ le 

The rational functions Qn follow from the recursion relation 

For example, we have 

3a3 - >..a2 - as2 - >..s2 + 6a2s - 6>..as 
Q2(a, >.., s) = 4(a - >.)3(a - s)3 . 

The coefficients fk(>..) in (4.14) follow from (4.29) by substituting s = >.. 

(4.28) 

(4.29) 

(4.30) 

(4.31) 

We can obtain a bound for fn(s) by using the representation in (4.29) and by 
selecting a special contour. We take for C the vertical line 9'to- = -ao where ao > 0. 
First we write the quantities Qn in a special form: 

2>..-p+ 2q ).. 1 1 
Qi(a,>.,s) = 2 2 = 2- -2 + 2 pq pq pq p 

(4.32) 

where 

p = (T - s, q = (T - ).. • (4.33) 

Similarly, 

8.X2q + 16>..q2 + 8q3 + 4p>..2 - 4pq2 - 2>..p2 - p2q (4.34) 
Q2(o-,>..,s)= 4 3 3 ' p q 

which also can be written as a sum of partial fractions in which o- occurs only in 
the denominator. 

For o- EC, we write o- = -ao + iT, r ER Fors~ 0 and>.. 2: 0, we have 

This gives for Qi the bound 

(4.36) 
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We also need a bound of f(s) for s EC (we know that this function is bounded on 
C, see beginning of Sec. 4.2). Let 

M(ao,>.) = maxlf(s)I. 
sEC 

This gives for the remainder defined in (4.18) the upper bound 

4>. + 37rao 
\R1(a,z)\$M(ao,>.) 4 2 7rao 

Similarly, 

3A2 llA 13 
IQ2(a, >., s)I $ 2(a5 + 72)5/2 + 4(a5 + 72)2 + 8(a5 + 72)3/2' 

IR ( )I M( ')9.>.2 +117r.Xuo+26afi 
2 a, z $ ao, A 16 4 , 

7rao 

(4.37) 

(4.38) 

(4.39) 

( 4.40) 

15>.3 61A2 43.X 81 
\Q3(a, A, s)I $ (afi + 72)7/2 + 2(afi + r2)3 + 2(a5 + 72)5/2 + 8(afi + 72)2 ' (4.41) 

IR ( )I M( ') 768>.3 +5497r>.2ao+1376>.afi + 2437ra5 
3 a, z $ ao, A 96 6 

7rao 
( 4.42) 

The singularity s_, estimated in (4.25), is of order O(>.), and it follows that 
ao also can be taken to be of order O(>.). When we choose ao in this way, we see 
that the first three quantities Qn, for this choice of C, are of order 0(1/ An+l) as 
>.--+ oo, and the remainders are of order 0(1/>.n). For higher values of n we see a 
similar behavior. 

We conclude that the estimates of the Qn can be obtained quite easily, and that 
only the estimate of lf(s)I is needed for obtaining bounds of Rn(z,a). From numer
ical verifications, we infer that (on C) lf(s)I is maximal at s = -ao. Hence, we can 
take M(ao, A)= lf(-ao)I. 

Comparing the numerical bounds with those obtained by the method of 
Sec. 3.2.2, we conclude that the present bounds are less realistic unless >. is 
very large. 

5. Numerical Aspects 

For the computation of the numerical upper bounds of the remainders in the ex
pansion, we used computer algebra for manipulating the formulas. This already 
became quite complicated, even though we did not consider complex parameters. 
The evaluation of the variations of the coefficients <l>n in the uniform expansions 
can be done by computing the zeros of the derivatives of cPn· When using computer 
algebra this is an easy job because the c/Jn are polynomials. For a fast algorithm, 
say in Fortran, one may use precomputed values of these zeros and corresponding 
values of <l>n in order to avoid the time consuming computation of the zeros. 

., 
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For computing values of the remainders used in the Tables 3-5, we needed 
accurate values of the asymptotic expansions and the function U (a, x) because of 
the subtraction of two quantities with many corresponding leading digits. 

For example, for computing Rn(µ, t) of (3.24) for n = 3, a = 100, and t = 50 
(which corresponds with x = 1000), the values of F'"'(t) and the asymptotic series 
in (3.24) (with n = 3) are 

0.99999 96252 38198 34461, 0.99999 96252 38198 34799' 

respectively, with 17 corresponding digits. We have computed these values with 
30 digits accuracy (using Maple 7) and developed new algorithms with adjustable 
precision, based on quadrature methods. 

It was necessary to develop new algorithms for the parabolic cylinder functions 
for large values of the parameters because when we used the Maple 7 Library 
function CylinderU(a,x) or the relation with the Whittaker function in (2.6), the 
answers were not reliable, and the computing time was increasing considerably, 
when the parameters are large. 

For example, the evaluation of U(lO, 100) with Digits = 50 took about 100 
seconds and gave an answer of order 10832 , whereas the answer should be ex
ponentially small. When we use our code with Digits = 30, we obtain within a 
few seconds the answer 0.182463637678584422244199909618045 x 10-1106 which 
has 27 correct leading digits. We will present these real parameter Maple codes 
for the numerical evaluation of U(a, x) and V(a, x), and their derivatives, on the 
web site of our project http : / /turing.wins.uva.nl/thk/specfun/ compalg.html. 
Fortran versions of these codes will be developed in a following project. 
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