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The use of a uniform Airy-type asymptotic expansion for the computation of the modified Bessel functions 
of the third kind of imaginary orders (Ki"(x)) near the transition point x = a, is discussed. In A. Gil et al., 
Evaluation of the modified Bessel functions of the third kind of imaginary orders, J. Comput. Phys. 17 (2002) 
398-411, an algorithm for the evaluation of Kiu(x) was presented, which made use of series, a continued 
fraction method and nonoscillating integral representations. The range of validity of the algorithm was limited 
by the singularity of the steepest descent paths near the transition point. We show how uniform Airy-type 
asymptotic expansions fill the gap left by the steepest descent method. 
© 2002 Elsevier Science B.V. All rights reserved. 
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0. Introduction 

If we can qualify a special function as being important when it appears in mathematical and 
physical applications, then the modified Bessel function of the third kind of imaginary orders is a 
quite important one. For instance, this function appears in physical problems such as the solution 
of the radial Schrodinger equation for exponential potentials, and it also plays an important role in 
diffraction and hydrodynamics. Besides, Ki"(x) solves the Dirichlet problem with boundary conditions 
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on a wedge and appears as approximant in certain unifonn asymptotic expansion; additionally, Kia(x) 
is the kernel of the Kantorovich-Lebedev transform. 

In spite of its importance, there exists a considerable gap in the numerical libraries regarding 
its computation. Previous published methods were primarily based on specific quadrature methods 
relying on oscillatory integral representations. A major concern is the control of relative accuracy 
when using these integrals, given that the integrals tend to oscillate strongly as the parameters become 
large. 

In [2], we described a strategy for the computation of the Kia function based on series expansions 
for moderate x, an algorithm based on a continued fraction for hypergeometric functions for moderate 
a and nonoscillating integral representations when the other two methods failed. 

The nonoscillating integral representations result from the application of steepest descent methods, 
as described in [7]. Given that the differential equation satisfied by the function Kia(x) shows a 
turning point at x = a, where the functions changes from an oscillatory (x < a) to a monotonic 
(x >a) behaviour, two different steepest descent integrals arise for these two cases. Unfortunately, 
it is difficult to match the result from both integrals as x approaches a; in particular, the integral for 
the oscillating case has a nonsmooth behaviour in this limit caused in part by the peculiar limiting 
form of the corresponding steepest descent path as x --> a+. As we will show next, this fact sets 
bounds on the application of the method for large a,...., x. 

A way of dealing with this problem is by considering approximations which incorporate the be­
haviour around a simple turning point; that is, considering uniform Airy-type asymptotic expansions. 

In this paper we give a brief review of the computational methods described in [2] and we analyse 
the perf onnance of uniform asymptotic expansions. These combined strategies will be enough to build 
reliable software for the computation of Kia(x) for a wide range of the parameters. We concentrate 
on the function Kia(x) though similar methods can be applied for the computation of K(./x ). 

1. Series expansion 

Series expansions for Kia(z) and K(,,(x) can be built which properly handle the singularity at x = 0. 
The idea, as in [7], is to relate K\'(x) with I\'(x) to obtain the following expansion: 

where 

and 

oc 

K,.(x) = L ckfk, 
k-~O 

fk = n [ (x/2)_,. _ (x/2)'' ] 
2sinvn I'(k+l-v) I'(k+l+v) 

Ck= (:Y ;, =:Ck;'. 

( 1 ) 

(2) 

(3) 

The coefficients fk can be computed by forward recursion with starting values / 0 and / 1 which 
can be evaluated in terms of the Coulomb phase shift [I]. 
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2. Continued fraction method 

The Bessel function K,.(x) can be expressed in terms of the functions z11(x)=U(v+!+n,2v+l,2x): 

For the calculation of zo, a continued fraction representation for the ratio z1 /zo is considered: 

-=----··· 
zo bi+ b2+ 

where 

an+l = -[(n + 1/2)2 - v2], b11 =2(n +x) 

together with a normalization condition [ 6]: 

00 ( 1 )''+l.'2 
LCnZn = 2x 
n=O 

(4) 

(5) 

(6) 

(7) 

The computation of the normalization condition can be made in parallel to the evaluation of the 
continued fraction. 

3. Nonoscillating integral representations 

In [2], nonoscillating integral representations suitable for computation were built starting from the 
results in [ 6]. 

For the monotonic case (x > a) the following representation applies: 

Kia(x) = 100 e-xcoshrcosrr-aa dr, (8) 

where a = x sin () and sin a = (sin 0 --,-I-h ). sm r 
This integral representation can be easily computed by using standard quadrature methods [5]. 
For the oscillatory case (x < a), the corresponding integral representation is as follows: 

Kia(x)=e- 1w12 [. ~ 111 (cosxsinhp+sinxcoshp dda) dr 
sm na 11-tanh 11 T 

- . 1 [ 3
rr/

2 (cos x sinh p ddT +sin x cosh p) da 
s1nh na } rr a 

+ 100 
e-'l'(rJ (cosx + sinx ~:) dT], 

where x = x sinh µ - ap, cash p = a/x, µ > 0, 

If'( T) = x cash T cos a + a( a - !n) 

(9) 

(10) 
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and 

. (r - µ)coshµ + sinhµ 
sm a=-------­

sinh r 
(11) 

The improper integral, as in the monotonic case, can be computed using standard quadrature meth­
ods. Regarding the integrals over finite intervals, the second integral in (9) requires the numerical 
computation of r( a) from ( 11 ). This inversion can be performed in parallel to the integration. 

4. Uniform Airy-type asymptotic expansion 

The expansion in terms of Airy functions (Ai(z) and its derivative Ai' (z)) for Kia(x) is given by 
(see [4, p. 425]) 

rce '+' ., . 2 ,3 s a_, . ., i -a ., s s ., -mr.2,.1,(r) [ n (r) A"'( 2,3r) n-l b (r) l 
Kia(az)= a 13 A1(-a 0~(-) ~+ a43 ~(-) ~+£211+1(a,O, 

(12) 

where ( is given by 

2 r3 2 l l + JI=zI ;.--;l , 
3., = og z - v i - z-, 0 ~ z ~ 1, 

2 v 3 1 ;.,---; 1 
3 ( - ~ ) - = y z- - 1 - arccos ~, z ;;?: 1 (13) 

and 

( 4( ) 1'4 

</>(0 = l - z2 , </>(O) = i 3. (14) 

A bound for the remainder t.211+ 1 (a, O is given in [ 4, p. 425]. 
The evaluation of the coefficients near the turning point z = 1 (which is our region of interest) is 

performed via Maclaurin series expansions of the quantities </>, a_,. and b.1. [8] in terms of the variable 
Y/ = 2-u(: 

OG 00 00 

</>(0 = L </>1Yf1, as(O = L a~1l, bs(() = i 3 L b~1( 
t=O t=O t=O 

The coefficients a;., b~ can be evaluated through a recurrence relation over t and s: 

I 

2(2t + 1 )b~ = 2 L tf;,.a~-r - (t + 1 )(t + 2)a.~+2 , 
r=O 

I 

2(2t + 1 )a~.:\ = 2 L t/J,.b.'..-r - (t + 1 )( t + 2 )b.~+2 , (15) 
r=O 



A. Gil et al.I Journal of Computational and Applied Mathematics 153 (2003) 225-234 229 

where the quantities tf;,. are the coefficients of the Maclaurin expansion in terms of the variable 1J of 
the function 

. 5 (z2(z2 + 4) 
l/J(O = 16(2 + 4(z2 - 1)3 : 

oc 

lfi<o = 2':3 :L t/J,-1]". (16) 
r=O 

To obtain a~, s ~ 1 (it is known that a0( O = 1) one can use the following relation: 
s 

2a?+ 1 = - L a~a?+ 1 _,. - L [a~b~-r - af.b.~_,.], s = 0, 1, 2, .... (17) 
r=l r=O 

From the first relation of (15) it is clear than b~ = l/Ji/(2t + 1 ), t = 0, 1, 2, ... 
In the appendix we provide a Maple code for the computation of the coefficients of the Maclaurin 

expansions of the functions z(O, </>(0, tf;(O as well as as{O, b.1(0 for s =0, ... ,3. 

5. Numerical aspects 

Fig. 1 shows the regions where series, the continued fraction method and nonoscillating integral 
representations can be applied. The shaded regions represent the values of the parameters for which 
series and the CF method agree with steepest descent integrals for an accuracy of 10-9• In the un­
shaded regions neither series nor CF can be applied and we are left with the nonoscillating integrals. 

The integrals considered, and in particular, the integral for the oscillatory case (x < a) become 
difficult to compute as x approaches a. This is related to the peculiar limiting form of the steepest de­
scent path and the rapid variation of the first two integrands in (9) at the extremes of integration [2]. 

In order to illustrate more clearly the loss of precision as a - x+ it is convenient to look closer 
to the comparison of the CF versus integrals close to x = a. Fig. 2 shows such analysis. A sweep 
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Fig. I. Regions where series and the continued fraction method coincide with nonoscillating integrals for a precision better 
than 10-9 , For x < 100, the regions where each of these approaches can be safely applied is labeled with different letters. 
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Fig. 2. Comparison of the continued fraction method and integrals for a precision of 10-9 • 

• 
-~ 0 
\' 
~ 

-1 

50 100 150 200 50 100 200 

(a+x)/21" (BJ (a+x)/2112 

Fig. 3. (A) Comparison of the continued fraction method and the uniform asymptotic expansion for a precision of 10-". 
(8) Comparison of the integrals and the uniform asymptotic expansion for a precision of 10-9 . 

of parameter values is perfonned around x =a using as axis (x +a)/Vi and (a - x)/.Ji. Indeed, 
we observe some discrepancies for small a - x > 0. 

For this reason, the algorithm based on series, CF and integrals had to be limited to x < 100 in 
order to avoid the consideration of the integral for the oscillatory case for x too close to a. This is, 
however, a broad range if one considers that for such high values the function drops to values of 
the order of 10-45 at most. 

In any case, the performance and range of application can be improved by using Airy-type uniform 
asymptotic expansions [4,8], as we have discussed before. Fig. 3A shows the comparison between 
the asymptotic expansion and the CF while Fig. 3B shows the comparison between the asymptotic 
expansion and the integral representations; the same rotation of axes as in Fig. 2 is considered. Four 
as and bs coefficients are considered, expanded up to power 4 (at most) in (. For the computation 
of the Airy function we use an algorithm based on series, Gaussian quadrature and asymptotic 
expansions [3]. 



A. Gil et al. I Journal of Computational and Applied Mathematics 153 (2003) 225-234 231 

150 .---------.--........ ---~ 

100 

50 

o~~-~~-~--~--__. 
0 50 100 

x 
150 200 

Fig. 4. Comparison of the integrals and the uniform asymptotic expansion for a precision of 10-9 and for 20 coefficients 
in the series expansion of a.,, b,, s = 0, 1, 2, 3. The accuracy problem of the integral as x --> a+ is not observed (but it is 
present) due to the large range displayed in both axis. 

We observe that this is enough to safely avoid the computation of the integral in the compromised 
region and that, therefore, the use of asyrnptotics helps in increasing the range of computation. In 
this way, one can safely and accurately compute the function Kia(x) with the only practical limitation 
of the underflow capabilities of the computer in use. 

The range of application of the uniform asymptotic expansion can be extended both by considering 
further a.,. and bs coefficients and further terms in the expansions of these coefficients. For moderate 
a the CF method is an accurate and efficient method; therefore, adding more a., and b.,. coefficients 
would not improve the performance of the algorithm. However, it could be interesting to consider 
more terms in the expansion of the coefficients in order to enlarge the region around x = a where 
asymptotics can be applied. 

Fig. 4 shows the region of coincidence of the asymptotic expansion and the integrals when up 
to 20 coefficients in the Taylor series for the as and b.,. coefficients are considered (we again take 
s = 0, 1, 2, 3 ). In this case, power series, asymptotic expansions and the CF method suffice to compute 
Kia(x) in the a-x plane. 

The four methods of computation described are therefore such that for any point in the a - x, there 
are at least two methods that can be applied, except for a tiny region above the line x =a (where 
we can rely on asymptotics ). Integrals have the largest range of applicability, followed by uniform 
asymptotics, the CF method and power series. This overlapping will be important in order to build 
reliable codes with accuracy well under control; the selection of methods in the different regions of 
parameter space will be determined by the reachable accuracy and the speed of computation. 

Acknowledgements 

A. Gil acknowledges financial support for Alexander von Humboldt Foundation. J. Segura 
acknowledges financial support from DAAD. 



232 A. Gil et al. I Journal of Computational and Applied Mathematics 153 (2003) 225-234 

Appendix 

# Maple code for the computation of the coefficients used in 
# the Airy-type asymptotic expansions 
# Ref.: N.M. Temme, ''Numerical Algorithms for uniform Airy-type 
# asymptotic expansions" 
# Numer. Algorithms 15, No.2 (1997) 207-225. 

restart; 
readlib(coeftayl); 

# up: number of terms in the expansion of z(zeta). The number of coefficients 
# in the rest of expansions is smaller than up. 

up:=30; 
psi:= 5/32/eta-2+eta*z2* (z2+4) /4/ (z2-1)-3; 
phi:=(2*eta/(1-z2))-(1/4); 
v:=2*eta*z2-(1-z2)*zd-2; 

# Maclaurin expansions for the functions z(zeta), psi(zeta), phi(zeta) 
zn[O] :=1; zn[1] :=-1; 
z:=sum(zn[k]*eta-k,k=O .. up); 
zd:=diff(z,eta); 
z2 := normal(taylor(z-2 ,eta=O, up-1)); 
vt :=normal (taylor(v ,eta=O, up)); 
for j from 2 to up-2 do 

od; 

p :=normal ( coeftayl ( vt, eta=O, j)) ; 
zn[j] :=normal(solve(p=O ,zn[j])) 

for j from 0 to up-2 do 
lprint('zn[' ,j, '] :=' ,zn[j],'; ') 

od; 
psit :=normal (taylor(psi, eta=O, up-1)); 
for j from 0 to up-7 do 

psin [j] := coeftayl (psi t, eta=O, j) 
od; 
for j from 0 to up-7 do 

lprint('psin[' ,j, '] :=' ,psin[j],'; ') 
od; 
phit:=normal(taylor(phi,eta=O,up-2)); 
for j from 0 to up-3 do 

phin [j] := coeftayl (phi t, eta=O, j) 
od; 
for j from 0 to up-3 do 

lprint('phin[' ,j, '] :=' ,phin[j],'; ') 
od; 

# Computation of the coefficients a_s-t, b_s-t for s=O to s=4. 
s:=O; up:=up-7; 
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ast[s,O] :=1; 
for t from 1 to up do ast [s, tJ := 0 od; 
for t from 0 to up do bst [s, tJ := psin [ t] I (2*t+ 1) od; 
s:= 1; 
for t from 0 to up-2 do 

u:=O; 
fork from 0 tot do u:=u+bst[s-1,t-k]*psin[k] od; 

ast [s, t+1] := (2*u-(t+1) * Ct+2) *bst [s-1, t+2]) I (2* Ct+1)) 
od; 
u :=-Cast [O, OJ *bst [s-1, 1]-ast [O, 1] *bst [s-1, OJ) ; 

for j from 1 to s-1 do 
u := u-ast [j , OJ *ast [s-j, OJ -Cast [j , OJ *bst [s-1-j , 1]-ast [j, 1] *bst [s-1-j , OJ); 

od; 
ast[s,OJ :=u/2; 
for t from 0 to up-3 do 

u:=O; 

od; 

fork from 0 tot do u:=u+ast[s,t-k]*psin[kJ od; 

bst[s,tJ := C2*u-Ct+1)*(t+2)*ast[s,t+2J)/(2*(2*t+1)) 

s:=2; up:=up-3; 
for t from 0 to up-2 do 

u:=O; 

od; 

fork from 0 tot do u:=u+bst[s-1,t-kJ*psin[kJ od; 
ast[s,t+1J := (2*u-(t+1)*Ct+2)*bst[s-1,t+2])/(2*Ct+1)) 

u:= -Cast [O, OJ *bst [s-1, 1]-ast [O, 1J *bst [s-1, OJ); 
for j from 1 to s-1 do 

u := u-ast [j, OJ *ast [s-j, OJ-Cast [j, OJ *bst [s-1-j, 1] -ast [j, 1J *bst [s-1-j, OJ); 

od; 
ast[s,OJ :=u/2; 
for t from 0 to up-3 do 

u:=O; 
fork from 0 tot do u:=u+ast[s,t-kJ*psin[kJ od; 
bst [s, tJ := (2*u- ( t+ 1) * (t+2) *ast [s, t+2J) I (2* (2*t+ 1)) 

od; 
s:=3; up:=up-3; 
for t from 0 to up-2 do 

u:=O; 
fork from 0 tot do u:=u+bst[s-1,t-kJ*psin[kJ od; 
ast [s, t+1J := (2*u-(t+1) * (t+2) *bst [s-1, t+2]) I (2* Ct+1)) 

od; 
u :=-Cast [O, OJ *bst [s-1, 1J -ast [O, 1J *bst [s-1, OJ); 
for j from 1 to s-1 do 

u:= u-ast [j, OJ *ast [s-j, OJ-Cast [j, OJ *bst [s-1-j, 1J -ast [j, 1J *bst [s-1-j, 0); 
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od; 
ast[s,0] :=u/2; 
for t from 0 to up-3 do 

u:=O; 

od; 

fork from 0 tot do u:=u+ast[s,t-k]*psin[k] od; 
bst [s, t] := (2*u-(t+1) * Ct+2) *ast [s, t+2]) I (2* (2*t+1)) 

s:=4; up:=up-3; 
for t from 0 to up-2 do 

U:=O; 
fork from 0 tot do u:=u+bst[s-1,t-k]*psin[k] od; 
ast [s, t+ 1] := (2*u-( t+ 1) * ( t+2) *bst [s-1, t+2]) I (2* ( t+ 1)) 

od; 
u:=-(ast[O,O]*bst[s-1,1]-ast[0,1]*bst[s-1,0]); 
for j from 1 to s-1 do 

u:=u-ast[j,O]*ast[s-j,0]-(ast[j,O]*bst[s-1-j,1]-ast[j,1]*bst[s-1-j,0]); 
od; 
ast [s ,OJ:= u/2; 
for t from 0 to up-3 do 

u:=O; 

od; 

fork from 0 tot do u:=u+ast[s,t-k]*psin[k] od; 
bst[s,t] := (2*u-(t+1)*(t+2)*ast[s,t+2])/(2*(2*t+1)) 
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