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In a wide range of disciplines including robot vision, microscopy and material science, it is required 
to extract objects of interest such as industrial parts, cell structures and minerals from a noisy and 
blurred image. We will formulate this task as a Bayesian estimation problem, paying particular 
attention to the choice of the prior distribution, and discuss how Markov chain Monte Carlo techniques 
can be used for statistical inference. 

1 Definitions and notation 

Following Baddeley and Van Lieshout [3, 4], we assume that the objects to be recognised are rep
resented by a finite number of real parameters that determine size, shape and location. Writing U 
for the space of possible parameter vector values, a point u E U represents an object R(u) in the 
digitised image T. To allow for images with multiple objects, define an object configuration to be a 
finite unordered set x = { xi, · · ·, x 11 }, n 2: 0, of object parameters x; E U. In mathematical terms, x 
is a realisation of a finite point process on U. 

In practice, the digitised objects R(x;), Xi E x, are corrupted during the imaging process. We 

model the deterministic blurring component by mapping the object configuration x to an image 8~x), 
t E T, called the signal; the remaining random noise component is modelled by a probability density 
f(y I B(x) ). It is convenient to assume that the pixel values y = (Yther are conditionally independent 
given the signal but texture models such as Markov random fields could be used as well at a slight 
increase in computational cost. 

As an illustrative example, consider a blur-free signal e~X) = l{t E S(x) = U7:i R(x;)}, t E T, 
and a binary noise component that randomly swaps background pixels from value 0 to 1 with some 
fixed probability p E (0, 1) and leaves pixels in the foreground S(x) unchanged. To extract the objects 
from a data image y, regard x as a parameter and estimate it by maximising the likelihood f (y I B(x)) 

over x. Letting Y be the set of data pixels with value 1, this likelihood is nonzero only when S(x) ~ Y 
and the log likelihood is a linear function of IS(x)I, the total area occupied by objects. Hence, one 
solution of the maximum likelihood equations is :Xmax = {u E U : R(u) ~ Y}, the (generalised) 
erosion operator of mathematical morphology ( cf.[36]). The other solutions are the subsets x ~ Xmax 
with S(x) = S(Xmax)· 

From the example above it is clear that maximum likelihood techniques suffer from multiple 
response due to occlusion. This could well be undesirable and suggests a Bayesian approach with 
a prior distribution penalising scenes with many overlapping objects. 

1 This paper has been submitted to "The art and science of Bayesian image analysis", to be held in Leeds, 30 June -

2 July 1997 
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2 Markov prior models 

As advocated in [3, 4, 23, 33], a class of models for object configurations suitable for penalising overlap 
and encouraging 'smooth' objects is that of Markov overlapping object processes [32, 6, 3, 4]. These 
proces.5e5 are defined by their density p( ·) with respect to a Poisson process on U with some non-atomic 
finite intensity measure µ(.) - for instance if U is a bounded subset of JRd, the usual choice for µ( ·) 
is d-dimensional Lebesgue measure - and satisfy the Ripley and Kelly [32] Markov property that, 
for all configurations x with p(x) > 0, (a) p(y) > 0 for ally ~ x; and (b) the conditional intensity 
p(X~4) 1 l depends only on u and those x; Ex with R(x;) n R(u) '# 0. 

P An advantage of Markov overlapping object processes is that they are easy to interpret in terms 
of interactions between intersecting objects: a density p( ·) is Markov i:ff p(x) can be factorised as 

p(x) = IT </J(y) (1) 
cliques y<;x 

where the product is restricted to cliques y ~ x of mutually overlapping objects and 4>( ·) are non
nega.tive functions. See [32] for details. 

By the factorisation (1), we can define a model by specifying the interaction functions Q)(-). How
ever, some care must be taken to ensure that the result is well-defined and can be normalised into a 
probability density. A sufficient condition is that all <PO are bounded above by l; in that case the 
model is said to be purely inhibitory. 

2.1 Within object interaction 

As we mentioned in Section 1, any u E U describes an object in terms of a few parameters. In the 
simplest case where all objects are identical up to translation, two location parameters suffice. Thus 
the prior term <P( { u}) in ( 1) may favour some locations over others, or simply be constant <P( { u}) = /3. 
Since each object contributes a term /3 to the prior, values of /3 > 1 favour scenes with many objects 
while (3 < 1 will penalise too many objects. 

Often, there will be more than just location parameters. For instance if the image contains both 
squares and discs, a type indicator is needed and the prior may give different weights to the two types. 
Size may be taken into account by a factor plR(u)I [4]. 

More complicated templates have been considered as well. For example Yuille [39] and Philips 
and Smith [27, 28] model the human mouth by global parameters describing location, orientation and 
size, while local parameters specify the depths of the upper and lower lip. The prior may include a 
Gaussian term for each of the global parameters and conditional Gaussians for the local parameters 
(see also Aykroyd and Green [l]). 

Another class of parametrisations models object boundaries by polygons with a fixed or variable 
number of vertices [13]. The prior may enforce smoothness or penalise too many sides [26, 30, 34] for 
instance by a cyclic Markov random field. 

<f>(u) = exp[-arR L(R(i) - R(i - 1))2 - a 9 L(O(i) - B(i - 1) - 7r)2] 

where Cl!R, o:e > 0 a.re smoothness parameters, and u has vertices with (centred) polar coordinates 
(R(i), B(i)). 

2.2 Between object interaction 

Next we turn attention to the interaction functions for cliques of mutually overlapping objects. If no 
objects are allowed to overlap at all, a hard object process [4] with l/J( x;, x j) = 1 { R( xi) n R( x i) = 
0} would be appropriate. In the absence of other interaction terms, this is just a Poisson process 
conditioned on having no intersecting objects. Applications can be found in [4, 16, 34]. 

The hard object process is an example of a pairwise interaction model 

p(x) =or IT <P(xi) IT <P(x;, x;) 
i 
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where a is the normalising constant, and the second product is over all pairs of overlapping objects 
x;,Xj. Other special cases include the Strauss object processefi(x;,xj) =/,or rf;(x;,xj) a function of 
the distance between the object centers as in Qian and Mardia [30]. In both cases, efJ(-, ·) must be 
bounded by 1 to ensure that the model is well-defined. 

The Qian and Mardia model takes into account the amount of overlap between the objects. Similar 
ideas lie behind the area-interaction model [40, 5] 

p(x) = 01-IS(X)I II <P(x;) (2) 

where S(x) again denotes the union U;R(x;). Contrary to the pairwise interaction models discussed 
above, p( ·) is well-defined for all values of I > O; realisations tend to have few intersections for I < 1 
and clusters of overlapping objects for / > l. Note that (2) exhibits interactions between arbitrarily 
many objects. 

Various generalisations of (2) have been proposed recently. Baddeley et al. [2] study quermass 
interaction processes which replace area by perimeter and other fundamental geometric measures. Van 
Lieshout and Molchanov [22] consider models based on the coverage function cx(a) = 2:7=1 l{a E 
R(x;)}, counting the number of objects covering pixel a. For instance, 

p(x) = 01-l{t:cx(t)=l}I II rjJ(x;) 
i 

with / < 1 penalises realisations containing many overlapping objects. As for the area-interaction 
process, the model is well-defined for all 1 > 0. 

Finally, note that all models discussed above treat objects equally. However, as suggested in Qian 
and Mardia [30], occlusion can be taken into account by imposing an ordering on object configurations 
to describe which objects lie on top. 

3 Random set based and morphological priors 

In some applications it is not necessary to identify individual objects, only to separate foreground 
from background. For segmentation problems like this, pixel-based Markov random fields have been 
proposed as prior distributions to encourage neighbouring pixels to belong to the same segment. See 
[7] and the references therein for details. Recently, more 'region-based' priors have been proposed. 
Since the natural phenomena underlying many images are continuous in nature, in this Section we 
will consider their random set based analogues. 

We will restrict attention to random sets X defined by their density with respect to a Boolean 
model on a compact window W with typical grain distribution v(·) and intensity>.> 0 [37]. Note 
that the density must depend on the union of the grains only. The role of within object interactions 
is taken over by v( ·). 

M~ller and Waagepetersen [25] introduced Markov connected component fields, where the density 
factorises into terms associated with the connected components in an image rather than with cliques 
of neighbouring pixels ( cf. [6]). They prove that if the model is also a Markov random field with 
respect to horizontal and vertical neighbours, then the density must be defined in terms of the area 
and perimeter of the components. If diagonal neighbours are included, Euler characteristics as well 
as the numbers of corners and discontinuities must be included. Hence, the random set analogues are 
the quermass random sets of [2]. 

Recently, Chen and Kelly [8] proposed 

p(X) = O:/IX\XoBI (3) 

to favour images that are morphological smooth, i.e. do not have narrow isthmuses, small islands or 
sharp capes. Here X is the set of 1-pixels and X o B the opening of X by a finite structuring element 
B. By duality, \X \ X o B\ may be replaced by \X • B \ X\, where the closing X • B penalises small 
holes [36]. Being defined in terms of area, generalisation to continuous random sets is straightforward. 
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More generally, size constraints can be imposed, as studied by Sivakumar and Goutsias (35]. In 
stochastic geometry, the size of voids left open by a stationary random set may be measured by the 
empty space function FB(r) = JP>(O EX EE) rB), r;:::: O or the contact distribution function 

GB(r) = Jll>(O EX$ rB I 0 (/. X) = FB(r) - FB(O), 
1- FB(O) 

r;:::: 0. 

Here, the structuring element B is a convex, compact set containing a neighbourhood of the origin, 
usually the unit ball, and X $r B [36] is the dilation of X with structuring element r B. FB and GB are 
easy to interpret and have analogues in the theory of point processes, however, from a morphological 
point of view, dilation is not an anti-granulometry since it fails to satisfy the 'sieving condition' 
(X E9rB)E9sB = (X El:)sB)$rB = X EE) (max(r, s))B, r, s;:::: 0. Replacing dilation by closing, a proper 
size distribution is obtained [36]. 

Thus, given a compact, convex set B, define a size distribution of voids by 

where X • rB denotes the morphological closing of X with structuring element rB. Here we assume 
that the coverage fraction PX= JP>(O EX) lies in the open interval (0, 1). Similarly, reversing the roles 
of foreground and background, we obtain the size distribution of X itself as 

Jll>(OEXorB) 
G0 (r)=l-lJ.l>(OEXorB!OEX)=l- JP>(OEX) ,r;:::O 

where X o r B denotes the morphological opening of X by r B (again provided the coverage fraction 
PX E (0, 1)). Note that G0 (r) can be interpreted as the probability of elimination by rB. Ripley 
[31] suggested to plot the estimated coverage fractions of X $ rB,X e rB,X o rB and X • rB for a 
range of r-values as an exploratory data analysis tool. For details on mathematical morphology, see 
for instance Serra [36]. 

If both the size distribution of the foreground and the background are of interest, we can consider 
the distribution function 

G(r)={ 1-JP>(OEXorB) r;:::O 
1- JJ.l>(O EX• -rB) r < 0 

defined on lR. 
Sivakumar and Goutsias (35] defined a discrete morphologically constrained random field by 

I J 

p(X) =a exp[- :E .Bi IX o iB \ X o (i + l)BI - :E 'Yi IX• jB \ X • (j - l)BI]. (4) 
i=O i=l 

Noting that ( 4) is based on the naive empirical distribution 

r;:::: 0 

r<O 

we can rewrite p(X) =a exp[- f~1 J(s)dGx(s)] where J(-) is a step function taking values /3;, 'Yi· 
Generalisations may be obtained by letting J(-) be any bounded function. The interaction range 
clearly depends on the range of J(-) and on I, J. Note that the function JO may favour some sizes 
and penalise others. For instance, if J(-) is the indicator function of [-I, I], it will encourage the fore
and background to exceed size I. 

Note that the naive estimator Gx(·) does no take into account edge effects. For improved estima
tors, see Hansen et al. [10], Chiu and Stoyan [9] and the references therein. 
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4 Statistical inference 

Statistical inference for the 'true' scene x can be based on the posterior distribution p(x I y) ex 
p(x)f(y Ix). Since the normalising constant is usually not available in analytical form, Markov chain 
Monte Carlo techniques are needed (see for instance [12], [11, 24] or the 1993 special issue of the 
Journal of the Royal Statistical Society for more details). 

For a Markov object process, ratios of the form p(x')/p(x) are easy to compute for x' obtained 
from x by adding, deleting or modifying an object. For such changes, the likelihood ratio term is also 
straightforward. For instance, consider an independent noise model and a blur-free signal with values 
81 for the foreground and Bo for the background. Then adding object u E U to configuration x yields 
a log likelihood ratio LtER(u) log ~/y;l:~l that is a sum over pixels in R(u) only, hence related to the 
Hough transform [15] in computer vision (see Illingworth and Kittler [17] for an overview). 

Monte Carlo samplers can then be build by repeatedly performing these operations. Inference 
can be based on maximising the posterior distribution [19] or some other optimality criterion [34). 
Multiresolution techniques are useful if the dimension of U becomes large. Also, simple iterative 
techniques similar to Besag's ICM algorithm can be constructed [7, 3, 30]. 

Recently, Propp and Wilson [29] realised that under certain monotonicity assumptions, it is possible 
to detect whether a Markov chain has reached equilibrium. The main idea is to run two Markov 
chains backwards in time until coalescence. The common state then yields an exact sample from 
the equilibrium distribution. In a point process context, exact samplers have been studied for the 
area-interaction model (2) by Kendall [18] and Haggstrom et al. [14]. 

Finally, the framework described in this paper is quite general and can be adapted easily to a wide 
range of problems involving e.g. subpixel resolution of objects, stereo pairs, motion tracking [28], edge 
detection and clustering of image features [20, 21] or signal analysis [38]. 

Acknowledgement 

I am grateful to Professor Mardia for his encouragement. 

References 
[1] R.G. Aykroyd and P.J. Green. Global and local priors, and the location of lesions using gamma-camera imagery. 

Philosophical Transactions of the Royal Society of London, Series A, 337:323-342, 1991. 

[2] A.J. Baddeley, W.S. Kendall and M.N.M. van Lieshout. Quennass-interaction processes. Research Report 293, 
University of Warwick, 1996. 

[3] A.J. Baddeley and M.N.M. van Lieshout. ICM for object recognition. In Y. Dodge and J. Whittaker, editors, 
Computational statistics, volume 2, pages 271-286, Physica/Springer, Heidelberg-New York, 1992. 

[4] A.J. Baddeley and M.N.M. van Lieshout. Stochastic geometry models in high-level vision. In K. Mardia and 
G.K. Kanji, editors, Statistics and images, Advances in Applied Statistics, a supplement to Journal of Applied 
Statistics, 20:231-256, 1993. 

[5] A.J. Baddeley and M.N.M. van Lieshout. Area-interaction point processes. Anna.ls of the Institute of Statistical 
Ma.thematics, 47:601-619, 1995. 

[6] A.J. Baddeley and J. M0ller. Nearest-neighbour Markov point processes and random sets. International Statistical 
Review, 57:89-121, 1989. 

[7] J. Besag. On the statistical analysis of dirty pictures (with discussion). Journal of the Royal Statistical Society, 
Series B, 48:259-302, 1986. 

[8) F. Chen and P.A. Kelly. Algorithms for generating and segmenting morphologically smooth binary images. In 
Proceedings of the 26th Conference on Information Sciences, Princeton, 1992. 

[9] S.N. Chiu and D. Stoyan. Estimators of distance distributions for spatial patterns. To appear in Advances in 
Applied Probability, 1996. 

[10] M.B. Hansen, R.D. Gill and A.J. Baddeley. Kaplan-Meier type estimators for linear contact distributions. Scan
dinavian Journal of Statistics, 23:129-155, 1996. 

[11] C .J. Geyer and J. Mli!Sller. Simulation procedures and likelihood inference for spatial point processes. S candina.via.n 
Journal of Statistics, 21:359-373, 1994. 

[12] P.J. Green. Reversible jump MCMC computation and Bayesian model determination. Biometrika., 82:711-732, 
1995. 



6 

[13] 

[14] 

[15] 

[16] 

[17] 

[18] 

[19] 

[20] 

[21] 

[22] 

[23] 

[24] 

[25] 

[26] 

[27] 

[28] 

U. Grenanderand M.I. Miller. Representations of knowledge in complex systems. Jo1J-mal of the Royal Statistical 
Society, Series B, 56:549-603, 1994. 

0. Haggstrom, M.N.M. van Lieshout and J M0ller. Characterisation and simulation results for two Markovian 
point process models. Technical Report R96-2040, University of Aalborg, 1996. 

P.V.C. Hough. Method and means for recognizing complex patterns. US Patent 3069654, 1962. 

M. A. Hurn. Bayesian image analysis in confocal microscopy. Technical Report 9601, University of Bath, 1996. 

J. Illingworth and J. Kittler. A survey of the Hough transform. Comp1£ter Vision, Graphics and Image Processing, 
44:87-116, 1988. 

W.S. Kendall. Perfect simulation for the area-interaction point process. To appear in L. Accardi a.nd C. Heyde, 
editors, Proceedings of the Symposi1£m on Probability towards the year 2000. Springer-Verlag, 1997. 

M.N.M. van Lieshout. Stochastic annealing for nearest-neighbour point processes with application to object 
recognition. Advances in Applied Probability, 26:281-300, 1994. 

M.N.M. van Lieshout. Stochastic geometry models in image analysis and spatial statistics. CWI tract 108, 
Amsterdam, 1995. 

M.N.M. van Lieshout and A.J. Baddeley. Markov cha.in Monte Carlo methods for clustering of image features. 
In Proceedings 5th IEE International Conferenc on Image Processing and its Applications. IEE Conference 
P1£blication, 410, pp. 241-245. London: IEE Press, 1995. 

M.N .M. van Lieshout and l.S. Molchanov. Shot-noise-weighted processes: a new family of spatial point processes. 
CWI Report BS-R9527, 1995. 

R. Molina. and B.D. Ripley. Using spatial models as priors in astronomical image a.na.lysis. Jo1£rna.l of Applied 
Statistics, 16:193-206, 1989. 

J. M0ller. Markov cha.in Monte Carlo and spatial point processes. In: Proceedings Semina.ire E1£ropeen de Sta.tis
tig1£e, "Stochastic geometry, likelihood, Bnd computation". 0. Ba.rndorff-Nielsen, W.S. Kendall and M.N.M. van 
Lieshout, editors, Chapman and Hall, 1997. To appear. 

J. Mtz1ller and R. Wa.a.gepetersen. Markov connected component fields. Research Report 96-2009, Department of 
Ma.thematics and Computer Science, Aalborg University, 1996. 

A. Pieva.tolo and P.J. Green. Object restoration through dynamic polygons. Technical Report S-95-12, University 
of Bristol, 1995. 

D.B. Philips and A.F .M. Smith. Dynamic image a.nalysis using Bayesian shape and texture models. In K. Mardia. 
and G.K. Ka.nji, editors, Statistics and images, Advances in Applied Statistics, a s1J-pplement to Jo1£rna.1 of Applied 
Statistics, 20:299-322, 1993. 

D.B. Philips and A.F .M. Smith. Object tracking using stochastic deformable templates. Technical report TR-94-
11, Imperial College, 1994. 

[29] J .G. Propp and D.B. Wilson. Exact sampling with coupled Markov cha.ins and applications to statistical mechanics. 
Random Str1£ct1£res and Algorithms, 9:223-252, 1996. 

[30] W. Qian and K.V. Ma.rdia.. Recognition of multiple objects with occlusions. Technical report STAT 95/01, 
University of Leeds, 1995. 

[31] B.D. Ripley. Sta.tistica.I inference for spatio.I processes. Cambridge University Press, 1988. 

(32] B.D. Ripley and F.P. Kelly. Markov point processes. Jo1£mal of the London Ma.thema.tica.I Society, 15:188-192, 
1977. 

[33] B.D. Ripley and A.I. Sutherland. Finding spiral structures in images of galaxies. Philosophical Transactions of 
the Roya.I Society of London, Series A, 332:477-485, 1990. 

[34] H. Rue and A.R. Syversveen. Bayesian object recognition with Ba.ddeley's Delta loss. Technical Report Statistics 
8, University of Trondheim, 1995. 

(35] K. Sivakuma.r and J Goutsia.s. Morphologically constrained discrete random sets. In: D. J e1£1in, editor, Advances 
in Theory and Applications of Random Sets. Fontainebleau, 1996. 

[36] J. Serra. Image analysis and ma.thema.tica.I morphology. Academic Press, London, 1982. 

[37] D. Stoyan, W .S. Kenda.II, and J. Mecke. Stochastic geometry and its a.pp/ica.tions. Akademie-Verla.g, Berlin, 1987. 
Second edition, 1995. 

[38] A. Trubuil, H. Stryhn and M. Hoebeke. Segmentation d'images: Approche par simulation d'un processus de 
diffusion et de sa.ut. Proceedings INRA, 1995. 

[39] A.L. Yuille. Deformable templates for face recognition. Jo1/.rna.l of Cogna.tive Ne1J-roscience, 3:59-70, 1991. 

[40] B. Widom and J.S. Rowlinson. New model for the study of liquid-vapor phase transitions. The Jo1/.rna.l of 
Chemical Physics, 52:1670-1684, 1970. 


